rope

Go to the documentation of this file.
00001 // SGI's rope class -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  * Copyright (c) 1997
00032  * Silicon Graphics Computer Systems, Inc.
00033  *
00034  * Permission to use, copy, modify, distribute and sell this software
00035  * and its documentation for any purpose is hereby granted without fee,
00036  * provided that the above copyright notice appear in all copies and
00037  * that both that copyright notice and this permission notice appear
00038  * in supporting documentation.  Silicon Graphics makes no
00039  * representations about the suitability of this software for any
00040  * purpose.  It is provided "as is" without express or implied warranty.
00041  */
00042 
00049 #ifndef _ROPE
00050 #define _ROPE 1
00051 
00052 #include <bits/stl_algobase.h>
00053 #include <bits/stl_construct.h>
00054 #include <bits/stl_uninitialized.h>
00055 #include <bits/stl_algo.h>
00056 #include <bits/stl_function.h>
00057 #include <bits/stl_numeric.h>
00058 #include <bits/allocator.h>
00059 #include <ext/hash_fun.h>
00060 
00061 # ifdef __GC
00062 #   define __GC_CONST const
00063 # else
00064 #   include <bits/gthr.h>
00065 #   define __GC_CONST   // constant except for deallocation
00066 # endif
00067 
00068 #include <ext/memory> // For uninitialized_copy_n
00069 
00070 namespace __gnu_cxx
00071 {
00072 using std::size_t;
00073 using std::ptrdiff_t;
00074 using std::allocator;
00075 using std::iterator;
00076 using std::reverse_iterator;
00077 using std::_Destroy;
00078 
00079 // The _S_eos function is used for those functions that
00080 // convert to/from C-like strings to detect the end of the string.
00081 
00082 // The end-of-C-string character.
00083 // This is what the draft standard says it should be.
00084 template <class _CharT>
00085 inline _CharT _S_eos(_CharT*) { return _CharT(); }
00086 
00087 // Test for basic character types.
00088 // For basic character types leaves having a trailing eos.
00089 template <class _CharT>
00090 inline bool _S_is_basic_char_type(_CharT*) { return false; }
00091 template <class _CharT>
00092 inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
00093 
00094 inline bool _S_is_basic_char_type(char*) { return true; }
00095 inline bool _S_is_one_byte_char_type(char*) { return true; }
00096 inline bool _S_is_basic_char_type(wchar_t*) { return true; }
00097 
00098 // Store an eos iff _CharT is a basic character type.
00099 // Do not reference _S_eos if it isn't.
00100 template <class _CharT>
00101 inline void _S_cond_store_eos(_CharT&) {}
00102 
00103 inline void _S_cond_store_eos(char& __c) { __c = 0; }
00104 inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
00105 
00106 // char_producers are logically functions that generate a section of
00107 // a string.  These can be convereted to ropes.  The resulting rope
00108 // invokes the char_producer on demand.  This allows, for example,
00109 // files to be viewed as ropes without reading the entire file.
00110 template <class _CharT>
00111 class char_producer {
00112     public:
00113         virtual ~char_producer() {};
00114         virtual void operator()(size_t __start_pos, size_t __len,
00115                                 _CharT* __buffer) = 0;
00116         // Buffer should really be an arbitrary output iterator.
00117         // That way we could flatten directly into an ostream, etc.
00118         // This is thoroughly impossible, since iterator types don't
00119         // have runtime descriptions.
00120 };
00121 
00122 // Sequence buffers:
00123 //
00124 // Sequence must provide an append operation that appends an
00125 // array to the sequence.  Sequence buffers are useful only if
00126 // appending an entire array is cheaper than appending element by element.
00127 // This is true for many string representations.
00128 // This should  perhaps inherit from ostream<sequence::value_type>
00129 // and be implemented correspondingly, so that they can be used
00130 // for formatted.  For the sake of portability, we don't do this yet.
00131 //
00132 // For now, sequence buffers behave as output iterators.  But they also
00133 // behave a little like basic_ostringstream<sequence::value_type> and a
00134 // little like containers.
00135 
00136 template<class _Sequence, size_t _Buf_sz = 100>
00137 class sequence_buffer : public iterator<std::output_iterator_tag,void,void,void,void>
00138 {
00139     public:
00140         typedef typename _Sequence::value_type value_type;
00141     protected:
00142         _Sequence* _M_prefix;
00143         value_type _M_buffer[_Buf_sz];
00144         size_t     _M_buf_count;
00145     public:
00146         void flush() {
00147             _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
00148             _M_buf_count = 0;
00149         }
00150         ~sequence_buffer() { flush(); }
00151         sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
00152         sequence_buffer(const sequence_buffer& __x) {
00153             _M_prefix = __x._M_prefix;
00154             _M_buf_count = __x._M_buf_count;
00155             std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
00156         }
00157         sequence_buffer(sequence_buffer& __x) {
00158             __x.flush();
00159             _M_prefix = __x._M_prefix;
00160             _M_buf_count = 0;
00161         }
00162         sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
00163         sequence_buffer& operator= (sequence_buffer& __x) {
00164             __x.flush();
00165             _M_prefix = __x._M_prefix;
00166             _M_buf_count = 0;
00167             return *this;
00168         }
00169         sequence_buffer& operator= (const sequence_buffer& __x) {
00170             _M_prefix = __x._M_prefix;
00171             _M_buf_count = __x._M_buf_count;
00172             std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
00173             return *this;
00174         }
00175         void push_back(value_type __x)
00176         {
00177             if (_M_buf_count < _Buf_sz) {
00178                 _M_buffer[_M_buf_count] = __x;
00179                 ++_M_buf_count;
00180             } else {
00181                 flush();
00182                 _M_buffer[0] = __x;
00183                 _M_buf_count = 1;
00184             }
00185         }
00186         void append(value_type* __s, size_t __len)
00187         {
00188             if (__len + _M_buf_count <= _Buf_sz) {
00189                 size_t __i = _M_buf_count;
00190                 for (size_t __j = 0; __j < __len; __i++, __j++) {
00191                     _M_buffer[__i] = __s[__j];
00192                 }
00193                 _M_buf_count += __len;
00194             } else if (0 == _M_buf_count) {
00195                 _M_prefix->append(__s, __s + __len);
00196             } else {
00197                 flush();
00198                 append(__s, __len);
00199             }
00200         }
00201         sequence_buffer& write(value_type* __s, size_t __len)
00202         {
00203             append(__s, __len);
00204             return *this;
00205         }
00206         sequence_buffer& put(value_type __x)
00207         {
00208             push_back(__x);
00209             return *this;
00210         }
00211         sequence_buffer& operator=(const value_type& __rhs)
00212         {
00213             push_back(__rhs);
00214             return *this;
00215         }
00216         sequence_buffer& operator*() { return *this; }
00217         sequence_buffer& operator++() { return *this; }
00218         sequence_buffer operator++(int) { return *this; }
00219 };
00220 
00221 // The following should be treated as private, at least for now.
00222 template<class _CharT>
00223 class _Rope_char_consumer {
00224     public:
00225         // If we had member templates, these should not be virtual.
00226         // For now we need to use run-time parametrization where
00227         // compile-time would do.  Hence this should all be private
00228         // for now.
00229         // The symmetry with char_producer is accidental and temporary.
00230         virtual ~_Rope_char_consumer() {};
00231         virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
00232 };
00233 
00234 // First a lot of forward declarations.  The standard seems to require
00235 // much stricter "declaration before use" than many of the implementations
00236 // that preceded it.
00237 template<class _CharT, class _Alloc = allocator<_CharT> > class rope;
00238 template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
00239 template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
00240 template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
00241 template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
00242 template<class _CharT, class _Alloc> class _Rope_iterator;
00243 template<class _CharT, class _Alloc> class _Rope_const_iterator;
00244 template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
00245 template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
00246 
00247 template<class _CharT, class _Alloc>
00248 bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
00249                  const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
00250 
00251 template<class _CharT, class _Alloc>
00252 _Rope_const_iterator<_CharT,_Alloc> operator-
00253         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00254          ptrdiff_t __n);
00255 
00256 template<class _CharT, class _Alloc>
00257 _Rope_const_iterator<_CharT,_Alloc> operator+
00258         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00259          ptrdiff_t __n);
00260 
00261 template<class _CharT, class _Alloc>
00262 _Rope_const_iterator<_CharT,_Alloc> operator+
00263         (ptrdiff_t __n,
00264          const _Rope_const_iterator<_CharT,_Alloc>& __x);
00265 
00266 template<class _CharT, class _Alloc>
00267 bool operator==
00268         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00269          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00270 
00271 template<class _CharT, class _Alloc>
00272 bool operator<
00273         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00274          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00275 
00276 template<class _CharT, class _Alloc>
00277 ptrdiff_t operator-
00278         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00279          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00280 
00281 template<class _CharT, class _Alloc>
00282 _Rope_iterator<_CharT,_Alloc> operator-
00283         (const _Rope_iterator<_CharT,_Alloc>& __x,
00284          ptrdiff_t __n);
00285 
00286 template<class _CharT, class _Alloc>
00287 _Rope_iterator<_CharT,_Alloc> operator+
00288         (const _Rope_iterator<_CharT,_Alloc>& __x,
00289          ptrdiff_t __n);
00290 
00291 template<class _CharT, class _Alloc>
00292 _Rope_iterator<_CharT,_Alloc> operator+
00293         (ptrdiff_t __n,
00294          const _Rope_iterator<_CharT,_Alloc>& __x);
00295 
00296 template<class _CharT, class _Alloc>
00297 bool operator==
00298         (const _Rope_iterator<_CharT,_Alloc>& __x,
00299          const _Rope_iterator<_CharT,_Alloc>& __y);
00300 
00301 template<class _CharT, class _Alloc>
00302 bool operator<
00303         (const _Rope_iterator<_CharT,_Alloc>& __x,
00304          const _Rope_iterator<_CharT,_Alloc>& __y);
00305 
00306 template<class _CharT, class _Alloc>
00307 ptrdiff_t operator-
00308         (const _Rope_iterator<_CharT,_Alloc>& __x,
00309          const _Rope_iterator<_CharT,_Alloc>& __y);
00310 
00311 template<class _CharT, class _Alloc>
00312 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00313                                const rope<_CharT,_Alloc>& __right);
00314 
00315 template<class _CharT, class _Alloc>
00316 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00317                                const _CharT* __right);
00318 
00319 template<class _CharT, class _Alloc>
00320 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00321                                _CharT __right);
00322 
00323 // Some helpers, so we can use power on ropes.
00324 // See below for why this isn't local to the implementation.
00325 
00326 // This uses a nonstandard refcount convention.
00327 // The result has refcount 0.
00328 template<class _CharT, class _Alloc>
00329 struct _Rope_Concat_fn
00330        : public std::binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>,
00331                                      rope<_CharT,_Alloc> > {
00332         rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x,
00333                                 const rope<_CharT,_Alloc>& __y) {
00334                     return __x + __y;
00335         }
00336 };
00337 
00338 template <class _CharT, class _Alloc>
00339 inline
00340 rope<_CharT,_Alloc>
00341 identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
00342 {
00343     return rope<_CharT,_Alloc>();
00344 }
00345 
00346 
00347   // Class _Refcount_Base provides a type, _RC_t, a data member,
00348   // _M_ref_count, and member functions _M_incr and _M_decr, which perform
00349   // atomic preincrement/predecrement.  The constructor initializes
00350   // _M_ref_count.
00351   struct _Refcount_Base
00352   {
00353     // The type _RC_t
00354     typedef size_t _RC_t;
00355 
00356     // The data member _M_ref_count
00357     volatile _RC_t _M_ref_count;
00358 
00359     // Constructor
00360     __gthread_mutex_t _M_ref_count_lock;
00361 
00362     _Refcount_Base(_RC_t __n) : _M_ref_count(__n), _M_ref_count_lock()
00363     {
00364 #ifdef __GTHREAD_MUTEX_INIT
00365       __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
00366       _M_ref_count_lock = __tmp;
00367 #elif defined(__GTHREAD_MUTEX_INIT_FUNCTION)
00368       __GTHREAD_MUTEX_INIT_FUNCTION (&_M_ref_count_lock);
00369 #else
00370 #error __GTHREAD_MUTEX_INIT or __GTHREAD_MUTEX_INIT_FUNCTION should be defined by gthr.h abstraction layer, report problem to libstdc++@gcc.gnu.org.
00371 #endif
00372     }
00373 
00374     void
00375     _M_incr()
00376     {
00377       __gthread_mutex_lock(&_M_ref_count_lock);
00378       ++_M_ref_count;
00379       __gthread_mutex_unlock(&_M_ref_count_lock);
00380     }
00381 
00382     _RC_t
00383     _M_decr()
00384     {
00385       __gthread_mutex_lock(&_M_ref_count_lock);
00386       volatile _RC_t __tmp = --_M_ref_count;
00387       __gthread_mutex_unlock(&_M_ref_count_lock);
00388       return __tmp;
00389     }
00390   };
00391 
00392 //
00393 // What follows should really be local to rope.  Unfortunately,
00394 // that doesn't work, since it makes it impossible to define generic
00395 // equality on rope iterators.  According to the draft standard, the
00396 // template parameters for such an equality operator cannot be inferred
00397 // from the occurrence of a member class as a parameter.
00398 // (SGI compilers in fact allow this, but the __result wouldn't be
00399 // portable.)
00400 // Similarly, some of the static member functions are member functions
00401 // only to avoid polluting the global namespace, and to circumvent
00402 // restrictions on type inference for template functions.
00403 //
00404 
00405 //
00406 // The internal data structure for representing a rope.  This is
00407 // private to the implementation.  A rope is really just a pointer
00408 // to one of these.
00409 //
00410 // A few basic functions for manipulating this data structure
00411 // are members of _RopeRep.  Most of the more complex algorithms
00412 // are implemented as rope members.
00413 //
00414 // Some of the static member functions of _RopeRep have identically
00415 // named functions in rope that simply invoke the _RopeRep versions.
00416 
00417 #define __ROPE_DEFINE_ALLOCS(__a) \
00418         __ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
00419         typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
00420         __ROPE_DEFINE_ALLOC(__C,_C) \
00421         typedef _Rope_RopeLeaf<_CharT,__a> __L; \
00422         __ROPE_DEFINE_ALLOC(__L,_L) \
00423         typedef _Rope_RopeFunction<_CharT,__a> __F; \
00424         __ROPE_DEFINE_ALLOC(__F,_F) \
00425         typedef _Rope_RopeSubstring<_CharT,__a> __S; \
00426         __ROPE_DEFINE_ALLOC(__S,_S)
00427 
00428 //  Internal rope nodes potentially store a copy of the allocator
00429 //  instance used to allocate them.  This is mostly redundant.
00430 //  But the alternative would be to pass allocator instances around
00431 //  in some form to nearly all internal functions, since any pointer
00432 //  assignment may result in a zero reference count and thus require
00433 //  deallocation.
00434 
00435 #define __STATIC_IF_SGI_ALLOC  /* not static */
00436 
00437 template <class _CharT, class _Alloc>
00438 struct _Rope_rep_base
00439 : public _Alloc
00440 {
00441   typedef _Alloc allocator_type;
00442 
00443   allocator_type
00444   get_allocator() const { return *static_cast<const _Alloc*>(this); }
00445 
00446   _Rope_rep_base(size_t __size, const allocator_type&)
00447   : _M_size(__size) {}
00448 
00449   size_t _M_size;
00450 
00451 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
00452         typedef typename \
00453           _Alloc::template rebind<_Tp>::other __name##Alloc; \
00454         static _Tp* __name##_allocate(size_t __n) \
00455           { return __name##Alloc().allocate(__n); } \
00456         static void __name##_deallocate(_Tp *__p, size_t __n) \
00457           { __name##Alloc().deallocate(__p, __n); }
00458   __ROPE_DEFINE_ALLOCS(_Alloc)
00459 # undef __ROPE_DEFINE_ALLOC
00460 };
00461 
00462 namespace _Rope_constants
00463 {
00464   enum { _S_max_rope_depth = 45 };
00465   enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
00466 }
00467 
00468 template<class _CharT, class _Alloc>
00469 struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc>
00470 # ifndef __GC
00471     , _Refcount_Base
00472 # endif
00473 {
00474     public:
00475     _Rope_constants::_Tag _M_tag:8;
00476     bool _M_is_balanced:8;
00477     unsigned char _M_depth;
00478     __GC_CONST _CharT* _M_c_string;
00479     __gthread_mutex_t _M_c_string_lock;
00480                         /* Flattened version of string, if needed.  */
00481                         /* typically 0.                             */
00482                         /* If it's not 0, then the memory is owned  */
00483                         /* by this node.                            */
00484                         /* In the case of a leaf, this may point to */
00485                         /* the same memory as the data field.       */
00486     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00487                         allocator_type;
00488     using _Rope_rep_base<_CharT,_Alloc>::get_allocator;
00489     _Rope_RopeRep(_Rope_constants::_Tag __t, int __d, bool __b, size_t __size,
00490                   allocator_type __a)
00491         : _Rope_rep_base<_CharT,_Alloc>(__size, __a),
00492 #         ifndef __GC
00493           _Refcount_Base(1),
00494 #         endif
00495           _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0)
00496 #ifdef __GTHREAD_MUTEX_INIT
00497     {
00498     // Do not copy a POSIX/gthr mutex once in use.  However, bits are bits.
00499     __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
00500     _M_c_string_lock = __tmp;
00501     }
00502 #else
00503     { __GTHREAD_MUTEX_INIT_FUNCTION (&_M_c_string_lock); }
00504 #endif
00505 #   ifdef __GC
00506         void _M_incr () {}
00507 #   endif
00508         static void _S_free_string(__GC_CONST _CharT*, size_t __len,
00509                                    allocator_type __a);
00510 #       define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
00511                         // Deallocate data section of a leaf.
00512                         // This shouldn't be a member function.
00513                         // But its hard to do anything else at the
00514                         // moment, because it's templatized w.r.t.
00515                         // an allocator.
00516                         // Does nothing if __GC is defined.
00517 #   ifndef __GC
00518           void _M_free_c_string();
00519           void _M_free_tree();
00520                         // Deallocate t. Assumes t is not 0.
00521           void _M_unref_nonnil()
00522           {
00523               if (0 == _M_decr()) _M_free_tree();
00524           }
00525           void _M_ref_nonnil()
00526           {
00527               _M_incr();
00528           }
00529           static void _S_unref(_Rope_RopeRep* __t)
00530           {
00531               if (0 != __t) {
00532                   __t->_M_unref_nonnil();
00533               }
00534           }
00535           static void _S_ref(_Rope_RopeRep* __t)
00536           {
00537               if (0 != __t) __t->_M_incr();
00538           }
00539           static void _S_free_if_unref(_Rope_RopeRep* __t)
00540           {
00541               if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree();
00542           }
00543 #   else /* __GC */
00544           void _M_unref_nonnil() {}
00545           void _M_ref_nonnil() {}
00546           static void _S_unref(_Rope_RopeRep*) {}
00547           static void _S_ref(_Rope_RopeRep*) {}
00548           static void _S_free_if_unref(_Rope_RopeRep*) {}
00549 #   endif
00550 protected:
00551   _Rope_RopeRep&
00552   operator=(const _Rope_RopeRep&);
00553 
00554   _Rope_RopeRep(const _Rope_RopeRep&);
00555 };
00556 
00557 template<class _CharT, class _Alloc>
00558 struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
00559   public:
00560     // Apparently needed by VC++
00561     // The data fields of leaves are allocated with some
00562     // extra space, to accommodate future growth and for basic
00563     // character types, to hold a trailing eos character.
00564     enum { _S_alloc_granularity = 8 };
00565     static size_t _S_rounded_up_size(size_t __n) {
00566         size_t __size_with_eos;
00567 
00568         if (_S_is_basic_char_type((_CharT*)0)) {
00569             __size_with_eos = __n + 1;
00570         } else {
00571             __size_with_eos = __n;
00572         }
00573 #       ifdef __GC
00574            return __size_with_eos;
00575 #       else
00576            // Allow slop for in-place expansion.
00577            return (__size_with_eos + _S_alloc_granularity-1)
00578                         &~ (_S_alloc_granularity-1);
00579 #       endif
00580     }
00581     __GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
00582                                 /* The allocated size is         */
00583                                 /* _S_rounded_up_size(size), except */
00584                                 /* in the GC case, in which it   */
00585                                 /* doesn't matter.               */
00586     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00587                         allocator_type;
00588     _Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
00589         : _Rope_RopeRep<_CharT,_Alloc>(_Rope_constants::_S_leaf, 0, true, __size, __a), _M_data(__d)
00590         {
00591         if (_S_is_basic_char_type((_CharT *)0)) {
00592             // already eos terminated.
00593             this->_M_c_string = __d;
00594         }
00595     }
00596         // The constructor assumes that d has been allocated with
00597         // the proper allocator and the properly padded size.
00598         // In contrast, the destructor deallocates the data:
00599 # ifndef __GC
00600     ~_Rope_RopeLeaf() throw() {
00601         if (_M_data != this->_M_c_string) {
00602       this->_M_free_c_string();
00603         }
00604         __STL_FREE_STRING(_M_data, this->_M_size, this->get_allocator());
00605     }
00606 # endif
00607 protected:
00608   _Rope_RopeLeaf&
00609   operator=(const _Rope_RopeLeaf&);
00610 
00611   _Rope_RopeLeaf(const _Rope_RopeLeaf&);
00612 };
00613 
00614 template<class _CharT, class _Alloc>
00615 struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
00616   public:
00617     _Rope_RopeRep<_CharT,_Alloc>* _M_left;
00618     _Rope_RopeRep<_CharT,_Alloc>* _M_right;
00619     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00620                         allocator_type;
00621     _Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
00622                              _Rope_RopeRep<_CharT,_Alloc>* __r,
00623                              allocator_type __a)
00624 
00625       : _Rope_RopeRep<_CharT,_Alloc>(_Rope_constants::_S_concat,
00626                                      std::max(__l->_M_depth, __r->_M_depth) + 1,
00627                                      false,
00628                                      __l->_M_size + __r->_M_size, __a),
00629         _M_left(__l), _M_right(__r)
00630       {}
00631 # ifndef __GC
00632     ~_Rope_RopeConcatenation() throw() {
00633       this->_M_free_c_string();
00634       _M_left->_M_unref_nonnil();
00635       _M_right->_M_unref_nonnil();
00636     }
00637 # endif
00638 protected:
00639   _Rope_RopeConcatenation&
00640   operator=(const _Rope_RopeConcatenation&);
00641 
00642   _Rope_RopeConcatenation(const _Rope_RopeConcatenation&);
00643 };
00644 
00645 template<class _CharT, class _Alloc>
00646 struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
00647   public:
00648     char_producer<_CharT>* _M_fn;
00649 #   ifndef __GC
00650       bool _M_delete_when_done; // Char_producer is owned by the
00651                                 // rope and should be explicitly
00652                                 // deleted when the rope becomes
00653                                 // inaccessible.
00654 #   else
00655       // In the GC case, we either register the rope for
00656       // finalization, or not.  Thus the field is unnecessary;
00657       // the information is stored in the collector data structures.
00658       // We do need a finalization procedure to be invoked by the
00659       // collector.
00660       static void _S_fn_finalization_proc(void * __tree, void *) {
00661         delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
00662       }
00663 #   endif
00664     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00665                                         allocator_type;
00666     _Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
00667                         bool __d, allocator_type __a)
00668       : _Rope_RopeRep<_CharT,_Alloc>(_Rope_constants::_S_function,
00669                      0, true, __size, __a)
00670       , _M_fn(__f)
00671 #       ifndef __GC
00672       , _M_delete_when_done(__d)
00673 #       endif
00674     {
00675 #       ifdef __GC
00676             if (__d) {
00677                 GC_REGISTER_FINALIZER(
00678                   this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
00679             }
00680 #       endif
00681     }
00682 # ifndef __GC
00683     ~_Rope_RopeFunction() throw() {
00684           this->_M_free_c_string();
00685           if (_M_delete_when_done) {
00686               delete _M_fn;
00687           }
00688     }
00689 # endif
00690 protected:
00691   _Rope_RopeFunction&
00692   operator=(const _Rope_RopeFunction&);
00693 
00694   _Rope_RopeFunction(const _Rope_RopeFunction&);
00695 };
00696 // Substring results are usually represented using just
00697 // concatenation nodes.  But in the case of very long flat ropes
00698 // or ropes with a functional representation that isn't practical.
00699 // In that case, we represent the __result as a special case of
00700 // RopeFunction, whose char_producer points back to the rope itself.
00701 // In all cases except repeated substring operations and
00702 // deallocation, we treat the __result as a RopeFunction.
00703 template<class _CharT, class _Alloc>
00704 struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
00705                              public char_producer<_CharT> {
00706   public:
00707     // XXX this whole class should be rewritten.
00708     _Rope_RopeRep<_CharT,_Alloc>* _M_base;      // not 0
00709     size_t _M_start;
00710     virtual void operator()(size_t __start_pos, size_t __req_len,
00711                             _CharT* __buffer) {
00712         switch(_M_base->_M_tag) {
00713             case _Rope_constants::_S_function:
00714             case _Rope_constants::_S_substringfn:
00715               {
00716                 char_producer<_CharT>* __fn =
00717                         ((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
00718                 (*__fn)(__start_pos + _M_start, __req_len, __buffer);
00719               }
00720               break;
00721             case _Rope_constants::_S_leaf:
00722               {
00723                 __GC_CONST _CharT* __s =
00724                         ((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
00725                 uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
00726                                      __buffer);
00727               }
00728               break;
00729             default:
00730           break;
00731         }
00732     }
00733     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00734         allocator_type;
00735     _Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
00736                           size_t __l, allocator_type __a)
00737       : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a),
00738         char_producer<_CharT>(),
00739         _M_base(__b),
00740         _M_start(__s)
00741     {
00742 #       ifndef __GC
00743             _M_base->_M_ref_nonnil();
00744 #       endif
00745         this->_M_tag = _Rope_constants::_S_substringfn;
00746     }
00747     virtual ~_Rope_RopeSubstring() throw()
00748       {
00749 #       ifndef __GC
00750           _M_base->_M_unref_nonnil();
00751           // _M_free_c_string();  -- done by parent class
00752 #       endif
00753       }
00754 };
00755 
00756 
00757 // Self-destructing pointers to Rope_rep.
00758 // These are not conventional smart pointers.  Their
00759 // only purpose in life is to ensure that unref is called
00760 // on the pointer either at normal exit or if an exception
00761 // is raised.  It is the caller's responsibility to
00762 // adjust reference counts when these pointers are initialized
00763 // or assigned to.  (This convention significantly reduces
00764 // the number of potentially expensive reference count
00765 // updates.)
00766 #ifndef __GC
00767   template<class _CharT, class _Alloc>
00768   struct _Rope_self_destruct_ptr {
00769     _Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
00770     ~_Rope_self_destruct_ptr()
00771       { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
00772 #ifdef __EXCEPTIONS
00773         _Rope_self_destruct_ptr() : _M_ptr(0) {};
00774 #else
00775         _Rope_self_destruct_ptr() {};
00776 #endif
00777     _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
00778     _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
00779     _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
00780     operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
00781     _Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
00782         { _M_ptr = __x; return *this; }
00783   };
00784 #endif
00785 
00786 // Dereferencing a nonconst iterator has to return something
00787 // that behaves almost like a reference.  It's not possible to
00788 // return an actual reference since assignment requires extra
00789 // work.  And we would get into the same problems as with the
00790 // CD2 version of basic_string.
00791 template<class _CharT, class _Alloc>
00792 class _Rope_char_ref_proxy {
00793     friend class rope<_CharT,_Alloc>;
00794     friend class _Rope_iterator<_CharT,_Alloc>;
00795     friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
00796 #   ifdef __GC
00797         typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
00798 #   else
00799         typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
00800 #   endif
00801     typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00802     typedef rope<_CharT,_Alloc> _My_rope;
00803     size_t _M_pos;
00804     _CharT _M_current;
00805     bool _M_current_valid;
00806     _My_rope* _M_root;     // The whole rope.
00807   public:
00808     _Rope_char_ref_proxy(_My_rope* __r, size_t __p)
00809     :  _M_pos(__p), _M_current(), _M_current_valid(false), _M_root(__r) {}
00810 
00811     _Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x)
00812     : _M_pos(__x._M_pos), _M_current(__x._M_current), _M_current_valid(false), 
00813       _M_root(__x._M_root) {}
00814 
00815   // Don't preserve cache if the reference can outlive the
00816   // expression.  We claim that's not possible without calling
00817   // a copy constructor or generating reference to a proxy
00818   // reference.  We declare the latter to have undefined semantics.
00819     _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
00820       : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
00821     inline operator _CharT () const;
00822     _Rope_char_ref_proxy& operator= (_CharT __c);
00823     _Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
00824     _Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
00825         return operator=((_CharT)__c);
00826     }
00827 };
00828 
00829 template<class _CharT, class __Alloc>
00830 inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
00831                  _Rope_char_ref_proxy <_CharT, __Alloc > __b) {
00832     _CharT __tmp = __a;
00833     __a = __b;
00834     __b = __tmp;
00835 }
00836 
00837 template<class _CharT, class _Alloc>
00838 class _Rope_char_ptr_proxy {
00839     // XXX this class should be rewritten.
00840     friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
00841     size_t _M_pos;
00842     rope<_CharT,_Alloc>* _M_root;     // The whole rope.
00843   public:
00844     _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
00845       : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
00846     _Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
00847       : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
00848     _Rope_char_ptr_proxy() {}
00849     _Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
00850     }
00851     _Rope_char_ptr_proxy&
00852     operator= (const _Rope_char_ptr_proxy& __x) {
00853         _M_pos = __x._M_pos;
00854         _M_root = __x._M_root;
00855         return *this;
00856     }
00857     template<class _CharT2, class _Alloc2>
00858     friend bool operator== (const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __x,
00859                             const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __y);
00860     _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
00861         return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
00862     }
00863 };
00864 
00865 
00866 // Rope iterators:
00867 // Unlike in the C version, we cache only part of the stack
00868 // for rope iterators, since they must be efficiently copyable.
00869 // When we run out of cache, we have to reconstruct the iterator
00870 // value.
00871 // Pointers from iterators are not included in reference counts.
00872 // Iterators are assumed to be thread private.  Ropes can
00873 // be shared.
00874 
00875 template<class _CharT, class _Alloc>
00876 class _Rope_iterator_base
00877   : public iterator<std::random_access_iterator_tag, _CharT>
00878 {
00879     friend class rope<_CharT,_Alloc>;
00880   public:
00881     typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround
00882     typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00883         // Borland doesn't want this to be protected.
00884   protected:
00885     enum { _S_path_cache_len = 4 }; // Must be <= 9.
00886     enum { _S_iterator_buf_len = 15 };
00887     size_t _M_current_pos;
00888     _RopeRep* _M_root;     // The whole rope.
00889     size_t _M_leaf_pos;    // Starting position for current leaf
00890     __GC_CONST _CharT* _M_buf_start;
00891                         // Buffer possibly
00892                         // containing current char.
00893     __GC_CONST _CharT* _M_buf_ptr;
00894                         // Pointer to current char in buffer.
00895                         // != 0 ==> buffer valid.
00896     __GC_CONST _CharT* _M_buf_end;
00897                         // One past __last valid char in buffer.
00898     // What follows is the path cache.  We go out of our
00899     // way to make this compact.
00900     // Path_end contains the bottom section of the path from
00901     // the root to the current leaf.
00902     const _RopeRep* _M_path_end[_S_path_cache_len];
00903     int _M_leaf_index;     // Last valid __pos in path_end;
00904                         // _M_path_end[0] ... _M_path_end[leaf_index-1]
00905                         // point to concatenation nodes.
00906     unsigned char _M_path_directions;
00907                           // (path_directions >> __i) & 1 is 1
00908                           // iff we got from _M_path_end[leaf_index - __i - 1]
00909                           // to _M_path_end[leaf_index - __i] by going to the
00910                           // __right. Assumes path_cache_len <= 9.
00911     _CharT _M_tmp_buf[_S_iterator_buf_len];
00912                         // Short buffer for surrounding chars.
00913                         // This is useful primarily for
00914                         // RopeFunctions.  We put the buffer
00915                         // here to avoid locking in the
00916                         // multithreaded case.
00917     // The cached path is generally assumed to be valid
00918     // only if the buffer is valid.
00919     static void _S_setbuf(_Rope_iterator_base& __x);
00920                                         // Set buffer contents given
00921                                         // path cache.
00922     static void _S_setcache(_Rope_iterator_base& __x);
00923                                         // Set buffer contents and
00924                                         // path cache.
00925     static void _S_setcache_for_incr(_Rope_iterator_base& __x);
00926                                         // As above, but assumes path
00927                                         // cache is valid for previous posn.
00928     _Rope_iterator_base() {}
00929     _Rope_iterator_base(_RopeRep* __root, size_t __pos)
00930       : _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) {}
00931     void _M_incr(size_t __n);
00932     void _M_decr(size_t __n);
00933   public:
00934     size_t index() const { return _M_current_pos; }
00935     _Rope_iterator_base(const _Rope_iterator_base& __x) {
00936         if (0 != __x._M_buf_ptr) {
00937             *this = __x;
00938         } else {
00939             _M_current_pos = __x._M_current_pos;
00940             _M_root = __x._M_root;
00941             _M_buf_ptr = 0;
00942         }
00943     }
00944 };
00945 
00946 template<class _CharT, class _Alloc> class _Rope_iterator;
00947 
00948 template<class _CharT, class _Alloc>
00949 class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
00950     friend class rope<_CharT,_Alloc>;
00951   protected:
00952       typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00953       // The one from the base class may not be directly visible.
00954     _Rope_const_iterator(const _RopeRep* __root, size_t __pos):
00955                    _Rope_iterator_base<_CharT,_Alloc>(
00956                      const_cast<_RopeRep*>(__root), __pos)
00957                    // Only nonconst iterators modify root ref count
00958     {}
00959   public:
00960     typedef _CharT reference;   // Really a value.  Returning a reference
00961                                 // Would be a mess, since it would have
00962                                 // to be included in refcount.
00963     typedef const _CharT* pointer;
00964 
00965   public:
00966     _Rope_const_iterator() {};
00967     _Rope_const_iterator(const _Rope_const_iterator& __x) :
00968                                 _Rope_iterator_base<_CharT,_Alloc>(__x) { }
00969     _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
00970     _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
00971         _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
00972     _Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
00973         if (0 != __x._M_buf_ptr) {
00974             *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
00975         } else {
00976             this->_M_current_pos = __x._M_current_pos;
00977             this->_M_root = __x._M_root;
00978             this->_M_buf_ptr = 0;
00979         }
00980         return(*this);
00981     }
00982     reference operator*() {
00983         if (0 == this->_M_buf_ptr) _S_setcache(*this);
00984         return *this->_M_buf_ptr;
00985     }
00986     _Rope_const_iterator& operator++() {
00987         __GC_CONST _CharT* __next;
00988         if (0 != this->_M_buf_ptr
00989         && (__next = this->_M_buf_ptr + 1) < this->_M_buf_end) {
00990             this->_M_buf_ptr = __next;
00991             ++this->_M_current_pos;
00992         } else {
00993             this->_M_incr(1);
00994         }
00995         return *this;
00996     }
00997     _Rope_const_iterator& operator+=(ptrdiff_t __n) {
00998         if (__n >= 0) {
00999             this->_M_incr(__n);
01000         } else {
01001         this->_M_decr(-__n);
01002         }
01003         return *this;
01004     }
01005     _Rope_const_iterator& operator--() {
01006         this->_M_decr(1);
01007         return *this;
01008     }
01009     _Rope_const_iterator& operator-=(ptrdiff_t __n) {
01010         if (__n >= 0) {
01011             this->_M_decr(__n);
01012         } else {
01013             this->_M_incr(-__n);
01014         }
01015         return *this;
01016     }
01017     _Rope_const_iterator operator++(int) {
01018         size_t __old_pos = this->_M_current_pos;
01019         this->_M_incr(1);
01020         return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
01021         // This makes a subsequent dereference expensive.
01022         // Perhaps we should instead copy the iterator
01023         // if it has a valid cache?
01024     }
01025     _Rope_const_iterator operator--(int) {
01026         size_t __old_pos = this->_M_current_pos;
01027         this->_M_decr(1);
01028         return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
01029     }
01030     template<class _CharT2, class _Alloc2>
01031     friend _Rope_const_iterator<_CharT2,_Alloc2> operator-
01032         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01033          ptrdiff_t __n);
01034     template<class _CharT2, class _Alloc2>
01035     friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
01036         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01037          ptrdiff_t __n);
01038     template<class _CharT2, class _Alloc2>
01039     friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
01040         (ptrdiff_t __n,
01041          const _Rope_const_iterator<_CharT2,_Alloc2>& __x);
01042     reference operator[](size_t __n) {
01043         return rope<_CharT,_Alloc>::_S_fetch(this->_M_root,
01044                          this->_M_current_pos + __n);
01045     }
01046 
01047     template<class _CharT2, class _Alloc2>
01048     friend bool operator==
01049         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01050          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01051     template<class _CharT2, class _Alloc2>
01052     friend bool operator<
01053         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01054          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01055     template<class _CharT2, class _Alloc2>
01056     friend ptrdiff_t operator-
01057         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01058          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01059 };
01060 
01061 template<class _CharT, class _Alloc>
01062 class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
01063     friend class rope<_CharT,_Alloc>;
01064   protected:
01065     typedef typename _Rope_iterator_base<_CharT,_Alloc>::_RopeRep _RopeRep;
01066     rope<_CharT,_Alloc>* _M_root_rope;
01067         // root is treated as a cached version of this,
01068         // and is used to detect changes to the underlying
01069         // rope.
01070         // Root is included in the reference count.
01071         // This is necessary so that we can detect changes reliably.
01072         // Unfortunately, it requires careful bookkeeping for the
01073         // nonGC case.
01074     _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
01075       : _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
01076         _M_root_rope(__r)
01077       { _RopeRep::_S_ref(this->_M_root);
01078         if (!(__r -> empty()))_S_setcache(*this); }
01079 
01080     void _M_check();
01081   public:
01082     typedef _Rope_char_ref_proxy<_CharT,_Alloc>  reference;
01083     typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
01084 
01085   public:
01086     rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
01087     _Rope_iterator() {
01088         this->_M_root = 0;  // Needed for reference counting.
01089     };
01090     _Rope_iterator(const _Rope_iterator& __x) :
01091         _Rope_iterator_base<_CharT,_Alloc>(__x) {
01092         _M_root_rope = __x._M_root_rope;
01093         _RopeRep::_S_ref(this->_M_root);
01094     }
01095     _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
01096     ~_Rope_iterator() {
01097         _RopeRep::_S_unref(this->_M_root);
01098     }
01099     _Rope_iterator& operator= (const _Rope_iterator& __x) {
01100         _RopeRep* __old = this->_M_root;
01101 
01102         _RopeRep::_S_ref(__x._M_root);
01103         if (0 != __x._M_buf_ptr) {
01104             _M_root_rope = __x._M_root_rope;
01105             *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
01106         } else {
01107         this->_M_current_pos = __x._M_current_pos;
01108             this->_M_root = __x._M_root;
01109             _M_root_rope = __x._M_root_rope;
01110             this->_M_buf_ptr = 0;
01111         }
01112         _RopeRep::_S_unref(__old);
01113         return(*this);
01114     }
01115     reference operator*() {
01116         _M_check();
01117         if (0 == this->_M_buf_ptr) {
01118             return _Rope_char_ref_proxy<_CharT,_Alloc>(
01119                _M_root_rope, this->_M_current_pos);
01120         } else {
01121             return _Rope_char_ref_proxy<_CharT,_Alloc>(
01122                _M_root_rope, this->_M_current_pos, *this->_M_buf_ptr);
01123         }
01124     }
01125     _Rope_iterator& operator++() {
01126         this->_M_incr(1);
01127         return *this;
01128     }
01129     _Rope_iterator& operator+=(ptrdiff_t __n) {
01130         if (__n >= 0) {
01131             this->_M_incr(__n);
01132         } else {
01133             this->_M_decr(-__n);
01134         }
01135         return *this;
01136     }
01137     _Rope_iterator& operator--() {
01138         this->_M_decr(1);
01139         return *this;
01140     }
01141     _Rope_iterator& operator-=(ptrdiff_t __n) {
01142         if (__n >= 0) {
01143             this->_M_decr(__n);
01144         } else {
01145             this->_M_incr(-__n);
01146         }
01147         return *this;
01148     }
01149     _Rope_iterator operator++(int) {
01150         size_t __old_pos = this->_M_current_pos;
01151         this->_M_incr(1);
01152         return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
01153     }
01154     _Rope_iterator operator--(int) {
01155         size_t __old_pos = this->_M_current_pos;
01156         this->_M_decr(1);
01157         return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
01158     }
01159     reference operator[](ptrdiff_t __n) {
01160         return _Rope_char_ref_proxy<_CharT,_Alloc>(
01161           _M_root_rope, this->_M_current_pos + __n);
01162     }
01163 
01164     template<class _CharT2, class _Alloc2>
01165     friend bool operator==
01166         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01167          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01168     template<class _CharT2, class _Alloc2>
01169     friend bool operator<
01170         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01171          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01172     template<class _CharT2, class _Alloc2>
01173     friend ptrdiff_t operator-
01174         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01175          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01176     template<class _CharT2, class _Alloc2>
01177     friend _Rope_iterator<_CharT2,_Alloc2> operator-
01178         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01179          ptrdiff_t __n);
01180     template<class _CharT2, class _Alloc2>
01181     friend _Rope_iterator<_CharT2,_Alloc2> operator+
01182         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01183          ptrdiff_t __n);
01184     template<class _CharT2, class _Alloc2>
01185     friend _Rope_iterator<_CharT2,_Alloc2> operator+
01186         (ptrdiff_t __n,
01187          const _Rope_iterator<_CharT2,_Alloc2>& __x);
01188 };
01189 
01190 
01191 template <class _CharT, class _Alloc>
01192 struct _Rope_base
01193 : public _Alloc
01194 {
01195   typedef _Alloc allocator_type;
01196 
01197   allocator_type
01198   get_allocator() const { return *static_cast<const _Alloc*>(this); }
01199 
01200   typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
01201   // The one in _Base may not be visible due to template rules.
01202 
01203   _Rope_base(_RopeRep* __t, const allocator_type&)
01204   : _M_tree_ptr(__t) {}
01205   _Rope_base(const allocator_type&) {}
01206 
01207   // The only data member of a rope:
01208   _RopeRep *_M_tree_ptr;
01209 
01210 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
01211         typedef typename \
01212           _Alloc::template rebind<_Tp>::other __name##Alloc; \
01213         static _Tp* __name##_allocate(size_t __n) \
01214           { return __name##Alloc().allocate(__n); } \
01215         static void __name##_deallocate(_Tp *__p, size_t __n) \
01216           { __name##Alloc().deallocate(__p, __n); }
01217   __ROPE_DEFINE_ALLOCS(_Alloc)
01218 # undef __ROPE_DEFINE_ALLOC
01219 
01220 protected:
01221   _Rope_base&
01222   operator=(const _Rope_base&);
01223 
01224   _Rope_base(const _Rope_base&);
01225 };
01226 
01227 
01233 template <class _CharT, class _Alloc>
01234 class rope : public _Rope_base<_CharT,_Alloc> {
01235     public:
01236         typedef _CharT value_type;
01237         typedef ptrdiff_t difference_type;
01238         typedef size_t size_type;
01239         typedef _CharT const_reference;
01240         typedef const _CharT* const_pointer;
01241         typedef _Rope_iterator<_CharT,_Alloc> iterator;
01242         typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
01243         typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
01244         typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
01245 
01246         friend class _Rope_iterator<_CharT,_Alloc>;
01247         friend class _Rope_const_iterator<_CharT,_Alloc>;
01248         friend struct _Rope_RopeRep<_CharT,_Alloc>;
01249         friend class _Rope_iterator_base<_CharT,_Alloc>;
01250         friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
01251         friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
01252         friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
01253 
01254     protected:
01255         typedef _Rope_base<_CharT,_Alloc> _Base;
01256         typedef typename _Base::allocator_type allocator_type;
01257         using _Base::_M_tree_ptr;
01258         using _Base::get_allocator;
01259         typedef __GC_CONST _CharT* _Cstrptr;
01260 
01261         static _CharT _S_empty_c_str[1];
01262 
01263         static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
01264         enum { _S_copy_max = 23 };
01265                 // For strings shorter than _S_copy_max, we copy to
01266                 // concatenate.
01267 
01268         typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
01269         typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
01270         typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
01271         typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
01272         typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
01273 
01274         // Retrieve a character at the indicated position.
01275         static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
01276 
01277 #       ifndef __GC
01278             // Obtain a pointer to the character at the indicated position.
01279             // The pointer can be used to change the character.
01280             // If such a pointer cannot be produced, as is frequently the
01281             // case, 0 is returned instead.
01282             // (Returns nonzero only if all nodes in the path have a refcount
01283             // of 1.)
01284             static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
01285 #       endif
01286 
01287         static bool _S_apply_to_pieces(
01288                                 // should be template parameter
01289                                 _Rope_char_consumer<_CharT>& __c,
01290                                 const _RopeRep* __r,
01291                                 size_t __begin, size_t __end);
01292                                 // begin and end are assumed to be in range.
01293 
01294 #       ifndef __GC
01295           static void _S_unref(_RopeRep* __t)
01296           {
01297               _RopeRep::_S_unref(__t);
01298           }
01299           static void _S_ref(_RopeRep* __t)
01300           {
01301               _RopeRep::_S_ref(__t);
01302           }
01303 #       else /* __GC */
01304           static void _S_unref(_RopeRep*) {}
01305           static void _S_ref(_RopeRep*) {}
01306 #       endif
01307 
01308 
01309 #       ifdef __GC
01310             typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
01311 #       else
01312             typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
01313 #       endif
01314 
01315         // _Result is counted in refcount.
01316         static _RopeRep* _S_substring(_RopeRep* __base,
01317                                     size_t __start, size_t __endp1);
01318 
01319         static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
01320                                           const _CharT* __iter, size_t __slen);
01321                 // Concatenate rope and char ptr, copying __s.
01322                 // Should really take an arbitrary iterator.
01323                 // Result is counted in refcount.
01324         static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
01325                                           const _CharT* __iter, size_t __slen)
01326                 // As above, but one reference to __r is about to be
01327                 // destroyed.  Thus the pieces may be recycled if all
01328                 // relevant reference counts are 1.
01329 #           ifdef __GC
01330                 // We can't really do anything since refcounts are unavailable.
01331                 { return _S_concat_char_iter(__r, __iter, __slen); }
01332 #           else
01333                 ;
01334 #           endif
01335 
01336         static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
01337                 // General concatenation on _RopeRep.  _Result
01338                 // has refcount of 1.  Adjusts argument refcounts.
01339 
01340    public:
01341         void apply_to_pieces( size_t __begin, size_t __end,
01342                               _Rope_char_consumer<_CharT>& __c) const {
01343             _S_apply_to_pieces(__c, this->_M_tree_ptr, __begin, __end);
01344         }
01345 
01346 
01347    protected:
01348 
01349         static size_t _S_rounded_up_size(size_t __n) {
01350             return _RopeLeaf::_S_rounded_up_size(__n);
01351         }
01352 
01353         static size_t _S_allocated_capacity(size_t __n) {
01354             if (_S_is_basic_char_type((_CharT*)0)) {
01355                 return _S_rounded_up_size(__n) - 1;
01356             } else {
01357                 return _S_rounded_up_size(__n);
01358             }
01359         }
01360 
01361         // Allocate and construct a RopeLeaf using the supplied allocator
01362         // Takes ownership of s instead of copying.
01363         static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
01364                                           size_t __size, allocator_type __a)
01365         {
01366             _RopeLeaf* __space = typename _Base::_LAlloc(__a).allocate(1);
01367             return new(__space) _RopeLeaf(__s, __size, __a);
01368         }
01369 
01370         static _RopeConcatenation* _S_new_RopeConcatenation(
01371                         _RopeRep* __left, _RopeRep* __right,
01372                         allocator_type __a)
01373         {
01374             _RopeConcatenation* __space = typename _Base::_CAlloc(__a).allocate(1);
01375             return new(__space) _RopeConcatenation(__left, __right, __a);
01376         }
01377 
01378         static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
01379                 size_t __size, bool __d, allocator_type __a)
01380         {
01381             _RopeFunction* __space = typename _Base::_FAlloc(__a).allocate(1);
01382             return new(__space) _RopeFunction(__f, __size, __d, __a);
01383         }
01384 
01385         static _RopeSubstring* _S_new_RopeSubstring(
01386                 _Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
01387                 size_t __l, allocator_type __a)
01388         {
01389             _RopeSubstring* __space = typename _Base::_SAlloc(__a).allocate(1);
01390             return new(__space) _RopeSubstring(__b, __s, __l, __a);
01391         }
01392 
01393           static
01394           _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
01395                        size_t __size, allocator_type __a)
01396 #         define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
01397                 _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
01398         {
01399             if (0 == __size) return 0;
01400             _CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
01401 
01402             uninitialized_copy_n(__s, __size, __buf);
01403             _S_cond_store_eos(__buf[__size]);
01404             try {
01405               return _S_new_RopeLeaf(__buf, __size, __a);
01406             }
01407             catch(...)
01408           {
01409         _RopeRep::__STL_FREE_STRING(__buf, __size, __a);
01410         __throw_exception_again;
01411           }
01412         }
01413 
01414 
01415         // Concatenation of nonempty strings.
01416         // Always builds a concatenation node.
01417         // Rebalances if the result is too deep.
01418         // Result has refcount 1.
01419         // Does not increment left and right ref counts even though
01420         // they are referenced.
01421         static _RopeRep*
01422         _S_tree_concat(_RopeRep* __left, _RopeRep* __right);
01423 
01424         // Concatenation helper functions
01425         static _RopeLeaf*
01426         _S_leaf_concat_char_iter(_RopeLeaf* __r,
01427                                  const _CharT* __iter, size_t __slen);
01428                 // Concatenate by copying leaf.
01429                 // should take an arbitrary iterator
01430                 // result has refcount 1.
01431 #       ifndef __GC
01432           static _RopeLeaf* _S_destr_leaf_concat_char_iter
01433                         (_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
01434           // A version that potentially clobbers __r if __r->_M_ref_count == 1.
01435 #       endif
01436 
01437         private:
01438 
01439         static size_t _S_char_ptr_len(const _CharT* __s);
01440                         // slightly generalized strlen
01441 
01442         rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
01443           : _Base(__t,__a) { }
01444 
01445 
01446         // Copy __r to the _CharT buffer.
01447         // Returns __buffer + __r->_M_size.
01448         // Assumes that buffer is uninitialized.
01449         static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
01450 
01451         // Again, with explicit starting position and length.
01452         // Assumes that buffer is uninitialized.
01453         static _CharT* _S_flatten(_RopeRep* __r,
01454                                   size_t __start, size_t __len,
01455                                   _CharT* __buffer);
01456 
01457         static const unsigned long
01458           _S_min_len[_Rope_constants::_S_max_rope_depth + 1];
01459 
01460         static bool _S_is_balanced(_RopeRep* __r)
01461                 { return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
01462 
01463         static bool _S_is_almost_balanced(_RopeRep* __r)
01464                 { return (__r->_M_depth == 0 ||
01465                           __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
01466 
01467         static bool _S_is_roughly_balanced(_RopeRep* __r)
01468                 { return (__r->_M_depth <= 1 ||
01469                           __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
01470 
01471         // Assumes the result is not empty.
01472         static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
01473                                                      _RopeRep* __right)
01474         {
01475             _RopeRep* __result = _S_concat(__left, __right);
01476             if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
01477             return __result;
01478         }
01479 
01480         // The basic rebalancing operation.  Logically copies the
01481         // rope.  The result has refcount of 1.  The client will
01482         // usually decrement the reference count of __r.
01483         // The result is within height 2 of balanced by the above
01484         // definition.
01485         static _RopeRep* _S_balance(_RopeRep* __r);
01486 
01487         // Add all unbalanced subtrees to the forest of balanceed trees.
01488         // Used only by balance.
01489         static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
01490 
01491         // Add __r to forest, assuming __r is already balanced.
01492         static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
01493 
01494         // Print to stdout, exposing structure
01495         static void _S_dump(_RopeRep* __r, int __indent = 0);
01496 
01497         // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
01498         static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
01499 
01500    public:
01501         bool empty() const { return 0 == this->_M_tree_ptr; }
01502 
01503         // Comparison member function.  This is public only for those
01504         // clients that need a ternary comparison.  Others
01505         // should use the comparison operators below.
01506         int compare(const rope& __y) const {
01507             return _S_compare(this->_M_tree_ptr, __y._M_tree_ptr);
01508         }
01509 
01510         rope(const _CharT* __s, const allocator_type& __a = allocator_type())
01511         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
01512                                                  __a),__a)
01513         { }
01514 
01515         rope(const _CharT* __s, size_t __len,
01516              const allocator_type& __a = allocator_type())
01517         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
01518         { }
01519 
01520         // Should perhaps be templatized with respect to the iterator type
01521         // and use Sequence_buffer.  (It should perhaps use sequence_buffer
01522         // even now.)
01523         rope(const _CharT *__s, const _CharT *__e,
01524              const allocator_type& __a = allocator_type())
01525         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
01526         { }
01527 
01528         rope(const const_iterator& __s, const const_iterator& __e,
01529              const allocator_type& __a = allocator_type())
01530         : _Base(_S_substring(__s._M_root, __s._M_current_pos,
01531                              __e._M_current_pos), __a)
01532         { }
01533 
01534         rope(const iterator& __s, const iterator& __e,
01535              const allocator_type& __a = allocator_type())
01536         : _Base(_S_substring(__s._M_root, __s._M_current_pos,
01537                              __e._M_current_pos), __a)
01538         { }
01539 
01540         rope(_CharT __c, const allocator_type& __a = allocator_type())
01541         : _Base(__a)
01542         {
01543         _CharT* __buf = this->_Data_allocate(_S_rounded_up_size(1));
01544 
01545             std::_Construct(__buf, __c);
01546             try {
01547                 this->_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
01548             }
01549             catch(...)
01550           {
01551         _RopeRep::__STL_FREE_STRING(__buf, 1, __a);
01552         __throw_exception_again;
01553           }
01554         }
01555 
01556         rope(size_t __n, _CharT __c,
01557              const allocator_type& __a = allocator_type());
01558 
01559         rope(const allocator_type& __a = allocator_type())
01560         : _Base(0, __a) {}
01561 
01562         // Construct a rope from a function that can compute its members
01563         rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
01564              const allocator_type& __a = allocator_type())
01565             : _Base(__a)
01566         {
01567             this->_M_tree_ptr = (0 == __len) ?
01568                0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
01569         }
01570 
01571         rope(const rope& __x, const allocator_type& __a = allocator_type())
01572         : _Base(__x._M_tree_ptr, __a)
01573         {
01574             _S_ref(this->_M_tree_ptr);
01575         }
01576 
01577       ~rope() throw()
01578        { _S_unref(this->_M_tree_ptr); }
01579 
01580         rope& operator=(const rope& __x)
01581         {
01582             _RopeRep* __old = this->_M_tree_ptr;
01583             this->_M_tree_ptr = __x._M_tree_ptr;
01584             _S_ref(this->_M_tree_ptr);
01585             _S_unref(__old);
01586             return *this;
01587         }
01588 
01589         void clear()
01590         {
01591             _S_unref(this->_M_tree_ptr);
01592             this->_M_tree_ptr = 0;
01593         }
01594 
01595         void push_back(_CharT __x)
01596         {
01597             _RopeRep* __old = this->_M_tree_ptr;
01598             this->_M_tree_ptr
01599           = _S_destr_concat_char_iter(this->_M_tree_ptr, &__x, 1);
01600             _S_unref(__old);
01601         }
01602 
01603         void pop_back()
01604         {
01605             _RopeRep* __old = this->_M_tree_ptr;
01606             this->_M_tree_ptr =
01607               _S_substring(this->_M_tree_ptr,
01608                0,
01609                this->_M_tree_ptr->_M_size - 1);
01610             _S_unref(__old);
01611         }
01612 
01613         _CharT back() const
01614         {
01615             return _S_fetch(this->_M_tree_ptr, this->_M_tree_ptr->_M_size - 1);
01616         }
01617 
01618         void push_front(_CharT __x)
01619         {
01620             _RopeRep* __old = this->_M_tree_ptr;
01621             _RopeRep* __left =
01622               __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, this->get_allocator());
01623             try {
01624               this->_M_tree_ptr = _S_concat(__left, this->_M_tree_ptr);
01625               _S_unref(__old);
01626               _S_unref(__left);
01627             }
01628             catch(...)
01629           {
01630         _S_unref(__left);
01631         __throw_exception_again;
01632           }
01633         }
01634 
01635         void pop_front()
01636         {
01637             _RopeRep* __old = this->_M_tree_ptr;
01638             this->_M_tree_ptr
01639           = _S_substring(this->_M_tree_ptr, 1, this->_M_tree_ptr->_M_size);
01640             _S_unref(__old);
01641         }
01642 
01643         _CharT front() const
01644         {
01645             return _S_fetch(this->_M_tree_ptr, 0);
01646         }
01647 
01648         void balance()
01649         {
01650             _RopeRep* __old = this->_M_tree_ptr;
01651             this->_M_tree_ptr = _S_balance(this->_M_tree_ptr);
01652             _S_unref(__old);
01653         }
01654 
01655         void copy(_CharT* __buffer) const {
01656             _Destroy(__buffer, __buffer + size());
01657             _S_flatten(this->_M_tree_ptr, __buffer);
01658         }
01659 
01660         // This is the copy function from the standard, but
01661         // with the arguments reordered to make it consistent with the
01662         // rest of the interface.
01663         // Note that this guaranteed not to compile if the draft standard
01664         // order is assumed.
01665         size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const
01666         {
01667             size_t __size = size();
01668             size_t __len = (__pos + __n > __size? __size - __pos : __n);
01669 
01670             _Destroy(__buffer, __buffer + __len);
01671             _S_flatten(this->_M_tree_ptr, __pos, __len, __buffer);
01672             return __len;
01673         }
01674 
01675         // Print to stdout, exposing structure.  May be useful for
01676         // performance debugging.
01677         void dump() {
01678             _S_dump(this->_M_tree_ptr);
01679         }
01680 
01681         // Convert to 0 terminated string in new allocated memory.
01682         // Embedded 0s in the input do not terminate the copy.
01683         const _CharT* c_str() const;
01684 
01685         // As above, but lso use the flattened representation as the
01686         // the new rope representation.
01687         const _CharT* replace_with_c_str();
01688 
01689         // Reclaim memory for the c_str generated flattened string.
01690         // Intentionally undocumented, since it's hard to say when this
01691         // is safe for multiple threads.
01692         void delete_c_str () {
01693             if (0 == this->_M_tree_ptr) return;
01694             if (_Rope_constants::_S_leaf == this->_M_tree_ptr->_M_tag &&
01695                 ((_RopeLeaf*)this->_M_tree_ptr)->_M_data ==
01696                       this->_M_tree_ptr->_M_c_string) {
01697                 // Representation shared
01698                 return;
01699             }
01700 #           ifndef __GC
01701               this->_M_tree_ptr->_M_free_c_string();
01702 #           endif
01703             this->_M_tree_ptr->_M_c_string = 0;
01704         }
01705 
01706         _CharT operator[] (size_type __pos) const {
01707             return _S_fetch(this->_M_tree_ptr, __pos);
01708         }
01709 
01710         _CharT at(size_type __pos) const {
01711            // if (__pos >= size()) throw out_of_range;  // XXX
01712            return (*this)[__pos];
01713         }
01714 
01715         const_iterator begin() const {
01716             return(const_iterator(this->_M_tree_ptr, 0));
01717         }
01718 
01719         // An easy way to get a const iterator from a non-const container.
01720         const_iterator const_begin() const {
01721             return(const_iterator(this->_M_tree_ptr, 0));
01722         }
01723 
01724         const_iterator end() const {
01725             return(const_iterator(this->_M_tree_ptr, size()));
01726         }
01727 
01728         const_iterator const_end() const {
01729             return(const_iterator(this->_M_tree_ptr, size()));
01730         }
01731 
01732         size_type size() const {
01733             return(0 == this->_M_tree_ptr? 0 : this->_M_tree_ptr->_M_size);
01734         }
01735 
01736         size_type length() const {
01737             return size();
01738         }
01739 
01740         size_type max_size() const {
01741             return _S_min_len[_Rope_constants::_S_max_rope_depth - 1] - 1;
01742             //  Guarantees that the result can be sufficirntly
01743             //  balanced.  Longer ropes will probably still work,
01744             //  but it's harder to make guarantees.
01745         }
01746 
01747         typedef reverse_iterator<const_iterator> const_reverse_iterator;
01748 
01749         const_reverse_iterator rbegin() const {
01750             return const_reverse_iterator(end());
01751         }
01752 
01753         const_reverse_iterator const_rbegin() const {
01754             return const_reverse_iterator(end());
01755         }
01756 
01757         const_reverse_iterator rend() const {
01758             return const_reverse_iterator(begin());
01759         }
01760 
01761         const_reverse_iterator const_rend() const {
01762             return const_reverse_iterator(begin());
01763         }
01764 
01765         template<class _CharT2, class _Alloc2>
01766         friend rope<_CharT2,_Alloc2>
01767         operator+ (const rope<_CharT2,_Alloc2>& __left,
01768                    const rope<_CharT2,_Alloc2>& __right);
01769 
01770         template<class _CharT2, class _Alloc2>
01771         friend rope<_CharT2,_Alloc2>
01772         operator+ (const rope<_CharT2,_Alloc2>& __left,
01773                    const _CharT2* __right);
01774 
01775         template<class _CharT2, class _Alloc2>
01776         friend rope<_CharT2,_Alloc2>
01777         operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right);
01778         // The symmetric cases are intentionally omitted, since they're presumed
01779         // to be less common, and we don't handle them as well.
01780 
01781         // The following should really be templatized.
01782         // The first argument should be an input iterator or
01783         // forward iterator with value_type _CharT.
01784         rope& append(const _CharT* __iter, size_t __n) {
01785             _RopeRep* __result =
01786               _S_destr_concat_char_iter(this->_M_tree_ptr, __iter, __n);
01787             _S_unref(this->_M_tree_ptr);
01788             this->_M_tree_ptr = __result;
01789             return *this;
01790         }
01791 
01792         rope& append(const _CharT* __c_string) {
01793             size_t __len = _S_char_ptr_len(__c_string);
01794             append(__c_string, __len);
01795             return(*this);
01796         }
01797 
01798         rope& append(const _CharT* __s, const _CharT* __e) {
01799             _RopeRep* __result =
01800                 _S_destr_concat_char_iter(this->_M_tree_ptr, __s, __e - __s);
01801             _S_unref(this->_M_tree_ptr);
01802             this->_M_tree_ptr = __result;
01803             return *this;
01804         }
01805 
01806         rope& append(const_iterator __s, const_iterator __e) {
01807             _Self_destruct_ptr __appendee(_S_substring(
01808               __s._M_root, __s._M_current_pos, __e._M_current_pos));
01809             _RopeRep* __result =
01810               _S_concat(this->_M_tree_ptr, (_RopeRep*)__appendee);
01811             _S_unref(this->_M_tree_ptr);
01812             this->_M_tree_ptr = __result;
01813             return *this;
01814         }
01815 
01816         rope& append(_CharT __c) {
01817             _RopeRep* __result =
01818               _S_destr_concat_char_iter(this->_M_tree_ptr, &__c, 1);
01819             _S_unref(this->_M_tree_ptr);
01820             this->_M_tree_ptr = __result;
01821             return *this;
01822         }
01823 
01824         rope& append() { return append(_CharT()); }  // XXX why?
01825 
01826         rope& append(const rope& __y) {
01827             _RopeRep* __result = _S_concat(this->_M_tree_ptr, __y._M_tree_ptr);
01828             _S_unref(this->_M_tree_ptr);
01829             this->_M_tree_ptr = __result;
01830             return *this;
01831         }
01832 
01833         rope& append(size_t __n, _CharT __c) {
01834             rope<_CharT,_Alloc> __last(__n, __c);
01835             return append(__last);
01836         }
01837 
01838         void swap(rope& __b) {
01839             _RopeRep* __tmp = this->_M_tree_ptr;
01840             this->_M_tree_ptr = __b._M_tree_ptr;
01841             __b._M_tree_ptr = __tmp;
01842         }
01843 
01844 
01845     protected:
01846         // Result is included in refcount.
01847         static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
01848                                   size_t __pos2, _RopeRep* __r) {
01849             if (0 == __old) { _S_ref(__r); return __r; }
01850             _Self_destruct_ptr __left(
01851               _S_substring(__old, 0, __pos1));
01852             _Self_destruct_ptr __right(
01853               _S_substring(__old, __pos2, __old->_M_size));
01854             _RopeRep* __result;
01855 
01856             if (0 == __r) {
01857                 __result = _S_concat(__left, __right);
01858             } else {
01859                 _Self_destruct_ptr __left_result(_S_concat(__left, __r));
01860                 __result = _S_concat(__left_result, __right);
01861             }
01862             return __result;
01863         }
01864 
01865     public:
01866         void insert(size_t __p, const rope& __r) {
01867             _RopeRep* __result =
01868               replace(this->_M_tree_ptr, __p, __p, __r._M_tree_ptr);
01869             _S_unref(this->_M_tree_ptr);
01870             this->_M_tree_ptr = __result;
01871         }
01872 
01873         void insert(size_t __p, size_t __n, _CharT __c) {
01874             rope<_CharT,_Alloc> __r(__n,__c);
01875             insert(__p, __r);
01876         }
01877 
01878         void insert(size_t __p, const _CharT* __i, size_t __n) {
01879             _Self_destruct_ptr __left(_S_substring(this->_M_tree_ptr, 0, __p));
01880             _Self_destruct_ptr __right(_S_substring(this->_M_tree_ptr,
01881                             __p, size()));
01882             _Self_destruct_ptr __left_result(
01883               _S_concat_char_iter(__left, __i, __n));
01884                 // _S_ destr_concat_char_iter should be safe here.
01885                 // But as it stands it's probably not a win, since __left
01886                 // is likely to have additional references.
01887             _RopeRep* __result = _S_concat(__left_result, __right);
01888             _S_unref(this->_M_tree_ptr);
01889             this->_M_tree_ptr = __result;
01890         }
01891 
01892         void insert(size_t __p, const _CharT* __c_string) {
01893             insert(__p, __c_string, _S_char_ptr_len(__c_string));
01894         }
01895 
01896         void insert(size_t __p, _CharT __c) {
01897             insert(__p, &__c, 1);
01898         }
01899 
01900         void insert(size_t __p) {
01901             _CharT __c = _CharT();
01902             insert(__p, &__c, 1);
01903         }
01904 
01905         void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
01906             rope __r(__i, __j);
01907             insert(__p, __r);
01908         }
01909 
01910         void insert(size_t __p, const const_iterator& __i,
01911                               const const_iterator& __j) {
01912             rope __r(__i, __j);
01913             insert(__p, __r);
01914         }
01915 
01916         void insert(size_t __p, const iterator& __i,
01917                               const iterator& __j) {
01918             rope __r(__i, __j);
01919             insert(__p, __r);
01920         }
01921 
01922         // (position, length) versions of replace operations:
01923 
01924         void replace(size_t __p, size_t __n, const rope& __r) {
01925             _RopeRep* __result =
01926               replace(this->_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
01927             _S_unref(this->_M_tree_ptr);
01928             this->_M_tree_ptr = __result;
01929         }
01930 
01931         void replace(size_t __p, size_t __n,
01932                      const _CharT* __i, size_t __i_len) {
01933             rope __r(__i, __i_len);
01934             replace(__p, __n, __r);
01935         }
01936 
01937         void replace(size_t __p, size_t __n, _CharT __c) {
01938             rope __r(__c);
01939             replace(__p, __n, __r);
01940         }
01941 
01942         void replace(size_t __p, size_t __n, const _CharT* __c_string) {
01943             rope __r(__c_string);
01944             replace(__p, __n, __r);
01945         }
01946 
01947         void replace(size_t __p, size_t __n,
01948                      const _CharT* __i, const _CharT* __j) {
01949             rope __r(__i, __j);
01950             replace(__p, __n, __r);
01951         }
01952 
01953         void replace(size_t __p, size_t __n,
01954                      const const_iterator& __i, const const_iterator& __j) {
01955             rope __r(__i, __j);
01956             replace(__p, __n, __r);
01957         }
01958 
01959         void replace(size_t __p, size_t __n,
01960                      const iterator& __i, const iterator& __j) {
01961             rope __r(__i, __j);
01962             replace(__p, __n, __r);
01963         }
01964 
01965         // Single character variants:
01966         void replace(size_t __p, _CharT __c) {
01967             iterator __i(this, __p);
01968             *__i = __c;
01969         }
01970 
01971         void replace(size_t __p, const rope& __r) {
01972             replace(__p, 1, __r);
01973         }
01974 
01975         void replace(size_t __p, const _CharT* __i, size_t __i_len) {
01976             replace(__p, 1, __i, __i_len);
01977         }
01978 
01979         void replace(size_t __p, const _CharT* __c_string) {
01980             replace(__p, 1, __c_string);
01981         }
01982 
01983         void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
01984             replace(__p, 1, __i, __j);
01985         }
01986 
01987         void replace(size_t __p, const const_iterator& __i,
01988                                const const_iterator& __j) {
01989             replace(__p, 1, __i, __j);
01990         }
01991 
01992         void replace(size_t __p, const iterator& __i,
01993                                const iterator& __j) {
01994             replace(__p, 1, __i, __j);
01995         }
01996 
01997         // Erase, (position, size) variant.
01998         void erase(size_t __p, size_t __n) {
01999             _RopeRep* __result = replace(this->_M_tree_ptr, __p, __p + __n, 0);
02000             _S_unref(this->_M_tree_ptr);
02001             this->_M_tree_ptr = __result;
02002         }
02003 
02004         // Erase, single character
02005         void erase(size_t __p) {
02006             erase(__p, __p + 1);
02007         }
02008 
02009         // Insert, iterator variants.
02010         iterator insert(const iterator& __p, const rope& __r)
02011                 { insert(__p.index(), __r); return __p; }
02012         iterator insert(const iterator& __p, size_t __n, _CharT __c)
02013                 { insert(__p.index(), __n, __c); return __p; }
02014         iterator insert(const iterator& __p, _CharT __c)
02015                 { insert(__p.index(), __c); return __p; }
02016         iterator insert(const iterator& __p )
02017                 { insert(__p.index()); return __p; }
02018         iterator insert(const iterator& __p, const _CharT* c_string)
02019                 { insert(__p.index(), c_string); return __p; }
02020         iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
02021                 { insert(__p.index(), __i, __n); return __p; }
02022         iterator insert(const iterator& __p, const _CharT* __i,
02023                         const _CharT* __j)
02024                 { insert(__p.index(), __i, __j);  return __p; }
02025         iterator insert(const iterator& __p,
02026                         const const_iterator& __i, const const_iterator& __j)
02027                 { insert(__p.index(), __i, __j); return __p; }
02028         iterator insert(const iterator& __p,
02029                         const iterator& __i, const iterator& __j)
02030                 { insert(__p.index(), __i, __j); return __p; }
02031 
02032         // Replace, range variants.
02033         void replace(const iterator& __p, const iterator& __q,
02034                      const rope& __r)
02035                 { replace(__p.index(), __q.index() - __p.index(), __r); }
02036         void replace(const iterator& __p, const iterator& __q, _CharT __c)
02037                 { replace(__p.index(), __q.index() - __p.index(), __c); }
02038         void replace(const iterator& __p, const iterator& __q,
02039                      const _CharT* __c_string)
02040                 { replace(__p.index(), __q.index() - __p.index(), __c_string); }
02041         void replace(const iterator& __p, const iterator& __q,
02042                      const _CharT* __i, size_t __n)
02043                 { replace(__p.index(), __q.index() - __p.index(), __i, __n); }
02044         void replace(const iterator& __p, const iterator& __q,
02045                      const _CharT* __i, const _CharT* __j)
02046                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02047         void replace(const iterator& __p, const iterator& __q,
02048                      const const_iterator& __i, const const_iterator& __j)
02049                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02050         void replace(const iterator& __p, const iterator& __q,
02051                      const iterator& __i, const iterator& __j)
02052                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02053 
02054         // Replace, iterator variants.
02055         void replace(const iterator& __p, const rope& __r)
02056                 { replace(__p.index(), __r); }
02057         void replace(const iterator& __p, _CharT __c)
02058                 { replace(__p.index(), __c); }
02059         void replace(const iterator& __p, const _CharT* __c_string)
02060                 { replace(__p.index(), __c_string); }
02061         void replace(const iterator& __p, const _CharT* __i, size_t __n)
02062                 { replace(__p.index(), __i, __n); }
02063         void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
02064                 { replace(__p.index(), __i, __j); }
02065         void replace(const iterator& __p, const_iterator __i,
02066                      const_iterator __j)
02067                 { replace(__p.index(), __i, __j); }
02068         void replace(const iterator& __p, iterator __i, iterator __j)
02069                 { replace(__p.index(), __i, __j); }
02070 
02071         // Iterator and range variants of erase
02072         iterator erase(const iterator& __p, const iterator& __q) {
02073             size_t __p_index = __p.index();
02074             erase(__p_index, __q.index() - __p_index);
02075             return iterator(this, __p_index);
02076         }
02077         iterator erase(const iterator& __p) {
02078             size_t __p_index = __p.index();
02079             erase(__p_index, 1);
02080             return iterator(this, __p_index);
02081         }
02082 
02083         rope substr(size_t __start, size_t __len = 1) const {
02084             return rope<_CharT,_Alloc>(
02085                         _S_substring(this->_M_tree_ptr,
02086                      __start,
02087                      __start + __len));
02088         }
02089 
02090         rope substr(iterator __start, iterator __end) const {
02091             return rope<_CharT,_Alloc>(
02092                 _S_substring(this->_M_tree_ptr,
02093                  __start.index(),
02094                  __end.index()));
02095         }
02096 
02097         rope substr(iterator __start) const {
02098             size_t __pos = __start.index();
02099             return rope<_CharT,_Alloc>(
02100                         _S_substring(this->_M_tree_ptr, __pos, __pos + 1));
02101         }
02102 
02103         rope substr(const_iterator __start, const_iterator __end) const {
02104             // This might eventually take advantage of the cache in the
02105             // iterator.
02106             return rope<_CharT,_Alloc>(
02107               _S_substring(this->_M_tree_ptr, __start.index(), __end.index()));
02108         }
02109 
02110         rope<_CharT,_Alloc> substr(const_iterator __start) {
02111             size_t __pos = __start.index();
02112             return rope<_CharT,_Alloc>(
02113               _S_substring(this->_M_tree_ptr, __pos, __pos + 1));
02114         }
02115 
02116         static const size_type npos;
02117 
02118         size_type find(_CharT __c, size_type __pos = 0) const;
02119         size_type find(const _CharT* __s, size_type __pos = 0) const {
02120             size_type __result_pos;
02121             const_iterator __result =
02122           std::search(const_begin() + __pos, const_end(),
02123               __s, __s + _S_char_ptr_len(__s));
02124             __result_pos = __result.index();
02125 #           ifndef __STL_OLD_ROPE_SEMANTICS
02126                 if (__result_pos == size()) __result_pos = npos;
02127 #           endif
02128             return __result_pos;
02129         }
02130 
02131         iterator mutable_begin() {
02132             return(iterator(this, 0));
02133         }
02134 
02135         iterator mutable_end() {
02136             return(iterator(this, size()));
02137         }
02138 
02139         typedef reverse_iterator<iterator> reverse_iterator;
02140 
02141         reverse_iterator mutable_rbegin() {
02142             return reverse_iterator(mutable_end());
02143         }
02144 
02145         reverse_iterator mutable_rend() {
02146             return reverse_iterator(mutable_begin());
02147         }
02148 
02149         reference mutable_reference_at(size_type __pos) {
02150             return reference(this, __pos);
02151         }
02152 
02153 #       ifdef __STD_STUFF
02154             reference operator[] (size_type __pos) {
02155                 return _char_ref_proxy(this, __pos);
02156             }
02157 
02158             reference at(size_type __pos) {
02159                 // if (__pos >= size()) throw out_of_range;  // XXX
02160                 return (*this)[__pos];
02161             }
02162 
02163             void resize(size_type __n, _CharT __c) {}
02164             void resize(size_type __n) {}
02165             void reserve(size_type __res_arg = 0) {}
02166             size_type capacity() const {
02167                 return max_size();
02168             }
02169 
02170           // Stuff below this line is dangerous because it's error prone.
02171           // I would really like to get rid of it.
02172             // copy function with funny arg ordering.
02173               size_type copy(_CharT* __buffer, size_type __n,
02174                              size_type __pos = 0) const {
02175                 return copy(__pos, __n, __buffer);
02176               }
02177 
02178             iterator end() { return mutable_end(); }
02179 
02180             iterator begin() { return mutable_begin(); }
02181 
02182             reverse_iterator rend() { return mutable_rend(); }
02183 
02184             reverse_iterator rbegin() { return mutable_rbegin(); }
02185 
02186 #       else
02187 
02188             const_iterator end() { return const_end(); }
02189 
02190             const_iterator begin() { return const_begin(); }
02191 
02192             const_reverse_iterator rend() { return const_rend(); }
02193 
02194             const_reverse_iterator rbegin() { return const_rbegin(); }
02195 
02196 #       endif
02197 
02198 };
02199 
02200 template <class _CharT, class _Alloc>
02201 const typename rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
02202                         (size_type)(-1);
02203 
02204 template <class _CharT, class _Alloc>
02205 inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02206                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02207   return (__x._M_current_pos == __y._M_current_pos &&
02208           __x._M_root == __y._M_root);
02209 }
02210 
02211 template <class _CharT, class _Alloc>
02212 inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02213                        const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02214   return (__x._M_current_pos < __y._M_current_pos);
02215 }
02216 
02217 template <class _CharT, class _Alloc>
02218 inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02219                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02220   return !(__x == __y);
02221 }
02222 
02223 template <class _CharT, class _Alloc>
02224 inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02225                        const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02226   return __y < __x;
02227 }
02228 
02229 template <class _CharT, class _Alloc>
02230 inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02231                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02232   return !(__y < __x);
02233 }
02234 
02235 template <class _CharT, class _Alloc>
02236 inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02237                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02238   return !(__x < __y);
02239 }
02240 
02241 template <class _CharT, class _Alloc>
02242 inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
02243                            const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02244   return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
02245 }
02246 
02247 template <class _CharT, class _Alloc>
02248 inline _Rope_const_iterator<_CharT,_Alloc>
02249 operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
02250   return _Rope_const_iterator<_CharT,_Alloc>(
02251             __x._M_root, __x._M_current_pos - __n);
02252 }
02253 
02254 template <class _CharT, class _Alloc>
02255 inline _Rope_const_iterator<_CharT,_Alloc>
02256 operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
02257   return _Rope_const_iterator<_CharT,_Alloc>(
02258            __x._M_root, __x._M_current_pos + __n);
02259 }
02260 
02261 template <class _CharT, class _Alloc>
02262 inline _Rope_const_iterator<_CharT,_Alloc>
02263 operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
02264   return _Rope_const_iterator<_CharT,_Alloc>(
02265            __x._M_root, __x._M_current_pos + __n);
02266 }
02267 
02268 template <class _CharT, class _Alloc>
02269 inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
02270                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02271   return (__x._M_current_pos == __y._M_current_pos &&
02272           __x._M_root_rope == __y._M_root_rope);
02273 }
02274 
02275 template <class _CharT, class _Alloc>
02276 inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
02277                        const _Rope_iterator<_CharT,_Alloc>& __y) {
02278   return (__x._M_current_pos < __y._M_current_pos);
02279 }
02280 
02281 template <class _CharT, class _Alloc>
02282 inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x,
02283                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02284   return !(__x == __y);
02285 }
02286 
02287 template <class _CharT, class _Alloc>
02288 inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x,
02289                        const _Rope_iterator<_CharT,_Alloc>& __y) {
02290   return __y < __x;
02291 }
02292 
02293 template <class _CharT, class _Alloc>
02294 inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x,
02295                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02296   return !(__y < __x);
02297 }
02298 
02299 template <class _CharT, class _Alloc>
02300 inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x,
02301                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02302   return !(__x < __y);
02303 }
02304 
02305 template <class _CharT, class _Alloc>
02306 inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
02307                            const _Rope_iterator<_CharT,_Alloc>& __y) {
02308   return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
02309 }
02310 
02311 template <class _CharT, class _Alloc>
02312 inline _Rope_iterator<_CharT,_Alloc>
02313 operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
02314           ptrdiff_t __n) {
02315   return _Rope_iterator<_CharT,_Alloc>(
02316     __x._M_root_rope, __x._M_current_pos - __n);
02317 }
02318 
02319 template <class _CharT, class _Alloc>
02320 inline _Rope_iterator<_CharT,_Alloc>
02321 operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
02322           ptrdiff_t __n) {
02323   return _Rope_iterator<_CharT,_Alloc>(
02324     __x._M_root_rope, __x._M_current_pos + __n);
02325 }
02326 
02327 template <class _CharT, class _Alloc>
02328 inline _Rope_iterator<_CharT,_Alloc>
02329 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
02330   return _Rope_iterator<_CharT,_Alloc>(
02331     __x._M_root_rope, __x._M_current_pos + __n);
02332 }
02333 
02334 template <class _CharT, class _Alloc>
02335 inline
02336 rope<_CharT,_Alloc>
02337 operator+ (const rope<_CharT,_Alloc>& __left,
02338            const rope<_CharT,_Alloc>& __right)
02339 {
02340     return rope<_CharT,_Alloc>(
02341       rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
02342     // Inlining this should make it possible to keep __left and
02343     // __right in registers.
02344 }
02345 
02346 template <class _CharT, class _Alloc>
02347 inline
02348 rope<_CharT,_Alloc>&
02349 operator+= (rope<_CharT,_Alloc>& __left,
02350       const rope<_CharT,_Alloc>& __right)
02351 {
02352     __left.append(__right);
02353     return __left;
02354 }
02355 
02356 template <class _CharT, class _Alloc>
02357 inline
02358 rope<_CharT,_Alloc>
02359 operator+ (const rope<_CharT,_Alloc>& __left,
02360            const _CharT* __right) {
02361     size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
02362     return rope<_CharT,_Alloc>(
02363       rope<_CharT,_Alloc>::_S_concat_char_iter(
02364         __left._M_tree_ptr, __right, __rlen));
02365 }
02366 
02367 template <class _CharT, class _Alloc>
02368 inline
02369 rope<_CharT,_Alloc>&
02370 operator+= (rope<_CharT,_Alloc>& __left,
02371             const _CharT* __right) {
02372     __left.append(__right);
02373     return __left;
02374 }
02375 
02376 template <class _CharT, class _Alloc>
02377 inline
02378 rope<_CharT,_Alloc>
02379 operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
02380     return rope<_CharT,_Alloc>(
02381       rope<_CharT,_Alloc>::_S_concat_char_iter(
02382         __left._M_tree_ptr, &__right, 1));
02383 }
02384 
02385 template <class _CharT, class _Alloc>
02386 inline
02387 rope<_CharT,_Alloc>&
02388 operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
02389     __left.append(__right);
02390     return __left;
02391 }
02392 
02393 template <class _CharT, class _Alloc>
02394 bool
02395 operator< (const rope<_CharT,_Alloc>& __left,
02396            const rope<_CharT,_Alloc>& __right) {
02397     return __left.compare(__right) < 0;
02398 }
02399 
02400 template <class _CharT, class _Alloc>
02401 bool
02402 operator== (const rope<_CharT,_Alloc>& __left,
02403             const rope<_CharT,_Alloc>& __right) {
02404     return __left.compare(__right) == 0;
02405 }
02406 
02407 template <class _CharT, class _Alloc>
02408 inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
02409                         const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
02410         return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
02411 }
02412 
02413 template <class _CharT, class _Alloc>
02414 inline bool
02415 operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02416   return !(__x == __y);
02417 }
02418 
02419 template <class _CharT, class _Alloc>
02420 inline bool
02421 operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02422   return __y < __x;
02423 }
02424 
02425 template <class _CharT, class _Alloc>
02426 inline bool
02427 operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02428   return !(__y < __x);
02429 }
02430 
02431 template <class _CharT, class _Alloc>
02432 inline bool
02433 operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02434   return !(__x < __y);
02435 }
02436 
02437 template <class _CharT, class _Alloc>
02438 inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
02439                         const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
02440   return !(__x == __y);
02441 }
02442 
02443 template<class _CharT, class _Traits, class _Alloc>
02444 std::basic_ostream<_CharT, _Traits>& operator<<
02445                                         (std::basic_ostream<_CharT, _Traits>& __o,
02446                                          const rope<_CharT, _Alloc>& __r);
02447 
02448 typedef rope<char> crope;
02449 typedef rope<wchar_t> wrope;
02450 
02451 inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
02452 {
02453     return __c.mutable_reference_at(__i);
02454 }
02455 
02456 inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
02457 {
02458     return __c.mutable_reference_at(__i);
02459 }
02460 
02461 template <class _CharT, class _Alloc>
02462 inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
02463   __x.swap(__y);
02464 }
02465 
02466 // Hash functions should probably be revisited later:
02467 template<> struct hash<crope>
02468 {
02469   size_t operator()(const crope& __str) const
02470   {
02471     size_t __size = __str.size();
02472 
02473     if (0 == __size) return 0;
02474     return 13*__str[0] + 5*__str[__size - 1] + __size;
02475   }
02476 };
02477 
02478 
02479 template<> struct hash<wrope>
02480 {
02481   size_t operator()(const wrope& __str) const
02482   {
02483     size_t __size = __str.size();
02484 
02485     if (0 == __size) return 0;
02486     return 13*__str[0] + 5*__str[__size - 1] + __size;
02487   }
02488 };
02489 
02490 } // namespace __gnu_cxx
02491 
02492 # include <ext/ropeimpl.h>
02493 
02494 #endif

Generated on Tue Jan 30 17:31:52 2007 for GNU C++ STL by doxygen 1.3.6