NRAO Home > CASA > CASA Task Reference Manual

0.1.123 specfit

Requires:

Synopsis
Fit 1-dimensional gaussians and/or polynomial models to an image or image region

Description



Arguments





Inputs

imagename

Name of the input image

allowed:

string

Default:

box

Rectangular region to select in direction plane. Default is to use the entire direction plane.

allowed:

string

Default:

region

Region selection. Default is to use the full image.

allowed:

string

Default:

chans

Channels to use. Default is to use all channels.

allowed:

string

Default:

stokes

Stokes planes to use. Default is to use all Stokes planes.

allowed:

string

Default:

axis

The profile axis. Default: use the spectral axis if one exists, axis 0 otherwise (<0).

allowed:

int

Default:

-1

mask

Mask to use. Default is none..

allowed:

string

Default:

ngauss

Number of Gaussian elements. Default: 1.

allowed:

int

Default:

1

poly

Order of polynomial element. Default: do not fit a polynomial (<0).

allowed:

int

Default:

-1

estimates

Name of file containing initial estimates. Default: No initial estimates (””).

allowed:

string

Default:

minpts

Minimum number of unmasked points necessary to attempt fit.

allowed:

int

Default:

1

multifit

If true, fit a profile along the desired axis at each pixel in the specified region. If false, average the non-fit axis pixels and do a single fit to that average profile. Default False.

allowed:

bool

Default:

False

model

Name of model image. Default: do not write the model image (””).

allowed:

string

Default:

residual

Name of residual image. Default: do not write the residual image (””).

allowed:

string

Default:

amp

Name of amplitude solution image. Default: do not write the image (””).

allowed:

string

Default:

amperr

Name of amplitude solution error image. Default: do not write the image (””).

allowed:

string

Default:

center

Name of center solution image. Default: do not write the image (””).

allowed:

string

Default:

centererr

Name of center solution error image. Default: do not write the image (””).

allowed:

string

Default:

fwhm

Name of fwhm solution image. Default: do not write the image (””).

allowed:

string

Default:

fwhmerr

Name of fwhm solution error image. Default: do not write the image (””).

allowed:

string

Default:

integral

Prefix of ame of integral solution image. Name of image will have gaussian component number appended. Default: do not write the image (””).

allowed:

string

Default:

integralerr

Prefix of name of integral error solution image. Name of image will have gaussian component number appended. Default: do not write the image (””).

allowed:

string

Default:

wantreturn

Should a record summarizing the results be returned?

allowed:

bool

Default:

True

stretch

Stretch the mask if necessary and possible?

allowed:

bool

Default:

False

logresults

Output results to logger?

allowed:

bool

Default:

True

pampest

Initial estimate of PCF profile (gaussian or lorentzian) amplitudes.

allowed:

variant

Default:

variant

pcenterest

Initial estimate PCF profile centers, in pixels.

allowed:

variant

Default:

variant

pfwhmest

Initial estimate PCF profile FWHMs, in pixels.

allowed:

variant

Default:

variant

pfix

PCF profile parameters to fix during fit.

allowed:

variant

Default:

variant

gmncomps

Number of components in each gaussian multiplet to fit

allowed:

variant

Default:

variant 0

gmampcon

The amplitude ratio constraints for non-reference components to reference component in gaussian multiplets.

allowed:

variant

Default:

variant

gmcentercon

The center offset constraints (in pixels) for non-reference components to reference component in gaussian multiplets.

allowed:

variant

Default:

variant

gmfwhmcon

The FWHM ratio constraints for non-reference components to reference component in gaussian multiplets.

allowed:

variant

Default:

variant

gmampest

Initial estimate of individual gaussian amplitudes in gaussian multiplets.

allowed:

doubleArray

Default:

0.0

gmcenterest

Initial estimate of individual gaussian centers in gaussian multiplets, in pixels.

allowed:

doubleArray

Default:

0.0

gmfwhmest

Initial estimate of individual gaussian FWHMss in gaussian multiplets, in pixels.

allowed:

doubleArray

Default:

0.0

gmfix

Parameters of individual gaussians in gaussian multiplets to fix during fit.

allowed:

variant

Default:

variant

logfile

File in which to log results. Default is not to write a logfile.

allowed:

string

Default:

append

Append results to logfile? Logfile must be specified. Default is to append. False means overwrite existing file if it exists.

allowed:

bool

Default:

True

pfunc

PCF singlet functions to fit. ”gaussian” or ”lorentzian” (minimal match supported). Unspecified means all gaussians.

allowed:

any

Default:

variant

goodamprange

Acceptable amplitude solution range. [0.0] => all amplitude solutions are acceptable.

allowed:

doubleArray

Default:

0.0

goodcenterrange

Acceptable center solution range in pixels relative to region start. [0.0] => all center solutions are acceptable.

allowed:

doubleArray

Default:

0.0

goodfwhmrange

Acceptable FWHM solution range in pixels. [0.0] => all FWHM solutions are acceptable.

allowed:

doubleArray

Default:

0.0

sigma

Standard deviation array or image name.

allowed:

any

Default:

variant

outsigma

Name of output image used for standard deviation. Ignored if sigma is empty.

allowed:

string

Default:

Returns
record

Example

 
 
This task simultaneously fits one or more gaussian singlets lorentzian singlets, gaussian multiplets, and/or a polynomial to one dimensional profiles.  
 
PARAMETER SUMMARY  
imagename       Name of the input (CASA, FITS, MIRIAD) image  
box             Rectangular region to select in direction plane.  
                for details. Default is to use the entire direction plane.  
region          Region selection. Default is to use the  
                full image.  
chans           Channels to use. Default is to use  
                all channels.  
stokes          Stokes planes to use. Default is  
                to use all Stokes planes.  
axis            Axis along which to do the fit(s). <0 means use the spectral axis or the  
                zeroth axis if a spectral axis is not present.  
mask            Mask to use. Default is none.  
stretch         Stretch the input mask if necessary and possible? Only used if a mask is specified.  
 
ngauss          Maximum number of gaussians to fit.  
poly            Order of polynomial to fit. <0 means do not fit a polynomial.  
estimates       Name of file containing initial gaussian estimates.  
minpts          Minimum number of points necessary to attempt a fit.  
multifit        Fit models at each pixel in region (true) or average profiles and fit a single model (false).  
model           Name of model image to write.  
residual        Name of residual image to write.  
amp             Name of amplitude solution image. Default: do not write the image ("")  
amperr          Name of amplitude solution error image. Default: do not write the image ("")  
center          Name of center solution image. Default: do not write the image ("")  
centererr       Name of center solution error image. Default: do not write the image ("")  
fwhm            Name of fwhm solution image. Default: do not write the image ("")  
fwhmerr         Name of fwhm solution error image. Default: do not write the image ("")  
integral        Name of integral solution image. Default: do not write the image ("")  
integralerr     Name of integral solution error image. Default: do not write the image ("")  
wantreturn      If true, return a record summarizing the fit results, if false, return false.  
stretch         Stretch the mask if necessary and possible?  
logresults      Output results to logger?  
pampest         Initial estimate of PCF profile (gaussian or lorentzian) amplitudes.  
pcenterest      Initial estimate PCF profile centers, in pixels.  
pfwhmest        Initial estimate PCF profile FWHMs, in pixels.  
pfix            PCF profile parameters to fix during fit.  
pfunc           PCF singlet functions to fit. "gaussian" or "lorentzian" (minimal match supported). Unspecified means all gaussians.  
gmncomps        Number of components in each Gaussian multiplet to fit.  
gmampcon        The amplitude ratio constraints for non-reference components to reference component in gaussian multiplets.  
gmcentercon     The center offset constraints (in pixels) for non-reference components to reference component in gaussian multiplets.  
gmfwhmcon       The FWHM  ratio constraints for non-reference components to reference component in gaussian multiplets.  
gmampest        Initial estimate of individual gaussian amplitudes in gaussian multiplets.  
gmcenterest     Initial estimate of individual gaussian centers in gaussian multiplets, in pixels.  
gmfwhmest       Initial estimate of individual gaussian FWHMss in gaussian multiplets, in pixels.  
gmfix           Parameters of individual gaussians in gaussian multiplets to fix during fit.  
logfile         File in which to log results. Default is not to write a logfile.  
append          Append results to logfile? Logfile must be specified. Default is to append. False means overwrite existing file if it exists.  
goodamprange    Acceptable amplitude solution range. 0 => all amplitude solutions are acceptable. [0.0] => All amplitude solutions are acceptable.  
goodcenterrange Acceptable center solution range in pixels relative to region start. [0.0] => all center solutions are acceptable.  
goodfwhmrange   Acceptable FWHM solution range in pixels. [0.0] => all FWHM solutions are acceptable.  
sigma           Standard deviation array or image name.  
outsigma        Name of output image used for standard deviation. Ignored if sigma is empty.  
 
This task simultaneously performs a non-linear, least squares fit using the Levenberg-Marquardt algorithm of one or more gaussian singlets,  
one or more lorentzian singlets, one or more gaussian multiplets, and/or a polynomial to one dimensional profiles. A description of the  
fitting algorithm may be found in AIPS++ Note 224 (http://www.astron.nl/casacore/trunk/casacore/doc/notes/224.html) and in Numerical Recipes  
by W.H. Press et al., Cambridge University Press. A gaussian/lorentzian singlet is a gaussian/lorentzian whose parameters (amplitude,  
center position, and width) are all independent from any other feature that may be simultaneously fit. A gaussian multiplet is a set of two or  
more gaussian lines in which at least one (and possibly two or three) parameter of each line is dependent on the parameter of another,  
single (reference) profile in the multiplet. For example, one can specify a doublet in which the amplitude of the first line is 0.6 times the  
amplitude of the zeroth line and/or the center of the first line is 20 pixels from the center of the zeroth line, and/or the fwhm of the first  
line is identical (in pixels) to that of the zeroth line. There is no limit to the number of components one can specify in a multiplet  
(except of course that the number of parameters to be fit should be significantly less than the number of data points), but there can be only  
a single reference profile in a multiplet to which to tie constraints of parameters of the other profiles in the set.  
 
AXIS  
The axis parameter indicates on which axis profiles should be fit; a value <0 indicates the spectral axis should be used, or if one does not exist,  
that the zeroth axis should be used.  
 
MINIMUM NUMBER OF PIXELS  
The minpts parameter indicates the minimum number of unmasked pixels that must be present in order for a fit  
to be attempted. When multifit=T, positions with too few good points will be masked in any output images.  
 
ONE FIT OF REGION AVERAGE OR PIXEL BY PIXEL FIT  
The multifit parameter indicates if profiles should be fit at each pixel in the selected region (true), or if the profiles in that region should be  
averaged and the fit done to that average profile (false).  
 
POLYNOMIAL FITTING  
The order of the polynomial to fit is specified only via the poly parameter. If poly<0, no polynomial will be fit. No initial estimates of  
coefficients can be specified; these are determined automatically.  
 
GAUSSIAN SINGLET FITTING  
In the absence of an estimates file and no estimates being specified by the p*est parameters, and gmncomps=0 or is empty, the ngauss parameter  
indicates the maximum number of gaussian singlets that should be fit. The initial estimates of the parameters for these gaussians will be attempted  
automatically in this case. If it deems appropriate, the fitter will fit fewer than this number. In the case where an estimates file is supplied,  
ngauss is ignored (see below). ngauss is also ignored if the p*est parameters are specified or if gmncomps is not an empty array or, if an integer,  
is greater than zero. If estimates is not specified or the p*est parameters are not specified and ngauss=0, gmncomps is empty or 0, and poly<0,  
an error will occur as this indicates there is nothing to fit.  
 
One can specify initial estimates of gaussian singlet parameters via an estimates file or the pampest, pcenterest, pfwhmest, and optionally, the  
pfix parameters. The latter is the recommended way to specify these estimates as support for estimates files may be deprecated in the future. No matter  
which option is used, an amplitude initial estimate must always be nonzero.  A negative fwhm estimate will be silently changed to positve.  
 
SPECIFYING INITIAL ESTIMATES FOR GAUSSIAN AND LORENTZIAN SINGLETS (RECOMMENDED METHOD)  
One may specify initial estimates via the pampest, pcenterest, and pfwhmest parameters. In the case of a single gaussian or lorentzian singlet,  
these parameters can be numbers. pampest must be specified in image brightness units, pcenterest must be given in the number of pixels from the  
zeroth pixel, and pfwhmest must be given in pixels. Optionally pfix can be specified and in the case of a single gaussian or lorentzian singlet  
can be a string. In it is coded which parameters should be held constant during the fix. Any combination of "p" (amplitude), "c" (center), or "f"  
(fwhm) is allowed; eg pfix="pc" means fix both the amplitude and center during the fit. In the case of more than one gaussian and/or lorentzian  
singlets, these parameters must be specified as arrays of numbers. The length of the arrays indicates the number of singlets to fit and must be  
the same for all the p*est parameters.  
 
If no parameters are to be fixed for any of the singlets, pfix can be set to the empty string. However, if at least one parameter of one singlet  
is to be fixed, pfix must be an array of strings and have a length equal to the p*est arrays. Singlets which are not to have any parameters fixed  
should be represented as an empty string in the pfix array. So, for example, if one desires to fit three singlets and fix the fwhm of the middle  
one, one must specify pfix=["", "f", ""], the empty strings indicating no parameters of the zeroth and second singlet should be held constant.  
 
In the case of multifit=True, the initial estimates, whether from the p*est parameters or from a file (see below), will be applied to the location  
of the first fit. This is normally the bottom left corner of the region selected. If masked, not enough good points to perform a fit, or the  
attempted fit fails, the fitting proceeds to the next pixel with the pixel value of the lowest numbered axis changing the fastest. Once a  
successful fit has been performed, subsequent fits will use the results of a fit for a nearest pixel for which a previous fit was successful as the  
initial estimate for the parameters at the current location. The fixed parameter string will be honored for every fit performed when multifit=True.  
 
One specifies what type of PCF profile to fit via the pfunc parameter. A PCF function is one that can be parameterized by a peak, center, and FWHM,  
as both gaussian and lorentzian singlets can. If all singlets to be fit are gaussians, one can set pfunc equal to the empty string and all snglets  
will be assumed to be gaussians. If at least one lorentzian is to be fit, pfunc must be specified as a string (in the case of a single singlet) or  
an array of strings (in the case of multiple singlets). The position of each string corresponds to the positions of the initial estimates in the  
p*est and pfix arrays. Minimal match ("g", "G", "l", or "L") is supported. So, if one wanted to simultaneously fit two gaussian and two lorentzian  
singlets, the zeroth and last of which were lorentzians, one would specify pfunc=["L", "G", "G", "L"].  
 
ESTIMATES FILE FOR GAUSSIAN SINGLETS (NONRECOMMENDED METHOD)  
Initial estimates for gaussian singlets can be specified in an estimates file. Estimates files may be deprecated in the future in favor of the  
p*est parameters, so it is recommended users use those parameters instead. If an estimates file is desired to be used, the p*est parameters  
must be 0 or empty and mgncomps must be 0 or empty. Only gaussian singlets can be specified in an estimates file. If one desires to fit one or  
more gaussian multiplets and/or one or more lorentzian singlets simultaneously, the p*est parameters must be used to specify the initial parameters  
of all gaussian singlets to fit; one cannot use an estimates file in this case. If an estimates file is specified, a polynomial  
can be fit simultaneously by specifying the poly parameter. The estimates file must contain initial estimates of parameters  
for all gaussian singlets to be fit. The number of gaussian singlets to fit is gotten from the number of estimates in the file. The file can contain  
comments which are indicated by a "#" at the beginning of a line. All non-comment lines will be interpreted as initial estimates. The  
format of such a line is  
 
[peak intensity], [center], [fwhm], [optional fixed parameter string]  
 
The first three values are required and must be numerical values. The peak intensity must be expressed in image brightness units, while the  
center must be specified in pixels offset from the zeroth pixel, and fwhm must be specified in pixels. The fourth value is optional and if present,  
represents the parameter(s) that should be held constant during the fit. Any combination of the characters ’p’ (peak), ’c’ (center), and ’f’ (fwhm) are  
permitted, eg "fc" means hold the fwhm and the center constant during the fit. Fixed parameters will have no error associated with them. Here is an  
example file:  
 
# estimates file indicating that two gaussians should be fit  
# first guassian estimate, peak=40, center at pixel number 10.5, fwhm = 5.8 pixels, all parameters allowed to vary during  
# fit  
40, 10.5, 5.8  
# second gaussian, peak = 4, center at pixel number 90.2, fwhm = 7.2 pixels, hold fwhm constant  
4, 90.2, 7.2, f  
# end file  
 
GAUSSIAN MULTIPLET FITTING  
Any number of gaussian multiplets, each containing any number of two or more components, can be simultaneously fit, optionally with a  
polynomial and/or any number of gaussian and/or lorentzian singlets, the only caveat being that the number of parameters to be fit should be  
significantly less than the number of data points. The gmncomps parameter indicates the number of multiplets to fit and the number of  
components in each multiplet. In the case of a single multiplet, an integer (>1) can be specified. For example, mgncomps=4 means fit a  
single quadruplet of gaussians. In the case of 2 or more multiplets, and array of integers (all >1) must be specified. For example,  
gmncomps=[2, 4, 3] means 3 seperate multiples are to be fit, the zeroth being a doublet, the first being a quadruplet, and the second  
being a triplet.  
 
Initial estimates of all gaussians in all multiplets are specified via the gm*est parameters which must be arrays of numbers. The order  
starts with the zeroth component of the zeroth multiplet to the last component of the zeroth multiplet, then the zeroth component of  
the first multiplet to the last compoenent of the first multiplet, etc to the zeroth component of the last multiplet to the last  
element of the last multiplet. The zeroth element of a multiplet is defined as the reference component of that multiplet and has the special  
significance that it is the profile to which all constraints of all other profiles in that multiplet are referenced (see below). So,  
in our example of gmncomps=[2, 4, 3], gmampest, gmcenterest, and gmfwhmest must each be nine (the total number of individual gaussian  
profiles summed over all multiplets) element arrays. The zeroth, second, and sixth elements represent parameters of the reference profiles  
in the zeroth, first, and second multiplet, respectively.  
 
The fixed relationships between the non-reference profile(s) and the reference profile of a multiplet are specified via the gmampcon,  
gmcentercon, and gmfwhmcon parameters. At least one, and any combination, of constraints can be specified for any non-reference  
component of a multiplet. The amplitude ratio of a non-reference line to that of the reference line is set in gmampcon. The ratio of  
the fwhm of a non-reference line to that of the reference line is set in gmfwhmcon. The offset in pixels of the center position of  
a non-reference line to that of the reference line is set in gmcentercon. In the case where a parameter is not constrained for any  
non-reference line of any multiplet, the value of the associated parameter must be 0. In the case of  
a single doublet, a constraint may be specified as a number or an array of a single number. For example, mgncomps=2 and gmampcon=0.65  
and gmcentercon=[32.4] means there is a single doublet to fit where the amplitude ratio of the first to the zeroth line is constained  
to be 0.65 and the center of the first line is constrained to be offset by 32.4 pixels from the center of the zeroth line. In cases  
of a total of three or more gaussians, the constraints parameters must be specified as arrays with lengths equal to the total number  
of gaussians summed over all multiplets minus the number of reference lines (one per multiplet, or just number of multiplets, since  
reference lines cannot be constrained by themselves). In the cases where an array must be specified but a component in that array  
does not have that constraint, 0 should be specified. Here’s an example  
 
gmncomps=[2, 4, 3]  
gmampcon=  [ 0  ,  0.2,  0  , 0.1,   4.5,   0  ]  
gcentercon=[24.2, 45.6, 92.7, 0  , -22.8, -33.5]  
gfwhmcon=""  
 
In this case we have our previous example of one doublet, one quadruplet, and one triplet. The first component of the doublet has the constraint  
that its center is offset by 24.2 pixels from the zeroth (reference) component. The first component of the quadruplet is constrained to have  
an amplitude of 0.2 times that of the quadruplet’s zeroth component and its center is constrained to be offset by 45.6 pixels from the  
reference component. The second component of the quadruplet is constained to have its center offset by 92.7 pixels from the associated  
reference component and the third component is constrained to have an amplitude of 0.1 times that of the associated reference component.  
The first component of the triplet is constrained to have an amplitude of 4.5 times that of its associated reference component and its center  
is constrained to be offset by -22.8 pixels from the reference component’s center. The second component of the triplet is constrained to have  
its center offset by -33.5 pixels from the center of the reference component. No lines have FWHM constraints, so the empty string can be given  
for that parameter. Note that using 0 to indicate no constraint for line center means that one cannot specify a line centered at the same  
position as the reference component but having a different FWHM from the reference component. If you must specify this very unusual case,  
try using a very small positive (or even negative) value for the center constraint.  
 
Note that when a parameter for a line is constrained, the corresponding value for that component in the corresponding gm*est array is  
ignored and the value of the constrained parameter is automatically used instead. So let’s say, for our example above, we had specified  
the following estimates:  
 
gmampest =     [ 1,   .2,  2,   .1,    .1,   .5,  3,    2, 5]  
gmcenterest =  [20, 10  , 30, 45.2, 609  , -233, 30, -859, 1]  
 
Before any fitting is done, the constraints would be taken into account and these arrays would be implicitly rewritten as:  
 
gmampest =     [ 1,   .2,  2,   .4,    .1,   .2,  3, 13.5,  5  ]  
gmcenterest =  [20, 44.2, 30, 75.6, 127.7, -233, 30,  7.2, -3.5]  
 
The value of gmfwhmest would be unchanged since there are no FWHM constraints in this example.  
 
In addition to be constrained by values of the reference component, parameters of individual components can be fixed. Fixed parameters  
are specified via the gmfix parameter. If no parameters are to be fixed, gmfix can be specified as the empty string or a zero element  
array. In the case where any parameter is to be fixed, gmfix must be specified as an array of strings with length equal to the total number of  
components summed over all multiplets. These strings encode which parameters to be fixed for the corresponding components. If  
a component is to have no parameters fixed, an empty string is used. In other cases one or more of any combination of parameters can  
be fixed using "p", "c", and/or "f" described above for fixing singlet parameters. There are a couople of special cases  
to be aware of. In the case where a non-reference component parameter is constrained and the corresponding reference component parameter is  
set as fixed, that parameter in the non-reference parameter will automatically be fixed even if it was specified not to be fixed in  
the gmfix array. This is the only way the constraint can be honored afterall. In the converse case of when a constrained parameter of a  
non-reference component is specified as fixed, but the corresponding parameter in the reference component is not specified to be fixed,  
an error will occur. Fixing an unconstrained parameter in a non-reference component is always legal as is fixing any combination of  
parameters in a reference component (with the above caveat that corresponding constrained parameters in non-reference components will  
be silently held fixed as well).  
 
The same rules that apply to singlets when multifit=True apply to multiplets.  
 
LIMITING RANGES FOR SOLUTION PARAMETERS  
In cases of low (or no) signal to noise spectra, it is still possible for the fit to converge, but often to a  
nonsensical solution. The astronomer can use her knowledge of the source to filter out obviously bogus solutions.  
Any solution which contains a NaN value as a value or error in any one of its parameters is automatically marked as  
invalid.  
 
One can also limit the ranges of solution parameters to known "good" values via the goodamprange, goodcenterrange, and goodfwhmrange  
parameters. Any combination can be specified and the limit constraints will be ANDed together. The ranges apply to all PCF components  
that might be fit; choosing ranges on a component by component basis is not supported. If specified,  
an array of exactly two numerical values must be given to indicate the range of acceptable solution values for  
that parameter.  goodamprange is expressed in terms of image brightness units. goodcenterrange is expressed in terms of pixels  
from the zeroth pixel in the specified region. goodfwhmrange is expressed in terms of pixels (only non-negative values should be  
given for FWHM range endpoints). In the case of a multiple-PCF fit, if any of the corresponding solutions are outside the specified  
ranges, the entire solution is considered to be invalid.  
 
In addition, solutions for which the absolute value of the ratio of the amplitude error to the amplitude exceeds 100 or the  
ratio of the FWHM error to the FWHM exceeds 100 are automatically marked as invalid.  
 
INCLUDING STANDARD DEVIATIONS OF PIXEL VALUES  
If the standard deviations of the pixel values in the input image are known and they vary in the image (eg they are higher for pixels  
near the edge of the band), they can be included in the sigma parameter. This parameter takes either an array or an image name. The  
array or image must have one of three shapes: 1. the shape of the input image, 2. the same dimensions as the input image with the lengths  
of all axes being one except for the fit axis which must have length corresponding to its length in the input image, or 3. be one  
dimensional with lenght equal the the length of the fit axis in the input image. In cases 2 and 3, the array or pixels in sigma will  
be replicated such that the image that is ultimately used is the same shape as the input image. The values of sigma must be non-negative.  
It is only the relative values that are important. A value of 0 means that pixel should not be used in the fit. Other than that, if pixel  
A has a higher standard deviation than pixel B, then pixel A is noisier than pixel B and will receive a lower weight when the fit is done.  
The weight of a pixel is the usual  
 
weight = 1/(sigma*sigma)  
 
In the case of multifit=F, the sigma values at each pixel along the fit axis in the hyperplane perpendicular to the fit axis which includes  
that pixel are averaged and the resultant averaged standard deviation spectrum is the one used in the fit. Internally, sigma values are normalized  
such that the maximum value is 1. This mitigates a known overflow issue.  
 
One can write the normalized standard deviation image used in the fit but specifying its name in outsigma. This image can then be  
used as sigma for subsequent runs.  
 
RETURNED DICTIONARY STRUCTURE  
The dictionary returned (if wantreturn=True) has a (necessarily) complex structure. First, there are keys "xUnit" and "yUnit" whose values are  
the abscissa unit and the ordinate unit described by simple strings. Next there are arrays giving a broad overview of the  
fit quality. These arrays have the shape of the specified region collapsed along the fit axis with the axis corresponding to the fit  
axis having length of 1:  
 
attempted: a boolean array indicating which fits were attempted (eg if too few unmasked points, a fit will not be attempted).  
converged: a boolean array indicating which fits converged. False if the fit was not attempted.  
valid:     a boolean array indicating which solutions fall within the specified valid ranges of parameter space  (see  
           section LIMITING RANGES FOR SOLUTION PARAMETERS for details).  
niter:     an int array indicating the number of iterations for each profile, <0 if the fit did not converge  
ncomps:    the number of components (gaussian singlets + lorentzian singlets + gaussian multiplets + polynomial) fit for the profile,  
           <0 if the fit did not converge  
direction: a string array containing the world direction coordinate for each profile  
 
There is a "type" array having number of dimensions equal to the number of dimensions in the above arrays plus one. The shape of  
the first n-1 dimensions is the same as the shape of the above arrays. The length of the last dimension is equal to the number of  
components fit. The values of this array are strings describing the components that were fit at each possition ("POLYNOMIAL",  
"GAUSSIAN" in the case of gaussian singlets, "LORENTZIAN" in the case of lorentzian singlets, and ""GAUSSIAN MULTPLET").  
 
If any gaussian singlets were fit, there will be a subdictionary accessible via the "gs" key which will have subkeys "amp", "ampErr", "center",  
"centerErr", "fwhm", "fwhmErr, "integral", and "integralErr". Each of these arrays will have one more dimension than the overview arrays described  
above. The shape of the first n-1 dimensions will be the same as the shape of the arrays described above, while the final dimension will  
have length equal to the maximum number of gaussian singlets that were fit. Along this axis will be the  
corresponding fit result or associated error (depending on the array’s associated key) of the fit for that singlet component number. In cases where  
the fit did not converge, or that particular component was excluded from the fit, a value of NAN will be present.  
 
If any lorentzian singlets were fit, their solutions will be accessible via the "ls" key. These arrays follow the same rules  
as the "gs" arrays described above.  
 
If any gaussian multiplets were fit, there will be subdictionaries accessible by keys "gm0", "gm1", ..., "gm{n-1}" where n is the number of gaussian  
muliplets that were fit. Each of these dictionaries will have the same arrays described above for gaussian singlets. The last dimension  
will have length equal to the number of components in that particular multiplet. Each pixel along the last axis will be the parameter solution  
value or error for that component number in the multiplet, eg the zeroth pixel along that axis contains  
the parameter solution or error for the reference component of the multiplet.  
 
The polynomial coefficient solutions and errors are not returned, although they are logged.  
 
OUTPUT IMAGES  
In addition to the returned dictionary, optionally one or more of any combination of output images can be written.  
The model and residual parameters indicate the names of the model and residual images to be written; blank values inidcate that these images  
should not be written.  
 
One can also write none, any or all of the solution and error images for Gaussian singlet, Lorentzian singlet,  and Gaussian multiplet fits  
via the parameters amp, amperr, center, centererr, fwhm, fwhmerr, integral, and integralerr when doing multi-pixel fits. These images simply  
contain the arrays described for the associated parameter solutions or errors described in previous sections. In the case of Lorentzian  
singlets, "_ls" is appended to the image names, in the case of Gaussian multiplets, "_gm" is appended. Pixels for which fits were not attempted or did not converge will be masked as bad. The last axis of these images  
is a linear axis and repesents component number (and is named accordingly). In the case where multiple Gaussian singlets and/or  
Lorentzians are fitted, the image names are further appended with an underscore and the relevant component number ("_0", "_1", etc).  
In the case of Gaussian multiplets, the image names are appended with an underscore, followed by the number of the relevant  
multiplet group, followed by an underscore, followed by the number of the component in that group (eg, "image_gm_3_4" represents  
component number 4 of multiplet group number 3). Pixels for which fits were not attempted, did not converge, or converged but  
have values of NaN (not a number) or INF (infinity) will be masked as bad.  
 
Writing analogous images for polynomial coefficients is not supported.  
 
EXAMPLE  
res = specif(imagename="myspectrum.im", ngauss=2, box="3,3,4,5", poly=2, multifit=true, wantreturn=True)  


More information about CASA may be found at the CASA web page

Copyright © 2016 Associated Universities Inc., Washington, D.C.

This code is available under the terms of the GNU General Public Lincense


Home | Contact Us | Directories | Site Map | Help | Privacy Policy | Search