next up previous contents
Next: Bibliography Up: Computation of antenna based Previous: Estimation of the system   Contents


Derivation of $ g_i$ using real and imaginary parts

$ g_i$s are complex functions. One can therefore write $ S$ in terms of $ g_i^I$ and $ {g_i^{\it p}}$, the real and imaginary parts of $ g_i$ and minimize with respect to $ g_i^I$ and $ {g_i^{\it p}}$ separately. It is shown here that the complex arithmetic achieves exactly this and the results are same as that given by complex calculus. The superscripts $ I$ and $ R$ in the following are used to represent the real and imaginary parts of complex quantities.

Expanding Equation D.5, ignoring $ w_{ij}$s and writing it in terms of real and imaginary parts we get

\begin{displaymath}\begin{split}\sum\limits_{{i,j} \atop {i \ne j}}\left\vert X_...
...=\sum\limits_{{i,j} \atop {i \ne j}}& S_0 S_0^\star \end{split}\end{displaymath} (15.14)

where

$\displaystyle S_0=\left[X_{ij}^R- {g_i^{\it p}}{g_j^{\it p}}- g_i^Ig_j^I\right]...
...iota \left[X_{ij}^I+ {g_i^{\it p}}g_j^I- g_i^I{g_j^{\it p}}\right] %%Imag part
$ (15.15)

Taking partial derivative of $ S$ with respect to $ {g_i^{\it p}}$ and reintroducing $ w_{ij}$, we get

\begin{displaymath}\begin{split}{\partial S \over \partial {g_i^{\it p}}}=&\sum\...
...I}^2 - {g_i^{\it p}} {{g_j^{\it p}}}^2\right]w_{ij} \end{split}\end{displaymath} (15.16)

Therefore,

$\displaystyle {\partial S \over \partial {g_i^{\it p}}}= -2\sum\limits_{j \atop...
...t[Re(X_{ij}g_j^\star ) - \left\vert g_j\right\vert^2 {g_i^{\it p}}\right]w_{ij}$ (15.17)

Equating $ \partial S \over \partial {g_i^{\it p}}$ to zero, we get

$\displaystyle {g_i^{\it p}}= {\sum\limits_{j \atop {j \ne i}}Re(X_{ij}g_j^\star...
...j}) \over {\sum\limits_{j \atop {j \ne i}}\left\vert g_j \right\vert^2 w_{ij}}}$ (15.18)

Similarly

$\displaystyle {\partial S \over \partial g_i^I}=-2\sum\limits_{j \atop {j \ne i}}\left[Im(X_{ij}g_j^\star) - \left\vert g_j\right\vert^2 g_i^I\right] w_{ij}$ (15.19)

Therefore the equivalent imaginary part of Equation D.18 is

$\displaystyle g_i^I= {\sum\limits_{j \atop {j \ne i}}Im(X_{ij}g_j^\star w_{ij}) \over {\sum\limits_{j \atop {j \ne i}}\left\vert g_j \right\vert^2 w_{ij}}}$ (15.20)

writing $ g_i={g_i^{\it p}}+ \iota g_i^I$ and substituting for $ {g_i^{\it p}}$ and $ g_i^I$ from Equation D.18 and D.20 respectively, we get

$\displaystyle g_i = {\sum\limits_{j \atop {j \ne i}}X_{ij}g_j^\star w_{ij} \over {\sum\limits_{j \atop {j \ne i}}\left\vert g_j \right\vert^2 w_{ij}}}$ (15.21)

This is same as Equation D.8, which was arrived at by evaluating a complex derivative of Equation D.5 as $ \partial S/\partial g_i^\star$, treating $ g_i$ and $ g_I^\star$ as independent variables. Evaluating $ {\partial S \over \partial g_i}=0$ would give the complex conjugate of Equation D.21. Hence, $ \partial S/\partial g_i$ gives no independent information not present in $ \partial S/\partial g_i^\star$.


next up previous contents
Next: Bibliography Up: Computation of antenna based Previous: Estimation of the system   Contents
Sanjay Bhatnagar 2005-07-07