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ABSTRACT

The introduction of broad-band receivers into radio ireevfmetry has opened
up new opportunities for the study of wide-band continuunission from a vast range of
astrophysical objects. To take full advantage of such umsénts and achieve continuum
sensitivities, we need image reconstruction algorithnasg #ne sensitive to the frequency
dependence of the instrument as well as the spectral steusfuhe sky brightness distri-
bution. This dissertation project involved a study of @rigtmethods to deal with wide-
band dfects during interferometric image reconstruction, fokkahby the development of
a multi-scale, multi-frequency, synthesis-imaging aidpon (MS-MFS) that (a) takes ad-
vantage of the multi-frequenay~coverage while reconstructing both spatial and spectral
structure for compact, extended and moderately resolvartes, (b) constructs intensity,
spectral-index and spectral-curvature maps at an angadalution given by the highest fre-
guency in the band, and (c) corrects for the frequency degraelof the antenna primary
beam to enable wide-band imaging across wide fields of vielae MS-MFS algorithm
has been implemented in the CASA and ASKAPsoft data-arsghgikages, and validated
through a series of feasibility tests. This algorithm waantlapplied to multi-frequency
VLA observations of the M87 radio galaxy to derive a 1.1 - 1l8Zspectral-index map
to complement existing high-angular-resolution low-freqcy images. The resulting 75
MHz to 1.8 GHz spectra were compared with models predictetiioydifferent spectral
evolution models, and synchrotron lifetimes for variousothfeatures were estimated and
interpreted in the context of the dynamical evolution ofistures in the M87 radio halo.
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CHAPTER 1

INTRODUCTION

1.1 Goals of this dissertation

A new generation of broad-band radio interferometers issnily being designed
and built to provide high-dynamic-range imaging capalesitsuperior to that of existing
instruments. With large instantaneous bandwidths and $pgictral resolutions, these in-
struments will provide increased imaging sensitivity andtge detailed measurements of
the spectral structure of a variety of astrophysical sasjra# with less telescope time than
previously possible.

One desired data product from such instruments is a continmage. A con-
tinuum image is a 2-D map of the sky-brightness distribuiitegrated over a range of
frequencies, and the noise in such a map is inversely priopaitto the square root of the
total bandwidth used. However, the response of the intemieter varies with frequency.
Also, continuum emission from most astrophysical radiorses shows significant spec-
tral structure over the frequency ranges for which these neegivers are being optimized.
Therefore, to make a continuum image at the desired seigitivs essential to measure or
reconstruct the spectral structure of the sky-brightnéstsildution before constructing an
image of the integrated flux, and to do this while accountorglie frequency dependence
of the instrument.

While the main goal of wide-band imaging is to obtain a higmayic-range
continuum image, the reconstructed spectral structureatsmbe a useful astrophysical
measurement. This is especially true since wide-band igpeah now be measured across
a continuous range of frequencies and not just a few widephagated narrow frequency
bands. For sources of broad-band continuum emission, tilimhance the ability to
measure spectra and detect and localize frequencies &t gpectral steepening, flattening
or turnovers occur. For observations in whiclfftelient frequencies probe source structure
at different physical depths, these continuous measurementsleioformation about the
3-D structure of the emitting source. When both spectrad-Bnd continuum emission is
present, such instruments will allow the measurement of @mccurate broad-band model
for background subtraction.

So far, wide-band image reconstruction techniques havestxt on optimizing
the accuracy and dynamic range achievable in the continmage by suppressing de-
convolution errors that arise when the spectral struct@itbe sky-brightness is neglected
[Conway et al. 19905ault and Wieringa 1994However, the spectral models used in these



techniques are appropriate mainly for narrow bandwidths gime visible deconvolution
errors when applied to the large bandwidtiteced by new receivers. Also, any spectral
information obtained is only a by-product of the continuumaging process and attention
is not paid to the accuracy of these spectral reconstrustisrastrophysical measurements.
Therefore, with the large instantaneous frequency rangeshich new instruments are
sensitive, it becomes worthwhile to design algorithms thabnstruct both the spatial and
spectral structure of the sky-brightness accurately ehdoigastrophysical use, while still
producing the desired high dynamic-range continuum image.

Goals: The two main goals of this dissertation are listed below.

1. Evaluate the applicability of existing wide-band imagitechniques to data from
new broad-band interferometers and identify areas thatire@lgorithmic improve-
ments. Develop and implement a multi-frequency image rsitoation algorithm
that combines a multi-scale parameterization of the skyHbness with a spectral
model capable of representing arbitrary but smooth spedicaenable wide-band
imaging over wide fields of view, this algorithm must alsoreat for the frequency-
dependence of the antenna primary beam.

2. Apply this algorithm to data from multi-frequency VLA aofawations (1 to 2 GHz) of
the M87 cluster-center radio galaxy. Combine the obtaipedsal information with
existing images of M87 at lower frequencies, and comparad+mand spectra of
various features in the M87 radio halo to spectra predictetio different spectral
evolution models. Estimate synchrotron lifetimes fromhtaiodels and interpret the
results in the context of the dynamical evolution of varieestures seen in the M87
radio halo.

1.2 Background

This section first summarizes the state of the art in mudtgifrency, multi-scale
and wide-field image reconstruction techniques for radierfierometry, and motivates the
choices made for the algorithm developed as part of thisedisgon. This is followed
by a brief description of feedback processes due to an agélexctic nucleus (AGN) as
a possible source of energy that prevents the cooling flovhénhot core of the Virgo
cluster, and discusses what new information a high-angaklution study of the broad-
band spectra across the M87 radio halo can provide.

Wide-band Imaging Techniques : The simplest method of wide-band image recon-
struction is to treat each frequency channel separatelycambine the results at the end.
However, single-channel imaging is restricted to the natband sensitivity of the instru-
ment and source spectra can be studied only at the angutdmties allowed by the lowest



frequency in the sampled range. While such imaging mdlycgufor some science goals,
it does not take full advantage of what a wide-band instrunpeovides. The spatial-
frequency coverage of the interferometer varies with olaegrfrequency. This is a signif-
icant advantage from the point of view of image reconstarcbecause wide-band instru-
ments sample a larger fraction of the spatial frequencygthan measurements at a single
frequency. By combining measurements from multiple discreceiver frequencies during
imaging in a process called multi frequency synthesis (MBS8¢g can potentially increase
the fidelity and sensitivity of the resulting image.

MFS was initially done to increase the spatial-frequencyecage of sparse ar-
rays by using narrow-band receivers and switching freg@snduring the observations.
However, it was assumed that at the receiver sensitivifi¢keotime, the sky-brightness
was constant across the observed bandwidth. The next stepoveansider a frequency-
dependent sky-brightness distributi@onway et al[1990 describe a double-deconvolution
algorithm based on the instrument’s responses to a serigseatral basis function§ault
and Wieringg 1994 describe a similar multi-frequency deconvolution algjom (SW-MF-
CLEAN) which models an image as a collection of point souseéh linear spectra and
uses the fitted slopes to derive an average spectral indesafdr source. For pure power-
law spectra, both methods suggest using a linear spectrdélnio logl vs logv space
instead ofl vsv space. These methods were developed for relatively naremgwidths,
and these approximations can be shown to beffitsent to model typical spectral structure
across the large frequency ranges that new wide-band e¥seive sensitive to. Therefore,
new algorithms need to work with a more flexible spectral nhode

So far, these CLEAN-based MFS deconvolution algorithmgl ys@nt-source
flux components to model the sky emission. This choice is redt suited for extended
emission, where deconvolution errors due to the use of atsoirce flux model are en-
hanced in the spectral index image because of non-linear propagation. Multiscale
deconvolution techniques that model images using flux corapts of varying scale size
are more accurate at deconvolving large-scale emiss@ornwell [200§ describes the
CH-MS-CLEAN algorithm which performs matched filtering ngitemplates constructed
from the instrument response to various large-scale fluxpmorants. To improve the per-
formance of multi-frequency deconvolution in the presentextended emission, such
multi-scale techniques need to be included.

Finally, none of the existing wide-band imaging methodsresisl the frequency
dependence of various direction-dependent instrumefidts. The dominant suctifect
is the changing size of the antenna primary beam acrossenegu Wide-band imaging
across wide fields of view therefore requires this frequethegendence to be modeled
and corrected for. If unaccounted for, the frequency-ddpanattenuation of the incom-
ing radiation will create spurious spectral structure ia thconstructed spectral structure.
Bhatnagar et a[2008 describe an algorithm for the correction of time-variabliele-field
instrumental &ects for narrow-band interferometric imaging, and thisoalkiym needs to
be adapted to work for wide-band imaging as well.
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Spectral evolution of the M87 radio halo : M87 is a large elliptical galaxy at the cen-
ter of the Virgo cluster. It hosts an AGN with an active jetdatontains a 40kpc radio
synchrotron halo. Measurements of the current jet powegssigthat this AGN plays a
significant role in reheating the intra-cluster medium (ICafithe center of the Virgo clus-
ter and preventing cooling below a certain temperature. él@r the mechanism by which
this feedback may be occuring and the relevant timescatépamodicity are not well un-
derstood. Ages of the observed radio halo estimated fromefmsaaf bouyant or driven
and expanding bubbles yield timescales an order of magnsutaller than the expected
cooling time, rendering the system incapable of reheatiegctuster core on the required
timescales by mechanical energy transport alone. Howebservations of X-ray emis-
sion from the core of the Virgo cluster show possible cotrefes with some features in
the observed M87 radio halo, suggesting that these arecfipessible energy transfer be-
tween the radio plasma and the thermal ICM and that enerngetaesses other than simple
synchrotron ageing may be at play.

The goal of this project is to study high-angular-resolntiooad-band synchrotron
spectra of various features in the M87 radio halo to assessh&hor not there is evidence
for anything other than simple synchrotron ageing as thegetie particles travel outwards
from the jet into the radio halo. High-resolution studies egquired in order to separate
bright filamentary structure from the apparentlyfdse background and see whether any
significant spectral diierences appear. So far, high-angular-resolution imagdsed87
halo have been made only at 74 MHz, 327 MHz and 1.4 GHz, and sheutra consistent
with pure power-laws of very slightly varying index.

This project uses a spectral-index map constructed by apptiie MS-MFS al-
gorithm to multi-frequency VLA observations between 1.1dn8 GHz to constrain the
shape of the spectrum at the upper end of the sampled freguange. The resulting
wide-band spectra are then compared with those prediobeal tivo diferent synchrotron
evolution models, one representing simple synchrotroinggafter an initial injection of
energetic particles, and the other representing synamwageing with continuously in-
jected (or re-energized) particles. Synchrotron lifettnaemputed from these spectral fits
are then analysed in terms of plausibility with respect tonested dynamical ages of vari-
ous features observed in the M87 radio halo.

1.3 Chapter Outline

Chapter2 introduces the idea of image formation using a simple lensedkas
an imaging interferometer, and then describes the measmtgonocess of a radio interfer-
ometer as a system of linear equations that have to be solweder to construct an image.
The goal of this chapter is to present the relevant theonfimear algebra framework, from
which image reconstruction algorithms and their numericgdlementations can be easily
derived.



Chapter3 covers established calibration, imaging and deconvaiuggehniques,
and introduces the generic numerical optimization frantéwsed by CLEAN-based it-
erative deconvolution algorithms. The basic theme empkdsn this chapter is the de-
sign of an image-reconstruction algorithm based on a lHesst-squares approach, and its
adaptation to the inherently non-linear process of interfestric image reconstruction by
splitting the process into major and minor cycles. This fesarark forms the basis of all the
algorithms described in later chapters.

Chapter4 describes recent advances in wide-field imaging algorithilgo-
rithms that correct for time-varying and direction-depentinstrumental fects are de-
scribed within the imaging framework introduced in Chagi¢o show how such correc-
tions are performed in practice as a part of the iterativegen@construction process.

Chapter5 introduces the problem of wide-band imaging, and discuibseshajor
factors that &ect the process of image reconstruction when wide-bandvesseare used
with an imaging interferometer. This is followed by a briefsgription of several existing
wide-band imaging techniques and the results of a study tmiest their suitability for
continuum imaging with the EVLA telescope and identify are&required improvement.

Chapterss and 7 are technical chapters that contain the main contributains
this dissertation to the existing literature on CLEAN-kdsgeconvolution algorithms. The
general theme of these chapters is the parameterizatidreaiy-brightness distribution
as a linear combination of images and the use of this modélinwthe iterative major
and minor cycle framework introduced in Chapt&and4. These chapters contain (a)
formal derivations of a multi-scale and a multi-frequen@cadnvolution algorithm, (b) a
comparison of the resulting algorithms with the existing-G13-CLEAN and SW-MF-
CLEAN implementations with suggestions of ways to imprdwven, (c) the combination
of these ideas into a practical multi-scale, multi-frequyedeconvolution algorithm (MS-
MFS), and (d) a multi-frequency parameterization of theeant primary beam and an
algorithm to model and correct for it during MS-MFS decomuan.

Chapter8 discusses a set of wide-band imaging examples that ilbledtna capa-
bilities and limits of the MS-MFS algorithm and wide-bandnpary-beam correction. The
tests described in this chapter include sky-brightnegslligions with structure at multiple
spatial scales and arbitrary but smooth spectra, modgrasblved sources, emission at
very large spatial scales, band-limited signals, oveilagpgources with dierent spectra
and emission across wide fields of view. These tests invgptyang the MS-MFS algo-
rithm implemented within the CASA package to simulated whaad EVLA data as well
as data from multi-frequency VLA observations of Cygnus A3™Mand the 3C286 field.
This chapter concludes with a summary of various practispeats of wide-band imaging
and potential sources of error, and lists a set of ideas fenahuser to keep in mind while
using the MS-MFS algorithm.

Chapter9 describes a study of the wide-band spectra of various festiarthe
radio halo of the M87 galaxy. A 1.1 to 1.8 GHz spectral inde)proathe M87 radio halo



was constructed using the MS-MFS algorithm, and combined existing high angular
resolution images at 75 MHz, 327 MHz and 1.4 GHz to construdevband spectra with
constraints on their slopes at the higher end of the sampéegiéncy range. These spec-
tra are then analysed in the context of synchrotron evaiutimdels and the dynamical
evolution of structures observed in the M87 radio halo.

Chapterl0 contains a brief summary of the work done and results obdaized
lists some topics of future research in wide-band imagichneues.



CHAPTER 2

SYNTHESIS IMAGING AND RADIO INTERFEROMETRY

This chapter introduces the theory of image formation arettape synthesis and
describes the working of a radio interferometer. Seclddescribes the process of image
formation with a simple lens as well as with an imaging irgesineter, with the goal of
relating the formal theory of interferometric imaging withe familiar concept of a lens.
Section2.2then describes the measurement process of a radio interé¢eo and expresses
it as a system of linear equations that must be solved in dodeonstruct an image. The
goal of this section is to present the theory of synthesigjintain a linear-algebra frame-
work, from which image-reconstruction algorithms and theimerical implementations
can be easily derived. The basic theory in this chapterddlthat described irnfhompson
et al. 1986 Taylor et al. 1999Briggs 1995 Bhatnagar 2001Cornwell 1995&; Hamaker
et al. 1996 Sault et al. 199p

2.1 Image Formation

An image of a distant object is formed when radiation from ¢igect passes
through an aperture of finite size and falls on a screen mad# spme material capable
of recording the intensity of the incident radiation. Thésa natural process that can be
explained with the basic concepts of wave interference aui€r transforms. This section
first describes the form of the far-field radiation patteroguced when a wavefront of
electromagnetic radiation passes through an apertureghanddescribes how an image of
the resulting intensity distribution can be formed usingiaslas well as an interferometer.

The simplest way to form an image of a distant object is witloiavex lens that
focuses parallel rays of light onto a screen placed at thal folane of the lens. The size
of the lens defines its aperture, the opening through whiehrtbident light passes. The
aperture of a one-dimensional lens can be described as aitardollection of slits located
within a given maximum distance from each other. When illnatéd by a plane wave-front
of electromagnetic radiation, each slit producesfialited wavefront that propagates out
behind the aperture. Consider one pair of slits. TH&atted wavefronts from both slits
are coherent, and will interfere with each other to produfag-déield wave-front whose am-
plitude varies sinusoidally with position on the wave-frofhe resulting intensity pattern
is called an interference fringe. When illuminated from eediion normal to the plane of
the slits, the zeroth-order maximum of the fringe patterimiBne with the point directly
between the slits, and the wavelength of the fringe is iralgrproportional to the dis-



tance between the slits. When there are more than two $légliserved intensity pattern
is that formed from the superposition of the sinusoidal Vitargs created by each pair of
slits. Therefore, for electromagnetic radiation incidenta lens aperture, the amplitude and
phase of the resulting wavefront can be described as themagiton of an infinite number
of sinusoidal wavefronts spanning a continuous but finitgyeaof fringe wavelengths and
phases. This is a Fourier series, and the compleficants of this series form the spatial
Fourier transform of the incident radiation field at the @pes. The intensity of the re-
sulting far-field radiation pattern is the image of the obgsviewed through the aperture.
Image formation is the process of capturing and recordirggitiiensity distribution.

2.1.0.1 Withalens

To form a real image of the intensity distribution behind #qgerture, a lens
is needed to focus the radiation onto an image plane. Thetury of the lens surface
introduces dterential path delays between the light passing throughiphilslits. This
alters the phase of the sinusoidal wavefront from each paiits, such that for a normally
incident a plane wave front (from a distant point sourceg,wavefronts from all slit pairs
add purely constructively only at a single point, creatingraage of a point source on the
focal plane. Radiation from a distant object of finite sizzder than a single point) can
be described as the superposition of plane wavefrontsentiffom multiple directions.
Within a certain angular distance from the lens axis, waw@s from directions other than
the normal will be focused at fierent locations on the focal plane, thus forming an image
of the incident brightness distribution.

2.1.0.2 With an Interferometer

An interferometer forms an image of the intensity distribatbehind the aper-
ture by directly measuring the spatial Fourier fimgents that describe the far-field radia-
tion pattern and then performing a Fourier inversion to famimage. A finite set of points
(or slits) are defined on the aperture, and the amplitude hadeof the interference wave-
front from each pair of slits is computed by measuring thetelefields (E-field) incident
at the two aperture points and correlating them (taking #peetation of their product).
By this process, each pair of slits measures the spatialiéfomansform of the radiation
field incident at the aperture, at the spatial frequencyrgive the physical separation of
the slits in units of wavelength (see next section). Thisnismalirect imaging technique
called aperture synthesis where a finite collection of gligtseparated detectors are used
to construct a lens aperture of size given by the largestragpa between any two pairs of
slits. A synthesised aperturefidirs from the true aperture of a lens of the same size in that
it is not continuous, but made up of a discrete and finite sapefture points.



2.1.1 Theory of Interferometric Imaging

This section formally describes the process by which anfertemeter measures
the spatial Fourier transform of the sky brightness distitin, starting with the electro-
magnetic waves emanating from the source and ending witfotheation of an image.

To make a 2-D image of a distant object that emits electromiagmnadiation,
we need to measure the power of the radiation field producetidogbject along a set of
directions covering dierent parts of the source. To form such an image, the souexdsne
to be spatially incoherent, where the radiation produceaiy part of the source is not
correlated with the radiation from any other part of the seurlf this were not the case
(spatially coherent source) then the radiation froffiedlent parts of the source will interfere
with each other, and the observer will sample this interfeegpattern instead of the total
power from each point on the sourc&{antharamaiah et al. 1989

Let £(R t) represent the time-varying amplitude of the E-field comgmthof
an electromagnetic wave (EM-wave) emanating from the tioed?. For a monochro-
matic EM-wave emanating from a time-invariant source ofatidn, we can write(R, t) =
Re¢,(R)e 2™y, wherev is the frequency of the EM-wave ag(R) is a complex function
of position (also called the complex amplitude of the E-fijgdodman 200p. The spa-
tial coherenceof this radiation field between two poink, R, on the source is given by
<§V(R?1)§j(|:?2)> where( ) denotes a time-average. For a spatially incoherent sothie,

function is non-zero only wheR; = R; and it becomesé, (R (R)) = (€,(R)?) which is
proportional to the total power (brightness) emanatingftbe pointR on the source.

When the radiation travels from the source to the obserherradiation inci-
dent on the observer is partially coherent. This is becaasa source of finite angular
size, as the distance from the source increases, the wawes-foecome planar and it be-
comes increasingly flicult to distinguish between radiation from slightlyféirent points
on the source. The van-Cittert-Zernike theorem of pastiabherent light, states that the
degree of spatial coherence of the radiation field from aadisspatially incoherent source
is proportional to the spatial Fourier transform of the imgigy distribution across the source
[Thompson et al. 1986 The process by which an interferometer measures thisegegjr
spatial coherence, and the way it is related to the soureesitly distribution, is described
below.

! The instantaneous E-field component of a polarized EM-wswsiially described by a vector defined
in the plane perpendicular to the direction of propagatibithe EM-wave. This vector is described by
two orthogonal polarization componerXsY corresponding to linear polarizations. For this analyigisus
consider only one component (say X) of the E-vector for a ncbnomatic EM-wave.

°The spatial coherence of a wavefront describes the amounthiigh two secondary wavefronts ema-
nating from a pair of spatially separated points on the aagiavefront will interfere, at a later time. Itis
defined as the cross-correlation of the radiation field atspatially separated points, averaged over time.
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2.1.1.1 Spatial Coherence of the incident E-field

Consider the E-field component of a quasi-monochromaticvizde emanating
from a source located & and incident on a detector locatedrafThe complex amplitude
of the E-field incident at the detect&, () can be related to the strength of the EM-wave
£(R)® emanating from the directioR viathe Huygens propagato€[ark 1999.

eva(R—r)/c

e = [e® 2.1)
IR—T|

dSis a surface element on the celestial sphere&nebresents the projected shape of the

source on the celestial sphere.

Consider the E-fields emanating from locatidRsand R, within the source aperturs.
The degree of spatial coherence between the E-fields incidéwo locationsy, r; on the
aperture of the imaging instrument is given as follows.

e2mv(R2 ri)/c —ZJIIV(Rz ra)/c

—ri  |Re=ry

(E()EN(r2)) = < f £(RDE, (Rz) dSldSZ> (2.2)
wherev is the frequency of the incident EM-waves. Assuming thatrddbation at the
source is spatially incoherer(tgv(ﬁl)fv(l%» is non-zero only whel; = R, = R. Eqn.2.2
can be re-written as follows.

—2mv(r1 ra)/c
EE) = [ <|5V(F‘é)|>( T [ [ dSl] @.3)

The quantityfs dS; = As is the area across the source aperture (in unite?®f Also, each
surface elemerdS is related to the corresponding solid ange asdS = |R2dQ and an
integration overS can be replaced by an integration over the entire celegtfare £,(R)
will be non-zero only within the aperture). Due to the largstahce between the source

and the detectors, we can assume %a#x 1, |rF§| << 1. Also, lets = |§| denote the unit

vector in the directiorr. Finally, letry, = (r1 — r3)/c represent the dierence between the
time taken for the EM-wave to propagate frd#o r; andrs. Eqn.2.3becomes

EMEM) = As [ (6©F)e>do (2.4)

3 The amplitude of the E-field component of a propagating EMevat a distanc® from a source of
amplitudeA is given byae*™®/¢. In Eqn.2.1, A = [, £dSand therefore, the quantity(8) has units ot/ n2
[Eilek, private communication]. The quantigy,(F) then represents the E-field (in units\gtm) incident at
the detector due to the whole radiation source (approxidadea point source of total amplituédocated at
R>>r).
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Let 1,(8) denote the intensity or brightness distribution in uh@déWm—2Hz'Sr. Then,
we can write the power per unit area incident on the detectoe ¢o radiation from the
whole source) as

(I.(3)P)
HoC

wherepoc is the impedence of free space, ahdrepresents an infinitismal bandwidth at
the detector. Eqr2.4becomes

1,(8) dv dQ = Ag (2.5)

(E,(M)E(r2)) o f 1,(3) eZM™2dQ = V(i —13,) (2.6)

The quantityV(r; — r2,v), a complex number, is a time-averaged correlationffazient
called a visibility and its value depends on the physicabsaion of the pair of detectors
r1 — r> but not on their absolute location€lark 1999. An interferometer consists of
an array of spatially separated detectors, and visitsliiee measured for every pair of
detectors. The length of time over which these correlatimrgsaveraged to form each
visibility is called the integration time, and will be deedtbyAr.

2.1.1.2 Co-ordinate systems

Visibilities measured from a collection of detector pa@s ¢ne frequency) are
combined to form an image of the intensity distribution attirequency. To describe
this process, we need to define a set of co-ordinate systahsgelate the sky brightness
distribution with the aperture that is being synthesizedal as the physical locations of
the detectors.

Figure2.1 defines the three co-ordinate systems that are requiredstwide the
measurement and imaging process for a radio interferonwtated on the surface of the
Earth. XYZ represents a terrestrial co-ordinate system in which thysiphl locations of
the antennas are defined. The point on the sky towards whetarferometer is to be
steered is called the phase-reference cesteexpressed in terms of source declination
8o and hour-angléd. Thelimd co-ordinate system is used to describe the sky brightness
distribution projected onto the celestial sphere which iigten asl (I, m,n) = 1,(5) where
[,mn= Vv1-12-n¥ are direction cosines describing a directnThe phase reference
centeris given byg(l = 0,m= 0,n = 1) and a point away from the phase center is given by
S= S+ S The final 2D image that is formed is a projection of this irsi&ndistribution
onto the tangent plane sg (defined byifm). The plane defined by V is the aperture plane
of the array, defined as the plane perpendicular to the itetapus directios, (alsoW).

4 The power per unit area (at the detector) carried by an EMeviiim the whole source i/&,(8)%/uoc
in units of W nT2 (note thatuec is the impedance of free spacejv (Hz) anddQ (Sr) represent infinites-
mal bandwidth and solid angle respectively. Therefore,ititensity (or brightness), (%) has the units of
W nT?Hz 1St or Jy Srl[Kraus 198§where the unit of Jansky is defined agyi= 1072°W nT?Hz 1.
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TheUVW system is related tXYZ by a co-ordinate rotation defined by the two andigs
andH.

u sin(H) cogH) 0 X
V | ==| —=sin(dg)cogH) sin(dg)sin(H) cogdp) || Y (2.7)
w cogdg)cogH) —coqdg)sin(H) sin(dg) z

wherex, y, z are physical distances measured in ¥¥Z system in units ofnetres and
u,v,w are distances measured in t&WW system in units of signal wavelengih= v/c.

As the Earth rotates and the hour-angllehanges, the co-ordinates of each detector in the
UVW system follow ellipses on theV plane. The vectors,, r; in Eqn. 2.6 are defined
asri(uy, Vi, Wy) andri(Uy, Vo, W) in units of wavelength, in th& VW system. A baseline
is defined as the 3D vector betweghandr; and is given byB(u, V,W) = r; — r; with
U= u;— U,V =V —Vandw = w; — W,. Note thatri, r> need not lie exactly on the
aperture planet - $% = w; # 0 andrz- § = w, # 0). This means that at a given instant, the
two detectors will not sample the same wavefront of the iectdadiation. The time delay
between the wavefront reaching the two detectors is given byﬁ- S/v = (W —Wy)/v
and needs to be accounted for before the signals from eaebtdetare correlated.

2.1.1.3 Delay Correction

The correlation coicients measureda Eqn.2.6require that; andr? lie on the
aperture plane so that all detectors measure the same watefrradiation incident from
direction & with no time delay between the measurements. However, fat symthesis
arrays the detectors do not lie exactly in the aperture plBeéay correction is the process
of delaying the signals from each detector such that an amgngnstant, all detectors
sample the wavefront incident at the aperture plane (andtrtbe physical locations of the
detectors).

The delay applied to the detectorratis the signal travel time across a distance
rn- S = wp (written here in units of wavelength). Wheéig = 90°, w; = w, = 0 and the
two detectorsy, r; always sample the same incident wavefront. Wher: 90°, w; and
w, are usually non-equal amrg, r; sample the incident wavefront at time delays given by
7 = Wi /v andrj = w,/v relative to the chosen origin of the terrestrial co-odirststem.

To correct these delays, the signals sent to the correlegdt(@;, t — 7.1) andE(r, t — 7¢0).
These delays change as the Earth rotates, and continuaursigiing them has theffect
of pointing the aperture towards a fixed point on the Sky

Now consider an EM-wave incident from a directisn="& + S,. The time
delay between the wavefront at the two detectors after detayection will bety, =
b- (85— %)/v = (ul + vm+ w(n — 1))/v. This time delay is the same as thg in Eqn.2.6
which contributes to the phase of the measured complexiMgib
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2.1.1.4 Spatial Fourier transform

We can now write Eqn2.6 in terms of the baseline components/, w and the
direction cosines for various points on the $ky, n (see Fig2.1). For a source defined on
the celestial spherelQ = 497 and Eqn2.6 becomes

V(u,v,w) = f f mn - N g 2ictumstr-D) g (2.8)

Here,l andm are 2D co-ordinates on the tangent plan&at~or a point on the sky given
by §= & + S, the term 6 — 1) describes the distance between the true curved sky and the
tangent plane at,.” The productw(n — 1) is called thewn-term and is proportional to the
phase diterence between the radiation reaching the two detectomsirigrthe baselin®,
due to the curvature of the sky(n—1) # 0 implies that even after delay correction, the two
detectors are not sampling the same phase front of inciddigtion, and the tergr>wn-1)

is the Fresnel diraction kernel that accounts for the propagation of a sphkwave across
the distance. w(n — 1) for one detector so that both detectors in the baselinesunedhe
same wave-front. If the region of the sky being imaged iseloshe phase centan & 1),
the w-term goes to zero and EQf.8 describes a 2D spatial Fourier transform relation
between the mutual coherence function and the source heght

V(U,V) = f f 11, m)e2iUm gl gm (2.9)

Eqgn.2.9is also called the van-Cittert-Zernike theorem. This 2Dtispp&ourier transform of
the source brightness is called the visibility function.nEg.6 describes the measurement
of this continuous visibility function at one spatial frespcy point. The values af =
u;—U, andv = v;—V, denote the spatial frequency measured by the pair of deseati@, 1>,

and they are defined in units bf= c/v wherey is the observing frequengyThe visibility
function is defined across the spatial frequency plane @Hed theuv-plane) whose axes
0, correspond to thé&), V axes in Figure2.1 when baseline vectors are anchored at the
origin. Each baseline measures the complex-valued visilfiinction at one point on the
uv-plane. The amplitude and phase at each measured spatjaéfrey describes the 2D
interference fringe that is measured by the pair of deteaborthe aperture plane. If the
visibility function were to be sampled continuously at ghasal frequencies, v, then
Egn. 2.9 can be invertedria the Fourier transform to yield an image of the brightness
distribution of the source radiation.

11, m) = ffV(u, v)eFivm gy dy (2.10)

An interferometer synthesizes an aperture using a finit@fdiscrete points. Therefore
in practice, the visibility function is never sampled cantbusly on the spatial frequency
plane. The next section discusses the consequences of¢braplete sampling.

5The frequency at which the EM-wave is measured will be reféoeas the observing frequency or just
frequency.
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2.1.1.5 UV coverage

An interferometer measures the visibility functiviu, v) at a discrete set of spa-
tial frequencies. WithiN, antennas, there aiy(N,—1)/2 baselines that make simultaneous
measurements at spatial frequencies given by the projectb the 3D baseline vectors
5(u, v, W) onto the aperture plane. This sampling of the spatial feegy plane defines the
instantaneous transfer function of the synthesis arrayisnodlled theuv-coverage. It can
be represented by a collection of Kroneckefunctions as

S(u,V) = Z S(U = U)S(V — Vi) (2.11)
k

wherek is an index that represents a measurement from one bas€hnespatial frequency
plane can be further sampled by varying the positions of tlieranas with respect to the
direction of the phase-reference center. For ground-basays, the Earth’s rotation makes
all projected baseline vectdss, trace ellipses on the spatial frequency plane, slowly jllin
it up. This is called Earth Rotation Synthesis. Since thesuesal spatial frequencies are
defined in units of the wavelength of the radiation, measer@sat multiple observing
frequencies can be used to increase the sampling of thekpratjuency plane, and this is
known as Multi-Frequency Synthesis. Since the spatialieegy measured by a baseline
changes with time and observing frequency, measuremenss Ibeumade at shiciently
high time and frequency resolution to prevent smearingréayiag of visibility data) on the
spatial frequency plane. The result is generally a cegtadsiminateduv-plane sampling
pattern with a hole in the middle and tapered outer ed§és.v) now represents the total
collection of sampled spatial frequencies (discretizea &snction of baseline, time and
frequencyj.

The sampling function ouv-coverageS(u, v) defines the imaging properties of
the synthesis array. The maximum measured spatial freguaafmes the angular resolu-
tion of the instrument. The smallest measured spatial #aqu defines the largest spatial
scale that the instrument measures. The density of samptesihe measured range
defines the instruments natural sensitivity tGelient spatial scales.

2.1.1.6 Imaging Equation

For a synthesis array with a givan-coverage, the image formed by Fourier
inversion of the measured visibilities can be describedlss. The measurement pro-
cess multiplies the true visibility function (of the sky dhitness) by thev-coverage of the

SEarth-rotation-synthesis and multi-frequency-synthesguire the assumption that the sky brightness
distribution is invariant across the time and frequencygebeing sampled, so that measurementsfirent
times and frequencies sample the same visibility functiomat diferent spatial frequencies. The large-scale
brightness distribution from most astronomical sourcesaias constant over typical observation timescales,
so the first assumption is, in general, satisfigonway et al[199Q describe the fect of relaxing the
flat-spectrum assumption for wide-bandwidth systems agaorsthms to deal with the consequences.



15

instrument. The observed visibility function ¥&°Yu,v) = S(u, v)V(u, V) and the image
formed by direct Fourier inversion of the measurementsvsmgby

1°°%(1, m) = f f S(u, V)V(u, v)eFUvmgy dy (2.12)

The convolution theorem of Fourier transforms states thpoiat-wise multi-
plication of two functions in one domain is equal to a contolu in the other Fourier
domain. The raw or dirty imag&"™ (I, m) is therefore the result of a convolution of the
true sky brightness(l, m) with the point spread function (PSF) of the instrumgtif(l, m)
given by the Fourier transform of the~coverage.

[0S = | |PST (2.13)
f f S(u, v)eFiUvm gy dy (2.14)

where x’ denotes convolution. The point spread function descrihesinstrument’s re-
sponse to a point sourc&(u,v) = 1 for a point source of unit brightness at the phase
reference center). In other words, it is the image that therfierometer will produce when

a plane monochromatic EM wave is incident on the apertura fsaly one direction on the
sky. Since the observed image is a convolution of the skyhbmigss with a known instru-
mental point spread function, an estimate of the the trudosigytness can be obtaingth

a deconvolution process (described in Chafjer

where 1PS'(1, m)

Eqn.2.12is the result of a theoretical analysis that defines the raagenthat
the interferometer will produce under ideal measurementitmns, and unpolarized elec-
tromagnetic radiation. The next section describes somaipah aspects of measuring the
E-field component of polarized electromagnetic radiatibradio frequencies, and folds it
into the above analysis.
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Figure 2.1:Co-ordinate Systems for Radio Interferometry : This diagshows (a) the three co-
ordinate systems involved in radio interferometric imagiand (b) how a baseline vector is defined.
XYZ represents a terrestrial co-ordinate system in wiigboints toward the North celestial pole
and theX — Y plane is the equatorial plane of the Earkhis the intersection of the equatorial plane
with the local meridian plane (defined as the plane throughptiies of the Earth and the reference
location of the array)Y is towards the East (with respectX). & defines the direction to the point
on the sky being imaged, expressed in terms of source déofind, and hour-angléd. Thelmn
co-ordinate system is used to describe the 3D sky brighttisg$bution aroundsy. The UV plane

is the aperture plane of the array, oriented perpendicoldhe line of sight to the sourc® (also

W). ThelW system is related tXYZ by a co-ordinate rotation defined by the two andigandH.

Let (X1, Y1, 21) and (o, Y2, 2) represent the locations of two antennas in the terrestaabrdinate
system (in units of metres), and(v1, wp) and (i, v», W) be the corresponding co-ordinates in the
v system in units of wavelengthh The distancesv; andw, are proportional to the delays that
have to be given to the signals from antennas 1 and 2 (relatithee chosen origin of the terrestrial
co-odinate system) to ensure that at any given instant,néinmas sample the same wave front
of radiation incident froms. The 3D baseline vector between antennas 1 and 2 is given by as
Buvw = (Uz — U1)0 + (V2 — V1) + (W2 — wi)W. The 2D spatial frequency measured by this baseline is
given by (1, — up), (v — v1). As the Earth rotates, the hour-angle of the source chawgesing the
projected antenna locations (and baseline vector) to ghipses on the now rotatingvplane.
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2.2 Measurement Equation for Radio Interferometry

The previous section described the theory of image formadiod the working
of an ideal interferometer. This section describes the ggedy which the electric field
incident at a detector is measured, tiieet of this measurement process on the input sig-
nal, and how the ideal imaging equations get modified whesetl#ects are accounted
for. This section introduces the concept of the measuremgnation, a construct com-
monly used to describe théect of the measurement process on the input signal. It is usu-
ally written in terms of the transfer function of the instrant, a function which describes
the measurement process. The transfer function of an irgagtarferometer includes its
spatial-frequency sampling function as well as severdabfadhat &ect the incoming EM-
wave before, during and after measurement. The processagimeconstruction (recovery
of the input signal) is equivalent to solving the measureregoatiorviaa process that may
or may not involve the actual inversion of the transfer fimrct

Section2.2.1describes the E-field measured at each detector and thesgrote
computing of a complex visibility from a pair of such measuents. It describes the prac-
tical implementation of the theory in secti@ril.1.1for general polarized radiation. It uses
a matrix notation commonly used in signal processing whetegonal components of the
E-field are listed as elements of ax2l vector and theféect of the instrument on such a
signal is a 2x 2 matrix operator. Sectioh.2.2describes the full measurement equation of
the interferometer and introduces the matrix notation titoe used throughout the rest
of this dissertation. The sky brightness distribution igresented by a list ah parameters
and the instrument’s transfer function (uv sampling fumctand the fect of signal mea-
surement per antenna) is described as>xam matrix operator. The product of these two
matrices yields a list aff measurements. This matrix equation represents a systeneaf |
eqguations which has to be solved in order to reconstruct agémf input sky brightness
distribution. ChapteB describes this solution process in more detail.

2.2.1 Signal Measurement

The electric field components of the incoming electromagmatiation are mea-
sured at the locations of all antenfaetectors. The signals from each pair of antennas are
then correlated (to evaluate Edh6) to form a set of complex numbers that measure the
source visibility function at the spatial frequencies givey the baseline vectors. This
section follows the derivation and notationtéémaker et al[1994.

2.2.1.1 Electric Field at each Antenna

The electric field component of a polarized electromagngéee at a given in-
stant is represented by a 2D vector lying in the plane pelipatat to its direction of



18

propagation. LeE; = = [eX,e"]] represent the two orthogonal componéKty

i

of this 2D vectof for radiation measured at anteninalote thatE; represents a continuous
signal at one instant in time.

|

The radiation from an astrophysical source is modified whpropagates through
the Earth’s atmosphere and is measured by a an electrorec/eesystem. Jones ma-
trices’describe this modulation for the incident electric field apdsses through various
elements of the measurement system. Su®kcts can be instrumental or non instru-
mental, and may or may not depend on the direction on the skgeduence of these
effects are represented by a product of individual Jones neatriDirection-independent
effects for antennaare usually described as'[*] = [J®][IP][IF], a 2x 2 matrix prod-
uct of complex antenna gaind<), polarization leakage between the nominally orthogonal
dipoles (P) and feed configurationJf). Direction-dependentfiects are described by
[Jis"”] = [JFI[IPI[I], a product of antenna illumination pattern¥~}, parallactic angle
effects §7) and tropospheric and ionospheritezts and Faraday rotatiod®).

The two-component Jones vector measured at each antenna is
E®*=[J]IE where Pilae =[5 (2.15)

Linear polarization component¥(Y) of the electric field are measured using a pair of
dipoles positioned perpendicular to each other and orthalgo the direction of propaga-
tion of the incident radiation. Circular polarization coaments R, L) are measured using
a pair of helical antennas, and signals can be electropicalverted between linear and
circular, if required. The measured E-field is in the form dirae-series of voltages for
each polarization component. These signals are amplifiddren sent to a backend sys-
tem that applies delay corrections and computes visilitiThe signals can be digitized
before or after delay correction or correlation.

"This discussion useX, Y to denote the two orthogonal linear polarization composiefitn EM-wave.
These derivations will hold iK, Y are replaced by, L for right and left circular polarization states.

8Notation : Matrices are denoted bg][ Vectors are denoted b{ or [A] (for an n-element vector).
TheT superscript denotes a matrix transpose, and: theperscript denotes conjugate transpose or operator
adjoint.

% The vectorE; is a Jones vector; a commonly used notation to describeipethlight. A Jones matrix is
a complex-valued 2 matrix operator that describes theet of passing an EM-wave through a system that
modifies it. It acts on an input Jones vector to produce anuiuignes vector of modified EM-wave compo-
nents. For example, for a measurement that uses a radioeedbie diagonal elements of the Jones matrix
correspond to instrumental gains that are applied to eantpoaent ofE; and the @&-diagonal elements
describe the amount of leakage introduced between themgltire measurement process.
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2.2.1.2 Correlation for each Baseline

According to Eqn2.6, a visibility (or correlation cofficient) is measured as the
time-averaged product of the complex amplitudes of the Bdigncident at each detector
pair (E,(r1) andE;(r2)). However, in practice, neither the incident radiatiom tiee mea-
surement system is truly monochromatic. Also, the E-fielthponent of the EM-wave
E(r,t) incident at each detector varies with time. Therefore fitst step in the measure-
ment process is to sample the incid&gf’, t) at a finite time resolution. To represent the
complete signal, the sampling time interval must be shaointn the reciprocal of twice the
signal bandwidth (the Nyquist rate).

There are two ways of computing the correlation féieeent for each detector
pair using these high time-resolution samples. In boths;abe result is obtained at a fi-
nite time-resolutiomr (the desired integration time), a finite frequency-resolut\v (the
desired channel width) and across a total bandwidth (cthetrdy the signal sampling
rate). The first method is known as an FX correlation. In thithod, we accumulate
measurements d(r,t) over a time intervat,,,,, compute its temporal Fourier transform
to obtainé, () at a set of dierent discrete frequencieseparated by = 1/tya, COmpute
the producg, (r1)E;(r2) for eachy and then average the results over the desired integration
time At (again, for eacly). The second method is known as an XF correlation. Here, we
use the high time-resolution measurement€(, t) to compute the correlation product
E(r1, )E*(r2, t — 115g) for a series of time lagsrfg), and then compute the temporal Fourier
transform of this product to obtain the power spectry(ri)E;(r2) at a frequency resolu-
tion of Av = 1/t54, and finally average the results over the desired integraiioe At (for
eachy). The output from the correlator is a series of visibilit{gléscrete samples of the
continuous visibility function).

<epep*> obs Vpp obs
Vobs = (EPPSg EO) = @y | =] v (2.16)
<eqe¢|*> Vi(?q

where() denotes a time-average ardlenotes an outer-product that generates four cross-
correlation pairs (two cross-hangg, qp and two parallel-hanX YY) per baselin€.

e’, e’ are the elements dE. The time average represents a discretization of the con-
tinuous signals at a sampling rate given by the integratioe per visibility Ar. [Vi‘J?bﬂ isa

4x 1 coherency vectot for the baseline formed from antenrizand j and it can be written

10 The outer product (direct, tensor or Kronecker product)wed imatrices p] and [B] is given by a
matrix wherea;j is replaced byg;;[B]. Therefore, for two vectord = [Alox1 andB = [B]axa the outer
product is a 4x 1 vector given by §1by, a1y, @y, by, ap, by]T. For two 2x 2 matrices the outer product is a
4 x 4 matrix where the, j quandrantis given bgj[B]2.2. An important property of these outer products is
[A® B][C® D] = [AC] ® [BD].

IThe coherency vector is ax41 vector of cross-correlations formed from the four elerséntthe outer
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in terms of the antenna-based Jones matrices as follows.

VoS = (B ) = ([JIE @ [J'E]) = (H] @ [J]'NE ® E)) = [KylV;  (2.17)

Therefore the measured coherence vector of visibilitieguen byVObS = [Kij]\/Tj where

[Kij] = [J] ®[Jj] is a 4x 4 matrix and\/IJ is the true visibility that Eqn2.6 measures. (If
only one polarization component of the E-field is measurayg (8, the Jones matrices and
vectors become scalars (only one non-zero element) and ZEfnsimplifies to a single
complex number per baselir\t(ﬁbS = 0i9;Vij, where [J] = g represents a multiplicative
complex gain for antennia)

2.2.1.3 Measurement Equation for one baseline

The ideal van Cittert Zernike theorem (E¢h9) can now be combined with the
effect of the measurement process, to derive the full-polaoizaneasurement equation.
The visibility function sampled by baselimpat one instant in time and at one frequency is
given as follow$?.

\7i(j)bs(u’ V) _ Kws ff sky(l m) réky(Lm) e—2ni(u|+vm)d|dm (2.18)

Here, I%%(I, m) is a 4x 1 vector of the sky brightness distribution (in the direntiom)
corresponding to the four correlation paing.v represents the spatial frequency sampled
by baselingj at one instant in time (given by the componentﬁipfn units of.). [Ki‘fs] is

a 4x 4 matrix that represents direction-independent instrualesffects that are constant
across the field of view of each antenmeag( receiver gains). [[)isjky(l, m)] is a 4x 4 matrix
that representsfiects that vary with position on the skg.§. antenna primary beams,
pointing dfsets, ionosphericfiects and thev-term).

The dfect ofDSky(I m) in Eqn.2.18is multiplicative in the image domain and can
be represented as a convolutlon in the visibility domairt. K;P(u V) represent the Fourier

transform ost"y(I m) (for each of the four correlation pairs). Eghl8can be re-written
as follows.

Vb, v) = [KY*] {[Kﬁd(u, V)| > f f S9(1, m) e‘zm(“'“’m)dldm} (2.19)

Here,» represents convolution for each correlation product.

product of two 2x 1 Jones vectors.

12 In practice, each measurement is made over a finite bandwidémd time rangeé\r and contains the
integral of the visibility function over these time and fremncy ranges. Sectioh?2.2.2elaborates on this
discretization.
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Eqns.2.18 and 2.19 describe the measurement equation for one visibility. In
practice, Vs is measured for a2 pairs of antennasi (= 1 - Ny andj = i - Ny)
for a series of integration timesteps and observing freqgiesn All visibilities (baselines,
timesteps and frequencies) for each correlation prod¢XY, Y X Y'Y are then combined
for imaging™.

The next section rewrites EqQR.19 in a form where the sky brightness is no
longer a continous function of positidym, but is described by a discrete set of parameters
(e.g. pixels of an image of the sky). The true visibility ftion is also discretized and this
allows us to represent the spatial frequency sampling fonguv-coverage) in the form
of a matrix operator. The complete measurement equatiotheambe written as a matrix
equation, or a system of linear equations that need to bedatvorder to reconstruct an
image of the input sky brightness distribution.

2.2.2 Measurement Equation for Synthesis Imaging

This section introduces the use of standard linear-algebdescribe the mea-
surement process of an imaging interferometer. The skyhbr&gss distribution is param-
eterized in some basis and the measured visibilities areesgpd as functions of the sky
parameters. The solution of the measurement equation esnb treated as a numeri-
cal optimization problem. This section introduces thediralgebra notation that will be
used in the rest of this dissertation to describe the meammeequation for various image
parameterizations, instrumentdferts and image reconstruction algorithms.

2.2.2.1 Generic measurement equation

Let the sky brightness distribution be describedibparameters listed in vector
form asi>, and letV’ be a vector o visibilities'. A generic measurement equation
can be written as

V% = [Ananl Iy (2.20)

where [A] describes the process of makingneasurements of the visibility function of the
sky brightness distribution in terms of tiheimage parametersA] is a generic label for a
measurement matrix and the following chapters will dissusasurement equations using
different specific forms of].

The next few sections describe how various parts of RgtPare represented in
this matrix notation and combined to construct the full nueesient matrix pn.m]-

13 The 4 correlations can either be imaged directly or afterpotimg a Stokes vectdr Q, U, V of visibil-
ities (via a linear 4x 4 transform Bault et al. 199§.
“Typically, m = N7, for an image of sizéNpix x Npix, parameterized by its pixel amplitudes, amd-

Na(Na—-1
E‘(Ta) X Ntrequency channelX NiimestepsX Ncorrelation pairs
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2.2.2.2 Discretization of the visibility and image domains

Theuv-coverage described by Egh.11is a set ob-functions located on a con-
tinuous spatial frequency plane. However, in practicabilisy samples from each baseline
are measured at finite time and frequency resolutian4v). Note thatAr, Av always need
to be smaller than the limits set by the temporal and spectiarence of the incident ra-
diation. When mapped to the spatial frequency plane, theettdaseline will give the
smallestAu, Av that the interferometer measutes Let us construct a spatial-frequency
grid with cell sizes defined bgin(Au, Av), such that all visibility measurements naturally
map directly to pixels on this grid, and limits due to signaherence are also satisfied.
Let the number otiv-pixels bem, such that the largest measured spatial frequency is ac-
counted for. A discrete Fourier transform (DFT) of this gemiresponds to an image of the
sky extending across a field of view given Qg}/ Aiv radians, and pixel size defined by the
maximum spatial frequency covered by tinegrid.

Let Iﬁ]'f(yl represent a one-dimensional pixelated image of the sky,tbeeentire
field of view allowed by the measuremetitsThe complete but discretized visibility func-
tion for the sky brightness is then described\&S! = [Fuuml >, where Fuum is the
DFT operatot’. This analysis can be directly generalized to two dimersion

When all four correlation pairgXX XY, YX YY} are measured, we can write
% andV:Y | as stacks of 4 vectors, eactpixels long and representing one polarization

4Amx1 Amx1
pair. The DFT operator becomes ax#4 block diagonal matrix and will be denoted by

[ I:4m><4m]-

15This relation is derived fromu = %At + wAv whereu(t, v) is given by Eqn2.7. The hour angle
H is a function of time). = ¢/v andx, y, zare the lengths of the shortest baseline.

16 A pixel-based flux model is the most widely-used form of imageameterization, and is ficient to
describe all the main concepts related to image recongirueia standard algorithms. The main focus of
this dissertation is the use of advanced image parametierigefor multi-scale and multi-frequency image
models. The models chosen for these algorithms can be ded@s linear combinations of pixellated images,
and this formulation remains valid. (In this dissertatinan-pixel methods are discussed only when relevant.)

17 The normalization convention used for all Fourier transfeidescribed here is such th&f F] = m[fm],
where ﬁm] is anm x midentity matrix. The normalization is chosen as part of teersginverse transform
[F]7! = n%[F"']. Therefore,F is not a unitary operator. This choice is in accordance with the lauge
normalization convention used in radio interferometryr B®Jy point source at the phase center, calibrated
visibilities are normalized to an amplitude¥ While making an image, the amplitude of a point source
at the phase center can be calculated as the vector averagaioh visibilities (involving a normalization
by n). In practice this is a weighted average, and a normalindiiothe sum of weights is done separately,
only for the reverse (inverse) transform. Fdfi@ency, the FFT algorithmQooley and Tukey 195s used
to implement all Fourier transforms (unless otherwiseestat Note also that the FFT algorithm requires a
regularly sampled set of data points, whereas a DFT explieitaluates the Fourier transform integral and
can be computed for an irregularly sampled set of data points
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2.2.2.3 Spatial frequency coverage in matrix notation

Theuw-coverage of a synthesis array (described in se@iari.5 can be written
as a sampling matrixg;,.m] defined on this fine spatial-frequency grid. It operategm,
to yield n visibility measurements. §,.] iS a projection operator that maps elements
from anmx 1 list onto a list ofn measurements, and contains only ones and zerosi{the
coverage listed in Eqr2.11consists of Kroneckei-functions). Each row i1%,,., picks out
one spatial frequency, and therefore can have only one ammentry. There can however
be multiple measurements of the same spatial frequencyc@ndns of 5,.m] can have
more than one non-zero entry. Unmeasured spatial fregegroirrespond to columns of
[Shxml] With no non-zero elements (the column rank 8] is < m).

The same sampling function applies to all four correlatiamg( XX, XY, Y X Y'Y}.
Therefore, full-polarization sampling can be describealdin x 4m block-diagonal matrix
constructed from 4 instances @&

2.2.2.4 Direction-independent ffects in matrix notation

Direction-independent instrumentafects (described in sectich2.1.], and de-
noted byKi‘gis in Egn. 2.19 can be written in matrix form for alh baselines and all 4
correlation pairdXX XY, YX YY}. Let [K¥S, ] be a 4x 4 block matrix constructed from
diagonal matrices of sizex n (when each element oK[;*]4x4 in Eqn.2.18is written out
for all n baselines, it forms one x n block with non-zero elements only on the diagonal).
Non-zero df-diagonal blocks in these full-polarization matrices ddsrthe coupling be-
tween diferent polarizations during the measurement process @ff-diagonal terms of
Eqn.2.17).

2.2.2.5 Direction-dependent ffects in matrix notation

Eqgn. 2.19 shows that the visibilities measured by baselipare the result of
a convolution of the true visibility function with a 2D funoh Kﬂd(u, V) that represents
direction-dependentkects®. The visibility measured by baselingis no longer a sample
of the visibility function at one spatial frequency, but tihéegral of the visibility function
over a region defined by the shaperqf’(u, v) around that one spatial frequency.

For each correlation pair, we can define a visibility-domajperator that con-
volves the true visibility function with?ﬂd before baselingj samples it. Let$49 ] repre-
sent a modified form of the sampling matri&.] in which each row contains the vector
Kﬂd centered at the spatial frequency measured by that baggiuss by the location of the

corresponding-function in [Sn.n]). The subscriptj indicates that thesdtects can be dif-

'8K1%(u, v) is one element of the % 4 matrix [K{%u,V)] used in Eqn2.19and represents av-plane
convoiution function for one correlation pair.
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ferent for diferent baselines and times. Therefdfg? can vary across the rows dg{?,].
The efect of multiplying [54¢.] with the true visibility functionV>Y, is a baseline-based

nxm
convolution during the sampling process.

When all baselines have the same direction-dependgette K" = Kdd) the
sampling function can be separated from this baselineebessvolution. We can write
[S ] = [Snuml[G¥mm] Where [G%9] = [FDSYF] is a convolution operaté? with K2
as the convolution kern@l [DS¥.] = diag([F']K) is a diagonal matrix that represents
the multiplicative image-domairttect of the visibility-domain convolution (compare with
DSYin Eqn.2.19).

When all four correlation pairs are measured, the sampliagrimmbecomes a
4n x 4m block matrix. Each x m block contains $99 ] constructed with ang for the

nxm.

corresponding correlation pair. An importanttérence betweerSﬂﬁMm] and [Sanxam] IS

that [S9] contains non-zero fé-diagonal blocks that describe the coupling between the
different polarizations.

2.2.2.6 Measurement equations in matrix form

The full measurement equation in block matrix form is givgmbiting Eqn.2.19
for all baselines and combining it with the-coverage and other instrument#iests.

Vers = [Ki and[ Siovcarm Faman] rﬁil (2.21)

where\7§rﬁ’x‘°’1 consist of 4 segments af visibilities each (one for each correlation pair).
From this equations, we see that the measurement méfrix [Eqn. 2.20can be written
as a product of a series of matrices Asnfum] = [K}S, 1[S5S 4 ][ Famcam]. A solution of
the complete measurement equation includes imaging anzhdelcition along with the
correction of direction-independent and dependéieiots, both for all polarization compo-
nents of the incident radiation and their correlations.

The algorithms described in this dissertation will focuswvisibility data from
only one correlation pair, assuming that the incident raifeis either unpolarized or has
no linear polarization (when the X,Y components are meakanel Q=0) or no circular po-
larization (when the R,L components are measured as@)Vin this case, the dimensions

19 The convolution of two vectorg * b is equivalent to the multiplication of their Fourier traoss.
A 1-D convolution operator is constructed froginand applied td as follows. Let RA] = diag(d). Then,
axb= [FTdiag([F]é)F]B = [C]B. Here, F] is the Discrete Fourier Transform (DFT) operato€][is a
Toeplitz matrix, with each row containing a shifted versafrd. Multiplication of [C] with Bimplements the
shift-multiply-add sequence required for the process ofvotution.

20The function with which a convolution is done is called thenaalution kernel. It is the function that
is shifted to all pixel locations during the shift-multipgdd sequence of convolution. For a convolution
kerneld, an image-domain convolution operator is constructedradipg([F]&)F], and a visibility-domain
convolution operator is constructed d&djag([F]d)F ]
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of all the matrices in Eqr2.21lose the factor of 4, and<’s | is a diagonal matrix. The
measurement equations for observing unpolarized incicegiaition and recording only
one correlation pair are given below (matrix equivalent ghE2.19).
Vet = (KRSl Frvcenl Ty (2.22)

When instrumental féects are time-invariant and identical for all baselinegytbhan be
factored out of the sampling matrixS§d. ] = [Snxml[G%mwm]) @and written in the image-
domain (matrix equivalent of Eq2.19.

Vibs = [KnS Sl Frnern] D] Ty (2.23)
In general V°°S[S] and [F] are known and®%, [K"] and [D¥] are unknown. Estimates

for [KVis] and [Ds¥] are obtained either by solution from the measured dataoon fxisting
measurements or models, leaving onl§ as the unknown variable to solve for.

The next two chapters describe the solution of the measuresg@ations shown
in Egns.2.22and2.23 Standard synthesis imaging techniques address imagihdezion-
volution with the correction of only direction independefiects. They solve Eqr2.23by
ignoring [D¥] and estimatingk"'s] from separate observations of a source for wHit#
is known. ChapteB describes these standard methods in detail. Techniquesfi@cting
direction-dependenticts solve Eqr2.22and use-priori estimates foKﬂd used to con-
struct [899). These more recent techniques are described in Chédpt€hapterss and7
describe and solve extensions of these measurement awgiédidbroad-band radio inter-
ferometry in which the sky brightness distribution, thetsddrequency sampling pattern
and instrumentalféects vary with observing frequency.



CHAPTER 3

STANDARD CALIBRATION AND IMAGING

This chapter describes well-established calibration erajing algorithms in the
context of a linear-least-squares solution of the measemn¢equation. The algorithms de-
scribed in this chapter follow the general ideasTaylor et al.[1999 and Briggs[1995,
and cover the calibration of direction-independent insteatal €fects, and image recon-
structionvia an iterative deconvolution process.

To begin with, let us consider a simplified form of the measwat equation
(givenin Eqns2.21and2.23) for only one correlation product and only direction-inéegdent
instrumental &ects KVS].

Vet = (Kl SreanF el [ (3.1)

nx1l — mx1

The unknowns in Eqr3.1are the sky brightnes$® and the elements oK["].
Calibration (SectiorB.1) is the process of computing and applying an approximaterse/
of [K¥s]. Imaging (Sectior8.2) is the process of reconstructing the sky brightn&¥4, by
removing the &ect of the instrument’s incomplete spatial frequency samylextensions
to the full polarization case are made within the discussionSections3.1 and 3.2, and
direction-dependent instrumentdfexts D] are discussed in Chaptéy.

3.1 Calibration

To make an image that represents the true sky brightnesgdisin, the mea-
sured visibility data must first be calibrated to undo vasimstrumental #ects that corrupt
the incoming signals. Calibration is the process of first pating the elements ol
from visibility measurements of a source whose structuten®vn, and then using these
solutions to remove thefiect of direction-independent complex gains from the olesgrv
visibilities of the source of interest.

This section describes the basic procedure for calibratistpility data, lists
various types of calibration schemes, and briefly desciibépolarization calibration.

26
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3.1.1 Gain solution and correction

The elements of{ V'] are computed by solving EqA.1, written in the following
form.
\‘/’obs _ [Kvis ]\7m0del (32)

nx1l — nxnl ¥ nx1

Where\7r’]‘jgde' = [SnxmF mxml] ﬁrpgfe' are visibilities that are computed from a known model of

the sourcd™d¢!py taking its spatial Fourier transform and sampling theiltassingS.

mx1
For the simple case of only one correlation pair, each el¢methe diagonal of
[K*'%] can be described as a product of two complex numb€f8 = g°g;” whereg’ andg?
are multiplicative instrumental gains for antenmasd j. These complex gains are Jones
matrix elements for the polarization components used tettoat the correlation. The
number of unknowns in this systemn, andVr’]T;Olde'providesO(Ng) constraints to uniquely

factor the baseline-basele(qlgis into N, antenna-based complex gaigfs A weighted least-
squares solutiorGornwell and Wilkinson 1981of Eqn. 3.2is found by minimizing

=) wIVEs - gig Ve (33)
ij

and directly estimating antenna-based complex gains, ewligris a measured visibility
weight, given by the inverse of the noise variance.

Gain corrections for all baselines (diagonal elements<{f[']) are computed
from the antenna-based gain solutions}q'@* = 1/(gig;) (for the element corresponding
to baselingj) and then applied to the observed visibilities to correenth

Vit = [Kne IVR2s (34)

An alternate formulation expresses tNg(N, — 1)/2 elements of V] as an
N, % N, correlation matrix with elemeri;; in thei" row andj™ column, and uses eigen-
value decompositions to solve for antenna-based comples.gln cases where the mea-
surements at each baseline contain random additive nogec#imnot be factored into
antenna-based terms (closure noise), baseline-basbdat@ln is sometimes done to solve
for the elements of{"'s] directly. However, this process is poorly constrained paned to

standard antenna-based calibration, is not always a mllysaccurate approach, and must
be used with caution.

1 The + superscript denotes the pseudo-inverse of a matrix. A gs@uakrse is an approximate inverse
of a matrix. Itis often used when an exact inversion is eittigrossible or intractable, either when the matrix
being inverted is rank-deficient and has no inverse, or whenptesence of noise in the data prevents an
exact solution. A pseudo-inverse is often used to obtaimstisquares solution of a system of equations in
the presence of noise. One way of computing the pseudosevda matrix p] is [A*] = [ATA]"}[A"]. This
involves computing and inverting| A] or some approximation of it, say, a diagonal approximatiGther
methods use various matrix decompositionsAjftp construct A*].
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3.1.2 Types of Calibration

Several commonly used calibration techniques are brieflyrsarized below.

3.1.2.1 Standard Calibration

For standard calibration, astronomical sources of knowplénae andor struc-
ture are observed at regular intervals during an obsemvaifca source of interest. The
known tru¢model visibilities are used to compute antenna-based gdiriens for the
time intervals over which the calibrator was observed. €hgain solutions are interpo-
lated across the time ranges where the source of interessiereed, and used to correct
the observed visibilities (s¢eomalont and Perlejd 999; Cornwell and Fomalor|t1999).

The solution for antenna gains is often splitinto compuéngplitudes and phases
separately. Bright sources whose amplitudes are well kreovehdo not vary with time are
used as flux calibrators to compute gain amplitudes. Sowvbese absolute positions are
accurately known are used as phase calibrators to congiaginphases. ldeal calibrators
are extremely compact sources whose visibility functioresanstant across the range of
spatial frequencies measured by the synthesis array, tenéed sources can also be used
if their structure is also accurately knoverpriori. Bandpass calibrators are flat-spectrum
sources or those with a well-known spectral behaviour, aadised to compute the varia-
tion of instrumental gains as a function of frequency.

To increase the signal-to-noise ratio of correlations gamnto the algorithm that
solves for the elements oK['s], the visibility data are sometimes pre-averaged along dat
axes over which the solution is likely to remain stable. Baraeple, bandpass calibration
often uses time-averaged data because the bandpass shapalig stable across certain
time-intervals. Time-variable gain fluctuations are sdl¥er during a second pass, where
the now calibrated bandpasses are averaged across frgdoeagice a single measurement
for each time-step.

3.1.2.2 Self Calibration

Since gain solutions for the target source are computed loylinterpolating
between calibrator scans, any gain fluctuations duringithe when the target source is
being observed will not be accounted for. Self-calibrati®a process where a model of
the target source itself is used to compute gain solutiommguhe time it is being ob-
served. This model of the target source could be f@priori information in the form
of an existing image, or could be built up by a bootstrap meétnhom the observed data.
In general, self-calibrationdchwab 1980Cornwell and Wilkinson 1981Thompson and
Daddario 198Pis an iterative combination of calibration and imagingisla two-stagg?
minimization process that iterates between the parametepsices of*Y and [K¥s] and
applies constraints appropriate to théelient physics involved. During the computation
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of [K"¢] for calibration, the most current model 6% is held constant and used in evalu-
ating Eqn.3.1to compute model visibilities. Similarly, during imagintiye most current
calibration solutions KV*]) are applied and held constant.

If a high quality initial model ofi % is available, self-calibration often requires
only one iteration. Depending on the availability of an emé calibrator source, this
calibration stage solves for either gain amplitudes or gdiases, or both. For example,
a standard flux calibratiomia an external flux calibrator can be followed by a phase-only
self-calibration step using a model whose structure is kmtwbe the same as the target
source. If an amplitude and phase calibration is requiredH®uimodel and target flier in
amplitude, the solution gain vector is scaled to unit norrprieserve the overall flux level
of the target source.

When there is n@a-priori information about the source or an external calibrator,
the initial sky model is chosen as a point source of unit fluxhat phase center and all
antenna gains are unity. In this general case, severalidesaof calibration and imaging
are usually required before both the calibration solutiand the sky model converge to
stable values. Also, the absolute position of the sourcge(gby a common phase term
across all antennas) and its absolute amplitude, are adabanto the gain solutions, and
are lost when the gain correction is applied. This iteratik@cess is usually feasible only
for sources with simple spatial structure.

3.1.2.3 Peeling

Peeling Nijboer and Noordam 20Q7s a technique where self-calibration is
done one source at a time, with the calibration being unddtee @ach source has been
subtracted and replaced with a model. Peeling can eitheoibe dn all prominent sources
one after another, or in combination with regular self{oadtion in which it is applied
only to sources whose calibration parametef$edisignificantly from a global solution.
This method accounts for some directional dependence airttemna gains, by calculating
them separately along a few directions containing brightses.

3.1.2.4 Full-polarization calibration

Full-polarization measurements contain correlationsnfrall four polarization
pairs. Each baseline measures the produqu'f][ = [3Y9] ®[J}’i5*] with the true coherence
vector seen by that baseline. E@i2becomes

\ch)r?xsl = [KX:]Sx4n]\72rqmgiel (3.5)

and the elements d{ﬁiS are computed as described in sectibd.l For a source with
known polarization characteristics, the true coherenctorés known (constant [1,0,0,1]
for circular feeds and an unpolarised source) and one camdaystem of linear equations
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with the elements ofI{iVj‘S] as unknowns. For a single baseline, there are up to 10 de-
grees of freedom and 4 equatior&aplt et al. 1996 However, with ana-priori source
model, measurements from all baselines provide enougttreamts to uniquely factor the
baseline-based[{*] matrices into antenna-baseck2 Jones matrices (4 Na(Na — 1)/2
equations and % N, unknowns). In its most general form, the elements3¥f[ can be
computed by minimizing

K= ) Vg - [ I VP (3.6)

i]

with respect to the antenna—baséﬂsﬂ. Corrections can be applied by direct computation
of [K¥is"] from these solutions.

To simplify this solution process, polarization calibaatiis usually done in stages.
First, only the diagonal elements of the Jones matrices@ved for, assuming zero leak-
age between the orthogonal feeds. Corrections are appid second stage solves only
for the df-diagonal terms. Another method of simultaneously solorgantenna-based
gains and leakages from only parallel-hand correlatidXsY Y is described irBhatnagar
and Nityanand$2001.

3.2 Imaging

After calibration, the corrected visibilitieg®®!" are ready to be converted into an
image. The complex visibilities are mapped onto the spagaguency gridvia S’ .. An
inverse Fourier transform of these gridded visibilitiegas the raw or dirty image over the
full field of view allowed by the time and frequency resolutiof the visibility measure-
ment$. Full image reconstruction involves the removal of tlEeet of the instrument’s
known sampling function-coverage). In interferometric imaging, there are someiapa
frequencies that are actually not measured, so even if gteiment’s transfer function (ef-
fect on the incoming signal) is completely known, the ret¢artdion of the sky brightness
is a non-linear process. This is because it involves esimgdhe values of the visibility
function at unmeasured regions of the spatial frequenayeplsarious physical constraints

are required to achieve this.

This section describes the process of interferometric gni@gonstruction in
terms of the matrix equations being solved. Several lirdgebra concepts are introduced
here to emphasize the relation between imaging techniguesntly in use and the applica-
tion of standard numerical optimization theory to solveerse problems. Chaptefsand
6 will later apply these same numerical optimization ideasntre complicated systems
of equations, to derive imaging algorithms for multi-scateulti-frequency image models
along with wide-field instrumentalcts.

2In practice, an image is usually made over a smaller field@kyand this is accomplished by resampling
the visibilities onto a coarser spatial frequency grid beféourier inversion. See Secti@2.2on gridding.
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3.2.1 Writing and Solving the Imaging Equations

This section describes the imaging properties of the insémnt, and introduces
the standard algorithmic framework used by most radio fatemetric imaging techniques.
Sections3.2.2 3.2.3and3.2.4later list details of the main computational steps involired
this image reconstruction process.

3.2.1.1 Measurement Equations

Using Eqns3.1and3.4, the measurement equation after calibration is given by
[SwxenFan] Iy = Vit (3.7)

Here, I represents the sky brightness as a set of pixel amplitudesy®" is a list of
measured visibilities. The measurement matr® (h Eqn.2.20) is given by A] = [S][F].

3.2.1.2 Normal Equations

A weighted least-squares estimatel8¥ is found by solving the normal equa-
tions’ constructed from the above measurement equation.

[F'S'WSRILY = [F'S'WVi2y (3.8)

Here, W] is a diagonal matrix of signal-to-noise-based measurémeights and $7]
denotes the mapping of measured visibilities onto a reguiar of spatial frequenciés
The matrix on the LHS of Eqr3.8is called the Hessian matri] and it describes the
imaging properties of the instrument. The vector on the R&t8é dirty imagd®™ defined
as the image produced by direct Fourier inversion of thébcatied and gridded visibilities.

[H] [F'S'WSH (3.9)
|‘t|irty — [FTsTV\l]\_/)COI‘r (310)

In the next two sections, we will describe the propertiestf, [define the point spread
function P, and show that for standard interferometric imaging, E3)B.describes the
dirty image as the result of a convolution between the skghiness and the point spread
function (i.e. a discretized and 1-D version of EGri3).

% The weighted least-squares solution for a system of lingaatons AJX = b is found by forming and
solving the normal equationA[WAX = [A"'V\/]B. Here, A] = [S][F] is the measurement matrix\{]
is a diagonal matrix of weights andi] = [A'TWA| is called the Hessian matrix. (See Appendixor a
derivation.)

“Note that the subscripts on the matrices in E3jiihave been dropped in EqB.8. Hereafter, the shapes
of individual matrices will be listed only when relevant toet point being made, and will default to their
shapes as first defined.
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3.2.1.3 Point Spread Function

The point spread function (PSPS") is the impulse response function of the
instrument. The PSF for a given direction on the sky is thegenproduced by a point
source at that location. If the PSF is shift-invariant, ih s computed once, for a source
at the phase center. Let us defifé’ as the image produced by observing a point source
of unit flux at the phase center. The PSF is the dirty image éolvia the RHS of Eqn3.8
for a constant visibility function of unit amplitude (regented by a x 1 vector of ones)
or the inverse Fourier transform of the gridded weights gles accumulated onto amx 1
grid via the sampling matrix$]).

P! = [FS'W]Tpg = [FIWE,,  where WE, = [S"W]1y4 (3.11)
WE is anm x 1 vector containing a weighted average of the number of sesnpleasured
at each discrete spatial frequency. Sing¢ gontains only ones and zeros, we can write
[WC] = diag(\W®) = [STWS] as a diagonal matrix formed from the vector of gridded
weight$. Note thati’s' is the same as"sf(l, m) from Eqn.2.14but written with weights
and in vector form.

Figure 3.1 shows a 1-D example of gridded weights and the PSF that is con-

structed from it. Note that if the sampling function were ttonous WG contains all ones
and no zeros), the PSF would be a Kroneckéunction.

The shape of the PSF is controlled by tinecoverage §], and the visibility
weights W]. The minimum width of the main lobe of the PSF defines the &argeso-
lution of the telescope and is controlled by the largest me=ssspatial frequency (given
in units of radians agP" = 1/uUnax Whereumay is the maximum baseline length in units
of ). The PSF has sidelobes (ripples with negative and postivglitude) produced as
a result of missing spatial frequencies. Also, an interfggter always has a central hole
in its spatial-frequency coverage ranging from the oridithe uv-plane up to the shortest
measured spatial frequency, and this gives a PSF with zésgrated area. The peak of
the un-normalized PSF is given by the sum-of-weighs, = tr[W®] and represents the
sensitivity of the instrument to a point source of unit arnyule.

3.2.1.4 Beam Matrix and Convolution

In this section, we show that the normal equations in Bgdescribe the dirty
image as a convolution of the sky brightness distributiotihthe PSF of the instrument.

Consider the Hessian matrix for standard imaging (E2j6).. By construction,

SNote that Eqn2.14defines the PSF as the inverse Fourier transform ofittsampling function without
any measurement weights. Edhllis a discretized and practical version of this definition ihiet the
samples are allowed to be weighted non-uniformly.
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Figure 3.1:Sampling Weights and the Point Spread Function : This diagtzows a 1-dimensional
example of the gridded weights and the point spread fundiianis constructed from it. The plot on
the left shows the sample weights as a function of spatigugacy. The non-uniform amplitudes
in this plot indicate a non-uniform sampling in which somelw measured spatial frequencies are
sampled more than once. The plot on the right shows the gpiead-function (PSF) formed from
the Fourier inverse of these gridded weights (E8i.]). The PSF has been normalized such that
its peak value is unity. The width of the central lobe of thé-RIgfines the angular resolution of
the interferometer. It is given bgPs’ = ;11830 arcmin, whereumay is the maximum spatial
frequency in units of. (in this exampleymay = 1.3 kk and6Psf = 2.6’ where’ denotes arc-minute).
The lower-level structures seen on either side of the cepéak are called sidelobes.

[H] = [F'S'WS H is a circulant convolution operatowith [P (given by [F]WE where
WE is the diagonal of $Wg]) as the convolution kernél This special form of Ifi] in
which each row contains a shifted version of the PSF (or umsént beam) is called the
Beam matrix (denoted byB]). The convolution equation of interferometric imaging is
given as follows.

Bl 59, = 1Y where B] = [F'S'WSH (3.12)

mx1

6A circulant matrix is one that is diagonalized by the Foutiansform operator and its eigen-values are
given by the Fourier transform of one of its rows. A convadutioperator constructed aB Tdiag([F]8)F]
(for & as the convolution kernel) is a circulant matrix agid([C]) = diag([F]&) (see footnotd 9 on page24
for the definition of a convolution operator). For a two-dims&énal convolution, ] is the outer product of
two one-dimensional DFT operators, a@] s block-circulant with circulant blocks.

In general, a matrix of the fornFﬂ[diag()?)][F"’] is a convolution operator Witl‘F["'])? as its kernel (the
function that the operator applies the convolution with).
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Figure 3.2:Normal Equations for Basic Imaging : This diagram represehé linear system of
equations that describe the imaging process of an interfeter (Eqn3.12. The matrix on the left

is the Beam matrix which consists of a shifted version of t8& ih each row (rovw contains the PSF
shifted to the locatiom on the sky). The column vector in the middle represents adimensional
empty sky with two point-sources and the vector on the righf) represents the dirty image.
When the Beam matrixg] (on the left) is multiplied with the sky imagE®™, it implements the
shift-multiply-add sequence of a convolution. Therefdigs system of equations describes the
dirty image as the result of a convolution of the sky with tf&PThis is the system of equations to
be solved to reconstruct the image of the sky and the solptiocess represents a deconvolution of
the PSF from the dirty image. The PSF used in this examplesisdime as that shown in Fig.L

Figure3.2is a pictorial representation of this convolution equatidhe matrix
on the left is the Beam matrix@], in which each row contains a shifted version of the
PSF. The column vector in the middle represents a 1-D emptyvitk two point-sources.
When [B] is multiplied by the sky image, it implements the shift-rmpily-add sequence of
a convolution, and the vector on the right represents thg dirage formed as a result of
this convolution between the sky image and the PSF.

Eqn.3.12and Fig.3.2represent the system of equations that needs to be solved
to obtain an estimate of the true sky brightness. This smiytrocess is called a deconvo-
lution, and the reconstructed estimatd ¥ is called a model image (denotedi&s?e).

The diagram in Fig3.2was constructed using 1-D (noise-free) numerical simula-
tions of a simple sky brightness distribution and the PSkwsha Fig. 3.1 (with m = 256).
The elements of the Hessian matrix were explicitly evaldigé®d a matrix-vector product
computed to obtain the RHS vectors. The diagram therefgmeesents a realistic result
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and is not a toy illustration. The 1-D functions shown in thatnx on the LHS are from a
selected subset of rows from the full matrix, chosen to it the shape of the 1D func-
tions in each row, and the locations of the peaks in each rovespond to the diagonal
elements of the matrix. Several such diagrams are shownendhapters of this disserta-
tion, to illustrate the imaging equations in various sitoia$ (multi-scale, multi-frequency,
and wide-field imaging). All these diagrams were producadgisimilar 1-D simulations

that use the same sampling function and basic PSF as shovig . E

3.2.1.5 Properties of the Hessian

A few properties of the Hessian are worth noting.

1. The elements on the diagonal éf][correspond to the peaks of the PSFs (given by
the sum of weights) for each location in the image, and repriethe sensitivity of
the instrument to a point source of unit flux (in all direct&ynWhen H] = [B] the
Hessian represents an imaging instrument in which the P§#aisally invariart and
all pixels in the weight imagé" are equal tQWVsym

2. A weight imagel™ can be defined as am x 1 column vector constructed from
these diagonal elements. Wheth][= [B], all elements (pixels) of the weight image
contain the same numbewrd,,). In the general case this is not true, and this weight
image will be later used as a measure of the direction-degrergensitivity of the
instrument.

3. The eigen-values of{] are given by the diagonal matrix of gridded weightgq] =
[STWS] = diag([F]IPs") (see Eqn3.11). When H] = [B], these are also the singular
values.

8 The rows of B] contain shifted versions of a single function, the PSFsTheans that the instrument’s
impulse response function is identical for all directiomstbe sky. When direction-dependent instrumental
effects are included in the measurement equations, the instrtsmesponse changes with direction on the
sky. The PSFs become spatially-variant, and the elemenit¥ afe diferent from each other and describe
the direction-dependent sensitivity of the telescope.

9 The singular value decomposition of a matrix is given By E [UAV'] where U] and [V] contain
orthonormal columns and\[5] is a diagonal matrix of singular values. The eigen-valueotieposition of a
matrix is given by A\] = [XAX'] where the columns of{] contain the eigen-vectors and{] is a diagonal
matrix of eigen-values. When a matrix is Hermitian and syrmimeits singular values are related to its
eigen-values asNg] = abq[A¢]. Therefore, for the Beam matrix that is by constructionipes semi-
definite, the eigen and singular-value decompositionsteesame andJ] = [V] = [X] = [F] and [A¢] =
[Ae¢] = [WE]. The singular value decomposition (SVD) of a matrix can bedito compute its pseudo inverse
(an approximate inverse). The SVD is often used when theixnmtrbe inverted is rank-deficient. The
SVD of the matrix can also be written as a sum of rank one negrand their associated singular values
A=y", Uikivi"'. Its inverse is calulated by using only those singular valeose magnitude is larger than
€. ThereforeA* = 3™, Vi%Uf.

hi>e
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4. The diagonal elements 0\f°] are positive for spatial-frequency grid cells that con-
tain measurements, and zero for those that do not. Therefdren the spatial-
frequency plane sampling is incomplete, the inversat]and [H] do not exist.

With this background, the next three sections will descxi@eous ways of solving these
normal equations to obtain an estimate of the sky brightdisssbution.

3.2.1.6 Principal Solution

The principal solution (as defined Bracewell and Robertsl954 and used in
Cornwell et al.[1999) is a term specific to radio interferometry and represehésdirty
image normalized by the sum of weights. It is the image formeaely from the measured
data, with no contribution from the invisible distributiohimages (unmeasured spatial fre-
guencies). For isolated sources, the values measured pe#ks of the principal solution
images are the true sky values as represented in the imaga (mothis case, a list of pixel
amplitude$®). The principal solution is an approximate solution of tleemal equations
computedvia a diagonal approximation of the Beam matr{.[ In general, each diagonal
element represents the sum of weights,, and is equal to the value given lyid{ [ Psfy
which for the PSF is also the location of its peak.

The advantage of using a diagonal approximation is that énagels can be
treated independently while computing the solution of ty&tesm. Further, for the Beam
matrix (when H] = [B]), all diagonal elements are equal and given by the peale@ithe
PSF. Therefore, the principal solution is computed by dingdall pixels in the dirty image
by the peak of the PSF (whose valuevaf,,, can be picked from any diagonal element of
[B]). To maintain consistency between definitions of the ppatsolution, and to introduce
the notation that will be used in the later chapters, we wiltevthe following equation to
describe the operations that go into computing the pringplaition one pixel at at time.

7 = Mg I (313

peal

where Hlxlk] Is (in this simple case) a one-element matrix containirgggbak of the PSF

(a diagonal element of] from some rowi), "% is the value of the correspondinid')
pixel from the dirty image, an&’*"** is the value of the principal solution at thltpixel.
Note that the element irH{P®¥ is the sum of weights for thi&" pixel and is thé"" element

of the weight imageé™.

Such a normalization by the Hessian diagonal is a combimatieghe DFT nor-
malization of% and a scaling by the sum of weightg,,, = tracgW) that creates a PSF

10 This definition of the principal solution can be naturallyenxded to situations in which the image model
is something other than a list of pixel amplitudes reprasgrthe intensity of the sky brightness distribution
in all directions. The principal solutions for multi-scaled multi-frequency deconvolution are examples of
such situations and are explained in sectiéris2.3and6.2.2.3
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of unit peak. This means that a point source of flux 1.0 Jy wiég peak value of 1.0 in
the normalized dirty image. The values of the peaks in thenatired dirty image can now
be interpreted physically in true flux units of/dgam. For an instrument with complete
and uniform sampling whereS|, [W] and [H] are scalar multiples of identity matrices,
IPsfis ad-function, the Hessian is purely diagonal, and this nornadion gives the final
reconstructed image.

For standard imaging, the principal solution is trivial tongpute as an image-
domain normalization by the sum of weights. However, as bglshown in later chapters
for multi-scale and multi-frequency deconvolution, thénpipal solution can in general
involve more than just a normalization.

3.2.1.7 Linear Deconvolution

Consider a filled-aperture telescope where there is comdat non-uniform
sampling of theuv-plane. Let the distribution of samples follow a Gaussiamction with
maximum sensitivity at the centre of the~plane. This causes a blurringfect in the
image. (A multiplication of the visibility function by a Gasian in the spatial frequency
domain is a convolution of the image with another Gaussiesylting in blurring.)

This system can be solveda a linear deconvolution. If all spatial frequencies
are measured at least onc8] pas full column rankm, and the diagonal matrix of gridded
weights WC] = [STW ] is positive definite, and therefore invertible. L&V[] be an esti-
mate for M/G_l] such that W'WE] =~ [I] (anm x midentity matrix). The deconvolution
operator F'W'F] can be applied to EqB.8to give [FTW'F][F'WEF]I% = n?[% which
can then be normalized to recoviél. Ideally, W] = [WC '] computed directly from
[WE] will exactly invert the Hessian. However in the presencenoise, a direct compu-
tation of NVG_l] will give artificially high weights to low signal-to-noismeasurements,
and this can introduce artifacts into the estimatésbf In practice, W'] is a Wiener filter
which, in addition to inverting\V®], attenuates measurements dfatient spatial frequen-
cies depending on their signal-to-noise ratios.

3.2.1.8 Non-Linear Deconvolution

A general interferometer samples the spatial frequenayepiacompletely, with
the associated sampling mati$¢,, having a column rank m. The m x m Hessian
therefore has rank m, making it a singular matrix with no exact inverse. Therefaven
though the convolution process described by the normaltemsas linear, these equations
have multiple solutions, and cannot be solved by a lineanledution.

An intuitive explanation of this non-uniqueness is that dia¢a provide no con-
straints on what the unmeasured visibilities should be. Alngice of values at the un-
measured spatial frequencies will be indistinguishatdenfany other. More formally, the
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dirty image on the RHS of Eqr8.8lies in the range space of the Hessian makiix A
rank-deficient Hessian implies that there is an entire rarigmages formed from spatial
frequencies that fall in the null space Hf that if added to the sky model imag&°de!
will make no diterence to the RHS of the normal equations. The solution todystem
of equations it therefore non-unique. The set of images éorfrom the null-space oH]
(unmeasured spatial frequencies) is called the invisiistgidution Bracewell and Roberts
1954. A common way of filling in these unmeasured spatial frequesis to use-priori
information about the typical structure of the sky to estientne shape of the visibility
function in between the measured spatial frequencies. &pisori information is applied
via a solution process that forces the model visibility funotio agree with the data at all
measured spatial frequencies.

3.2.1.9 lterative CLEAN Deconvolution

This section describes the general framework used in masgémneconstruction
algorithms in radio interferometry. The steps given belololv the steepest-descent al-
gorithm for y?>-minimization (described for radio interferometric imagiin Schwab and
Cotton[1983). All the algorithms in this dissertation are describedhan this framework.

In practice, the normal equations are solvélan iterativey?-minimization pro-
cess, not by explicitly evaluating the Hessian matrix aneiiting it. This is because the
Hessian matrix for interferometric imaging is usually sikey with no exactly computable
inverse, and is too large to handle numerically. Standangiive deconvolution for in-
terferometric imaging is based on a Newton-Raphson appraaud the following steps
describe this process for radio interferometric image nstaction. For an actual numeri-
cal implementation of these basic steps, several detagid teebe accounted for. Mainly, a
preconditioning scheme is used to weight the visibilityadg@ectiors3.2.3 while gridding
them onto a regular grid of spatial frequencies (SecBigh? and Fourier inverting to give
the dirty image. Deconvolution is then a combination of &ssively building up an image
of the sky by finding flux components and subtracting théiec from the dirty image
(Section3.2.9).

Pre-compute Hessian : Since the Hessian is a Toeplitz matrix (see footnbfeon
page24) with a shifted PSF in each row, it fices to compute and store only one instance
of the PSRvia Eqn.3.21

Initialization:  Initialise the model imagt%n to zero or to a model that represeatgriori
information about the true sky.

Major and minor cycles: There are two types of iterations, one nested within therothe
The outer loop is called the major cycle and the inner looglked the minor cycle. Steps
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2 to 4 represent the minor cycle of iterations which operate inrnm&ge domain and search
for flux components to form a model of the sky brightness. $1dp 5 represent the major

cycle in which the data and models are converted betweenshmeiiy and image domains

so thaty? can be computed directly in the measurement domain.

1. Compute RHS: Compute an image from a set of visibilities. For the firstateon,
this is the dirty image formed from the measured visibiiti¥®". For subsequent
iterations, it is called a residual image and is formed fréva tesidual visibilities
computed a§/™es = \jeorr _ \ymodel\yharg\/modelis the current best estimate of the true
visibilities. In the first iterationy/mode! = §, Vres = \eorr gndites = [y The residual
image is normalized by the sum of weights.

Ifes = [FTSTwW][V'eS] (3.14)
This step is called the reverse transfétrm

2. Find a Flux Component: For iterationi, compute the update step by applying an
operatofT to thevy? image.

I(_fBOdel T (l‘fes’ rbsf) (315)

T represents a non-linear deconvolution of the PSF fidthwhile filling-in un-
measured spatial frequencies (null space of the measutamarx) to reconstruct
an image of the sky brightness. This estimate of the sky br&gs is called the
model imagel™de!  Section3.2.4 describesT for several standard deconvolution
algorithms?,

3. Update model : Accumulate flux components from iteratioonto a model image.
I‘model I‘fnode|+ gl‘fnodel (3 16)

gis called a loop-gain, takes on values between 0 and 1, ardxiees the step size
for each iteration in thg? minimization process.

4. Update RHS : The residual image is updated by subtracting out the carttab of
the flux components found in iterationdamped by the loop-gain.

I‘fes |‘fes g (rbsf fg;odef) (3_17)

Repeat from Step?2 until some termination criterion is satisfied (usually, whe
can no longer reliably extract any flux frohfs).

1 When combined with the forward transform defined in siethis residual image is equivalent to com-
putingvy? (see Appendi® for a derivation of an iterative Newton Raphson method).

12 Following the standard calculation for the update step iy?aminimization, T(I*es, FPSf) =

[F'STWS H-1ies. However, in our case since the Hessian is singular, this fof T is never explicitly
computed.
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5. Predict ; Visibilities that would be measured for the current sky moid@d! are
computed so that the model can be compared with the id%teand new residual
visibilities computed.

\‘/’model — [S F] |‘fnodel (318)

This is called the forward transform.

Repeat from Step1l until convergence is achieved (usually, whéfis and IS are
noise-like).

Restoration : The finall ™% is restored by first smoothing it to the maximum angular
resolution of the instrument. This is done by convolvingfihal model image by a restor-
ing beami®®a™ (a Gaussian whose width is chosen as the width of the ceofval df the
PSF). This suppresses artifacts arising from unconsulaspatial frequencies beyond the
measured range. Then, the final residual imigfas added to the smoothed model image
to account for any undeconvolved flux.

3.2.2 Gridding

The measured visibilities irregularly sample the contusigpatial frequency
plane (for example, along elliptical tracks), and need tdimmed onto a regular grid of
spatial frequencies so that the FFT algorithm can be usedorier inversion. In section
2.2.2 a limiting spatial frequency grid was defined where tivepixel size is derived from
the time and frequency resolution of the correlations, ghahthe visibility measurements
naturally map to pixels on this grid. This spatial-frequgresolution corresponds to a very
wide image field of view that is often impractical (due to véaxge image sizes) or unnec-
essary (due to a compact brightness distribution, or astémni by antenna power patterns).
To make an image over a more suitable (and smaller) field af,\ilee visibilities must
map touv-pixels on a coarser spatial-frequency grid.

Gridding can be described as an interpolation and resamplirthe measure-
ments taken on the fine spatial frequency grid, onto a cogrsgwhose cell size is given
by the smaller field of view over which an image is to be madee $ampling theorem
states that if a function is band-limited, it can be compjetepresented by a set of sam-
ples spaced by the reciprocal of twice the bandwidth. In asec¢the visibility function can
be assumed to be band-limited because of the finite field @f wighin which the source
of interest lies, and this defines a sampling interval on patial-frequency grid. Lem,
pixels on this coarse grid cover the same range of spatigliéecies asn did on the finer
grid (m < m).
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3.2.2.1 Visibility-domain convolution

Gridding is done as a convolutional resampliigand can be described by the
product of two operators. The first i&].m], @ convolution operator with a shifted ver-
sion of the gridding-convolution function in each row. Theeand is a resampling matrix
[Rm xm] With ones and zeros, whose columns define a Shah functioméuds the grid onto
which the function is resampled. Both operate on the fine, gmdl R] reads df values at
the locations of the coarse-grid cell centres.

Vr?{ffed = [Rm|xm][Gmxm][Smen][ann]\_/)r?:ls (3.19)
where W] are visibility weights. B'] places then visibility measurements onto the full-
resolution spatial-frequency grid of sime In practice, however, this full-resolution grid is
not computed, and the result is directly evaluated on theseogrid. In other words, the
convolution and resampling are done as a single step for@aitfility measurement.

A good choice for the gridding-convolution function is theojate spheroidal
function Ps which has a small support-sizeX0 grid cells) on the spatial-frequency plane
and whose Fourier transform dropf mapidly beyond a certain distance from the center of
the image (seBriggs et al[1999).

A visibility-domain convolution operator can be constetttwith P as the con-
volution kernel. This gridding-convolution operator inetispatial frequency domain is
given byGPs = [FXF] where [X] = diag([F']Ps). This visibility-domain convolution
is equivalent to multiplying the image domain B¢ = [F']Ps. SincePs has been intro-
duced only for the purpose of interpolation, it$eet needs to be removed from the image
domain. To remove the multiplicativeéfect of the gridding-convolution function from the
final m, x 1 image, a grid correction is done in the image domain usimgrecated version
of s, or by explicitly evaluating the Fourier transform of theofate-spheroidal function
used while gridding.

In Chapter4, we will discuss the use of other convolution kernels thatuesed to
implement direction-dependent corrections. In all casegtidding-convolution operators
are constructed as described above from the appropriat®kdion kernels. The symbol
[G] is used for a generic convolution operator in the visigiiomain.

3Convolutional resampling is a method that uses a convalutianterpolate between measurements to
estimate the value of the observable at a set of locationsithg be diferent from the actual measurements.
For example, an interferometer measures the sky visilfiligction at an irregular set of points on the spatial
frequency plane, but the use of the FFT algorithm for imageguires that measurements lie on a regular
grid. To achieve this, the measurements are first convolvigl avsmoothing kernel and the results are
sampled at the new locations (regular grid).
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3.2.2.2 Gridding and degridding

The following equations describe the reverse transfornd usthe deconvolution
major cycle. The normalized dirty image and PSF are compaseillows by gridding a
list of visibilities.

[0 = Wik [IP [ FT RGPS WIVESY (3.20)
Pt = Wl 1P Y[FTRGPS W] T (3.21)

where the [57] is called the grid-correction step, and the divisionvay,, = tr[W] is a
normalization that forces the peak of the PSF to representait of flux. This normalized
dirty image is also the principal solution of the normal etipuas (see sectio’.2.1.9,
where the normalization bwys,, represents the inversion of a diagonal approximation of
the Hessian.

The model imagé™de obtained at the end of each minor cycle is used to predict
visibilities that the interferometer would have measuredif"®®. The following equa-
tion describes the forward transform used in the deconwmiunajor cycle The process
of computing a list of visibilities from fF]i™M°d! is called degridding. Here too, siné&
is used only for interpolation on th&~plane, its image-domainffect must be separately
accounted for.

\‘/’model =[S GPSR' FI[I ps_l—ll‘fnodel (3.22)

nx1 mx1

where R'] maps the model visibility function from the coarse grid betfine grid, before
interpolating across the fine grida a convolution, to evaluate the model visibilities at the
sampled spatial frequencies.

The calculation of these transforms involves traversalthefentire set of vis-
ibility data and this is a computationally expensive operat Therefore, deconvolution
algorithms usually tailor the frequency of major and mingcles to perform trade{ts
between performance, accuracy and total number of iterati&qns3.20, 3.21and3.22
represent practical implementations of EqBs.0 3.11and3.18respectively to compute
the dirty image, point spread function and model visitgkti All references tadty, [psf
andV™edelthat appear in later chapters can refer to either form.

3.2.3 Preconditioning

In the solution of large systems of equations, preconditigis a step that is de-
signed to reduce the condition numbesf the system, making its solution more tractable

14 The condition number associated with a system of equatit}s+ Bgives a bound on how sensitive
the solution vector will be to approximations in the solution process. A welldiioned system has a low
condition number, implying that the solution is equally si&ime to approximations involving any parameter.
The condition number is given by the ratio of the largest talest eigen-values of matrid]. For a set
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and stable. For the normal equations in Egrg the condition number depends on the
distribution of gridded weights, which controls the shape of the PSF. Traditionally, pre-
conditioning has been done by computing and using imaginghteto alter the shape of
the PSF according to whatever makes the normal equatiores éasolve.

The imaging weightsW™] are computed as the product of preconditioning
weights WES ] and the measurement-noise-based weights,]], and are used instead of
[W] during gridding. .

[W™] = [WP[W] (3.23)

The PSF that is formed usingM = [W™] in Eqns3.11and3.21 and Figure3.1is the
preconditioned PSF, and the Hessian (Beam matrix) becoroesvalution operator with
this new PSF in each row. In practice, the preconditioningveighting scheme is cho-
sen to optimize either the shape of the PSF or the sensitiitiie instrument or some
combination of both.

3.2.3.1 Types of Image Weighting

Several weighting schemes are described belowBsggs[1995 for a complete
and detailed description). For radio interferometric inmag preconditioning weights are
usually computed in gridded form as arx 1 list of uv-plane weights, and then de-gridded
(or resamplediia [Spm]) to form ann x 1 list of visibility weights (WV°S, = [Snm] WESD).
Eqn.3.23is then used withW2] = diag(WP,) to form imaging weights that are used
during gridding. Note that this method often requires tweges through the data, one to
construct the imaging weights, and one to apply them. Sonesthowever, depending on
numerical stability, the preconditioning weights can ascapplied in gridded form. This
method is advantageous in that it requires only one passghrthe data.

Natural : The natural weighting scheme gives equal weight to all samVr°] = [I],
ann x nidentity matrix) and preserves the instrument’s peak $®itgj making it ideal for
the detection of low signal-to-noise sources. Howevegesihe gridded weight3N®] =
[STW ] are often proportional to sample density on the spatiajfency plane, anirregular
sample density will give a high condition number and the P&fItave a wide main lobe
and high sidelobes.

Uniform :  Uniform weighting gives equal weight to each measured apféquency irre-
spective of sample density, thus theoretically reducimegcttndition numberto 1. Itis com-

of normal equations, the eigen-values of the Hessian aexsely related to the variance or uncertainty of
each parameter in the system, and the condition number mesafie maximum relative uncertainty between
parameters.

15 In interferometric imaging, the presence of unmeasuredapaequencies, will make some eigen-
values exactly zero, giving a condition number of infinityowkver, in practice, we can consider the condition
number computed only from non-zero eigen-values, as the batween the largest and smallest non-zero
gridded weights.
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puted as a weight, based on sample density for each spatjaldncy grid cell, and is equiv-
alent to a pseudo-inverse of the gridded natural weightapededvia its singular-value de-
composition (see footnofeon page35). Themx 1 list of gridded preconditioning weights
(WPSG) is constructed from the diagonal oM *]. The resulting PSF has a narrow main
lobe and suppressed sidelobes across the entire image bastisuited for sources with
high signal-to-noise ratios to minimize sidelobe contaation between sources. However,
the peak sensitivity is much less than optimal, since datago densely sampled regions
have been weighted down to make the weights uniform. Alsdaied measurements can
get artifically high relative weights and this may introddoeher artifacts into the PSF.
Note that in the case of complete sampling of the spatialuieaqy plane @] is of full
rank), uniform weighting implements a linear deconvolat{the uniformly-weighted PSF
will be a §-function, and the Hessian will be a trivially invertibleadjonal matrix).

Super-Uniform :  Super-uniform weighting is uniform weighting performed t&yunting
visibility samples that fall not only within a single spdtfeequency grid cell, but in a
N x N block of cells around the grid cell of interesti (= 3,5, 7, etg. This method tends
to give higher weights to sparsely sampled regions ofutkgrid, as compared to densely
sampled regions, and gives a PSF with inner sidelobes ssggaeas in uniform weighting
but far-out sidelobes closer to that with natural weightse peak sensitivity is also closer
to natural weighting.

uv-Taper : uwtapering applies a multiplicative Gaussian tapgrto the spatial frequency
grid, to weight down high spatial-frequency measuremesitstive to the rest. This sup-
presses artifacts arising from poorly sampled regions aedibeyond the maximum spatial
frequency. This is important for deconvolution becausébiliies estimated for these re-
gions would have poor or no constraints from the data. Alse natural PSF is smoothed
by [FT]'ﬁN and this tunes the sensitivity of the instrument to scalessiarger than the
angular-resolution of the instrument by increasing thetiwinf the main lobeuw-tapering
is usually applied in combination with one of the above wiighhmethods and is applied
after gridding.

Briggs/Robust : Briggs or Robust weightingHriggs 199% creates a PSF that smoothly
varies between natural and uniform weighting based on tieasito-noise ratio of the

measurements and a tunable parameter that defines a naskedlat. High signal-to-noise
samples are weighted by sample density to optimize for P@peshand low signal-to-

noise data are naturally weighted to optimize for sensjtivihe weights are derived by
minimizing theL2 norm over an image of a point source of flsias seen by the instrument.
The weights are computed for aiV grid cells as

const

Vipee = 9Nt
-
FWC + As?

(3.24)

whereAs® is a noise threshold anslis a tunable parameter. A large value ©Mmakes
the weighting nearly uniform, and a value of zero makes itltennatural weighting. The
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condition number of the system is reduced (compared to alattgighting), but higher than
1.0 because it weights low signal-to-noise measurementsailytu

Wiener Filter : Wiener filtering is a robust linear deconvolution that wegbpatial fre-
guencies with high signal-to-noise data uniformly, andmapses spatial frequencies with
low signal-to-noise ratios. The Wiener filter is constratcfpixel-by-pixel) as

WGT

N -
WG . WG + &

|3signal

\V/PeG —

(3.25)

whered? is the variance of the measurement noise ﬁg}@m is the expected power spec-
trum of the signal (square of the visibility function of thepected sky brightness distribu-
tion). The rati00-2/l3signa| = 1/S NRis the inverse signal-to-noise ratio of the instrument
across the visibility domain and can be a tunable parameteiats the weighting towards
uniform or natural weighting. The result is a nearly unifdyawveighted PSF that correctly
represents the sensitivity of the instrument at variousiafiequencie¥. A uv-taper can
be built into the Wiener filter by settir@siwm = TEV = ([F]I*®@M2 to be a taper function that
defines the angular scale to which the instruments sengits/tuned (**2is a Gaussian
of the chosen angular scale.). For a filled-aperture insggninthis form of preconditioning

is a robust linear deconvolution that directly delivers sloéution of the system.

3.2.4 Deconvolution

This section describes the minor cycle of iterative imag@nstruction. For the
minor cycle, [%" is assumed to be a perfect convolution of the PSF with the gkye
brightness, wher&™, [Psf are given by Eqns3.20and3.21 The operatof in Eqn.3.15
constructs a model imad&°®'via a deconvolution.

The CLEAN algorithm forms the basis for most deconvolutitgoathms used
in radio interferometry. The peak of the residual image gitree location and strength of
a potential point source. Thefect of the PSF is removed by subtracting a scdRsd
from I*es at the location of each point source and updatifi®j® (Eqn.3.16. Many such
iterations of finding peaks and subtracting PSFs form theomigcle. Algorithm1 lists
pseudo-code for the basic CLEAN deconvolution algorithat thodels the sky in a pixel
basis. Basic CLEAN is best suited to isolated point sourdesse amplitude is constant
across the observing bandwidth. Deconvolution algorittinaé produce multi-scale and
multi-frequency source models are described in Chapter

16 The use of a Wiener filter for post-gridding preconditionings developed by T.J.Cornwell et al in
2008, for use with the ASKAP telescope. This work is unpuigis
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3.2.4.1 Variants of CLEAN

Hogbom : In Hogbom CLEAN Hogbom 1974 the minor cycle subtracts a scaled and
shifted version of the full PSF to update the residual imageé&ch point source. After the
initial dirty image is computed, only minor cycle iterat®are done, making this a purely
image-domain algorithm. It is computationallffieient but susceptible to errors due to
inappropriate preconditioning that will not be correctedidg the major cycle.

Clark : Clark CLEAN [Clark 198Q does a set of Hobgbom minor cycle iterations using
a small patch of the PSF. This is an approximation that willoiduce errors in the image
model, but the minor cycle iterations are stopped when tightest peak in the residual
image is below the first sidelobe level of the brightest selmdes. The residual image is
then re-computed a&es = [FT)([F]I%™ — [F]i™) to eliminate aliasing errors.

Cotton-Schwab : Cotton-Schwab CLEAN$chwab and Cotton 1988 similar to the
Clark algorithm, but computes the residwva a full major cycle ag'es = [FTStw](Veorr —
[SFI™. Itis time consuming but relatively uffacted by preconditioning and gridding
errors because it computg$ directly in the measurement domain. It also allows highly
accurate prediction of visibilities without pixelatiorrers.

Steer-Dewdney-Ito : The Steer-Dewdney-Ito CLEANSteer et al. 1984minor cycle
finds the locations of sources by setting an amplitude tlmleslo select pixels. The com-
bined set of pixels is then convolved with the PSF and sutadacutvia a Clark major
cycle. This algorithm is more suited to deconvolving ex&sémission.

Multi-Resolution :  Multi-Resolution CLEAN Wakker and Schwarz 198®erforms a
series of Hogbom minor cycles on a smoothed version of thg dnhage as well as on
a difference image, to reconstruct large-scale structure thaadequately sampled at the
low spatial frequencies while retaining high resolutiomsture.

Multi-Scale :  Cornwell-Holdaway Multi-Scale CLEAN (CH-MSCLEAN)Jornwell
200§ is a scale-sensitive deconvolution algorithm designedrfages with complicated
spatial structure. It parameterizes the image into a citleof inverted tapered paraboloids.
The minor cycle iterations use a matched-filtering techaitumeasure the location, am-
plitude and scale of the dominant flux component in eachtitaraand take into account
the non-orthogonality of the scale basis functions whilggeing updates. Sectiof.1
contains a detailed description of a modified form of thisatlpm (MS-CLEAN). A re-
lated method described i@reisen et al[2009 usesuv-taper functions to create images
at different spatial resolutions, and uses heuristics to choogateakscale at which to
perform a set of Hbgbom minor cycle iterations.

Multi-Frequency : The Sault-Wieringa Multi-Frequency CLEAN (SW-MFCLEANS@ult
and Wieringa 199%iis a wide-band deconvolution algorithm that models thelskyhtness
distribution as a collection of point sources with powes+lspectra. The algorithm uses a
matched-filtering technique based on spectral PSFs thetideshe instrument’s responses
to point sources with spectra given by the first two terms inagldr series expansion.
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Section6.2 contains a detailed description of a generalized form of gigorithm (MF-
CLEAN). Conway et al[199] and Likhachev[2003 describe similar multi-frequency
imaging techniques.

3.2.4.2 Constrained Optimization Solvers

Maximum Entropy : The Maximum Entropy method (MEMY{Jornwell and Evans 1985
Narayan and Nityananda 1986 a pixel-based deconvolution algorithm that performs a
rigorous constrained optimization in a basis of pixel atoples. MEM uses the Bayesian
formulation of y? minimization, and applies a penalty function based on ikedamage
entropy —I™Mn(I™/P"). This choice of penalty function biases the estimate oftthe
sky brightness towards a known prior imaff°". If a flat image is chosen as the prior,
the solution is biased towards being smooth, and producesra realistic reconstruction
of extended emission. A positivity constraint on the imagesis can be appliedia a
penalty function given by Irﬂ"), and an emptiness constraint can be appliadne given

by — In[cosh(™ — [P} /] (o is a noise threshold).

Non negative least-squares The non-negative least-squares (NNLBJ)i§gs 1995 Law-
son and Hanson 19F4lgorithm is another pixel-based method that solves a{eqsares
problem with linear-inequality range constraints for &lparameters. The main constraint
that is applied is the positivity of all pixels in the modelhi$ algorithm was shown to be
well suited to moderately-resolved sources.

Adaptive Scale Pixel : The Adaptive Scale Pixel (ASPBhatnagar and Cornwell 20D4

deconvolution algorithm parameterizes the sky brightmisisibution into a collection of

Gaussians and does a formal, constrained optimization@n ghrameters. In the major
cycle, visibilities are predicted analytically with higltauracy. In the minor cycle, the
location of a flux component is chosen from the peak residaral, the parameters of the
largest Gaussian that fits the image at that location aredfoun

Other Methods : Other methods include the Richardson-Lucy algorithm tloatgutes
a maximum-likelihood solution if the image noise followsi$&mn statistics (appropriate
mainly for filled aperture instruments), the Gerchberg@eaRapoulis algorithm that iter-
ates between the image and spatial frequency domains atidsapppport constraints in
both domains, and the Singular Value Decomposition metBadgs 199% that combines
a standard SVD inversion (uniform weighting) along with gap constraints in the image
domain. Other multi-scale methods (also listeddornwell [200g) include Multi-Scale
Maximum Entropy which performs MEM simultaneously on a skinoages at dierent
resolutions, and the use of Wavelets, Shapelets and Pixodedompose the image in
a suitable basis. Smear-FittinR¢id 2003 models the source with a set of basis func-
tions and then convolves each component with an elliptiGigSian to account for the
uncertainty in its shape and location. There are severalt®4@arlo based image recon-
struction algorithms among which MC-HRau and Cornwel]2009 models an image as



48

a set of overlapping 2D Gaussians and uses a Monte-Carlcoché&hderive the optimal
set of flux components along with error bars for the best-frapeters andutton and
Wandelt[2009 uses customized sampling strategies to derive maximueiitiood esti-
mates. Spatio-Spectral MEMBpng et al. 200pis an entropy based method for wide-
band imaging, where a smoothness constraint is appliedsérequency. More recently,
Compressed-Sensing techniguéédux et al. 200Phave begun to be used for image re-
construction in radio interferometry.

3.2.4.3 Full-Stokes Imaging

The Stokes vector for polarised sky brightnéd$kes= (I, Q, U, V} is related to
the coherence vector of images'™s = {XX XY, Y X Y'Y} corresponding to all four correla-
tion pairs,via a linear transform (given by ax4 operator per image pixeHamaker et al.
1994).

11 00
110 0 1

(i = [Samanl 5> where Baal =35 6 o 7 (8:20)
1 -100

A full-Stokes deconvolution dliers from standard methods in the computation of dirty
images and the minor cycle. The Stokes vector of dirty imagessStokesis computed by
applying Eqn.3.26to the set of dirty images in the correlation bagf§¥-cors given by
Eqgn.3.20 The diferent Stokes parameters are considered to be linearly emdiemt and
deconvolution minor cycles are performed separately oh &ckes image. For compact
sources, position constraints are sometimes applied a&tokes parameters based on the
locations of peak residuals of the Stokes | imageldaway and Wardl§199Q describes
an algorithm that applies the constraintléf> Q? + U2 + V2 during deconvolutionSault

et al.[1999 describes another method where a steepest degéeninimization leads to
the criteria of searching for peakslifi+ Q? + U? + V2,
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Algorithm 1: CLEAN with Cotton-Schwab major and minor cycles

N P

o ~N o o b w

10

11

12

13

14

15

Data: Calibrated visibilities Vo
Data: uv-sampling function Sp.m
Data: Image noise threshold and loop gatf;, gs

Result Model Image :i™"

mx1

Compute the dirty image and the PSFY | [bsf

Measure the PSF peak sidelobdsideiope = ma%sidelobélﬁpSf)}
Compute the restoring beam®™ = Gaussian fit to the main lobe s
Initialize the model and residual imageE™ = 0; [fes = [tirty

repeat /* major cycle */
Compute a flux limit :fimit = MaXor, fsigelone Maxites}}
repeat /* minor cycle */

Find the location and amplitude of the peal™:= peakis)
Update the model image™ = i™ + g I™
Update the residual image™s = [fes — gq [ x [Psf]
until Peak residual mas} < fimi
Use current model imagé” to predict model visibilitied/™
Compute a new residual imagdf&s from Veorr — ym
until Peak residual mai'®s} < oy,
Restore the final model imagdtestored = jfn 4 [bm . [tes




CHAPTER 4

IMAGING WITH DIRECTION-DEPENDENT EFFECTS

This chapter introduces the concept of direction-depenidsirumental &ects,
discusses how theyffact the measurement and imaging process, and describestavays
deal with them during image reconstruction. Direction dejent éfects are those that
cannot be described by a single antenna-based complex nuambecalibrated ouvia
standard methods. They have to be dealt with during the ingagiocess. When these
effects are included in the measurement equation, it resuimint spread function that
varies with position and time, making the imaging equatiorianger a pure convolution.
Algorithms that correct for thesefects usually usa-priori instrumental models, and it-
erate between an approximate minor cycle that assumestopasnd time invariant point
spread function, and an accurate major cycle that calcutatelel visibilities by predicting
and applying antenna-based direction-dependéatts.

This chapter deals with the correction of direction-depamdifects during imag-
ing, assuming that they are knowrpriori (via measurements or models), and follows the
discussions irBhatnagar et al[200g; Cornwell et al.[2008; Uson and Cottorji200§.
This chapter does not discuss the processes involved inumeg®r solving for direction-
dependent antenna gains. Some methods that solve for tifests enclude the Peeling
technique of calibration and imaginlyijooer and Noordam 20Q;the use of eigen-beams,
an orthogonal set of basis functions to model the primaryrbp&ronkov and Cornwell
2007, a self-calibration method for estimating and correctengienna pointing fisets
[Bhatnagar et al. 20Q4and solving for parameters of a phase screen model forgarop
gation dfects [ntema et al. 2009yatawatta et al. 20Q8otton and Uson 2006

Sectiond. 1 briefly lists the diferent types of direction-dependefiteets. Section
4.2.1uses a simple example of full primary beam imaging with aayaaf identical time-
invariant antennas, to introduce the theory of includingclion-dependentfkects in the
measurement equations and algorithms to solve it. Seétidr2 generalizes this theory
to include other direction-dependent instrumentét&s, along with variability with time
and baseline. This entire chapter assumes that the bardiedig used is narrow enough
that a single frequency analysis willffigce. Chapte.2will later describe extensions that
apply to wide-band receivers and multi-frequency-syntiesaging.

50
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4.1 Types of Direction Dependent ffects

4.1.1 Antenna Primary Beam

Aperture lllumination Function : A commonly used array element for radio interfer-
ometery is a parabolic reflecting dish that collects theatoln incident on a large aperture
and focuses it onto a feed. The E-field incident at each pairthis aperture is modified
by the radiation pattern of the feed as well as structuresherdish surface that make it
deviate from an ideal parabola. Jones matrices (seeEjB.describe this fect for each
point on the aperture. The collection of Jones matriceslfdo@ations across the aperture
is called the aperture illumination function. Each antemeasures the integrated product
of the E-field incident on its aperture and the correspondjmgrture illumination function.

Voltage Pattern : Consider the aperture illumination function of an antenoladnly
one polarization component (say, only the first diagonahelet of the Jones matrix). This
function is related to the concept of a complex antenna ggliimtroduced in sectiof8.1.1

A single complex gain factor per antenna represents a constaltiplicative gain across
the entire image field of view. Since there is a Fourier relatbetween the image plane
and the aperture plane, such a constant image-domain gais taane aperture point.
However, a real antenna and reflecting dish will cover a wiahge of aperture points (a
finite-sized aperture), and the Fourier transform of thisrape illumination function gives
a direction-dependent complex gain per antenna, calledtagepattern.

Primary Beam : Given a pair of finite antenna apertures, we can construdtat baseline
vectors defined between all possible points on the two asri@@nd not just the baseline
vector defined by the locations of the feeds). Each basefitieeanterferometer is there-
fore sensitive to a range of spatial frequencies around tmeimal value. The visibility
measured by each antenna pair can be described as the fesatirvolution of the source
visibility function with a baseline aperture function ewated at the nominal spatial fre-
guency (see Eqr2.19. This baseline aperture function is the result of the ctuti@n of
the aperture illumination functions of both antennas asdrdurier transform is called the
primary beam. A visibility-domain convolution with this egure function is equivalent to
a multiplication of the sky brightness distribution by tipismary beam.

Varying primary beams : Various related instrumentalfects can be modeleda the
aperture illumination functions. An antenna pointirf§set can be modeled by a phase gra-
dient applied to the aperture illumination function of th@enna. For wide-field imaging
via mosaicing, a collection of pointings can be describ&lphase gradients across the
spatial frequency plane, and appli@d the aperture illumination functions. If the antennas
are on azimuth-elevation mounts, as they track a celestiats, the primary beams rotate
on the sky and thisfeect can be modeled by a rotation of the aperture illuminatimrc-
tions. Aperture illumination functions are usuallyfféirent for each set of feeds in the array
(either due to dterent imperfections in the antenna structures, or the ilmcatf feeds on
the focal-plane), and vary with time and frequency.
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4.1.2 Non-Instrumental Hfects

Refraction through the atmosphere : The incident radiation can be corrupted in various
ways before it reaches the antennas and detectors. Refrabtiough various layers in
the Earth’s atmosphere can result in phase distortionsthege direction-dependent shifts
and defocus in the image. Thisfect is usually describedia a turbulent phase screen
that distorts the radiation wavefront before it reachesditray elements. It can also be
described as a direction-dependent complex gain that agracaoss the field of view of
each antenna. If these gains vary across the field of viewatguidentical for all anten-
nas in the array, there will be ndfect on the image. If these gains are constant across
the antenna fields of view, butftirent for each antenna, the image will be distorted but
standard direction-independent calibration methodseithove this &ect. If these gains
vary across the field of view and ardidrent for each antenna, it is a direction-dependent
effect that can be accounted for only during imaging by an apjatgpchoice of aperture
illumination function. Theseféects generally vary with time, frequency and polarisation.

Thew-term: Thew-term (described in sectidh1.1, Eqn.2.8) results in another direction-
dependentféect. The curvature of the sky causes the aperture plane ahtgrderometer

to change with position on the sky, thus changing tifieativeuv-coverage and making the
PSF vary across the region of sky being imaged. The magndtittee w-term also varies
with time as the phase reference center is being trackedltiresin an apparent shift in
the source position. If an image is created by approximatiegcurved sky with a single
tangent plane, a source located far away from the phaseergfercenter will be smeared
out due to this time-dependerftect. In this situation, a single time and position invariant
PSF cannot be used to deconvolve the entire image.

4.2 Correction of direction-dependent #ects

This section describes how various direction-dependgeatis are modeled and
corrected during the imaging process. The measurementiegsiaddressed here are sim-
plified forms of Eqns2.22and2.23containing only direction-dependerttects and ignor-
ing [KYS ] (assuming all direction-independerffexts have been calibrated out).

Sectiord.2.1discusses the solution of the system of equations shownmnZEz
where a single image-domain function can be used to desallilbérection-dependent ef-
fects (all antennas are identical and time-invariant) hia tase, a common primary beam
can be factored out of the deconvolved image and removediimgéesmage-domain cor-
rection step (from regions where it is above some amplitinleshold). Sectiont.2.2
discusses the more general case where direction-depegftisis vary with time and are
baseline dependent. Thedgeets are modeled as amplitude and phdgects in the visi-
bility domain and corrected using complex conjugates of¢hmodels. Somedtects €.g.
pointing-dtsets) can be described by functions of unit amplitude andrazeoo phase,
and the use of the complex conjugate eliminates thiececompletely. Otherfeects €.g.
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aperture illumination function and primary beam) are medddy complex functions with
non-unit amplitude and non-zero phase, and the use of thelegmonjugate eliminates
only phase ffects, but introduces a second factor of amplitude, whichithége accounted
for in the image-domain (for reasons related to numericiity). For primary beam ef-
fects, the dirty image produced by this method contains @faxf primary beam squared.
Section4.3 describes the recently developed AW-projecti@hdtnagar et al. 2008&l-
gorithm that solves the measurement equations shown in ZEgRAvia a combination of
image and visibility-domain operations during iterativecdnvolution. This approach is
illustrated using the example of primary beam correctioonter to compare this method
with the simple image-domain correction described in secti2. 1

4.2.1 Image-domain corrections

This section describes the imaging equations and theitisakifor the special
case where antenna primary beams are the only source ofidiratependentféects and
they can be assumed to be (1) the same for all antennas,ressafid frequency channels
and (2) constant in time (not rotating). In such a situattbe,dfect of a common antenna
primary beam can be factored out of the imaging equationsaasitnple adaptation of
standard imaging algorithms will flice to solve the resulting system of equations. For the
more general case (sectidn2.2 where aperture illumination functions arefférent for
each antenna and vary with time, a common primary beam cdrenectored out of the
imaging equations. However, the approach described irsdtson can always be used as
an approximation.

4.2.1.1 Image Model

When the primary beams of all antennas are identical (or ssaraed to be so),
the brightness distribution measured by each antenna camitben as the product of the
true sky brightness distribution and the primary beam. Pgbe anm x 1 vector that
represents the antenna primary beam. The observed skytiegghdistribution can be
modeled as follows.

I‘fnodel — [Pb] I_Sky (41)

4.2.1.2 Measurement Equations

The interferometer samples the product of the primary beadthe sky. The
measurement equations for this system are given below.€eTégsations are obtained by
settingDS¥ = Py in Eqn.2.23

[SILFI{[Po] 1™} = veor (4.2)
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4.2.1.3 Normal Equations

The normal equations constructed for the above measuresgaation are shown
below (similar to Eqn3.9).

[FISTWMS F[P]I™Y = [Fistwmveer (4.3)
or  [B][P]I®Y = [UryeP (4.4)

[B] is the Beam matrix consisting of shifted versions B in each row and®™-"° is the
result of the convolution o, - 5K with IPS* (note that®"y:-Pb, [Psf are the dirty image and
point spread function computeth Eqns3.20and3.21and [Py] = diag(Py)). The diagonal
elements of B][ P,] form the weight imagd™ (introduced for the standard imaging case
at the end of sectio8.2.1.94. For the case of wide-field imaging using standard imaging
algorithms and identical primary beams the weight imageiisrgby ™' = we,P, and
represents the relative sensitivity of the instrument ahdacation on the sky.

Figure 4.1 represents the normal equations given in E¢4d, for a sky image
containing two point sources of equal amplitude. The mairixhe left of Figure4.1lis
the beam matrixB]. The second matrix from the left represents the primarynioégy].
This system of equations can be viewed as the standard Be#im g operating on the
product of the sky and the primary beam. Tlikeet of such a measurement on the RHS is
that the df-center source and its response are attenuated by the \iahe grimary beam
at the location of the source. Note that this is not the sanmeudsplying the dirty image
(shown in Fig3.2) by the primary beam. A simple solution of these equations égdmbine
the primary beam with the image model and use standard igagathods along with a
post-deconvolution division of the model by the primaryimed&ote however, that sources
that fall within the null of the primary beam cannot be reaeek

4.2.1.4 Post-deconvolution primary beam correction

Standard deconvolution algorithms (described in Chap}eran be used to re-
construct a model image that represents the product of tiieasl the primary beam
(ifmodel = [P, ]1%Y). A post-deconvolution division of the model image by thiary beam
(knowna-priori) will give an image of the reconstructed sky brightnessritistion.

rfnodelcorrected — I‘fnodel/ P, (4_5)

Note, however, that the field of view over which this correntis possible is limited to
high signal-to-noise regions of the image. Such regionsiaually determinedia a cut-
off threshold at a level of few percent of the primary beam peak.

Note that even when antenna aperture illumination funstame not identical and
time-invariant, this approach can still be used as an apmation in the minor cycle and
sectiond.3discusses how this is done.
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Figure 4.1: Normal equations with an image-domain primary beam: Théagdim represents
the imaging process of a radio interferometer when all arderin the array have identical, time-
invariant primary beams (Egd.4). In this diagram, B] is the Beam matrix, andH,] represents a
diagonal matrix with a Gaussian primary beam filling its diagl elements. This system of equa-
tions can be viewed as the PSF being convolved with the ptaafube primary beam and the sky
(here, with two point sources). Théfect of the primary beam on the dirty image (RHS) is that the
off-center source and its response are attenuated by the ahemrimary beam at the location of
the source (compare the peakd $f-P° with the RHS of Fig3.2which uses the same Beam matrix
[B] and sky model®*Y but has no primary beam). To remove thikeet during image reconstruction
(in non-zero regions of the primary beam), the primary beamlze combined with the sky model
during deconvolution and the sky brightness reconstruciea post-deconvolution division of the
model image by the primary bearng, solving this system of equations from left to right).

4.2.2 Visibility-domain corrections

In general, direction-dependerftects vary with time and frequency and are dif-
ferent for each antenna and baseline. This section descaliechnique to model and
correct theseféects in the visibility domain where each measurement canelag¢etd indi-
vidually, and to do this within the standard deconvoluti@niework. These algorithms are
described in detail iBhatnagar et a[200g; Cornwell et al[2009.

4.2.2.1 Constructing a visibility-domain gridding-convdution function

The general idea of correcting direction-dependdiatats in the visibility domain
is the following. When there are direction-dependdifg@s, a measured visibility can be
written as the result of convolving the true visibility furan with another functiorKﬂOI
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centered at the spatial frequency defined byifHeaseliné. The dfect of this convolution
can be undone by placing the measured visibility on the apfséquency plane and then
convolving it with an estimate dfﬁdfl before resampling it onto a coarse-grid’. This
calculation is similar to the convolutional resampling ddar gridding (sectior3.2.2 and

the correction of direction-dependerttexts can be combined with the gridding process
as a sequence of convolutions on the spatial-frequencye pll@me before resamplifg

A gridding-convolution function that corrects directidependent féects for baseline;
during gridding isKd"" x P; whereP is the prolate spheroidal function. Several direction-
dependentféects can be combined to form a single gridding-convolutiorction.

The image formed using these gridding-convolution funetiwill be devoid of
all the direction-dependenttects that were included in the model (upto the accuracy al-
lowed by FFT-related numerical errors and approximatiarsteuncations used to compute
these deconvolution kernel functions.).

Note that when the inverse (ﬁﬁ'd does not exist, its complex conjugate can be used to
calculate an approximate inverse (element-by-element).

Kﬂd_l ~ Kﬂd*/(Kﬂd* . Kﬁld (4.6)

The following sections list various forms Kfﬁd

4.2.2.2 Primary beam #ects

Let Jo.. represent a single-polarization aperture illuminationdiion #, dis-
cretized on the fine spatial frequency grid. Ixé,t = [F']J be the corresponding antenna
voltage pattern across the entire field of view allowed bytittne and frequency resolutions
of the measurements. The primary be&%i] affecting measurements from the baseline
formed by antennaisand | is given by

Poij = Vi - Vo, = (F13) - (F13) = [FTI(F % J}) = [FTIKF (4.7)

wherex represents convolutién During measurement, the sky brightness measured by
baselind, j is multiplied by this primary bearRy,;;. This is equivalent to a convolution on

! The elements on{;b represent the convolution function for baselirje pixellated on a fine spatial

frequency grid. The term{iffd] in Egn. 2.19represents the same quantity, again for one basgljrmit is a
4 x 4 matrix that describes the full-polarization responseheffeeds, evaluated aheaperture point.

2/ convolution with a functiorK can be undoneia a second convolution with/K as the kernel.

3 A sequence of convolutions can be computida single convolution using a kernel constructed as the
convolution of the individual kernels. This is possible &ese convolution is associative and commutative.

4] in Eqn.2.15represents a & 2 Jones matrix fooneaperture point.J is a vector formed from one
element of the Jones matrix (the first diagonal element, ohigation), over a range of aperture points.

°In Eqn2.17, [Kij] = [J] ® [J]] is a 4 x 4 full-polarization matrix forone aperture point, but here,
Kiﬂ.’b =J % Jﬁ‘ is the convolution of two aperture illumination functiorer one polarization pair. These two
expressions become equal in the following situation. Ifaperture illumination functions aefunctions,
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the spatial frequency plane wiﬁﬁb, a vector containing the convolution of the illumination
patterns of antennasand j.

For time-varying primary beam&® = J » J: is different for each timestep.
WhenJ is different for diferent antenna:i.;zi'[j’b also varies with baseline. The A-projection

algorithm Bhatnagar et al. 2002009 useslzi‘j’b* as a time-varying baseline-based convo-
lution function along with the prolate spheroidal functimn gridding. Another approach
for correcting forKfj’b (or Disjky for the primary beam) is the direct evaluation of the intégra
in Eqn.2.18 separately for each baseline, during the forward and seveansforms of
iterative image deconvolutiotJson and Cotton 2008

The use oizi‘j’b* to correct primary beamfiects is equal to using only the numer-

ator of Eqn4.6. It cancels the phase Kﬁb but squares its amplitude. The image formed by
such a gridding-convolution function will contain no phaskects, but will be multiplied
by an extra instance of the primary beam amplitude. To cothé, the image is divided by
an average weight imag&™ = [F'] ¥;; KF” w;; KP” (wherew; are the imaging weights).
However, wherKi‘j’b varies with time, frequency and baseline, an image-domaimaliza-
tion by the average weight image is an approximation of theodenator of Eqn4.6 and
does not correctly cancel out the primary beams for the iddsd baselines and timesteps.
The peak fluxes in the dirty image are therefore approxinmete,the use of the correct
Ki‘j’b for each baseline and timestep during the prediction of mad#bilities is a necessary
condition for the convergence of the image reconstructimegss. Sectiod.3 describes
this process in detail.

4.2.2.3 Pointing Gfsets

An antenna pointingftiset can be described by a phase gradient across the aper-
ture illumination functionJ; of that antenna. Lef, m andlj, m; be direction cosines that
describe the pointingftsets of antennaisand j from the phase reference center (in the
image domain). For a primary beam modeled as a GausBhatiagar et al. 2004
the associated convolution operator for the baseljnis K{° = g L) /e =Lm=m;)/om]?
glu-up(il+-vi)m+m) \where oy, oy represent the width of the associated antenna pri-
mary beam. The phase term depends on the pointifsgts of the two antennas, and is
a phase gradient across a range of spatial frequenciesdcatbercentral spatial frequency
(uw-track) measured by the baseline For small dfsets, i‘j"’] is purely a phasefeect and

a convolution function constructed Kﬁm will remove this dfset.

then Ki‘.’b is also ad-function, can be represented completely for baseélir®y a single scalar and becomes
one element of the 4 4 matrix [Kj;]. This corresponds to a flat primary beam (Fourier transfoifia
o-function). In other words, when there is orbyie aperture point, the voltage pattern is constant across
the field of view and corresponds to a direction-independantplex antenna gain (secti@l.]) that the
process of calibration solves for. For a detector with a diperture (more than one aperture point), the
antenna response (voltage pattern) is no longer a direttidependentf@ect.
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4.2.2.4 Thew-term

The dfect of sky curvature across wide fields of view can be desdrie a
baseline-based convolution of the source visibility fimetwith Ki"jvp = [F][VT/i‘j"O‘], where

V\/i‘j’mj = g 2w (M%+m-1-1) (for eachl, m) is the Fresnel propagator (see EGn8) eval-
uated for every pixellated direction, (n) in the image domain. The-projection algo-
rithm [Cornwell et al. 20032008 usesIZiVjW with the prolate spheroidal function during

gridding-convolution. In this caseK['] is exactly unitary, and{"? cancels thav-term.
This operation is equivalent to converting visibilitiesthat of a flat sky before making an
image.

Other methods exploit the fact that th&est of the w-term is small close to
the phase tracking center. Faceting algorithms divide #ld bf view into a number of
facets. Images are made by either projecting the facet immagt the local tangent plane
(image-plane facetingJornwell and Perley 199pand using the appropriate PSF for the
deconvolution of individual facet images, or by projectihg (U, v) for each facet onto a
single tangent plane in the gridding step required for an-B&3ed reverse transfori§dult
et al. 1999. For very wide fields, a combination of faceting and w-potjen is used.

4.2.2.5 Mosaicing

Animage of a region of the sky much larger than the field of vidwach antenna
can be constructed from a mosaic of pointinGsifnwell 1988. Mosaicing is an example
where a visibility-domain convolution operator is usedrtraduce a direction-dependent
effect and not correct it. Thefiect introduced is an intentional pointingfeet. A mosaic
observation usually consists of a series of pointings wiieeephase tracking center for
each pointing coincides with its pointing center. Tradiabinstruments observe a series of
pointings one after another, and focal plane arrays obssweral pointings in parallel.

One approach to make a mosaic image is to deconvolve eactingoseparately
and then stitch together the final images, while accountngiy regions of overlap. This
method is simple, but prone to errors if there are bright sesibeyond the main lobe in any
individual pointing, which is more than likely to be the cdsea mosaicing observation.

Another approach is to combine the data from all pointingsnduthe gridding
stage, and create a single large image on which a singledeodnvolution can be done in
the minor cycle. The gridding-convolution functions focbaointing need to have a phase
gradient that describes thé&get between the center of the image and that of each pointing
center. The gridding-convolution operator is construdiean K{j“"s = Ulbtvm) where
l,, M, are direction cosines that describe th&atience between the center of the mosaic
image and the center of pointiqg The weight image will now represent the direction-
dependent sensitivity across the entire field of view of tlusanc, due to dierentwsyy, for
the diferent pointings. The prediction step needs to apply thersevef K™ to compute
model visibilities that can be compared with data from imdiial pointings.
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4.3 Wide-field Imaging with Generalized direction-dependat effects

Section4.3.1lists the measurement and normal equations for wide-fielhim
ing. Section4.3.2 describes the AW-projection algorithnBlatnagar et al. 200&hat
solves these equationga a combination of visibility-domain and image-domain opera
tions. These equations and algorithms are listed in ternasgehneric direction-dependent
effect Kﬂd. However, to provide an intuitive feel for these equatioms,also show the spe-

cific form they take wherﬁﬂd = KPP (antennas with identical and time-invariant primary
beams as discussed in sectibB.]). The purpose of this exercise is to clarify thé&dience
between the two methods (sectioh®.1and4.3.2 and to show how a practical iterative
algorithm combines approximate and exact calculation®twerge to an appropriate so-
lution.

4.3.1 Imaging Equations

This section describes the process of image reconstruatiole correcting for
direction-dependentfiects within the iterative deconvolution framework intragd in
ChapterS.

4.3.1.1 Measurement equations

Egn. 2.19 shows that the visibilities measured by baseiipare the result of
a convolution of the true visibility function with a funcﬁoKﬂd. Egn. 2.22 shows the
corresponding measurement equation in matrix form (ane-isrtten here).

\_/’COH — [de][F] I‘éky (48)

ISk represents the sky brightness over the complete field of gitswed by the time and
frequency resolution of the measurement&" are calibrated visibilities andsSP'] is a
sampling matrix that includes a baseline-based convaiuifahe visibility function with

Kdd
ij -
When Kﬁd = Krb (identical and time-invariant antennas), the primary bgam

of all antennas are given b, = [F']KP® and we can construct a single convolution
operator for all baselines (the entire spatial-frequenen@) as Gﬁfim = [FP,F] (see
section2.2.2.5for a derivation), and separate the steps of convolutionsamapling. The
measurement equations become

Ve = [SIIGPIFIT = [S][FI[Py] (4.9)

where P,] = diag(P,). This equation is the same as Egn2 and shows the connection
between an image-domain multiplication with the primanatseand a visibility-domain
convolution withKP®.
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4.3.1.2 Normal equations
The normal equations constructed from E4r&are given below.

[FTsddTWimsddF]lsky — [FTsddTVvim]Vcorr (410)

The RHS of Eqn4.10shows that$¢' ] convolves the measured visibility from each base-
line (ij) with KI*" during gridding. The LHS shows that we now have two instamtése

amplitude of B2] (their phases cancel out due to the complex conjugat®¥h]] but their
amplitudes multiply).

The weightimagé™ is constructed as follows and describes the direction-oiegret
sensitivity of the imaging instrument (the direction-degent equivalent of the weight im-
agel‘Vt = Wgyml discussed in sectich2.1.5.

M= [F] Y KCwKE  or [ = [FS* wms™ (4.11)
i

If the elements oKﬂd contain only phase terms, the use of a complex conjugategiuri
gridding will remove the direction-dependerifext completely. The resulting dirty image
(RHS of Egn.4.10 will be devoid of direction-dependentfects and can be sent into a
deconvolution minor cycle that knows nothing about diectdependentfiects (as de-
scribed in sectiors.2.1.9. If the elements of?ﬂ" contain amplitude and phase ternesy
KPP, the use of the complex conjugate will not correct it corbgdlg and the dirty image
(RHS of Eqn4.10 will not be free of direction-dependenffects. In this case, the weight
image (Egn4.11) is a measure of this multiplicative image-domatteet.

For example, wheid? = KP°, we can write $% = [S][GP] = [S][FP,F]
and write the Hessian matrix as a product of two diagonal arynbeam matrices and the
Beam matrix B] = [F'STW™S F].

[PIBIPul™ = [PyI[F'S WMV (4.12)
or  [HPFJIS = finer? (4.13)

Note that the primary beam is a real function, aRg'] = [Py].

By analogy to Eqn4.11, I" is computed by accumulating a weighted average of
IZi‘j’b* Ki‘j’b (computed from aperture illumination functions that vanghnantenna and time)
onto the center of the spatial-frequency plane and thengeakFourier inverse. This weight
image now represents an average of the square of the prireamg Bmplitude (phasdéfects
have been eliminated by this stage), and an average prineam lsan be computed from it

as follows.

Note that if both sides of Eqnt.12are divided byPy, we get back the normal equations
shown in Eqn4.4, which can be solved using standard deconvolution algostfor the
minor cycle and interpreting the model image as a produdi@gky and the primary beam.
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Figures4.2 and4.3 are pictorial representations of the normal equations show
in Eqn.4.12 Fig. 4.2 shows the Hessian matrix{P™] = [P,][B][Ps]) being multiplied
with a sky brightness distribution containing two point szes. Note thatHi?”] is not a

convolution operator, and its diagonal represents the htéigagel ™ = WsumPZZ. Figure
4.3 shows the same equation with the beam matrix and the prinesagnb separated out.
This factorization shows that this system of equations chred (from left to right) by first
dividing the RHS byP,, followed by a minor cycle deconvolution (to eliminate thEeet of
[B]) and finally a post-deconvolution division of the model gezby the average primary
beamP,. Section4.3.2describes this process.

4.3.1.3 Principal Solution

As defined in sectioB.2.1.6 the principal solution is computed by dividing the
dirty image (RHS of Eqn4.10 by the diagonal of the Hessian matrix (the weight image
™). The peaks in the resulting image will measure the sky bnigss distribution in units
of Jylbeam. WherKd¢ = KPP and [*PP = WeunPh’, the dirty image (RHS of Eqrit.12)
contains two instances of the primary beam (one presentiddta and one introduced by

> 2
the gridding process). A division by the weight image wilimeve this factor ofP, and
in the limit of complete spatial-frequency sampling, thigpipal solution will be the final
reconstructed image.

4.3.2 lterative Deconvolution

This section describes how direction-dependent cornest@we applied within an
iterative deconvolution framework. Direction-dependeffiects that &ect only the phase
of the visibilities can be corrected during gridding, bunist always possible to include
amplitude &ects in the gridding-convolution functions and image-donogperations are
sometimes required. In the AW-Projection algorithBhatnagar et al. 20Q8liscussed
below, a combination of visibility-domain and image-domeorrections are used.

Pre-compute Hessian : The [Psfis computedvia Eqn3.21 (i.e. using only the prolate
spheroidaPs as the gridding-convolution function and no direction-elegient ects).

The weight imagd™ is computedvia Eqn.4.11 If all [Kﬁd] are unitary, the use of the

complex conjugate will eliminate theséfects and™ = Wsuml. Otherwise, the weight
image is a measure of the direction-dependent sensitiVitysoinstrument.

Pre-compute Primary Beam : When the antenna primary beam is the dominant direction-
dependentféect, an average primary beam is computetEqn.4.14 In practice, primary
beams vary with baseline and time and this average primambgonly an approximation.
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Figure 4.2: Normal Equations for General Primary-Beam correction : sTdliagram represents
the imaging process when the primary beam is the dominaettibin-dependentfiect and its
correction is doneia a visibility-domain convolution (Eqrt.13. The Hessian matrix is no longer
a pure convolution operator, or in other words, the PSF isiapavariant (compare withB] in
Figs.3.2and4.1). The diagonal of the Hessian (Egh14) represents the instrument’s sensitivity as
a function of direction. When this Hessian operates on tiyarsidel, the peaks in the dirty image

are attenuated bl?b2 and the sidelobes are attenuatedMy(compare with the RHS of Figt.1
which uses the same sky modé&lY but has only the oné®, already present in the data). This
system can also be written as shown in Eig

[PbT me] [Bmxm] [Pb me] _I’frgl _Ihij;wl,pbz

( \(«-A——ﬁ—’\/\f«‘\,w’vw\f 1 r ‘

Figure 4.3:Modified Normal Equations for General Primary-Beam coiigett This diagram is

a factorized version of Fig.2 (Eqn.4.12. The Hessian on the LHS is now written as a matrix
product of two diagonal matrices containing the primaryrbgR,] and a convolution operator (the
Beam matrix B] from Fig. 3.2). This system can be solved from left to right by first multipg
both sides of the equation b?{!] to convert the system into a pure convolution equation ef th
type shown in Figlt.1. The remaining primary beam is combined with the sky modebfget of
minor cycle deconvolution iterations, and divided out & thodel image in a post-deconvolution
step (before the prediction step re-introduces ffiect).
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Any image-domain operations that use it will not exactlyreot the &ect of time-variable
beams. For sources in the main lobe of the primary beam, #reses may be negligible
but for sources out in the sidelobes, beam asymmetries ¢esldt in 100% gain varia-
tions across the duration of the observation. However,gkalting errors are in the image
domain and fiect only the minor cycle and several iterations with acairagjor cycle
prediction are usually able to compensate for this.

Initialization :  The model imagéMdejs initialized to zero or to ama-priori model.

Major and minor cycles :  Stepsl, 2, 6 and 7 represent the major cycle of iterative
deconvolution, in which the data and models are convertegdan the visibility and image
domains while accounting for direction-dependeffieets. Step8 to 5 represent the minor
cycle, and are identical to those described in secii@nl.9for deconvolution without any
direction-dependent corrections.

1. Compute RHS : The un-normalized residual image is computed with samptiag
trix [ S99 constructed from a baseline-basléﬁ;lfl * Ps as described in sectigh?2.2

Ifes, = [FIRS™ WM Vies (4.15)

mx1l — nx1

For the first iteration\/™es = Vo and[fes = [Uny_ All subsequent iterations use
\7res — \‘/’corr _ \‘/’modell

2. Normalization : There are two ways of normalizing the residual image befae b
ginning minor cycle iterations. One approach is to cal@ilie principal solution
by dividing the RHS b;ﬂvt, and the other is to divide the RHS by an estimate of the
averageP, and the sum-of-weights. Both approaches are valid, so fpoitant to
clarify the diference between the two.

(a) Flat-noise : Normalization byF?bWsum before deconvolution will result in a
model image described b{fede! = [S&. By (see Eqnst.12and4.4). When the
primary beam is the dominant direction-dependédfeat, this normalization is
consistent with the measurement process (i.e. the interfeter samples the
product of the sky and®,). The noise in the image is related directly to the
measurement noise due to the interferometer, and is the ahawoss the im-
age. The minor cycle can give equal weight to all flux compdsérat it finds,
but it needs to correct for this attenuation (assuming tien fof attenuation is
known) to generate a true model of tf&. This form of normalization is use-
ful when the primary beam is the dominant direction-depeaheégect because
the images going into the minor cycle satisfy a convolutiquation. It is also
more appropriate for single-pointing fields of view.
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(b) Flat-sky : Normalization by the weight imagé" = F?bzwSum before deconvolu-
tion will give a dirty image whose peaks are consistent withand the model
image will be free of the primary beam. However, the imagenganto the
minor cycle will not satisfy a convolution equation and tha@se in the dirty
image will be higher in regions whel' is small. The minor cycle needs to
account for this while searching for flux components (a digoanoise depen-
dent CLEAN). This form of normalization is useful for mos#&icaging where
the sky brightness can extend across many pointings. Ircédse a minor cy-
cle that solves directly for>k¥ will incur fewer errors than one that solves for
[¥P,. This is because mosaic observations are done for sourtespatial
scales larger than the field of view of each antenna, andftiteraot present
in the data. Allowing the minor cycle to use flux componentt §pan across
beams of adjacent pointings will provide a better constramthe reconstruc-
tion of these unmeasured spatial frequencies. A flat-sky dimage is more
likely to produce smoother large-scale emission.

. Find a flux component : When the residual image is computed with a flat-noise nor-

malization, this step is identical to stégor general iterative deconvolution (section
3.2.1.9. When the residual image has a flat-sky normalization, thegss of finding
valid flux components must take into account the varyingenaisd sidelobe levels
across the field of view.

. Update model image :Same as step for general iterative deconvolution (section

3.2.1.9.

. Update RHS : Same as stefpfor general iterative deconvolution (secti8r2.1.9.

Repeat from step3 until the minor cycle flux limit is reached.

. Correct for PB : Depending on the choice of normalization (sBphe model image

at the end of the minor cycle has to be further processed defodel visibilities can
be predicted from it.

(a) Flat noise : This step is equivalent to the post-deconvolution primaggrh
correction described in the previous section. A new modelgenis computed
as|™model/py

(b) Flat sky : No corrections are required because the flux model is alrdadyid
of primary beam ffects.

. Predict : The prediction step of computing model visibilities fronetburrent sky

model needs to re-introduce all the direction-dependéeces that are being cor-
rected for during gridding, before the model can be compavitd the data for?
computation.

\‘/’model — [deR’r F][| pﬂ —1|‘fn0de| (4.16)

nx1 m x1



65

The reverse transform (steftand?2) is usually approximate because the dirty image
is normalized by a weight image computed as the average tialime and base-
line dependentféects, but this forward transform is accurate with modelbilgies
being predicted by applying time and baseline dependfatts to the individual
visibilities.

Repeat from stepl until the final convergence criterion is satisfied.

Restoration : The final model image is restored by smoothing it with a resgpbeam,

and adding back the residuals computedEqn.4.15and normalized by™ (the principal
solution).
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Algorithm 2: CLEAN with Visibility-Domain Corrections for Direction-
Dependent Eects.

1
2
3
4

© 00 N o O

11
12
13
14
15
16
17

18
19

Data: Calibrated visibilities \/co

nx1

Data: Gridding convolution function Kd% x P
Data: uv-sampling function Sp.m

Data: Image noise threshold and loop gatf;, gs
Result Model Image :[fnode!

m; x1

Compute the PSFIPsf

Compute the weight image ™, using 59 and [S9]

Compute the primary bea#, from ™

Compute the dirty imagei@™® using [89¢']

Measure the peak PSF sidelob&geiope = maxsidelonFpSf)}
Initialize the model image and residual imagé":= 0, [fes = [tirty

repeat /* major cycle *

Normalize the residual image s = [P,] -1ty
Compute a flux limit :fimi = MaXotr, fsideiobe* Maxites})

Find the location and amplitude of the peaki™ = peak(i'es)
Update the model imageifode! = [fodel g §[odel
Update the residual imagd™s = [fes — g [§[Todel & [bsf]
until maxi’s} < fimi
Divide the model image by the primary bearf"ode! = jfnodel/ 5
Predict model visibilitiea/md! from [Model ysing [S49]
Compute a new residual imagdf&s from V'es = Veorr — VM ysing [899]

until maxi’s} < oy
Restore the final model image

repeat /* minor cycle */




CHAPTER 5

IMAGING WITH FREQUENCY-DEPENDENT EFFECTS

Broad-band receivers are being introduced into radiofetemetry for two main
reasons. The first is to increase the sensitivity of the imsémt and provide high-dynamic-
range continuum imaging capabilities superior to thosexadtimg radio interferometers,
and the second is to use the wide bandwidths for detailed uneragnts of the spectral
structure of astrophysical sources. This chapter dissubgause of broad-band receiversin
radio interferometry, describes itfects on the imaging process, and summarizes existing
methods of multi-frequency image reconstruction.

The term multi-frequency synthesis (MFS) is commonly usediéscribe all
methods of multi-frequency image reconstruction. In gahevlFS imaging is the pro-
cess of making a single continuum Stokes-I image by comgittie measurements from
all frequencies within the band. For the purpose of thisatission, MFS refers to the
process of creating an image by gridding all visibilities@one singleuv-grid and using
standard deconvolution algorithms to construct an imagbe@tontinuum sky brightness.
The basic assumption with this technique is that the skyhmigss has a flat spectrum.
Multi-frequency deconvolution refers to parameterizihg frequency dependence of the
sky brightness and solving for these parameters duringrd@dation. One approach is to
calculate spectral PSFs that describe the instrumengonse to dierent spectral basis
functions (for example, Taylor series functions), and &ntperform a joint deconvolution
to simultaneously extract images of the sky brightness dlsaséts spectral structure. The
Sault-Wieringa Multi-Frequency-CLEAN (SW-MFCLEAN) algthm parameterizes each
pixel in the image with a constant across frequency and a&sdoposs frequency (first two
Taylor functions). A more general description of this aitfun for an arbitrary number of
terms in the Taylor polynomial will be refered to as MF-CLEAMF-CLEAN).

Section5.1 first defines the problem of multi-frequency synthesis imgdby
describing the mainfeects of using broad-band receivers for Stokes | imaginggusan
dio interferometers. Sectioh.2 compares several existing wide-band image reconstruc-
tion methods, explores their limits in the context of higgndmic-range imaging with the
EVLA, and identifies areas where improvements are requinadalt{-scale deconvolution,
higher-order spectral model, and frequency-dependentguyi-beam correction). Chapter
6 describes multi-scale and multi-frequency deconvoludigorithms in a common frame-
work to demonstrate that they are based on a similar ideapt€hathen describes new
algorithms that build on the basic multi-scale and muksginency deconvolution methods
and includes wide-field imaging concepts described in @rapt
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5.1 Wide-Band Radio Interferometry

The use of broad-band receivers in an interferometer caease the signal-to-
noise ratio in the reconstructed continuum image by a faagoial to the square root of the
increase in bandwidth (according to the ideal radiometeiatign’, the noise on a total-
power measurement is proportionalTgs VAv - T whereTgysis the instrumental system
temperatureAv is the receiver bandwidth, andis the integration time.). However, to
reconstruct a wide-band image of the sky and achieve theedlesbntinuum sensitivities,
imaging algorithms need to be sensitive to tifieets of combining measurements from a
large range of frequencies.

There are three main frequency-dependédfaats that need to be accounted for
when using broad-band receivers for Stokes-I imagjiuging an interferometer. First, the
uv-coverage of an interferometer is frequency-dependentranklated imaging properties
of the array will vary across the sampled frequency rangeo&@, the incident radiation is
usually neither exactly monochromatic nor constant adissvide-band, and the spectrum
of the sky brightness also needs to be modeled and recotestru€inally, the size and
shape of the aperture illumination function of each anteser@ends on frequency and the
antenna field of view and power response will vary across &melbBoth these instrumental
effects can be computed (or measured) and applied (or corjetiedg imaging. Sections
5.1.1and5.1.2describe thesefkects in detail, in the context of multi-frequency synthesis
imaging.

5.1.1 Multi-Frequency Measurements

Multi-frequency measurements of the visibility functiohtbe sky brightness
distribution can improve the imaging properties of an ifgeymeter. This section contains
a brief description of how multi-frequency measuremengsuaed in synthesis imaging.

5.1.1.1 Multi-Frequency Spatial-Frequency Coverage

Figure5.1 shows an example of the multi-frequenay-coverage of the EVLA
telescope at three frequencies across L-Band. Each fregudrannely measures a dif-
ferent range of spatial frequencies (given $i%n t0 XBmax Wherebyin, Bnax are measured
in meters) and the imaging properties of the telescofferdacross the band. As the ob-
serving frequency increases, the width of the point-spfaadtion (given byd, = 1/Umnax
radians) and the sensitivity to large spatial scales (selgrproportional to the size of

LAppendixA lists the formula to calculate the image-domain noise léweh set of visibilities measured
with a radio interferometer.

2For full-Stokes imaging, the polarization properties of #ky brightness and the instrument vary with
frequency and need to be taken into acco@atlt and Wieringa 1994However, all the discussions in this
dissertation focus on only Stokes-I imaging and ignore @lbld-band polarizationfkects.
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Figure 5.1:This plot shows the multi-Frequeney~coverage of the EVLA at L-Band for a 4 hour
synthesis run. The axes are in unitskafand the three colours (Red,Green,Blue) correspond to the
uv-coverage at three frequencies 1.0, 1.5, 2.0 GHz. The angegalution of the instrument for
continuum imaging is given by the maximum spatial frequefmgasured at 2.0 GHz). In regions
of overlap between frequencies, redundant measuremeasrease the signal-to-noise ratio of the
measured visibility function (for a flat-spectrum sourcEhe combinediv-coverage also has fewer
unmeasured spatial frequencies within the maximum rangethas increases the fidelity (accuracy)
of the reconstructed image.

the zero-spacing hole) decreases. The phase delay due wotdren is also frequency-
dependent (in the sense tivais measured in units of wavelength), which means that the
gridding convolution function used iw-projection must be chosen according to the ob-
serving frequency. For instruments like the EVLA that havdemse spatial frequency
coverage at any given frequency, the main advantage of #inetfuency-synthesis is in-
creased sensitivity and the measurement of the spectrusssatite band. For instruments
like the ATCA/e-MERLIN/VLBA with sparseuv-coverage, the main advantage of multi-
frequency-synthesis is to fill in the unmeasured regionsefpatial frequency plane.

5.1.1.2 Frequency Resolutioi Channel Width

The choice of frequency resolution (or channel width) atalhrisibilities must
be measured for synthesis imaging is influenced by the oilnggirequency and the desired
field of view. It is based on the concept of bandwidth smea@n@gdial degradation in the
resolution and sensitivity of the array due to the mapping @fide range of spatial fre-
guency co-ordinates (measured across a wide-band) orttodirasponding to the central
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frequency of the band. A receiver with finite bandwidth thedquces one single visibil-

ity per baseline and time measures the average of the viigifaihction over the range of

spatial frequencies spanned by the receiver bandwidthhidfrange of spatial frequen-
cies spans more than onggrid cell, there will be image-domain errors due to bandtvidt
smearing. To eliminate these errors, the frequency reisolof the visibility measurements
is chosen such that the amount of smearing in the image dasmamaller than the angu-

lar resolution of the telescope within the antenna field efwi This bandwidth-smearing

limit is derived below.

Bandwidth-Smearing limit:  Let up represent the spatial frequency of the center of the
band andu, be that of another frequency in the band, such tat -*u,. When a wide
bandwidth receiver produces only one single visibility paseline and time, the whole
range of spatial frequencies it measures is mapped ontgitiet by the central freqeuncy
of the band. The process of mappimgontouy is equal to a scaling of thev-co-ordinates

by -2. According to the similarity theorem of Fourier transforenscaling of the co-ordinate
system in one domain is equivalent to an inverse scalingdrother domain. Therefore,

F [vv (?u ?v)] - (Vio)z l, (Vlol Viom) (5.1)

whereF[V,(u,,v,)] = I,(I, m). When a whole range of spatial frequencies are averaged
in this way, the image domairffect is a radial smearing wherefidrent frequencies are
shifted radially by diferent amounts

The following condition ensures that across a given field iefw the image-
domain bandwidth smearing is smaller than the angular uéisol of the instrument. This
is of importance in deciding the frequency resolution (etefwidth) with which to make
the observation.

g Resolution A/bnax D

) = FoV N A/D N Prmax Brmax
The desired field of view of the image (that decides the spliguency grid cell size)
is given by the HPBW of the antenna primary beam. Therefdte/jsabilities measured
within this narrow frequency range will map to one singhegrid cell. For broad-band
receivers, this limit will change across the band, and trenaokel width should be chosen
as the limit computed fov,n.

(5.2)

= Av<y

3 Time-smearing is anotheffect similar to bandwidth smearing. It occurs when the irdéign timestep
is long enough that the spatial frequency measured by thelibashanges by more than the size of one
uv-pixel. A similar limit will give the coarsest time resoloti with which the visibilities can be measured.

4Frequency-Augmentation is an algorithm (developed byChthwell (private communication)) that cor-
rects the &ect of bandwidth smearing in data where only a single vigjbis measured across the entire
bandwidth. In the major cycle of deconvolution, the modsihility function is degridded using a spatial-
frequency-dependent convolution function (box) that ages the visibility function from a range o¥before
comparing it with the measurements figr computation.
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Channel Averaging: New correlators are capable of generating visibility measents
at very high frequency resolution (well beyond the bandisitnearing limit) and produc-
ing visibility measurements for tens of thousands of fregpyechannels. This results in
extremely high data rates. However, once the data have ladibmated, chunks of chan-
nels can be averaged together up to the bandwidth-smeariitdgd reduce the data-rate for
the processing involved in continuum imaging. For examible,number of channels can
be reduced from 16000 to about 500 for EVLA L-band continuumaging over a single
pointing field of view.

5.1.1.3 Multi-Frequency Synthesis Imaging

Standard multi-frequency synthesis (MFS) imaging invelyest gridding to-
gether visibilities from multiple frequencies onto a sie@patial-frequency grid, and as-
suming that all frequencies measure the same visibilitgtion, just at diferent spatial
frequencies. The dirty image and PSF are given by a modified & Eqns.3.20and3.21

Y = Wl [ FTRGP {Z[SXWL”“]\ZCO"} (5.3)

Pt = wol [I"[F RG] {Z[SIWL’“] i} (5.4)

As long as the sky brightness is constant across the totadume@d bandwidth and concen-
trated within a small field of view, standard imaging and dewdution algorithms can be
used along with MFS to construct an accurate continuum imgesources with spectral
structure, this approach will convert any spectral vaoiasi of the visibility function into
spurious spatial structure. Therefore, to reconstructtioad-band sky brightness distri-
bution correctly, a spectral model must be folded into tle®nstruction process. Section
5.1.2describes this problem in detalil.

5.1.2 Frequency Dependence of the Sky and Instrument

Multi-frequency synthesis imaging with standard decoutioh algorithms is
based on the assumption that the spectrum of the measurdatighyness distribution is
flat and that multi-frequency measurements only contriboidditional samples of a sin-
gle visibility function. In reality, however the sky brigiéss distribution and instrumental
effects are usually frequency-dependent, and this can resatifacts in the reconstructed
image if they are not accounted for during the imaging preces
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5.1.2.1 Broad-Band Radio Continuum Spectra

The sky brightness distribution of astronomical sourcasallg varies with fre-
guency, either due to the spectral structure of the emitidahtion or if the spatial structure
of the radiating object varies with frequency. Broad-baodtmyuum emission from astro-
physical sources is often best represented by a power-lais. power-law index can vary
with frequency, as seen in the case of spectral breaks,estegpand turnovers that are
visible across the wide frequency ranges that new receareraow sensitive to. A power-
law with varying index can be used to describe such a spectryns the sky brightness
distribution at a reference frequengy, a(v) is a spectral index that varies with frequency,
andl, is the flux seen at the observing frequency

a(v)
I, = |V0(1) (5.5)
Yo

For example, for synchrotron emission from radio galaxiggical values ofx range be-
tween 00 and-1.5. A spectral index of -1.0 corresponds to a 50% change in ttess a
bandwidth given bymax: vmin = 2 : 1.

5.1.2.2 Frequency Dependent Instrumental Eects

The angular size of an antenna primary beam decreases a¥dbeving fre-
guency increases. This changes the field of view at eachdreyyudefined as the FWHM
of the main lobe of the beam, given hyD whereD is the diameter of the reflecting dish).
As a result, a source located away from the pointing-cerftdrase beams will be attenu-
ated by diterent amounts across the frequency band. This will giveoisetificial spectral
structure in the measurements which if uncorrected, Vi#c the imaging process in the
same way as sky emission with intrinsic spectral structuogld: Note that for EVLA
antennas the feeds for both polarizations afseat from the antenna axis, leading to a po-
larization dependent pointindiset called beam squint, which is also frequency-dependent.
Such dfsets can be described by phase-ramps in the nominal apgéitomgnation pattern
and are correctable during the imaging process.

Figure 5.2 shows the the shape of the primary beam of an EVLA antenna at
1.0, 1.5 and 2.0 GHz. Figure3 shows 1-dimensional cuts through these primary beams
(chosen to pass through a peak in the first sidelobe) aloftgadiequency-averaged profile.
From these plots, we can see that the primary beam introcigeigicant spectral structure
into the measured brightness distribution even near the\MRB the lowest frequency.
Sources at higher angular distances from the pointing cenlidoe completely attenuated
(and not detected) at some range of frequencies within thd bad this will result in a
reduced continuum imaging sensitivity. However, such atriment will still be sensitive
to sources out to the full field of view of the lowest frequertaythe few % level) but the
spectral structure due to the primary-beam sidelobes willoe@ monotonic and this will
complicate the deconvolution of such sources from the oontin image.
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Figure 5.2:Simulated EVLA primary beams at 1.0, 1.5 and 2.0 GHz. Theaelsavere computed
from frequency-dependent models of antenna aperture iflation functions Brisken 2003 and
include the geometry of the various structural elementsroE® LA antenna (sub-reflector, feed
position, feed-legs, etc..). The FWHMs at these three &aqies are./D = 20, 27, 41 arcmin and
this defines the field of view at each frequency.
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Figure 5.3:These plots show 1-dimensional cuts across the simulated\pvimary beams shown

in Fig.5.2(chosen to pass through a sidelobe peak). The X axis is ardjstance from the center of
the beam (represented in units of image pixels, where eaehnepresents 3 arcmin in this example,
and the image center is at pixel 512), and the Y axis is theiptightive gain associated with the
primary beam at each angular distance. The blue, green drithes represent the beam profiles at
1.0, 1.5 and 2.0 GHz, and the cyan line is a frequency-avdrpg#ile along the same cut. The plot
on the left covers the main lobe of the primary beams and slioaighe half-power-beam-width at
1.0 GHz is near the null at 2.0 GHz. This indicates that thiéi@atl spectral structure introduced
by the primary beam can be very significant even before the\MRBthe lowest frequency in the
beam. The plot on the right covers the first null and sidelditbese three frequencies and shows
that the first sidelobe at one frequency falls into the nulé@ie other frequency. The average
primary beam (shown in cyan) has an almost continuous $setysiiat the few percent level) well
out to the first sidelobe of the lowest frequency beam. Thikandhe instrument’s sensitivity in the
regions outside the main lobe a complicated function ofdeswy that cannot be ignored because
the sensitivity in that region is high enough that artifafctsn improperly deconvolved sources in
that region will be visible above the noise level.
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Figure 5.4: Spectral Index of the EVLA Primary Beam : This figure shows aerkay of the
average spectral index (colour) and reference primary bgamtours) within the main lobe.£. it
does not include sidelobes and therefore appears axisymndthe dfective spectral index at the
half-power point of the reference beam is about -1.4.

Spectral Index of the Primary Beam : The frequency dependence of the main lobe of
the primary beam can be interpreted in terms of an instruatesptectral index. During
measurement, the incident sky brightness at each obsdregency gets multiplied with
the primary beam at that frequency. The measured spectiax itherefore corresponds to
the spectrum formed from the product of the sky and the pyrbaam. Figurés.4 shows
the spectral index and curvature due to the primary beamrfdE\ALA antenna (section
7.2.1describes the relevant calculations). At the half-powentaf the middle frequency,
the dfective spectral index computed for frequency-dependertARrimary beams is
about -1.4.Sault and Wieringd1994 analytically derive the same result by modeling the
primary beam as a Gaussian whose width scales with frequénkty) Jy source of intrinsic
spectral index of -1.0 will appear to have have a flux6f5 Jy and a spectral index of -2.4.

5.2 Comparison of Existing Wide-Band Imaging Methods

This section consists of a comparison between some exiatiddhybrid wide-
band imaging methods applied to data simulated for the EVIL#e purpose of this study
is to assess whether existing methods woulficel for the high-dynamic-range imaging
requirements of the EVLA, and if not, to identify areas whign@rovements are required.
The data product being evaluated is the continuum Stokesge and this study focuses on
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dynamic-range limits due to errors in estimating specttad flariations. The techniques
being compared are stacking of narrow-band images, MFSinga§W-MFCLEAN de-
convolution and hybrids of single-channel and continuuraging methods.

5.2.1 Existing and Hybrid Algorithms
5.2.1.1 Narrow-Band Imaging and Stacking (STACK)

A simple way to produce a continuum image is to construct afsearrow-band
images by deconvolving each frequency channel separatadlyto then compute the sum
of the single-channel images. This method does not depeadyspectral flux model and
there will be no deconvolution errors due to spectral fluxatasn. However, the imaging
fidelity and angular resolution of the image at each frequéscestricted to that given by
theuv-coverage at that frequency. Non-linear deconvolutionmdividual channel images
can result in imaging artifacts that are neither cohererdsscthe band (and are therefore
not solvable) nor random (they do not average out), and tuklantroduce further artifacts
when added together. Further, the imaging sensitivitynstéd by the single-channel noise
level (the continuum imaging sensitivity is related to thregée-channel imaging sensitivity
asocont = 0chan/ VNchan). Sources that are fainter than the single-channel noisenoibe
detected in the model images and will not be deconvolved tlainal continuum image.
The spectral structure of the source can be measured frosetta single channel maps,
but the angular resolution of this computation is limitedhat at the lowest frequency in
the band because all images must be made at this lowest tiesdbefore any spectral
estimates can be derived.

5.2.1.2 Multi-Frequency-Synthesis Imaging (MFS)

A single continuum image is made by gridding visibilitiesrr all frequency
channels onto a singlev-grid and performing one deconvolution. This form of imagin
benefits from the combinea\-coverage as well as the sensitivity gain of using data from
all channels together. However, this algorithm assumesathaources in the image have
a flat spectrum across the frequency band. If the spectrunsotiece is not flat, a direct
combination of visibilities will generate spurious spas#ructure at a level proportional
to the magnitude of the spectral variation. However, if thegors are much lower than
the continuum sensitivity limit, an accurate continuunomsgtruction is still possible. One
way to artificially improve this situation is to scale all ¢ineels according to an average
spectral index (over all sources) before combined decamwwl in order to reduce visible
deconvolution errors.

5 The contents of this section follow that in EVLA Memo 1Qijashi R.V. et al. 2006
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5.2.1.3 Sault-Wieringa Multi Frequency CLEAN (SW-MFCLEAN)

Conway et al[199( and Sault and Wiering§1994 describe a multi-frequency
deconvolution algorithm that models source spectra in $esfran amplitude and a slope,
and performs a double or joint deconvolution to obtain a icantm map as well as an
effective spectral index map. This algorithm is based on a neatdittering idea and works
for power-law spectra with a fixed spectral index across #edb Visible deconvolution
errors result when the spectrum is not a pure powef:law

5.2.1.4 Hybrids of Narrow-Band and Continuum Techniques

The basic idea of a hybrid wide-band method is to combineomatrand channel
imaging with one or more of the continuum methods in a mulige approach. The goal is
to combine the advantages of single-channel imaging (stityp&nd insensitivity to source
spectra) with those of continuum imaging (deconvolutiothviull continuum sensitivity).
However, if narrow-band single-channel imaging is one stefhe process, there are a
few restrictions that cannot be avoided. First, the angrdaolution of the final images
and spectral information will be restricted to that giventhg lowest frequency. Also,
these techniques will be suitable only for synthesis arwiyls dense, single-channal-
coverage where the collection of spatial frequencies nredsat each channel isficient
to reconstruct all the spatial structure there is at the Emgesolution of that frequency.
The hybrid methods that will be evaluated here are as follows

1. SW-MFCLEAN + STACK : Apply the Sault-Wieringa MFClean algorithm to sev-
eral successive subsets (chunks) of the full frequencyeranbe frequency or chan-
nel ranges to use for these subsets are basedmiori knowledge of the average
spectral index of the sources being imaged and are choséntisacthe spectrum
within each chunk can be approximated by a linear spectrum.

2. STACK + MFS with flattening : Perform single-channel imaging to estimate the
spectrum of all bright sources. Record this per-pixel speat divide it out of the
model image and predict flat-spectrum visibilities. Addhe tesiduals from the first
stage, and perform MFS imaging on the now flat-spectrum data.

3. STACK + MFS on residuals : Perform single-channel imaging to deconvolve all
bright sources stronger than the single-channel sertgitimit. Remove the contri-
bution of bright (spectrally varying) sources by subtragtout visibilities predicted
from the model image cube. Perform MFS or SW-MFCLEAN on thatcmum
residuals.

6Section6.2 describes a generalized version of this algorithm that aetsofor variations of the spectral
index across the band and listsfdrences with the Sault-Wieringa MF-CLEAN which works onlittwthe
first two terms of a Taylor expansion in
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Array EVLA C array

Observing Band LBand (1420MHz)

Total Bandwidth 320MHz (spread over 1280MHz)
Deltay 40MHz

Frequency Resolution 10MHz

Frequency range 785MHz to 1985MHz
Reference Frequency 1420MHz

Number of channels 32

Cell size 2 arcsec

Image size 1024x1024 pixels

Image field of view 34 arcmin

Integration timestep 300 s

Total integration time 8 hours

Number of timesteps 8*3600'300=96

Noise per visibility 1.0 mJy

Theoretical RMS noise in per channel 3.85x 10%Jy

Theoretical RMS noise in MFS image 6.8x 10°7Jy

Expected Dynamic Range 0.1/6.8096x 107" = 1.468x 10°

Table 5.1: Data Simulation Parameters for Wide-Band In@agdests

5.2.2 Simulations and Results

Two wide-band datasets were simulated for these tests. fBhevés for a field of
five point sources with amplitudes 100mJy, 10mJy, 1ImJypd9@nd 1QJy. The single-
channel noise was comparable to the flux of the weakest solitoe 10mJy source was
given a spectral index that varied between -0.5 and -1.5dmtwl-2 GHz. The second
dataset was simulated with continuum flux and spectral cheniatics of a typical core,jet
and hotspot. The brightest component (100mJy) had a flatrspeahe 10mJy hotspot had
a spectral index of -0.7, and thefdise 'jet’ had flux levels between {0y and 10QJy with
spectral index varying between -0.1 and -0.5. Parametexd insthe first two simulations
are given in Tabl®.2.2 They correspond to &sys (system temperature) of about 20K, and
antenna and systenffigiency (. andns) around 0.80. For these simulations, the single-
channel and continuum imaging sensitivities were caledlats described in Appendix
The expected peak error (see secttoB.4) due to a 1hJysource with spectral index
varying between -0.5 and -1.5 is 20 — 80uJy if the spectral structure is ignored, and
~ 3 - 10uJyif the spectrum is modeled by a linear function.

’Only 32 channels were used because of data processingtiesisiat the time of performing these tests.
Any conclusions based on thefid@rence between the single-channel and continuum setsitviels will
still hold. Also, note that the target dynamic-range-af0° has so far been achieved for a very small number
of observed fields.
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Figures5.5to0 5.7 show the reconstructed image and the corresponding rdsidua
image for each algorithm, along with a set of measures to eoengne relative accuracies
of the algorithms. Separate estimates for on-source #sbarce regions were computed
using masks created by thresholding the known true image2atlavel. Only the inner
guarter of each image was considered for CLEANing. The infalgdity was assessed by
calculating the normalizeg? estimate between the known true image and the reconstruc-
tion. All results are based on automated runs of existingdsied algorithms on simulated
data. Carefully tuned deconvolution could in some casastresbetter reconstructions.

Listed along with the results of each sample run are thevieig quantities.

1. Off source RMS : The achieved noise level in regions away frontrtheesource.

2. Peak residual : The magnitude of the peak of the residuad@n It represents the
flux level of the minimum detectableelievable feature.

3. Dynamic Range (w.r.t. rms) : The ratio of the peak of th@mssructed image to the
off-source rms. It represents the maximum dynamic-range aethi@ the image.

4. Dynamic Range (w.r.t. peak residual) : The ratio of thekpafathe reconstructed
image to the peak residual. It represents the achieved dgramge w.r.t. believable
features.

5.2.2.1 Conclusions from these tests

Existing and hybrid multi frequency synthesis algorithmsrevtested on simu-
lated wide-band data, with the goal of determining how thesfgyrm against the require-
ment of O(10°) dynamic-range an@®(1uJy) image sensitivity. Tests were performed on
data with point sources as well as extended flux componenke r@sults were evalu-
ated based on achieved rms levels as compared to the tlvabestpected thermal noise,
achieved dynamic-ranges as compared to those expecteamtint of large-scale decon-
volution error, and image fidelity in terms of normalizetl

The main conclusions are :

1. Single-channel imaging and averaging is a simple algorithat works independent
of the form of spectral structure in the measurements, lenakesults in inaccurate
reconstructions of extended emission, does not detect s@aices near the single-
channel sensitivity limit and does not give noise-like aomim residuals. Also, all
spectral information is limited to the angular resolutidrtlze lowest frequency in
the band.

2. Pure multi-frequency synthesis assuming a flat spectanralifsources takes advan-
tage of the combinedw-coverage and imaging sensitivity, but gives deconvoiutio
artifacts around sources with a non-flat spectrum (roughthe@ 16 dynamic-range
for @« = —=1.0 and 1GHz at L-Band).
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3. The Sault-Wieringa Multi-Frequency CLEAN reaches tardgnamic-ranges and
image RMS levels for point sources with pure power-law sectPoint sources
with non-power-law spectrax(varies between -0.5 and -1.6 across 1GHz at L-Band)
result in errors that are 10 times larger than the RMS noigel kglenoted as ).

For extended sources with large-scale weak emission anepower-law spectra,
large-scale deconvolution artifacts appear at the [EQel.

4. A hybrid method that combines single-channel imagindhveitdeconvolution on
the continuum residuals is likely to produce accurate retrotions and noise-like
continuum residuals for synthesis arrays with dense&overage per channel and
well-behaved spectral noise characteristics. Howeversétond stage of combined
deconvolution requires that the continuum residuals afpectral-line imaging, sat-
isfy the convolution equation. Wide-band calibration esrar deconvolution errors
due to instficientuv-coverage, can prevent the single-channel residuals fdiding
coherently to make the continuum residuals satisfy the @omon equation. Fur-
ther, this method will not work for sparse synthesis arrapere the primary goal of
wideband imaging is the increasad-coverage. Also, the angular resolution of any
spectral estimates is still restricted to that of the loviesjuency.

Therefore to improve these types of techniques, we need-suadte methods that are able
to model both spatial and spectral structure simultangodsiese methods must also use
higher order terms in spectral series expansions to acdouand accurately reconstruct
non-power-law spectra. The frequency-dependence of tineapy beam was not explic-
itly included in any of these tests, but the performance egéhalgorithms (and resulting
dynamic-range limits) for wide-field imaging can be assddseapplying these results to
the case where the sky spectrum is equal to that introducddebinstrument. Chapters
6 and7 describe a multi-scale, multi-frequency deconvolutiagoaithm that reconstructs
source spectral index and curvature in addition to total #ud also accounts for a fre-
guency dependent primary beam.
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Figure 5.5: Standard Algorithms on Point Sources : This figure shows the restored images
(top row) and residual images (bottom row) obtained by rogrihe STACK (left), MFS (middle),
SW-MFCLEAN (right) algorithms on a simulated dataset in @thone point source has a spectral
index that varies between 0.5 and 1.5 over the observing .bafite STACK restored image
shows relatively broadened components due to the varyiagjaspesolution for each channel.
The residuals show traces of all sources, implying that theliéudes and shapes of all the flux
components have not been recovered well enough. There atiscernable deconvolution errors
due to inaccurately modeled spectra, but the accuracy obthsource flux is limited by the
single-channel noise level. The MFS images show significeabnvolution errors around the
source in question and a peak error of aboyty0 The SW-MFCLEAN algorithm, which takes
into account the first order beam, shows peak residuals &iJy, which are comparable to the
level expected for the unaccounted-for second order beamhigher because of the varying
across the band. The table below shows the RMS levels andnilgsnanges achieved in these runs.

Point sources with spectral indexOff-source | Peak resid- Dynamic Dynamic
varying between 0.5 and 1.6 forRMS (Jy) | ual (Jy) Range (w.r.t.| Range (w.r.t.
one source rms) peak residual)

Channel Averaging (STACK) 1.007e-06 | 2.164e-05 | 9.926e-04 4.621e-03
Bandwidth Synthesis (MFS) 1.849e-06 | 1.033e-05 | 5.408e-04 9.679e-03
Sault Algorithm (SW-MFCLEAN)| 1.038e-06 | 9.607e-06 | 9.638e-04 1.041e-04
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Figure 5.6:Hybrid Algorithms on Point Sources : This figure shows the restored images (top
row) and residual images (bottom row) obtained by runnirrgethybrid algorithms on the same
dataset as in Fi§.5. SW-MFCLEAN + STACK (left) : SW-MFCLEAN on 8-channel chunks
followed by stacking resulted in high noise levels. STAGKMFS with flattening (middle) :
Estimating spectrally varying flux from single-channel raaand flattening out the visibilities
before doing a MFS left the weakest source un-detected. 8TAGIFS on continuum residuals
(right) : The top image shown here contains only the flux Vesiffter the first stage of STACK
imaging and subtraction (continuum residual image). Thadwal image shown below it is
the result after the second step of MFS on the continuum SVWGMEAN was not required for
the second stage (MFS figed) because at the end of the first stage, the peak flux wae at th
single-channel noise level ef 4uJy, leading to a peak first-order beam sidelobe.a#@Jy. This

is lower than the theoretical continuum limit of/QJy, and a flat-spectrum assumption would not
lead to visible errors.

Point sources with spectral indexOff-source | Peak resid- Dynamic Dynamic
varying between 0.5 and 1.6 forRMS (Jy) | ual (Jy) Range (w.r.t.| Range (w.r.t.
one source rms) peak residual)
SW-MFCLEAN + STACK 1.705e-06 | 8.607e-06 | 5.865e-04 1.161e-04
STACK + MFS with flattening | 1.130e-06 | 5.733e-06 | 8.849e-04 1.744e-04
STACK + MFS on residuals 1.128e-06 | 5.829e-06 | 8.865e-04 1.715e-04
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Figure 5.7: Standard Algorithms on Extended emission : This figure shows the restored
images (top row) and residual images (bottom row) obtainedubning the STACK (left), MFS
(middle), SW-MFCLEAN (right) algorithms on a simulated ds¢t with an extended source
whose spectrum varies across the source, for total frequearmye of 640MHz. The STACK
image shows low-level large-scale deconvolution errorsirag from the limiting single channel
sensitivity. The MFS algorithm produced more accurate auree flux reconstruction with better
large-scale deconvolution results. It shows errors prilmatue to the spectrally varying flux
in the hotspot. The SW-MFCLEAN algorithm was able to modelaaver-law component of
the spectrally varying source, and reach a lower residual tmt low-level large-scale deconvo-
lution errors remain at the 1idylevel. None of the algorithms reached the theoretical tla¢moise.

Extended Core-Jet type sourcéff-source | Peak resid- Dynamic Dynamic
with spectral index between -0/1IRMS (Jy) | ual (Jy) Range (w.r.t.| Range (w.r.t.
and -0.7 rms) peak residual)

Channel Averaging (STACK) 1.445e-06 | 2.142e-05 | 6.920e-04 4.6683-03
Bandwidth Synthesis (MFS) 1.206e-06 | 6.041e-06 | 8.291e-04 1.655e-04
Sault Algorithm (SW-MFCLEAN)| 1.233e-06 | 1.214e-05 | 8.110e-04 8.237e-03
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5.2.3 Continuum imaging with denseuv-coverage

This section describes the application of the STAGKS algorithm to a sim-
ulated EVLA data set in which the single-frequenecycoverage is dfficient to unam-
biguously reconstruct the spatial structure of the soufidee goal of this test is to show
that when the target science does not require spectralnnafoon at high angular resolu-
tion, wide-band imaging with data from synthesis arrayse like EVLA with very dense
uv-coverage may require only a simple adaptation of existimdystandard deconvolution
algorithms. This test used a simulated data set and codtaimealibration errors.

Simulation :  Data were simulated for the EVLA C-configuration with 40 foeqcy
channels spread between 1 and 4 GHz. The noise per visitidg/ 10 mJy, giving a
theoretical point-source single-channel sensitivity 0fiby and continuum sensitivity of
8uJy. The wide-band sky brightness distribution in this simiolatvas obtained by linear
interpolation between 1.4 and 4.8 GHz maps of Cygnu€Arilli et al. 199]. At each
frequency, the source brightness was further modified toliyrthe dynamic-range. The
brightness at each pixel in the true-sky cubeas replaced by?° (i.e. the amplitude per
pixel was raised to the power of 2.35) to increase the dynaarige of the sky brightness
distribution being simulated.

Imaging Results: These data were imaged using a hybrid method that combingtesi
channel imaging (STACK) with standard MFS. MS-CLEAN wasdisedeconvolve each
channel separately down only to the single-channel seitgilimit ohan. AS a second step,
standard MFS and MS-CLEAN was applied to the continuum tegishage and iterations
were terminated using a flux threshold givendaan/ VNchan-

Figure5.8shows the imaging results. The image on the left shows thext aifily
narrow-band imaging on all channels, there is undecondodreission that is undetected
at the single-channel sensitivity level. The image on thatrshows the final image after
the deconvolution on the combined residuals and the debatnwmo errors are markedly
reduced. The achievedtesource noise levels were an order of magnitude higher than
theoretical. A maximum dynamic-range of 530,000 was addefpeajoff-source-rms)
and the on-source dynamic-range was 40,000 (fogagource-rms).

When does this second stage work ? At the end of the first stage, the only undecon-
volved flux comes from flat-spectrum residuals of all soutmgghter thanr¢,a, as well as
all sources weaker than.nan. Weak sources whose flux values lie below., but above
Ocont = Ochan/ VNchan @re detected only in the combined deconvolution stage whES M
imaging is performed. If these weak sources have spectraitate, the flat-spectrum as-
sumption of MFS imaging will lead to deconvolution errorseavforders of magnitude(g.

a factor of 18, see sectio.2.4.9 smaller than the current peak fluxdan). Such errors
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Figure 5.8:The hybrid of single-channel imaging (STACK) and MFS imagan the continuum
residuals was applied to data simulated for Cygnus-A (EVCAarray, 1-4 GHz). The left panel
shows the result after the first stage (only spectral-linagimg) and shows that there is significant
undeconvolved emission that was undetected at the sihglerel sensitivity level. The image
on the right shows the final image after the deconvolutionf@ndombined residuals and shows
significantly reduced deconvolution errors. Thereforethvgficient uv-coverage, if the single-
channel deconvolution is limited only by the single-chdrsensitivity level, the residuals will add
coherently such that the continuum residual image wills$ath convolution equation (a sky model
convolved with the PSF in Egb.4), and the second stage will be able to reach continuum setysit
levels.

are likely to be belowr ., becauseyN will aimost always be less than 10This condi-
tion (Nchan < 10°) can always be satisfied, because even though data may beexbata
very high spectral resolution (lardé,,) it can always be averaged down to the bandwidth
smearing limit for the highest sampled frequency to redbeenumber of channels during
imaging.

This method can be used only to construct an image of theraaunta flux. Only
if there is sdficient single-channalv-coverage to reconstruct an accurate model of the
source structure (for example, fields of isolated point sesly, spectral information may
also be derived from such an approach. This idea has beautestEVLA simulations
with dense single-frequenayw-coverage as well as wide-band VLA data with relatively
sparseuv-coverage at each frequency (see seclidhl), but it is yet to be verified on real
EVLA wide-band data with real calibration errors.



CHAPTER 6

DECONVOLUTION WITH IMAGES PARAMETERIZED AS A
SERIES EXPANSION

The general theme of this chapter is the description of tlyebsightness distri-
bution as a linear combination of images and using this madhain an iterative CLEAN-
based deconvolution framework. Most of the imaging methaeiscribed in Chapterd
and4 parameterize the sky brightness distribution as a singteofi pixel amplitudes and
assume that source structure and instrumeritatts are constant across the entire band-
width of data being imaged. This chapter relaxes these g#sums and describes how the
added complexity and increased dimensionality of the patanspace can be folded into
the standard measurement and imaging equations. In pgartiSectiors.1derives a multi-
scale deconvolution method by describing an image as arlowabination of images at
different spatial scales. Secti6ér? derives a multi-frequency deconvolution method by de-
scribing the spectral shape of the brightness distributipa Taylor polynomial (a partial
sum of a Taylor series). Pseudo-code listings of these igthgas (3 and4) are shown at
the end of each section. Chapietater describes a multi-scale, multi-frequency decon-
volution algorithm as a combination of the above ideas, dmivs how a multi-frequency
parameterization of the antenna primary beam can be folitedhe same framework.

The algorithms described in this chapter follow the formsediin Sectior3.2.1
First, each pixel of an image model is defined as a linear coatinn of parameters and
basis functions. Then, the imaging equations are derivedppyying the interferometric
measurement equation to each term in this linear series.rdhéting normal equations
are then described along with diagrams similar to Figugdo illustrate the image-domain
effect of the measurement and modeling process, and to givelitatjua view of what is
being solvedi(e. the form of the Hessian matrix to be inverted, and the veacawhich
this inverse is applied). The solution process is then desdrin two stages, the principal
solution and iterative joint deconvolution. The princigalution involves only diagonal
approximations of the matrices to be inverted and in thelidase where the PSF iséa
function this diagonal approximation will deliver the stan of the full system. The joint
deconvolution is an iterative process similar to the CLEAdbathm, but which simulta-
neously builds up solutions for all the d&ieients in the linear series. Finally, these best-fit
estimates for the pixel-based dheients are converted into quantities that can be inter-
preted physically. A block matrix notation is used throughthis chapter. For reference,
a generic description of weighted linear least-squaresaokbomatrix form is described in
AppendixB.
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6.1 Multi-Scale Deconvolution

Images of astrophysical objects tend to show complex strect diterent spa-
tial scales. An image parameterization that works with petelent pixels is ideal for
the deconvolution of fields of isolated point-like sourckattare smaller than the instru-
ment’s angular resolution, but tends to break extendedsomnto a collection of compact
sources. This often results in a physically inaccurateesgmtation of the sky. However,
such a reconstruction may be indistinguishable from thesigabecause of the non-empty
null space of the measurement matrix (unmeasured spagiéncies) in which the model
is unconstrained by the data. It therefore becomes impiidgprovidea priori constraints
on what the sky emission should look like. One way to natyratheive this for emission
with structure on multiple spatial scales is to paramegetie image in a scale-sensitive
basis that spans the full range of scale sizes measured loysthement. This forces pixel-
to-pixel correlations during the reconstruction and pda&d a strong constraint on the re-
construction of visibilities in the null space of the measuent matrix. Also, when the
peak amplitude of extended emission is close to the imageerevel, spatial correlation
length fundamentally separates signal from noise and seaisitive deconvolution algo-
rithms generally give more noise-like residuals on largalex Bhatnagar and Cornwell
2004.

Section6.1.1defines a multi-scale image model. Secttoh.2describes the nor-
mal equations that result from folding this model into thenstard imaging equations and
then describes an algorithm that reconstructs the sky torggs distribution at a range of
spatial scales and combines the results to form the compietki-scale image. This dis-
cussion is a formal derivation of the CH-MSCLEAN (Cornweltldaway MS-CLEAN)
technique described irCornwell 2008, but describes a modified version that improves
upon the existing algorithm. Secti@nl.3lists the similarities and élierences among this
algorithm, the CH-MSCLEAN algorithm implemented in CASABASKAPSsoft, and a
matched filtering algorithm implemented in AIPGreisen et al. 2009 Section6.1.4con-
tains an example of the multi-scale seriesfiornts derived during deconvolution, em-
phasizes sources of uncertainty in this calculation arid tiee algorithmic steps required
to converge towards a stable solution.

6.1.1 Multi-Scale Image model

Let us represent the sky brightness distribution as a licearbination of images
at different spatial scales. The image at each spatial sceenriten as a convolution
between a set G‘f-functionslfk"é and a scale functiothp. The scale functions can be any
set of 2D functions that represent structure at varyingiapstales, anc€Cornwell[2009
choose a set of tapered, truncated parabolasftérdnt widths (proportional tg). The
amplitude of eactd-function in I}s"ya represents the integrated amplitude of an extended
flux component of scale sizg centered at the location of tléefunction. Figures.1shows
an example of this multi-scale representation.
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Figure 6.1:This figure shows the multi-scale representation of an imxﬂ%posed of two distinct
spatial scales. The left column shows two scale basis tnmszfﬁhp and Fls Pthat represent sym-
metric flux components at two flierent spatial scales, normalized to unit area. The secdadthoo

from the left shows model imagé kyé, Ifkya with &-functions that mark the total-flux and locations
of flux components of corresponding spatial scale. The thiddmn shows the resulting image at
the two spatial scales, and the image on the rigH)(shows the multiscale image formed from the
sum of images at multiple spatial scales. The goal of a nsalile deconvolution algorithm is to

use the pre-defined set of scale basis functions shown inrthedlumn, to extract thé-function

flux components shown in the second column, from visibgitieeasured fors.

For a finite set ol spatial scales, the multi-scale image model is written hevis.

Ns—1
rfnodeI: Z I‘Ehp* r§ky6 (6.1)

s=0

where S are per pixel coficients and>" are the basis functions of this linear series.
In order to always allow for the modeling of unresolved se@stonve choose the first scale
function 12" to be ad-function. Successive basis functions then correspondverted
parabolas of larger widths (asincreases). Note that a choiceldf{ = 1 reduces all the
equations in this section to those in Chagierhere the image is parameterized using a set
of d-functions.
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6.1.2 Imaging Equations and Block Deconvolution

This section contains a derivation of the normal equationa multi-scale image
model, followed by a description of the principal solutiardats use in an iterative decon-
volution process. The derivations in this section use albloatrix notation (described in
AppendixB) to represent the measurement and normal equations.

6.1.2.1 Measurement equations

An interferometer samples the visibility function &f°% given by Eqn.6.1
The measurement equation (similar to Egr¥) for a multi-scale representation of the sky
brightness becomes

Ns—1 Ns—1 Ns—1
Ve = [SAIM= 3 [SF(IS* 18%°) = 3 [SAFTFIE = ) [STFIIZ
s=0 s=0 s=0

(6.2)
whereVer s a list ofn calibrated visibilities, $xm] Is the sampling matrix,f ] is the

nx1

Fourier transform operator (image to spatial-frequenayd all imagesrmxl are lists ofm
pixel amplitudes.

Each scale function is denoted by the subscigid [Ts] = diag(T®) is a diago-
nal matrix containing a spatial frequency taper functioregiby T = [F]Iﬁhp. This taper
[T4] is similar to auv-taper described in Sectidh2.3.1 It gives lower spatial frequencies
a higher weight compared to higher spatial frequencies awdthe &ect of tuning the
sensitivity of the instrument to peak for a scale larger th@nangular resolution of the
telescope. The operatdf[TsF] is an image-domain convolution operator with® as its
kernel (see footnot&9 on page?4 for the definition of a convolution operator).

When the sky brightness is written as the sum of images aipteiipatial scales,
the full measurement matrix4] in Eqn.2.20 can be written in block matrix form with a
horizontal stack oNg blocks each of shapex meach, and a vertical stack Nf vectors of
image pixels each of length. Thisn x mN; measurement matrix operates on thiss x 1
column vector of image pixels to produnevisibilities.

An example folNg = 2 is shown below.

I—skyé
(S ToF] BEH][;M = yeor (6.3)
1

The column vector containing the image model is the equntaléthe second column of
images (from the left) in Figuré.1 The d-functions inlf)kyb represent the total flux and
location of flux components at the spatial scale denotep (see Eqn6.1).
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6.1.2.2 Normal equations
A least-squares solution of Eg#.2 can be obtained by forming and solving the
following normal equations.

Skyd _ dirty,ms
[Hmﬁlsmes]lmNsxl - ImNs><1 (64)

The HessianH™*] can be written in block-matrix form witiNs x Ng blocks of sizem x m
each, and the sky mod&**® and dirty imagel%™-ms as sets of\s image vectors of size
mx 1 (AppendixB describes this block-matrix notation).

For example, the normal equations fé¢ = 2 can be written in block-matrix form as

5Ky i
[Hs1p-ol [Hsipal || 13900 iy

where the indices,p vary from 0 toNgs — 1 and will henceforth denote block row and
column indices for multi-scale equations.

Figures6.2 and6.3 are two pictorial representations of the normal equations f
a multi-scale sky brightness distribution. Figwe shows the standard normal equations
(similar to Figure3.2), and Figures.3 depicts the normal equations shown in E§rk (in
block matrix form), labeled as shown in Ecih4.

These block-matrix equations can be written row-by-rowadiews.

Ns—1

Z[Hssp]ﬁpkyé = [liny Vse{0,..,Ns—1) (6.6)

p=0

where Hspl = [FITFIBIFT,F] (6.7)
[ = [FITF]Y (6.8)

[B] is the Beam matrix (] in Eqn.3.9) and %™ is the standard dirty image (Eq8.10).
[B] is a convolution operator with the PSESf (Eqn.3.11) as its kernel, and the operators
[F'TsF] and [F'T,F] implement image-domain convolutions with scale funcsiefi® and
Iﬁhp. Therefore, each Hessian blodkd,] is a new convolution operatowhose kernel will
be denoted ak;'"2.

[PSF = [5MP s [PST 5 3P (6.9)

1 Convolution is associative and commutative. A sequenceonf@utions can be written as a single
convolution with a kernel given by the convolution of all tinelividual kernel functions in the sequence.

21-D examples of the convolution kernef&f,f are shown in Figuré.3 as the shifted rows in each Hes-

sian block. The convolution kernels from the top row of blsak the Hessian matrix (given Sofp

¥ p € {0,..,Ns— 1)) represent the instrument's responses to flux componentmiofintegrated flux
and shape given bﬁzhp. TheseNs functions are called scale-PSExJrnwell 200§ and represent the image-

domain patterns being matched to the dirty imﬁﬁ’é’.
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Similarly, each dirty imagd??"ty (in Eqn.6.8) can be written as the result of convolviﬁtﬁ[ty
with the scale functiorﬁsShp (smoothing the standard dirty image to various spatiakesjal

I‘girty _ |‘§hp* ity (6.10)

This is a matched-filteringpperation that detects the best-matching spatial scalevéoy
location in the image. For sources with equal total flux biitedent spatial scales, peaks
in the smoothed dirty images correspond to the location afusice whose scale size best
matches the spatial scale that it was smoothed with (Figurdemonstrates this).

The normal equations in EgqB.6 can now be re-written in terms of the above
convolution kernels and image vectors (Eqi9,6.10).

Ns—1
Z [PST o [S0 =[S Uity Vs e {0,..,Ns—1 (6.11)
p=0

The purpose of this step is to show that the multi-scale dlirtgtges are results of sums
of convolutions, instead of one single convolution (EGL2). The process of solving

these normal equations is therefore referred to as a josurdelution that simultaneously
estimates model images at Al spatial scales.

In order to compare this multi-scale representation wiéimdard imaging as de-
scribed in SectioB.2.1, Figure6.2shows a pictorial representation of the standard normal
equations (similar to Figurd.2) for a sky consisting of oné-function (point source) and
one Gaussian, both with equal total power bufedent spatial scales. The dirty image on
the RHS is the standard dirty image and it peaks at the |latafithe point source, but the
extended component is at the same level as the sidelobebenefore hard to detect.

Figure 6.3 is a pictorial representation of the multi-scale normal aans for
Ns = 2 (as written in Eqns6.4 and6.5) for the same sky image used in Figlie. The
two scale basis functions used in this example are exacttghad to the point source and
Gaussian present in the sky brightness distribution. Thertwdel images contain one
o-function each, to mark the location and total flux for onenpsource and one Gaussian
component. The Hessian is composed of a set of convolutieratqgrs and the dirty images
on the RHS are smoothed versions of t&. The first scale basis functidg™ is a o-

function, and therefore the first RHS vecilfg'frty is identical to the standard dirty image
(RHS of Figure6.2) and has a peak at the location of the point source. The seRbi®I

SMatched filtering is a technique used to detect the presehaesignal of some known form within a
measured signal of arbitrary form. This is done by convaiMine measured signal with known templates,
and picking out the template that gives the highest valuer abnvolution. This template is then said to
be best matched to the data. In signal and image processsgahvolution is usually implemented as a
multiplication in the Fourier domain, or in other words, afilger. In our case, matched-filtering with the
scale functioﬂfhrﬁn the image-domain is equivalent to using\ataper functioris = [F]Iﬁhpin the spatial-
frequency domain. This is equivalent to tuning the instrotisesensitivity to peak for the spatial scale
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Figure 6.2:Normal Equations for a Multi-Scale Sky Brightness Disttiba : This diagram rep-
resents the standard process of image formation with anfénteneter when the sky brightness
distribution has structure at multiple spatial scales. his example, the true sky model consists
of two flux components of equal total power buffdrent spatial scales (oréefunction and one
Gaussian, each of unit integrated flux). This diagram regrissEqn3.12and uses the same Beam
matrix [B] as in Figure3.2 (displayed using fewer rows). The dirty image vector (on RgS)
shows the point source clearly, but the Gaussian comporiemual total flux is almost masked by
the sidelobes of the point-spread-function.

vectorl}" is the standard dirty image smoothed . The peak in this smoothed dirty
image is at the location of the flux component of matchinges@ad. at the location of the
Gaussian flux component). This is a demonstration of matfitedng.

Although these peaks mark the locations of flux componenisaithing scale,
the flux values measured from the smoothed dirty images dgataepresent the total flux
of the component (as would be desired to construct a set okhdsfilinctions ). The
next section§.1.2.3 describes how an approximate inversion of the Hessian earsbd
to calculate accurate total flux estimates for componeregaett spatial scale.
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Figure 6.3:Normal Equations for Multi-Scale Deconvolution : This diag is a pictorial repre-
sentation of the normal equations formed when the sky hniggt is described as the sum of images
at multiple spatial scales (Eqrs4and6.5with Ng = 2). The sky model is a pair of image vectors
containingd-functions whose amplitudes represent the total flux of comepts centered at their
locations (see Eqr6.1). The sky brightness in this example is the same as that r&® 2, and
consists of two flux components of equal total flux bufatient spatial scales. The basis functions
used to represent the componentsl@?@ = &-function andlfhp:Gaussian whose scale matches the

broad flux component ik (in Figure6.2). The Hessian is a & 2 block matrix, and each block
(of sizem x m) is a convolution operator whose kernel is constructed fthese basis functions
(Eqn.6.9. The RHS vectors are computed by smoothing the dirty imagkffierent spatial scales
(see Eqn6.11and Fig.6.1). The top RHS vector is the dirty imad&™ (unchanged by a convo-
lution with ad-function, and also the same as the RHS of Figu& and the bottom RHS vector
is 1% x [*"P. For sources with equal total flux (note the same height obthenctions inl5*®)
peaks in these smoothed dirty images correspond to theesarose scale-size best matches the
spatial scale that it was smoothed with. This is a demomsiratf matched filtering. Working in
block-matrix form, the multi-scale dirty images (RHS) caneritten as the result of linear combi-
nations of convolutions. The multi-scale model imat¥%® can be reconstructeda a combination

of deconvolution and a block-inversion of the Hessian matri

(A few points can be noted about the Hessian matrix. Note thattop-left Hessian block
[Hs—0,p-0] = [B] is the Beam matrix, and the bottom-right blockd 1] contains smoothed
versions of the ifis-o p-o] kernel. The d-diagonal blocks have smaller peaks than the diagonal
blocks indicating that although the scale basis functiaescaupled (non-orthogonal), the matrix
of Hessian peakd{P¢® is well-conditioned.)
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6.1.2.3 Principal Solution

When the flux model is a linear combination of images and thienabequations
are written in block matrix form, we define the principal siddin as the pseudo-inverse
solution obtained using diagonal approximations of eackskéa block. This definition is
a natural extension of the principal solution defined in B&c3.2.1.6for standard imaging
in which the principal solution is computed by inverting aglonal approximation of the
Beam matrix and the values measured at the peaks of the gmirsdlution images (for
isolated sources) are the true sky values as representied image model. For the system
shown in Figure6.2, the peaks represent the true sky brightness at each pixelthE
system shown in Figuré.3, the peaks represent the total flux of a component of a certain
spatial scale, centered at each pixel, and not the sky Inegtmeasured at each pixel.

When each Hessian block is approximated by a diagonal maiitipixels can
be treated independently and the principal solution candoepcited one pixel at a time.
Since each blockHs ] is a convolution operator, all the diagonal elements pecklare
identical and given bynid{rgﬁf}. Therefore, one singlds x Ng element matrix (denoted as
[H,ﬂfjﬁs]) can be used to approximate the Hessian for all pixels. Nhdirty images (RHS
of Eqn.6.6) can be written one pixel at a time by extracting one pixehfreach image
and forming a smaller vector (denoted tﬁg‘x’i'“"). The principal solution is obtained as
follows, one pixel at a time (multi-scale equivalent of EGriL3).

H _1 . . .
PP = [HEEE, NIR™  for each pixel (6.12)

The values in [’s?** are then filled back into thdl; model image vectors, also one pixel
at a time. For an imaging instrument whose PSF &sfanction, the principal solution
gives the final image. When there is incomplete sampling, ithiersion is valid only at
the peaks of sources, and can be used only to measure th#ugstaf a flux component
to be subtracted out during an iterative deconvolution.tiSe®.1.4and Figure6.4 show
the results of applyingH s3] to [Py for all pixels for a simulated example with three

spatial scaless = 3), and suggest heuristics to pick out only valid solutions.

In practice, this principal solution is used as follows. &irwe cannot directly
invert the Hessian to solve the normal equations, we sepée process into two steps.
First, the principal solution is computed to get an estinudtide total flux per component,
and then its contribution is subtracted out of all the RHSmec

6.1.2.4 Properties of HP®2q
Some properties o ¢34 for multi-scale imaging and their implications are givesidw.

1. Each element ofHP*¥ represents the sum afv-tapered gridded imaging weights
and is given as follows.

HEek = mid 185 = tr((TJ[SWS[T,]) Vspe {0.Ne—1)  (6.13)
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2. The elements on the diagonal 6ff?q correspond ts = p and are a measure of the

sensitivity of the instrument to a particular spatial sclete that the elemerh‘lé’f)ak

is the same as the peak of the PSF in the standard Beam masunfang thatghpis

a o-function). With uniform weighting, the spatial PSFs on thagonal blocks are
the autocorrelations of the regular PSFs disslent spatial scales, and this measures
the area under the main beam of the PSF for each spatiaf scale

3. The di-diagonal elements given by # p are a measure of the orthogonalityf
the basis set, for the givam-coverage and weighting scheme. They measure the
amount of overlap between basis functions in the measuredwmnain. Smaller
values indicate a more orthogonal set of basis functiorns tla@ instrument is better
able to distinguish between the chosen spatial scales. analti-scale basis set,
there will always be some overlap between thedentuv-taper functions and this
set will never be orthogonal. Therefore it becomes impdit@achoose a suitable set
of spatial scales, such th&i P is reliably invertible. The condition number of this
per-pixel Hessian can be used as an estimate of how robustitéosowill be, and
can be used as a metric to select a suitable basis set of soatehs.

4. By choosing a set of spatial scales within the range thieument is sensitive to,
[HPe3 will be a positive-definite symmetric matrix whose invecss be easily com-
putedvia a Cholesky decompositiénAlso, the value oNs is usually< 10, making
the inversion of HP®¥ tractable.

6.1.2.5 Iterative Block Deconvolution (MSCLEAN algorithm)

This section describes the process of reconstructing ai-sudte image of the
sky brightness using a CLEAN-based deconvolution algoritiThis description follows
the same format as that of the CLEAN algorithm in Chapterhere the principal solution
is used to produce solution estimates that then get refirzeal steepest-descent optimiza-
tion. Algorithm 3 lists the multi-scale deconvolution method described is $ection.

4A diagonal approximation ofHP*® can be inverted and applied to the RHS dirty image vectors to
normalize them by the area under the main beam of the PSHaitetit spatial scales. This is related to the
scale-bias terms used in the multi-scale techniques destin Cornwell [2008 and Greisen et al[2009
(see Sectiol.1.3.

5The following definition of orthogonality is used here. Twectors are orthogonal if their inner product is
zero. The orthogonality of a pair of scale functions is meagby the integral of the product of theiv-taper
functions. To account fanv-coverage, this integral is weighted by the sampling fuorc{see Eqn6.13).

8A Cholesky decomposition is a decomposition of a symmewgitive-definite matrix into the product
of a lower triangular matrix and its conjugate transposeis lised in the solution of system of equations
[AIX = b where [A] is symmetric positive-definite. The normal equations oin@ar least-squares problem
are usually in this form. In our case, this linear least-sgs@roblem corresponds to the representation of the
sky brightness as a linear combination of basis functi®mnegs et al. 1948
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Pre-compute Hessian : The first step is to compullé,?)f (Eqgn.6.9) for all possible pairs
of scale basis functions. Since convolution is commutativere will beNgs + Ng(Ns—1)/2
distinct Il’zf images (the diagonal and lower-diagonal terms ofNb& Ng block symmetric
Hessian matrix) to be computed and then stored.

[P = [FTeToF] P (6.14)

where (P’ is the PSF (Eqn3.21), normalized to unit pedk The matrix HP®¥ is then
constructedrsia Egn.6.13and its inverse is computed and storedHrP‘[a‘(l].

Initialization:  The model imagd?“(’de'is initialized either to zero or to aapriori model.

Major and minor cycles : Iterations begin from stepand proceed through the follow-
ing steps. Step&to 4 form the minor cycle. and stedsand5 form the major cycle. In the
case of a non-empty initial model, the deconvolution precedi begin from stefb.

1. Compute RHS: Residual images for eache {0, ..., Ns} are computed as
= [FITFM™  or =Myt (6.15)
wherei™sis the current residual image (Edh14). For the first iteratiori™es = [dirty,

2. Find a Flux Component: The peak value in the dirty images across all scales is
identified and the principal solution is computed at thistom?. TheNsx 1 solution
vector (obtainedia Eqn.6.12) contains the total flux required for components at each
spatial scale such that their combined contribution preditbe measured flux value
at that location ing"™. The largest number in this solution vector is chosen as the
total flux of a component at the scale to which this maximunmespondd

Let Iﬂ‘&dem represent the chosen flux component of scale gig iterationi). This

model image contains@&function that marks the location of the center of this com-
ponent and whose amplitude holds the estimated total fluth&ircomponent.

7 Note that the use ds" with unit peak is equal to scaling both sides of the normabd¢igus by a single
scale-factor given by the sum of imaging weights. This isiejant to defining the weight imag&! as the
diagonal of the IHo o] Hessian block, and normalizing all the RHS vectors by it.

8Note that a solution computesb [H peal(l] is valid only at the exact locations of the centers of each flu
component. If this inverse is applied to all pixels beforarshing for peaks, PSF sidelobes are amplified and
can mask weak sources even more than usual (see Séctiéh

9 When there are exactly overlapping flux components thatestiar same center, then contributions at
all scales are represented in tNg x 1 solution vector and can be simultaneously removed. Hokyévis
impossible to distinguish this situation from the case &t but overlapping components in which case a
simultaneous solution will be inaccurate. Therefore itdfes to choose only one component at a time, the
one corresponding to the largest number in the solutiorovect
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3. Update model images A single multi-scale model image is accumulated with the
chosen component at thp spatial scale as follows.

fodel _ finodel g(lﬁg\(c:;ielé * réhp) (6.16)

whereg is a loop-gain that takes on values between 0 and 1 and deksrthe step
size for each iteration in the? minimization process.

4. Update RHS: Each residual image vector is updated by subtracting th&ibation
of the selected flux component at the spatial sgalgiven by [7°°®). This step
is equivalent to evaluating the LHS of the normal equatidtg(6.6) with a series
of Ns model image vectors where onif°®*®® has non-zero elements, and then sub-
tracting this result from the RHS image vectors. This updtgp can be implemented
efficiently if the convolution kernels of each Hessian bld)ﬁlz are pre-computed and

stored (convolutions with-functions are shifted and scaled versions%f).

|‘2es — |‘;es —g (rgsf I‘Lng;jelb) (6.17)
This step can also be written in a perhaps more intuitive gomputationally ex-
pensive) way to compare it with the update step of standafAN.deconvolution
(described in Sectiod.2.1.9. The standard residual imag/&s (Eqn3.14) is updated
by first convolving the model |mag%‘°;’e’b with a scale PSHfpSf and then subtract-
ing it out. The resulting residual image is then smoothedﬂf@[ént spatial scales to
form the new set of RHS residual images (E§rL5.

[fes = [fes— g (105, * IMi®®)  andthen  [18= [3"P [Tes (6.18)

This two-stage method (Eq.18) is possible only becaud&y' = 105+ I2"° (ac-
cording to Egn6.9). Also, it is more computationally intensive than the firstthod
(Eqn.6.17) because of the extra convolutions that need to be done &y ewinor
cycle iteration. The first method requires only a shift, swpland subtraction for
each flux component and makes use of pre-computed Hessiagl kenctions.

Repeat from Step2 until a flux limit is reached. This flux limit is usually chosas
the amplitude of the largest PSF sidelobe around the bsgbtairce irif)es.

5. Predict : Once the minor cycle flux limit is reached, the current besingate of the
multi-scale model image is used to predict model visilgig¥™ ' (using Eqn3.189.

Repeat from Stepl until the residuals satisfy a stopping criterion usuallgdxhon
an estimate of how noise-like they are.

Restoration : After convergence, the multi-scale model image is already form sim-
ilar to that in the standard imaging case, where the onlysslefp are to smooth it with a
restoring beam to suppress high spatial frequencies thdteigond the range of the sam-
pling function and to add in the standard residual image.
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Algorithm 3 : Multi-Scale Deconvolution as described in Sectioh.2.5

o o~ W N P

© 0 N

10
11
12
13
14
15
16
17
18

19

20
21

22
23
24
25
26
27

28
29

Data: Calibrated visibilities V<"

Data: uv-sampling function Sp.m

Data: Image noise threshold and loop gaif,, Js
Data: Scale basis functionslfhPVS € {0, Ng}
Result Model Image :[™ode

Compute the dirty imagg™ and psfiPs
foreachscale sc {0, Ng}, p € {s, Ng} do
Computelds' = 1" x IPsT 5 3P

end

Construct HPe3] and [HPea< "] with HE%™* = mid(1 55"
Measure the peak psf sideloligieiope
Initialize the model™*¢'and residual imagei$es

repeat

foreach scale se {0, Ng} do

end
repeat /* Minor Cycle */

until Peak residual at any scale Flux Limit at that scale
Compute model visibilitie¥ ™! from the current model imagd'd®

Compute a new residual imag¢/é® from residual visibilities
\/eorr _ Vmodel

until Peak residual at all scales stopping threshold
Restore the final model imad@&°d®!

nx1

mx1

/* Major Cycle */

Calculate smoothed residual imagd§s = 15" % |7es
Calculate a flux-limit for scals: fiimit.s

foreach scale se {0, Ng} do

\ Find the location and amplitude of the peags:= peak|:*%)
end
Choose the location of the global pemlaxps) for s € {0, Ng}
Construct P*4" anNg x 1 vector froml™s over all s € {0, Ng}
Compute principal solutioh®® = [Hpeak*]| pixdity
Construct a modellg"é from the maximum amplitude entry irf°!
Update the model image with a flux component of the chosee scal
sizep, location and amplitudel:mede! = [model . g §| Mo 5 | P
foreach scale sc {0, Ng} do

Update the residual image s = 1785 — g [811 x 1257]

end
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6.1.3 Dfferences with existing MS-CLEAN techniques

There are two main dlierences between the multi-scale deconvolution algorithms

described inCornwell[2008, Greisen et al[2009 and Sectior6.1.2.5 These diferences
are described below to emphasize the relation between thed®ds and show how the
two existing methods and their implementations are apprakions of the generic method
described in this sectiob(1.2.9.

1. Finding a flux component : In the first two methods, the amplitude and scale of a

flux component are chosen by searching for the peak in theflditty images after
having applied a scale bias, an empirical term that de-esipbsilarge spatial scales.
The scale biabs = 1 — 0.6 S/Snax Used inCornwell[2008 (where syax is the width
of the largest scale basis function) is a linear approxiomatif how the inverse of
the area under each scale function changes with scal€.slzés meant to be used
to normalize residual images that have been smoothed watk finctions that have
unit peak, before flux components are chosen. The algoriteseribed inGreisen
et al.[2009 usesbs ~ 1.0/s** wherex € {0.2,0.7}, to approximate a normalization
by the area under a Gaussian, for the case when images ar¢hetdny applying
a uw-taper that tends to unity for the zero spatial frequencythim context of the
algorithm described in Sectidhl.2.5 the diagonal elements dflP®{ are a measure
of the area under the main lobe of the PSF at each spatial, smadeboth these
normalization schemes are roughly equivalent to using gattial approximation of
[HPe3 and discarding all cross-terms when computing the priaciiolution before
picking out flux components.

Once we have this understanding, we can see that the fulidte$®®] (and not
just a diagonal approximation) can be inverted to get thenadization exactly right,
especially for sources that contain overlapping flux congmds of diferent spatial
scales. It can be shown that by applying the inverse of tHe i®3] to the RHS
vectors before picking out a suitable amplitude and scale fiix component, we
are able to get a more accurate estimate of the total-fluxeofitixk component than
by just reading & a peak from a series of dirty images biased by the MS-CLEAN
bs. This diference has been demonstrated on simulations (Segtlod where the
inverse of HP®3{ was applied to all pixels of a series of smoothed dirty-iesdout
the relative performance of this approach (compared to xistieg methods) is yet
to be analysed within the complete iterative deconvoluframework. It is likely
that the technique described in Sectti.2.5would get more accurate minor cycle
estimates and therefore converge in fewer iterations.

. Minor cycle updates : The update steps @ornwell[200§ and Sectior6.1.2.5eval-

uate the full LHS of the normal equations (to account for the-nrthogonality of the

10 Whens/snax = 1.0 the bias term is.D — 0.6 = 0.4 which is approximately equal to the inverse of the
area under a Gaussian of unit peak and width, given.0y~2x = 0.398.
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basis set) to update the smoothed residual images and cuiniteflux components
within the image domain. This allows each minor cycle iterato search for the op-
timal flux component across all scales without having to mgoote smoothed resid-
ual images in the visibility domain after each iteration. tha other handGreisen
et al.[2009 ignores the cross-terms, performs a full set of minor cytdeations
on one scale at a time, and recomputes smoothed residua¢sviaghe visibility
domain after every full set of minor cycle iteratidhs

A choice among these three methods (and other possible oatidns) will depend on
trade-dfs between the accuracy within each minor cycle (for measilugdralues as well
as the update process), minimizing the computational carsstep, and optimizing global
convergence patterns to control the total number of itersti For an example of such a
trade-dt, see Sectiof.1.2.3(principal solution of the multi-scale multi-frequencymmual
equations).

6.1.4 Example of the Multi-Scale Principal Solution

This section contains an example of the principal solutimmputed by applying
[Hpea‘(l] to all pixels in a set of smoothed dirty images (using a se2DfGaussians as
the scale functions). The purpose of this example is totithis how this process is able
to separate overlapping flux components dfetent spatial scales and give an accurate
estimate of the total flux contained in each component, astidav when this gives a near
optimal solution and when it will not.

Figure6.4 shows a set of dirty images convolved with Gaussian scaletitums
(top row) and the result of Eqi6.12(bottom row) over all pixels, for a simulated example
of multi-scale imaging witiNg = 3. The simulated sky brightness distribution consists of
flux components at two spatial scales given by Gaussiansenhioshs are 1 and 24 pixels.
Three sources are constructed using these components.oiritespurce on the top right
has 0.1 Jy of flux. The source on the top left is a composite a@ifilat gource of flux 0.1 Jy
and an extended source of total flux 1.0 Jy, centered on the pas@l. The source on the
bottom is a similar composite in which the centers of the paimd extended components
are dfset from each other. The three scale basis functions useudtii-scale imaging
correspond to Gaussians of widths 1, 6 and 24 pixels. In #tasle, two basis functions
exactly match the scales present in the sky model, and orseradé.

IRecomputing smoothed residual images by transformingdetwhe image and visibility domains is a
computationally expensive operation. Therefore, it isfuis® either find a way to update them within the
image domain or to reduce the frequency with which they atemgputedvia transformations to and from
the visibility domain.

12Note that in practice, it is usually impossible to find petfgenatching scale sizes for all flux compo-
nents, and this principal solution will be an approximatidhe example described here is only an illustration
of what the principal solution means for multi-scale imagin



100

-I*dl'rry - —j .§1p % -I*a'r'rry le’r[v = —j _Jr.hp % —ja’r’rr_\' a'lm i I 5 shp Ia‘rrrv

0 1

A0
60
a0

niz
010
|L'I.JU

ot
; 0.018
006
3 0015
0.05
0.012
0.04
n.008
003
1 0.006
0.0z E:
I 0.063
0.01
0.0
0.0

100 | |04
170 (hE}
140 o0z
150 000
40 60 80 100120 140 L0 180 4060 80 100120 140160 180 40 G0 80 100 120140 160 130
0.5
A0 T T T T 0100 W E T T 0.1&
Ve L o e ) 0.75
¢ ° a 8 Roos ¢
an | nose 80 .03 0}
0.04 ,
100 n n?s 100F 1 e
0.00
120 F- | u 000 12iE A 0.3
140 A 0025 1400 b oon 1 o D13
160 I ; I f 0os0 leld o1z 16 000
40 60 80 100120140160180 M 0975 50 w0 150 0.1g 100 150
= psol 7 psol 7 psol
£ I 15

Figure 6.4: Example of the Multi-Scale Principal Solution : These immglow a set of three
dirty images (top row) and the corresponding principal soluimages (bottom row). The purpose
of this example is to demonstrate (a) theet of smoothing the dirty images Hy"P and what
happens to the peak flux, and (b) the fact that the flux valuéseiprincipal solutions images are
the true total flux values of each component. This result aandzd in the minor cycle to get a
good estimate of total flux in each flux component. The sinedaky in this example consists of a
combination of point sources of flux 0.1 Jy and large flux congmts of total flux 1.0 Jy. One source
is an isolated point source and two sources are compositeseopoint source and one extended
source. Also, the scale basis functidﬁgp and| hIDexactly match the point source and extended
component respectively, bllffhp matches neither. The top row of images are smoothed versions
of the dirty image (Eqn6.1Q or IP*diy from Eqn.6.12with all pixels filled in). The image on
the top left is the dirty image smoothed withbeunction and shows the point sources clearly but
the peak extended flux is relatively weak. The image on theitdp is the dirty image convolved
with a scale function matching the large-scale flux compgnand shows a good match at the
largest spatial scale, but the amplitude is wrong. Thesditutes can be corrected by computing
the principal solution. The images in the bottom row Et&' (IP™Ps°l for all pixels) the result of
calculating the principal solutiorvig Eqn.6.12) for all pixels. The values at the central locations
of the sources irfgo' and IEO' are the correct total flux values for a source at the matchaades
The values at the locations of the sourceﬁfﬁ‘n are all zero, indicating that this spatial scale is not
matched by any flux component. Talflel.4shows the peak values in the top and bottom rows of
images at the locations of the three sources.
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pIx; pIx; X

Source |‘grue |':fLrue |‘£rue |‘(’t)iirty qﬁirty |ldirty |_;sol I_;TOI |‘fol
Point (top right) 01 00 00;01 0.04 0.0080.1 <0.01 <0.02
Extended (top left) 0.1 0.0 1.0|0.12 0.07 0.02| ~0.1 <0.01 ~0.9

Extended (bottom) 0.1 0.0 1.0|0.11 0.06 0.018§ ~0.1 <0.01 ~0.95

Table 6.1: Multi-scale principal solution example

The top row of images shows the dirty images smoothed to tinese spatial scales. The
isolated point source peaks only "™ and is suppressed in the other two images. The

extended sources peakl§**™ which is where their scale is best matched. However, the
peak flux values in these images are far from the total fluxasthat the imaging process
hopes to reconstruct. The bottom row of images show the ipahsolution image$®!

for the three spatial scales. The peaks fridfhat the location of these sources are almost
exactly equal to their total flux (as required for constmgtthe model image in the minor
cycle). Note that at the central locations of all three sesydhe value irﬂs"' is zero,
indicating that there is no flux component at that particatale.

Table 6.1.4 shows the peak values measured for each source, in the sedooth
dirty images as well as in the principal solution images. Sehaumbers show that as
desired, the peak values of the solution images give nearhgct total flux estimates for
spatial scales that exactly match those in the data.

A few points to note are :

1. This solution is valid only at the locations of the centefghe flux components
because it is derived from a diagonal approximation of eaebskhn block. This
solution will be valid across the entire image only if the RS 6-function. With
an interferometric PSF, the sidelobe structure is enhgraed in some cases can
produce artificial peaks that are higher than the true vadiiéise center. In the case
of overlapping components, the sidelobes of one componiértause errors in the
estimate of the others.

2. The total flux estimates derived from the principal sauatwill give an exact solu-
tion only if the scale basis functions exactly match theexaresent in the image.
Otherwise it will still model it correctly, but may not be tloptimal set of scale basis
function and may use more flux components than required.

Therefore, the minor cycle of an iterative multi-scale deadution algorithm still needs
heuristics to decide how to pick flux components. The priacgolution gives a more
accurate estimate than using a scale bias, but it is at treneemf higher sidelobe structure.
The algorithm described in Secti@nl.2.5suggests choosing the location of a source from
the peak of ?*®", calculating the principal solution only at that locati@md subtracting
out only the dominant flux component at that location.
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6.2 Multi-Frequency Synthesis Deconvolution

The uv-coverage of a synthesis array can be greatly improved ygusie fact
that visibilities measured at fiierent receiver frequencies correspond tfietent spatial
frequencies. Multi-frequency synthesis (MFS) is the pssoaf combining data from mul-
tiple spectral channels onto the same spatial-frequendydgring imaging to take advan-
tage of the increasedv-coverage and imaging sensitivity. As long as the sky brighs
does not vary across the total measured bandwidth, stamtaging and deconvolution
algorithms can be used along with MFS. If the sky brightnesgeg across the observing
bandwidth, the monochromaticity requirement of apertyretisesis breaks down and the
2D Fourier relation in the van Cittert Zernike theorem (E@rf) does not hold. In other
words, when data from multiple frequencies are griddedttogrethere is no way to tell if
variations in the measurements across the spatial freguy#ane are due to spatial struc-
ture, or spectral structure, or both. However, there isroéieough information in the data
(via the known frequency dependence of the sampling patterngparate the two, and
both spatial and spectral structure can be derived simettasly by choosing a physically
appropriate model for the sky brightness distribution ai a®its frequency dependence.
If the spatial structure is knowra(priori or via a physically appropriate flux model), any
remaining structure on the spatial frequency plane can toibuwted to spectral structure
and separately modeled. Or, if the spectral structure isvknthis information can be used
to constrain the spatial structure.

Section6.2.1defines a broad-band flux model that approximates a power law
with a polynomial in frequency. Sectigh2.2describes a multi-frequency deconvolution
algorithm that models the spatial structure by a collectb-functions, and the spectral
structure as a smooti" order polynomial in frequency. The basic idea is to look &t th
spectra for individual locations on the sky, performNifi order polynomial fitvia a least-
squares approach, and prodide 1 codficient images, all within a deconvolution frame-
work that takes advantage of the combined multi-frequerneyoverage and optimizes the
broad-band sensitivityia a weighting (preconditioning) scheme. This discussionfra
mal derivation of the technique describedSault and Wiering§1994 and Conway et al.
[1990 and describes a modified version of the Sault-Wieringa MFE=EN algorithm that
improves upon its imaging fidelity (Sectiédh2.3describes this diierence and its implica-
tions). Sectior6.2.4.1contains a brief discussion of the errors incurred by apipnaxing
a power-law with arN'™ order polynomial. Chapter later describes a similar algorithm
that combines this approach with the multi-scale image mddscribed in sectios. 1
This entire section ignores all direction dependent imagntal €fects and their frequency
dependence. Sectioh2deals with thesefeects by folding the antenna primary beams and
their frequency dependence into the multi-frequency img@@gquations.
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6.2.1 Multi-Frequency Image Model

The sky brightness distribution of astronomical sourcasallg varies with fre-
guency, either due to the spectral structure of the emitdahtion or if the spatial structure
of the radiating object varies with frequency. In eitheregaan accurate reconstruction of
the wide-band sky brightness distribution will require aguency-dependent flux model
to be folded into the measurement equation. Just as stamdarférometric image recon-
struction usega-priori information about the spatial structure of the sky to estentle vis-
ibility function in unmeasured regions of thie-plane, multi-frequency imaging algorithms
need to use-priori information about the spectral structure of the sky briglsgxduring
reconstruction from data with incomplete spectral sangplih wide-band flux model can
provide these constraints on the sky spectrum during noeati deconvolution.

A simple spectral model for the Stokes | components of bioaad continuum
emission can be a polynomial in frequency. This functiomaiht (a linear combination
of basis functions) is desirable because it makes the noal@ptimization process more
tractable (can apply linear least-squares). However,ddl@nd continuum emission from
astrophysical sources is often best represented by a daweAcross the wide frequency
ranges that new receivers are now sensitive to, spectrakbyeteepening and turnovers
also need to be included in these models, and the simplestavdy so while ensuring
smoothness is with a varying power-law index (spectral ature).

A power law with a varying index can be represented by a secwddr polyno-
mial in log(l) vslog(v—vo) space. The cagcients of the polynomial are the logarithm of the
flux at a reference frequency Idgy), the average spectral indexand the curvaturg.

log(l,) log(l,,) + @ Iog( )+ B Iog( )2 (6.19)

v a+ﬂ|og( )
= Iv,a,ﬁ = |,,O V_O (620)

Although Egn6.19describes a model that is parameterized as a polynomislitpracti-

cal to work directly in log() vs log(v) space because this involves the numerically unstable
process of taking logarithms of image pixel amplitudes mphesence of noise. Two alter-
nate polynomial models based on Taylor series expansiernseascribed below (s v and

| vs log(v)) followed by the definition of a wide-band flux model as a ilneombination

of a finite number of spectral basis functions.

6.2.1.1 Series expansion df, s about v = vq

Expanding Eqn6.20 aboutvg yields a polynomial inl vs( ) space. The
physical parameters,, « andg can be obtained from the first three terms. However, an
accurate fit to the power law may require more terms in theeseand the error in the fit

after ann" order expansion i® [a(v;—;o)]m.
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8lmﬂ 1 azlvaﬁ
Iva = Iv — - - - - 2
f o t [ rw lVO(V vo) + 5 52 L (v = vo)

1[83,0p 3

+ 6[ 53 ]VO(V_VO) + .. (6.21)
N Y — o\l
Iv,a,,B:ZIt( . 0) wherely = 1,
=0 0
Il = Ivo[a]

l, = 1,,[le(a—-1)/2+p]
I3 = 1, [a(a-1)(@-2)/6+pB(a-1)]
and so on (6.22)

6.2.1.2 Series expansion df, ; abouta =0,4=0

Another power-series expansion can be obtawiagartial derivatives with re-
spect too andB. This expansion yields a polynomial invs Iog(v—vo) space. The first few
power-series cof@cients derived from a third-order expansion abeut 0,3 = 0 is given
below. Here too, only the first three terms are needed to Eakely , andg, and the error

. . 1
term after am™ order expansion i© [a Iog(y—vo)]n+ :

Olyep ] [62 )08 ]
+af
op 00 oadp 00
el 51
d0a? Joo 2 9B% oo
314°1,,
%], 5
0,0 6 818 0,0
2 3 2 3
a/,B [8 Iy’a/’ﬁ:| 4 % [8 lv,a,ﬂ] +
00 2 | 0adp? 00

(6.23)

N

t
lyop = Z l¢ [Iog(vlo)] where |y

t=0

[y,

1 = 1,[e]
lo = ly,[a?/2+]

ls = l,[a*/6+ o]
and so on (6.24)
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This expansion can be done about more realistic values afidg (for example,ag =
—-0.7,80 = 0.0). In this case the cdigécients can be interpreted &s= 1,4, 5,, 11 = ly.005[@—
aol, 12 = e pl(@ — @0)?/2 + (B — Bo)] and so on, but the functional form of the spectral
basis function will not change. To take advantage of a knovenage spectral index and

curvature over all sources in the image, the data can bedsba(e;%)aﬁﬂ (_0) prior to multi-

frequency imagingConway et al[199( suggest this approach to reduce the magnitude of
the higher-order terms in the series so that a solution veitvef terms in the Taylor series
expansion (or even standard MFS) maytise for an accurate deconvolution.

6.2.1.3 Image model for multi-frequency deconvolution

A sky brightness distribution that varies smoothly with elwng frequency can
be modeled as a linear combination of spectral basis fumetamd cofficient images (see
Eqns6.22and6.24for two possible series expansions). The flux modeled atfeaghency
channel can be written as

Ni—1 _ t
[rodel= 3" wiitY where w, = (V VO) (6.25)
t=0 Yo
t
or w, = [Iog(l)] (6.26)
Y0

whereN; is the total number of terms in the series aﬁ% are the cofficient images (one
set of codficients per pixel).v is the observing frequency ang is a chosen reference
frequency andM, is the evaluated result of th# basis function for a given value of W'

is used as a weight during MFS gridding and will be called ddayeight.

Eqns.6.25and6.26 show two choices of spectral basis functions. In practice
it is a simple matter to switch between the two, dependinghertype of spectrum of the
emission being imaged. The linear expansion (Eqp5 was chosen for all the tests in this
dissertation because it can be applied to arbitrary but simgmectra. For pure power-law
spectra associated with isolated point sources or extesmi@des with a constant spectral
index (across the source), the logarithmic expansion istieibehoice from the point of
view of series convergenc€pnway et al. 1990 However, in general, the sum of two
power-laws is not another power-law. Therefore, when trexzgpl index varies smoothly
across extended emission, and the wide-band spatialsteuistmodeled using a collection
of overlapping extended flux components with fixed spectnalpgs (see Chaptérfor
a multi-scale multi-frequency deconvolution algorithnattluses this approach), a Taylor
expansion inl vs v space is a more general choice of parameterization. Se6tibA
discusses some of the errors associated with the use of sybdr polynomials to fit pure
power law spectra.
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6.2.2 Imaging Equations and Block Deconvolution

This section contains a derivation of the normal equationgfmulti-frequency
image model. This is followed by a description of the primtipolution and its use in an
iterative joint deconvolution. Algorithm lists the multi-frequency deconvolution method
described in this section. The derivations in this sectis@ a block-matrix notation (de-
scribed in AppendiB) to represent the measurement and normal equations.

6.2.2.1 Measurement equations

We begin with an example of how the sampling function of theriierometer
(and the PSF) changes with observing frequency. Figaifeshows a set of 1-D grid-
ded sampling functions and corresponding PSFs for threrdnt frequenciesy, v, =
2v1,v3 = v, (N; = 3). These plots show that each frequency measure$aetit range of
spatial-frequencies, and the angular resolution of theeungent increases with frequency.

The goal of multi-frequency-synthesis is to use the combinecoverage from
all measured frequencies and reconstruct the image at theamesolution allowed by the
highest frequency in the band. One way to accomplish thiswsite separate measurement
equations for each frequency, and then solve them simuteste

Let there beN, observing frequencies with measurements taken at each fre-
guencyv. The visibility vector for each frequencﬁfo”) has the shapa x 1, and the
sampling matrix §,] has the shape x m (Figure.6.5 shows an example of how the sam-
pling function and the corresponding PSFs change as a amofifrequency). Fwm] IS
the Fourier transform operator (image to spatial-freqydaad all images are lists ofm
pixel amplitudes. The measurement equations for one frexyuare given as follows.

Ne—1
\7‘(/:orr =[S,][F] I‘I/nodel _ Z M[Sv][ F] |‘t$ky (6.27)
t=0

Note that the imagel%“"de'v t € {0, N; — 1} form theN; codficients of the series expansion.
The order of each term in this Taylor polynomial is denotedh®y/subscript.

A multi-frequency measurement equation can be written lyliaing measure-
ments from all frequency channels. The full visibility vecy/°" (note, no subscript)
now contains all frequencies and has the shagex 1.

N—1
veer = 3 IWMSIFIIY (6.28)
t=0

The sampling operatof§] (of shapenN; x m) is a vertical stack of$,] matrices (of shape
n x m each) over alN. frequency channels.W""9 is a block diagonal matrix of shape
NN: X NN, constructed fronN, diagonal matrices (each of shapex n, denoted by\V™,
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Figure 6.5:Multi-frequency sampling weights and PSFs : The plots orefteshow 1-D gridded
sampling functions?‘giWSV] at three diferent frequenciesv(= 1,2, 3 from top to bottom). The
plots on the right show the corresponding PS?—% calculatedvia Egn.3.11 The range of sampled
spatial frequencies scales linearly with frequency. Thanges the shape of the PSF, and the width
of the main lobe (angular resolution) decreases at higl&qubncieséfflf: 5.7 with Umax = 0.6 KA,
ijzfz 2.8 with Umax = 1.2 K\, ijefz 1.9 with unax = 1.8 k,). These 1D plots are the multi-
frequency equivalent of Figure.1 (with different spatial-frequency sampling functions chosen to
illustrate the diterence between frequencies).

and containing the weight&). [Fy.m] is the same Fourier transform operator used in the
single-frequency equations (Egd.27). The full measurement matrixAJ in Eqn. 2.20
therefore has the shap®. x MmN where each of th&l; block columns corresponds to one
series cofficient. ThisnN; x mN measurement matrix operates on thél x 1 column
vector of image pixels to produce\, visibilities.

An example folN; = 3 is shown below.

2
0

(Wo S F| [WSF| (WSS || 1Y | = ver (6.29)

2
2

Each model image vectcbﬁky is an image of thg™ coeficient of the Taylor polynomial
used to represent the spectrum at each point on the sky (geeeBilfor an example).
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6.2.2.2 Normal equations

The least-squares solution of Egh29is computed by solving the normal equa-
tions (as shown in block-matrix form in Append®). With N; terms in the model descrip-
tion, the Hessian is made up Nf x N; blocks, each of sizenx m. The sky model and dirty
images are a set &; image vectors each of sizax 1. Let us label the normal equations
as follows.

mfs iSkymfs _ dirty,mfs
[HmemN]Imel - ImN><l (6-30)

These normal equations can be written in block matrix forra.afy example, consider the
case wherd\; = 3.

Sk ;
[thoquO] [ Ht:O,q:l] [ Ht:O,q:Z] qué I_td=lgy
[ Ht:lﬂ=0] [ Ht:l,q:]_] [ thl,q:Z] r::{ = I_td=";Lty (6 31)
[Hiz2g-0] [Ht=2g-1] [Hi=24-2] |’§':<32/ |?:ir2ty

Figure 6.6 is a pictorial representation of these normal equations(E®1) for N; = 3,
using the multi-frequency sampling functions shown in &ig(and labeled as shown in
Eqn.6.30. In the figures, the full Hessian matrix on the LHS of EGtB1is denoted as

[H2''®. ] and the model and dirty image vectors are denoted as stdds ® 3 vectors

each (’skymfs |_f:iirty,mf5).

These matrix equations can be written row-by-row as followse indicest,q
vary from 0 toN; — 1 and will henceforth denote block row and column indicesmanti-
frequency equations.

Ni—1

D HIIEY = 1 Vit e {0..N, -1 (6.32)

q=0
There are two ways of writing and computingl;[;] and If"”y. The following pairs of
equations show that the Hessian blocks and RHS vectors ceonipguted either by grid-
ding Taylor-weighted visibilities from all frequenciesgether (Eqns6.336.34 Y, in the
visibility domain), or by a Taylor-weighted sum of the Hessiand RHS vectors formed
separately from each frequency (Eq6s356.36 Y, in the image domain).

1. Calculating the normal equations from the measuremergtemns as written in Eq16.31
gives the following forms for the Hessian blocks and RHS @exct In these equa-
tions, summations over frequency are implicit in the dimens of the matrices that
make up Higl.

where  Hi = [F'STWMSwmwriss (6.33)
A = [FrSTwS wimveen (6.34)
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[W™] is a block diagonal matrix formed from a set Nf single-frequency diagonal
weight matrices\V™], andVe" contains alhN, visibilities.

2. Egns.6.33and6.34 can be re-written in a more intuitive form in terms of single-
frequency sampling functions, weights and PSFs and ekglichmations over fre-

guency.
[Hiol = ) W F'SIWTS,F] = > w[B)] (6.35)
[ = ) WFTSIWMVT = 3w (6.36)

Here, Y, indicates a sum acrod¢; frequency channels, an@|] and %" are the
Hessian (Beam matrix) and dirty image for frequencygiven by Egns.3.9 and
3.10.

Consider each Hessian blodH:[;]. Each term in the summation in Eq6.35is a Beam
matrix (a convolution operator) and therefore each Hedslaek [H; ¢] is also a convolution
operator (matrix multiplication is distributive). The kel of each H; 4] will be denoted as
Ifjf and is computed as a weighted sumi®f (Eqn.3.11) computed at each frequeney

T = > WrAFTSIWIMT = )" whaPe! (6.37)
1-D examples of these convolution kernels are shown in6Fsgas the shifted rows in
each Hessian block. The kernels functions of the first row e$stian blocksl Sofq Vqe
{0, N; — 1}) represent the instruments response functions to a paimtsavhose spectrum
is given by theg" spectral basis function (Ech25 and are called spectral PSF3ajult

and Wieringa 1994

Fig. 6.6 represents the normal equations for a three-term seriesnsign {\; =
3). The three segments bj:;’i’}‘fs represent three céiicient images that make up a multi-
frequency model for two point sources on an empty sky. Thelitumaes of thed-functions
were chosen such that both point sources have unit total fltixeareference frequency,
one has a positive slope in frequency while the other has ativegslope, and both have
positive curvature. The Hessian matrix on the LHS is conagrisf 3x 3 blocks each of
sizem x m. Each block is a convolution operator constructed frﬁ’ﬁd. These equations
show that the dirty image vectors on the RHS can be written lasear combination of
convolutions of spectral céigcient images Withfjf. The Taylor-coéicient model images
|sk¥mfs can be recoveredia a combination of deconvolution and block inversion of the
Hessian matrix.
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Figure 6.6: Normal Equations for Multi-Frequency Deconvolution : Thigram is pictorial
representation of the normal equations formed when the p&gtaum is described as &%order
Taylor polynomial in frequency (Eqn$.30 and 6.31 with N; = 3) and the spatial structure is

described by a point-source flux model (no multi-scal ’;Tfsis a 1-D model of two point sources

on an empty sky. The three segments correspond to the Tegéfieient imageslgky forq =
0,1,2 (see Egn6.25 and represent the case where both point sources have talifltx at the
reference frequency (top vect@rfunction amplitudes are 1.0 and 1.0), the spectrum of onecgso
has a positive slope in frequency while the other has a negatope (middle vecto-function
amplitudes are+0.5 and -1.0), and the spectra of both sources have positimatare (bottom
vector, o-function amplitudes are-0.5 and+0.5). The Hessian matrix (LHS) consists o33
blocks each of sizen x m, and each block is a convolution operator constructed fropaia of
Taylor functions (Egn6.35. The RHS vectors are computed as Taylor-weighted sumeditigle-
frequency dirty images (Eqi6.36). These equations show how the dirty image vectors (RHS) can
be written as a linear combination of convolutions. The Bagodficient model image$sk¥mfs
can be recoveredia a combination of deconvolution and block inversion of thesglan matrix.

(A few points can be noted about the Hessian matrix. Theeftpblock [Hi-g4-0] is the Beam
matrix [B] constructed from the sum of all the single-frequency PSeg [ig.6.5 for the single-
frequency PSFs used in this example). With only three fregies, each row of the top middle
block [Hi—0,g-1] is the diference between the first and the last single-frequency Pi@&Fcéntral
values of the fi-diagonal blocks are non-zero but smaller than the peakd@iiagonal, making
[HPea4 3 well-conditioned matrix.)
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6.2.2.3 Principal Solution

The principal solution is obtained by approximating eaclssi@n block by its
diagonal and computing the solution independently for gagél (similar to the principal
solution for multi-scale imaging described in Sect®i.2.3. The peak values measured
from the resulting images are in true sky flux units, and thesees contain no contribu-
tion from the invisible distribution of images.

The approximate Hessian is a setNyfx N; diagonal matrices. Since each block
is a convolution operator with identical numbers on the dra, the entire Hessian ap-
proximation can be written as one singlex N; element matrix denoted aBI,ﬁtef'N‘t]. The
dirty image vectors are also written one pixel at a time & & 1 vector and a per-pixel
solution is obtained (similar to Eq6.12) as follows.

. -1 . . A
PPl = [HEEE 1IRXS™  for each pixel (6.38)
The values il <P are then filled back into this, model image vectors, also one pixel at
a time. For an imaging instrument whose PSF &sfanction, the principal solution gives
the final reconstructed image. When there is incomplete Bagjghis inversion is valid

only at the peaks of sources and can be used only to find flux coemts during the minor
cycle of deconvolution.

6.2.2.4 Properties of HP®3q

Some properties o %2 for multi-frequency imaging are given below.

1. Each element oH?®3 is given by

e = mid{I5""} = tr [Zwmsivwmsy]] Vt.ge {0.N. -1}  (6.39)

v

2. The elements on the diagonal 62 correspond tda = g and are a measure of the
sensitivity of the instrument to a th#é spectral basis function. Note that the element
Hggakis the same as the peak of the PSF in the standard Beam mati€(m3.11).

3. The df-diagonal elementd & ) are a measure of the level of orthogonality of the
basis set (see footnof®n paged4) for the givenuv-coverage and weighting scheme.
For example, in the special case of natural weighting andgaraleand symmetric
distribution of frequencies on either side\gf the value ofnid{l%’lsf} will be exactly

zero, reflecting the fact that the first two spectral basisfioms are orthogonal.

3Note that the series expansion of E@n22 corresponds to a set of functions given hyxx?, X3, ...,
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4. [HP*¥ is a Vandermondé matrix whose inverse can be easily computéa a
Cholesky decomposition. Also, the value M is usually< 5, making this inver-
sion tractable.

6.2.2.5 lterative Block Deconvolution

This section describes an iterative joint deconvolutiatess for multi-frequency
imaging, similar to that described for multi-scale decdation. The data products in this
case are a set of spectral éidgent images.

Pre-compute Hessian : Ifjf (the kernels of each Hessian block) are first computed for all
possible pairs of spectral basis functions. Since the plidétion of diagonal matrices is
commutative, there will b&l; + N;(N;—1)/2 distinct functions to be computeth Eqn.6.37

in which the PSF for each frequeneys computedria Eqn.3.11

The peak of the un-normalizd@jf is equal tows,m = tr[STW™S], and has no
contribution from the spectral basis functions (since % order function is a vector of
ones). All spectral PSFs are to be normalizedvgy, to get the peak olfgsf to unity, but to
retain the relative weights between spectral PSFs. Thiguszalent to defining the weight
imagel™ as the diagonal of theHp 0] Hessian block, and normalizing all the RHS vectors
by it. The matrix HP®¥ is constructed\{ia Eqn.6.39 and its inverse is computed and

stored in HPea< .
Initialization :  TheN; model images are first initialized to zero (or aspriori model).

Major and minor cycles :  The following steps describe the iterative deconvolution
process for multi-frequency synthesis imaging. Sté@sd5 form the major cycle and
steps2 to 4 form the minor cycle.

1. Compute RHS: The residual image$®s, V't € [0, N;—1] for each termin the series
are computed from the residual visibilities at each frewe(ﬁ;es) via Eqn.6.34in

and a set formed from more than the first two basis functionstfans, will not form an orthogonal basis.

The Legendre series gives a polynomial model in which thésfasctions are orthogonal. However, this
orthogonality will manifest itself in the normal equatiomsly in the case of natural weighting and symmetric
frequency sampling, and therefore in practice, the nohempnality of the basis set is not significant.

14 A Vandermonde matrix is one in which the rows and columnsaiora geometric progression of some
kind. A useful property of such a matrix is that the diagonehgnts contain even powers of the root
function, and this guarantees positive-definiteness a@gtbre invertiblity. A common situation in which
such matrices arise is in computing least-squares sokifmrthe coéficients of a series expansion in which
the basis functions form a geometric progression (say, X, x3,...). With such a model, the rows and
columns of the Hessian matrix will be a Vandermonde systednvdt therefore be invertible.
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which the dirty images for each frequeneyre computedia Eqn.3.14 For the first
iteration,V'es = Veorr andifes = [,

2. Find a Flux Component: The principal solution (obtaineda Eqn.6.38) is com-
puted for all pixels, one at a time. A solution set compriséd-€unctions for each
spectral cofficient image is constructed from the solutions at the locatbthe
largestq = 0 component.

Alternatively, the principal solution can be computed oaiyhe location of the peak
of the O"-order dirty image (as described in Secti®n.2.5for multi-scale deconvo-

lution). This may not be the most optimal flux component toldgacted out at this
iteration, but since this direct solution is strictly vabadly at the locations of source
peaks, this approach may be useful at low signal-to-noisslde In practice, itera-

tions can switch back and forth between the two forms of figdinx components,

as a trade-fd between convergence speed and stability.

Either way, the result of this step I|§‘°de'v g e {0, N; — 1}, a set ofN; model images,
each containing &-function that marks the location of the source (the indexan
iteration counter). The amplitudes of theSdunctions are the cdkcients of the
Taylor polynomial that has been fitted to the source specttuitinat one location.

3. Update model images Model images for each spectral ¢heient are updated as
|gode!= 1% g 1T vq e [0, Ny — 1] (6.40)

g is a loop-gain that takes on values between 0 and 1 and cerhmlstep size of
each iteration of thg? minimization process.

4. Update RHS: The residual images on the RHS are updated by evaluatingland
tracting out the entire LHS of the normal equations for thedeldmage vectors
(15! V) obtained in iteration.

Ne—1

f

I[es = 1%~ g(Z 195" % |gjg;’ej (6.41)
g=0

This update step can be implementéificeently if the convolution kernels of each

Hessian bIocI«lt'f’;'f are pre-computed and stored (convolutions watfunctions are

shifted and scaled versions kﬁff).

There are two dference® between this update step and that for multi-scale decon-

15 Note that the update step for multi-frequency deconvotutieqn6.41) is derived using exactly the
same mathematical idea used for standard deconvolutiam E#7in Section3.2.1.9 and multi-scale de-
convolution (Eqn6.18in Section6.1.2.5. All these algorithms evaluate the LHS of the normal edureti
using the model images for iteratior),(and subtract it out from the current RHS vectors. Theedénces
between these algorithms arise purely from thigéedént flux models (standard CLEAN uses a single set of
d-functions, multi-scale CLEAN associates a spatial scath each set ob-functions and multi-frequency
CLEAN uses sets ai-functions for each cd&cient of the Taylor polynomial).
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volution (Eqn.6.189. First, each dirty imagé{®® is updated by subtracting out the
contribution of allN; codficients (and hence the summation in Egyal). Second,
this update step cannot be written in two stages as was domeuiti-scale decon-
volution (Eqn.6.18 because the convolution kernels of each Hessian bqu’ﬁlf()(
cannot be written as a sequence of convolutions (see Se&ioBfor a discussion
of what this implies).

Repeat from Step2 until a flux limit is reached. At any stage in the minor cycle,
additional constraints can be placed on the model image loylaesing the spectral-
index andor curvature images and discarding unrealistic values.

. Predict : Once the minor cycle flux limit is reached, the current besingates of the

spectral cofficient images are used to predict multi-frequency modebilises.

Ne—1
ymodel _ Z [thfS][S GPOF][1P°] "L mode! (6.42)
-0

t_
Residual visibilities are computed for each frequency/i§ = Veorr — ymodel gng
then processed as in Step 1 to construct the next residugeima

Repeat from Step2 until the residuals satisfy a statistically derived staoygpcrite-
rion.

Restoration: After convergence, the model spectral ffméent images can be interpreted
in different ways. If applicable, the final image products can thesrboothed with the
restoring beam and the residuals are added back in. Some fpplicable for radio as-
tronomy are described below as additional operations teatirio be performed on the
model images.

1. The most obvious data products are the spectraficant images themselves, which

can be directly smoothed by the restoring beam. The resithages that are added
back in should be the principal solution computed from thalfiasiduals, to ensure
that any undeconvolved flux has the right flux values.

For the study of broad-band radio emission, the spectrlicients can be inter-
preted in terms of a power law in frequency with varying indes described in
Section6.2.1). The data products are images of the reference-frequamcﬁj’ly, the
spectral-index® and the spectral curvatuf®,

5k odel

o = [fnode (6.43)
|‘fn0del

1

= %nodel (6.44)

K
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|_fn0del I_)a/ I_a' _ l
& 2 ( ) (6.45)

fgnodel B 2

Spectral index and curvature images can be calculated anfggions where the
values inﬁ}‘"de' are above a chosen threshold. In this case, it is appropaat@ooth

the final I}i'fy image with a restoring beam, but not the spectral index ovature
images.

. Animage cube can be constructed by evaluating the sppoty@omialviaEqn.6.25
for each frequency. This form of data product is useful farrses whose emission
is not well modeled by a power law, but is a smooth polynonmdiequency. Band-
limited signals that taperfbsmoothly in frequency are one example.

. An image of the continuum flux can be constructed by evelgand summing up
the flux at all frequencies. Note that this continuum imageiferent from the
reference-frequency image which represents the flux medsuronly one frequency.
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Algorithm 4 : MF-CLEAN with Cotton-Schwab MajgMinor Cycles

Data: Calibrated visibilities V" vy
Data: uv-sampling functions S, Vv
Data: Image noise threshold and loop gatf;, Os
Result Model Codficient Images 1"°®'vq € {0, N; — 1}
1 foreach t € {O,N; — 1},g € {t, N, - 1} do
2 | Compute the spectral PSE®"

3 end

4 Construct HP®a and [HPe& ] with Hfgak = mid(I{’j’f)

5 Measure the peal%’(ff sidelobéfsigelobe

6 Initialize the model™d!for all t € {0, N; — 1}

7 repeat /* Major Cycle */
8 foreacht € {0, N;} do

9 Compute the residual imaglfS

10 end

1 | Calculate a Flux-Limit for from e fi

12 repeat /* Minor Cycle */
13 if Peak ofifes > 10 oy, then

14 foreach pixel do

15 Construct P4y anN, x 1 vector fromifes v t € {0, N — 1}
16 Compute principal solutiof® = [Hpeak '] [pixdity

17 end

18 Choose the solution vector at the location of the peak®f

19 else

20 Find the location of the peak &

21 Constructi P*dty from [fes v t e {0, N, — 1}, at this location

22 Computel 0 = [Hpeak ] fbixdity at this Jocation

23 end

24 foreacht € {O,N; — 1} do

25 Update the model imageifode! = [fnodel . g [Sol

26 Update the residual imagd{es = Ifes— g S IR 129

27 end

26 | until Peak residual i’ < fimi

20 | Compute model visibilitie¥/mode from [Modelyt ¢ (O.N; — 1}

30 | Compute a new residual imad&s from Veorr — \ymodel

s1 until Peak residual iff®® < oy
32 Calculate spectral index and curvature images fFQPPHe', and restore them




117

6.2.3 Dfference with the Sault-Wieringa (SW-MFCLEAN) algorithm

The SW-MFCLEAN algorithm described iBault and Wieringd1994 follows
the theory in the previous section fdk = 2, but its implementation follows a matched-
filtering approach, using spectral PSI_?:%TQ ¥ g € {0,N; — 1} as the template functions.
Formally, the matched filtering approach is exactly equath® calculations shown in
Egns6.32to 6.340nly under the conditions that there is no overlap on thealdatquency
plane between measurements frofiatent observing frequencies, and all measurements
are weighted equally across the spatial-frequency plaméfun weighting). In other cases
(when there is overlap between frequencies oruthplane), it can be shown to lead to er-
rors in estimating the spectral d@eients, especially when there is extended emission in
the image.

The following is a simple way to state the problem. Considgpatial-frequency
grid cell onto which measurements from twdtdrent baselines and frequencies map. Let
V1, V, be the measured visibilities at two frequencie® and letw,;, w, be their Taylor-
weights. A matched-filtering approach calculates ¢ w,)(V1 + V,), whereas Eqn6.32
to 6.34require the computation of\gV;) + (W»V,). The two are equivalent only for flat
spectrum sources whexg = V, or when there is no such overlap between measurements
from different observing frequencie¥;(andV, map to diferent spatial frequencies).

The SW-MFCLEAN algorithm was initially developed for the &A telescope,
an East-West array of antennas with circularcoverage patterns and minimal spatial-
frequency overlap across channels. This matched filtegpgaach therefore worked well.
However, when applied to data from the VLA (wharetracks intersect each other and
there is considerable spatial-frequency overlap), nuraémstabilities limited the fidelity
of the final image, especially with extended emission. Chrapthe computations to those
described for MFS deconvolution in Secti6r2.2.5eliminated this instability (determined
using simulated VLA data).

6.2.3.1 Diferences

In the SW-MFCLEAN algorithm, the Hessian block kernels airtydmages are
computedria FFT-based convolutions in which gridded Taylor-weights ultiplied with
gridded visibilities : (v; + W) (V1 + Vy).

PP = PP iPsT where P57 =[F'S'WR'W™MI for x=t,q (6.46)

Y = P MY where (U = [FiStwmver (6.47)
According to Egn$.32to 6.34 (MFCLEAN algorithm), the Hessian block kernels and

dirty images are to be computed by multiplying the visigilteasurments with the Taylor-
weights before gridding the resultw(V;) + (W,V,).

T = [Fistw s wriawim I (6.48)
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Y = [Fistwtwmveer (6.49)

6.2.3.2 Conditions for equality
The two methods listed above (Egfi€l66.47and Eqns.486.49) are equivalent
only under certain conditions. Consider E¢nh33for [H;4]. Iff [S] = [S'SS] and

[S] = [SS'S], then [S7] can be replaced byg'S Sf]. Further, §S] and N\/tmfsT] are both
diagonal matrices of sizeN; x nN; and therefore commute. In this cask; {] becomes

[Hgl = [FTsTVVtmfsTVVing\fsSF] (6.50)
- [FIS'W"''SF[F'S'W"S A[F'S'WI'S F]
S A T L T (6.51)

where 1P = [FIS'W™ I and 1P = [Ffstw™91

This is still not the same as Eg@.46which has two instances o[™]. Therefore, only
when W™ is an identity matrix (equally weighted visibilities) wilhe kernel functions
from both methods be identicglly’ = I7s"™". A similar argument holds for the dirty im-
ages. The restriction ofy] = [S'SS] and [S] = [SS'S] implies that each row and
column in [S] has only one 1, with the rest being 0. Sin& has dimensionaN, x m, the
maximum number of non-zero elements mustbd herefore, any of thendiscrete spatial
frequencies cannot be measured at more than one baseliegoehcy channel. However,
consider thenx mdiagonal matrix of gridded imaging weight/f] = [SIV\/‘VmSV] per fre-
quency channel. A projection operat&;,f] of shape fnx m) can be constructed for each
frequency channel, with each diagonal element correspgrtdione spatial frequency grid
cell. Measurements from multiple baselines that map ores#me spatial frequency grid
cell are treated as a single measuremenrjfi], with an increased weight i§©]. The use
of uniform weighting will flatten out\®] as required for equality with Eqit.46 Written
this way, with multiple frequenciesS[°®] has dimensionsN. x m, and the restriction of
[ST] = [STSS] and [S] = [SS'S] means that any spatial frequency must not be mea-
sured in more than one frequency channel. Therefore, a patehed-filtering approach
is strictly valid only for uniform weighting and when all fdtl spatial frequency grid cells
contain measurements from only one frequency channel.
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6.2.4 Accuracy of multi-frequency deconvolution

This section illustrates some of the errors that arise wimdd, derm Taylor poly-
nomial is used to model a power-law spectrum during muégtrency synthesis imaging.
The metrics used to evaluate these errors are the magnitulde eesiduals (or remainder)
and the absolute errors on the values of physical quantieeised from the fitted coef-
ficients (intensity at a reference frequency, spectrabxrated curvature). Sectiod.2.4.1
compares the accuracy of the derived value ofhen diferent functional forms are used to
model a power-law spectrum. These errors were measuredfifaedatotal bandwidth and
for different signal-to-noise ratios. Secti6r2.4.2shows how the peak residuals and errors
onl,,, @ andg vary with the order of the Taylor polynomial used with muttequency de-
convolution. These errors were measured fdfedent total bandwidths and a fixed signal-
to-noise ratio.

These trends are meant to be used as guidelines when chpasamgeters during
multi-frequency deconvolution. However, note that thisti&a only shows measured errors
for a few simple examples and makes no attempt to estimatesdigb these errors for a
generic data set or type of spectrtim

6.2.4.1 Accuracy of power-law parameters derived from a pginomial

The errors on the polynomial cigients and quantities derived from them will
depend on the number of measurements of the spectrum, thal-$ggnoise ratio of the
measurements, and their distribution across a frequenmetaThey will also depend on
the order of the polynomial used in the approximation. Altgb the physical parameters
l,,,@ andpB can be obtained from the first three €éid@ents of a Taylor expansion of a
power-law with varying index (Eqn8.22 and 6.24), a higher order polynomial may be
required during the fitting process to improve the accurddape first three cofficients’.

In the case of very noisy spectra, errors can also arise fribemating to use too many
terms in the polynomial fit.

Figure6.7illustrates the above trends for the valuenofierived from a polyno-
mial fit to a spectrum constructeth Eqn.6.20(1{"¢ = 10.0, o'™® = —1.5,8"¢ = -0.5, v =
2.4GHz) and evaluated between 1-4 GHz. Gaussian random neseadded to give mea-
surement signal-to-noise ratios of 100, 10 and 1 for thred spectra. These spectra were
fitted using a linear least-squares method on two serieswiquas (Eqn£.22,6.24) for dif-
ferent numbers of terms in the seris= 2, 3,4, 5, and also by a non-linear least-squares
method to fita and g directly. The plots show the error on the derived spectrdein
da = a'ed _ o"® for each case.

8This dissertation does not contain a formal error analysis@multi-frequency synthesis deconvolution
algorithm for diferent basis functions, bandwidths and signal-to-noisesabuch an analysis will ultimately
be required in order to prescribe a set of rules for a gendrseovation, and is work in progress.

"Conway et al[1990 comment on a bias that occurs with a 2-term Taylor expansioa to the use of a
polynomial of instficient order to model an exponential.
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Noticeable trends (based 6r) are listed below.

1. For high SNR, higher order fits give better results. For BMR, higher order fits
give larger errors.

2. Inmost cases, a Taylor expansion of a power law abcuD, 8 = 0 is a better choice
than a Taylor expansion abowut v,.

3. For spectra between 1 and 4 GHz with~ —1.5 + 0.4, a 3rd or 4th order Taylor
expansion (either form) is most appropriate.

These trends can be used to choose the spectral basis fuaotionumber of termbl; to
be used in the multi-frequency deconvolution algorithmetem 6.2.2.5, based om priori
knowledge of the average spectral index and the signabiserratio of the measurements.
When there are both high and low signal-to-noise sourcesylé-gtage approach using
different values ofN; might be required. For example, deconvolution runs canrbedh

N; > 3 but once the peak residual reaches- 18 switch toN; = 2 might be beneficial (note
that this situation has not yet been tested).

6.2.4.2 Peak Residuals

This section shows an example of the errors obtained wheorties of the poly-
nomial chosen for imaging is not ficient to model the power-law spectrum of the source.
EVLA datasets (8 hour synthesis) were simulated forffedent frequency ranges around
2.0 GHz. The sky brightness distribution used for the siriotawas one point source
whose flux is 1.0 Jy and spectral index is -1.0 with no specuaature. The band-
width ratiog®for these 5 datasets were 100%(3:1), 66%(2:1), 50%(1.625Pp(1.28:1),
10%(1.1:1).

Figure6.8 shows the measured peak residuals and absolute measwesa@rr
l,,- @, 8 When these datasets were imaged using multi-frequencyndeltgion withN; = 1
to N = 7 and a linear spectral basis (Edh25. All these datasets were imaged using
a maximum of 10 iterations, a loop-gain of 1.0, natural waighand a flux threshold of
1.0uJy. No noise was added to these simulations (in order to isaladeaneasure numerical
errors due to the spectral fits). Peak residuals were mehsiver the entire © order
residual image, and errors o, a, 8 were computed at the location of the point source by
taking diferences with the ideal valuesigf = 1.0,a = -1.0,3 = 0.0.

Noticeable trends from these plots are listed below.

BThere are two definitions of bandwidth ratio that are usecitia interferometry. One is the ratio of the
highest to the lowest frequency in the band, and is denotegdg@s viow. Another definition is the ratio of
the total bandwidth to the central frequen®yig, — viow)/vmia €spressed as a percentage. For example, the
bandwidth ratio fonigw = 1.0 GHZ,vhigh = 2.0 GHz is 2 : 1 and 66%.
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1. All errors appear to decrease exponentially (linearlyogrspace) as a function of
increasing order of the polynomial, and as a function of éasing total bandwidth.
For very narrow bandwidths, the use of high-order polyndsniacreases the error.

2. The peak residuals are much smaller than the error indwmethe peak source flux
at the reference frequenty, and the errors o andg.

3. As an example, for a 2:1 bandwidth ratio, a source with speimdex= -1.0, and
N; = 4, the achievable dynamic range (measured as the ratio qiethle flux to the
off-source peak residual) is about®1@he error on the peak flux at the reference
frequency is 1 part in 1) and the absolute errors enanres are 102 and 10?
respectively.

Note that these trends are based on one simple example, dhdrfanalysis is required
to understand the source of these errors and assess howategsva function ofr and
B. Conway et al[199Q suggest that for anN; — 1)-order polynomial, the peak residuals
proportional to the product of and the peak sidelobe level of the next higher omdgr
spectral PSF. However, the results of the above tests dotawfthis rule for all bandwidth
ratios. Further work is required to (a) understand thesergrn terms of signal-to-noise
and in the presence of deconvolution errors and (b) be abpradict limiting dynamic
ranges and error-bars @nandpg.

Note that all the code implementations for this dissertatige the linear ex-
pansion given by Eqr6.25 (a polynomial inl vs (v — vg)/vo Space) to model an arbitrary
spectrum. However, in the case of a power-law, a logaritlexpansion given by Eq6.26
(a polynomial inl vs log(v/vo) space) might need fewer terms than the linear expansion to
model a power-law spectrum and yield better resulenway et al[199(Q state that the
logarithmic expansion has better convergence propettia@s the linear expansion when
a << 1, but this is yet to be tested for arbitrary valuesaof Further, for given values
of @ andg, the radius of convergence of each series expansion defimexianum band-
width that it can be used with. Further work is required to doranal comparison between
these two sets of spectral basis functions and their coamerggproperties when applied to
arbitrary spectral shapes.
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Figure 6.7:These plots show the average error on the fitted spectrakifide = o4 — o!rue)
from 100 noisy measurements of a power-law spectrum defipéf'd = 10.0, o'"'¢ = —1.5, g"¢ =
—0.5. The rows representfiierent signal-to-noise ratios (Top : 100, Middle : 10, Bottofr). The
left column shows the average with N; = 2,3,4,5 terms in the series, for thredfdrent functional
forms (RedLeft : T(v = vo) : Taylor expansion of, aboutvg, BlugMiddle : T(ae = 0,8 = 0) :
Taylor expansion of, abouta = 0,8 = 0, GreeyRight : Power Law with varying index). The right
column shows the corresponding spectraNpe 3. Noticeable trends are (a) For high SNR, higher
order fits give better results. (b) For low SNR, higher ordex dive larger errors. (c) In most cases,
a Taylor expansion about= 0,8 = 0 is a better choice than an expansion abgu{d) For spectra
between 1 and 4 GHz withh ~ —1.5 + 0.4, a 39 or 4" order Taylor expansion is most appropriate.
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Figure 6.8:Peak Residuals and Errors for MFS witlfdient values oN; : These plots show the
measured peak residuals (top left) and the errors,gitop right), @ (bottom left), and3 (bottom
right) when a point-source of flux 1.0 Jy amd-1.0 was imaged using Taylor polynomials of
different ordersN; = 1 — 7) and a linear spectral basis (E@n26). This simulation was done with
EVLA uv-coverages (for an 8 hour synthesis run) and 100%,66%,3%%0.&nd 10% fractional
bandwidths, with a reference frequency of 2.0 GHz. No noias added to these simulations. All
runs used a loop-gain of 1.0, used natural weighting, ane wegminated after either 10 iterations
or a flux threshold of 1Jy. The x-axis of all these plots show the valué\plused for the simulation.
Plots fora andg begin fromN; = 2 andN; = 3 respectively because at least that many terms are
required to calculate these derived quantities. Notiee#deinds from these plots are (a) The peak
residuals decrease by about a factor of 8 with each increfasenmre polynomial cogicient. (b)
The peak residuals are larger for larger fractional banttveid(c) The errors oh,,, o, 8 are larger
than the peak residuals, but they too decrease with incrgdi For very narrow bandwidths, the
use of a very high-order polynomial increases the error.&2rl bandwidth ratio, a spectral index
of -1.0 and very high signal-to-noise, & &r 6" order Taylor expansion is most appropriate (when
a linear spectral basis is used).



CHAPTER 7

MULTI-SCALE MULTI-FREQUENCY SYNTHESIS IMAGING

This chapter deals with the combination of the multi-scaialti-frequency and
wide-field imaging algorithms described in chaptémsnd4 to derive a method that forms
a multi-scale reconstruction of the broad-band sky brighsrdistribution while accounting
for the frequency-dependence of the antenna field-of-vieection7.1 first motivates the
need of using a multi-scale image model along with multgérency synthesis, and then
describes a combined multi-scale multi-frequency declutiom algorithm. Sectiory.2
describes an extension of this algorithm for wide-field imagin which the frequency
dependence of the primary beam is included and correctetlufomg image reconstruction.
Chapter8 later shows imaging results using these algorithms, costaidiscussion about
error estimation and shows a set of examples that test tisébfiey of multi-scale multi-
frequency image reconstruction for moderately resolvades, very large spatial scales,
overlapping flux components withfiérent spectra, and band-limited signals.

7.1 Multi-Scale Multi-Frequency Deconvolution

We begin with a discussion of how well we can reconstruct ksghtial and
spectral information from an incomplete set of visibiligmsples at multiple observing fre-
guencies and describe how our choice of a flux model influetih@esnage reconstruction
process when each observing frequency measureBeaetit set of spatial frequencies.

The spatial frequencies sampled at each observing fregueare between,, =
tbmin andUmax = Zbmax Whereu is used here as a generic label for thedistancé andb
represents the length of the baseline vector (in units oemsgprojected onto the plane
perpendicular to the direction of the source. The range afiapfrequencies between,,
at vimax aNdUnmax at vimin represents the region that is sampled at all frequencidsiband.
Within this region, both spatial and spectral informatismieasured in comparable detail
and there is dficient information to reconstruct them both. The spatiajfiencies outside
this region are sampled only by a fraction of the band and toerracy of a broad-band
reconstruction depends on how well the spectral and sgsitiadture are constrained by an
appropriate choice of a flux model.

A few examples are used to illustrate the importance of amagijate flux model.

! Theuv-distance is defined asgu? + v2 and is the radial distance of the spatial frequency measwed
the baseline from the origin of the~plane, in units of wavelength

124



125

1. A compact, unresolved source with spectral structuregasured as a point source
at all frequencies, and,ax at vimax gives the maximum angular resolution at which
this source can be imaged. Since the visibility function pbat source is flat across
the entire spatial frequency plane, its spectrum is adetjuaampled by the multi-
frequency measurements. Using a flux model in which eachcedsrad-function
with a smooth polynomial spectrum, it is possible to recarddtthe spectral structure
of the source at the maximum possible angular resolution.

2. Forresolved sources with spectral structure, the acguwtthe reconstruction across
all spatial scales betwean,, at vimin and umax at vmax depends on an appropriate
choice of flux model, and the constraints that it providesr &ample, a source
emitting broad-band synchrotron radiation can be desdrie a fixed brightness
distribution at one frequency with a power-law spectrunoasged with each loca-
tion. Images can be made at the maximum angular resolutie@n @y Umnax at vmax)
with the assumption thatfilerent observing frequencies probe the same spatial struc-
ture but measure fferent amplitudes (usually a valid assumption). This canstr
is strong enough to correctly reconstruct even moderatsylved sources that are
completely unresolved at the low end of the band but rescdwélde higher end. On
the other hand, a source whose structure itself changessattre band would break
the above assumption. One example is with multi-frequeriseovations of solar
magnetic loops where theftikrent frequencies probeftirent layers in the upper
chromosphere and can have veryfelient structures. In this case, a complete re-
construction would be possible only in the region of ovepiag spatial frequencies
(betweenumin atvmin andumax at vimay), Unless the flux model includes constraints that
bias the solution towards one appropriate for such sources.

3. The lower end of the spatial frequency range presentffereit problem. The size
of the central hole in thev-coverage increases with frequency. Spectra are not mea-
sured adequately for emission whose visibility functiomas-zero only belowiy,,
at vmax and a flat-spectrum large-scale source can be indistingbislirom a rela-
tively smaller source with a steep spectrum. Additionalstaaints in the form of
total-flux values for each frequency may be required for aougate reconstruction.

To summarize, just as standard interferometric image r&coction uses priori informa-
tion about the spatial structure of the sky to estimate teiiity function in unmeasured
regions of theuv-plane, multi-frequency image reconstruction algorithmegd to use
priori information about the spectral as well as spatial struobfitbe sky brightness. By
combining such models with the known frequency-dependefdbe spatial-frequency
coverage it is possible to reconstruct the broad-band sightmess distribution from in-
complete spectral and spatial-frequency sampling.
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7.1.1 Multi-Scale Wide-Band Image model

The multi-frequency synthesis algorithm described inisadi.2 models the sky
brightness distribution as a collection ®functions with power-law spectra. This param-
eterization provides strong enough constraints on the @magonstruction process when
applied to fields of isolated point sources. However, whénatpplied to fields containing
extended emission it leads to errors in the reconstrucsonilar to the single-frequency
case where large scale emission is broken into a collecficorapact flux components of
the size of the telescope angular resolution. With muégtrency synthesis, these errors
are enhanced mainly due to error propagation during theutzlon of derived quantities
such as spectral index and curvature as the ratios of twoy nimiages each containing
deconvolution errors. It therefore becomes important ® aislux model and image re-
construction algorithm that can ensure smoothness in t@netruction and improve the
fidelity of the codficient images used to calculate these derived quantities. dption is
to parameterize the sky brightness distribution in the radale basis described in section
6.1and associate a polynomial spectrum with each flux comporerggion of emission
in which the spectrum varies with position will be modeledaasum of wide-band flux
components and the reconstruction algorithm would simelbaisly reconstruct the spatial
and spectral structure of the source in terms of these pdeame

For multi-scale and multi-frequency deconvolution, thage flux model at each
frequency can be written as a linear sum of ficeent images at dierent spatial scales.
This is a combination of the multi-scale and multi-frequemage models described in
sections.1.1and6.2.1

Nt Ns _ t
fnodel Z Z W [Ifhp* Ifky] where W, = (V VO) (7.1)
t=0 s=0 ' Yo

Here,Ns is the number of discrete spatial scales used to represemntige and\; is the
order of the series expansion of the spectruﬁ*ﬂ’ represents a collection @-functions
that describe the locations and integrated amtplitudes pidtumponents of scalgein the
image of the!™ series cofficient. I"Pis a tapered truncated parabola whose width is given
by s (introduced in sectiol.1.2for multi-scale deconvolution).

7.1.2 Imaging Equations and Block Deconvolution

This section combines the multi-scale multi-frequency geanodel with the
standard measurement equations and then explores thaustrof the normal equations.
This is followed by a description of the principal solutiondaan iterative block deconvo-
lution algorithm.
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7.1.2.1 Measurement Equations

Visibilities are measured at a setNf observing frequencies, and calibrated us-
ing a model derived from a source with known structure andspe. There ar@ visibil-
ities measured at each frequency. The single frequency atiHnequency measurement
equations are given below.

Nt Ng
20D WISTAIFIE (7.2)
N b
Vo = > > IWTTISITALFIE (7.3)

t=0 s=0

“0bs
VV

where |S/\/tmfs] is a diagonahN. x nN. matrix of weights, comprised df; blocks each of
sizenxnfor each frequency channel)( The multi-frequencyv-coverage of the synthesis
array is represented bys{n «m]- The image-domain convolution witlt"? is written as a
spatial-frequency taper functiol J|mm = diag([F]I=").

The full measurement matrix4] in Egn. 2.20 therefore has the shapa\, x
mN;N;, which when multiplied by the set ®sN; model sky vectors each of shapex 1,
producesN, visibilities.
ForN; = 3, Ns = 2 the measurement equations can be written as follows, ickbtwatrix
form. The subscripp denotes thg™" spatial scale and the subscripdenotes the™" Taylor
codficient of the spectrum polynomial.

=V (7.4)

where [Ap] = (W [SI[TRIIF] o
forpe {O,Ns—1} and qge {0 N; -1} [Sky
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7.1.2.2 Normal equations
The normal equations in block matrix form for the same exan(l = 3, Ns = 2) become

sky [ ; )

H s-0.p-0 H s-0.p-0 H so.p-0 Hs-0p-1 Hs-0p-1 Hs0p-1 Iz puirty

t=0,g=0 | | t=00=1 | | t=00=2] | t=0g=0 ] | t=00=1 t=0,0=2 | a=0 1&:8
- _ - - R —sky i

irt

H s-0.p-0 H s-0.p-0 H s-0,p-0 H s-0,p-1 H s-0,p-1 H s-0,p-1 I'omo I S=oy
t=1,g=0 | | t=1qg=1 | | t=1,0=2 | L t=1,0=0 J | t=10=1 t=1,g=2 | g=1 =1

17T ] i 1 isky rdirty
H s=0,p=0 H s=0,p=0 H s=0,p=0 H s=0,p=1 H s=0,p=1 H s=0,p=1 I p=0 I s=0
t=2,=0 | | t=20=1 | | t=20=2 ] |l t=2g=0 | | t=20=1 | | t=20=2 ] g=2 t=2

- (7.5)

I—sky I—dirty
H s=1,p=0 H s=1,p=0 H s=1,p=0 H s=1p=1 H s=1p=1 H s=1,p=1 p=1 s=1
t=0,g=0 | | t=0g=1 | | t=0g=2] | t=0g=0 ] | t=0g=1 | t=0,g=2 | g=0 t=0

1T 1 1 10T 1 71 7 I-sky I—dirty
H s=1,p=0 H s=1,p=0 H s=1,p=0 H s=1,p=1 H s=1,p=1 H s=1,p=1 p=1 s=1
t=19=0 | | t1g=1] | t1g2] | t=1g0] | t=tg=1] | t=1g=2] g=1 =1

: N . T U 1T 1| o ity
H s1.p-0 H s1p-0 H<1p-0 Hs1p1 Hs1p1 Hs1p-1 p=1 =

| t=2g=0] | t=20=1] | t=29=2] | t=2g=0] | t=2g=1] | t=29=2] =2 L

When all scales and Taylor terms are combined, the full Hessiatrix contain$\;Ns x
N¢Ns blocks each of sizen x m and containing information from all frequency channels,
andN; Taylor codficient images each of siza x 1, for all Ng spatial scales. The indices
s, p correspond to row and column indices for the multi-scaleekdp and the indices q
correspond to row and column indices for the multi-frequelblocks.

The ordering of the rows and columns in Egh5 was chosen such that the
Hessian consists dfls x Ns = 2 x 2 = 4 blocks (the four quandrants of the matrix).
Each quadrant corresponds to one pair of spatial scles Within each quadrant, the
N; x Ny = 3x 3 = 9 matrices correspond to various paird.af (Taylor codficient indices).
This layout shows how the multi-scale and multi-frequensgets of this imaging prob-
lem are combined and illustrates the dependencies betweespttial and spectral basis
functions. Note that thex33 block in the top left quadrant corresponds to the entireskées
matrix in Eqn.6.31(sincel >"Pis a8- -function).

These equations can be written out row-by-row as follows.

Ns—1 Ni—1 _
Z Z *kv = Uy Vse {0.Ns—1}, t € {0.N; -1} (7.6)
p=0 g=0 t
[His] = [FTFI[HI[F TpF] (7.7)
[ = [EITE]IY = [she oy (8 (7.8)

Here, Hiq] and '™ are the multi-frequency Hessian blocks and dirty imageséised in
Eqns6.33and6.34(section6.2.2) for the multi-frequency normal equatior@t‘IO = [F]Ts
are the scale basis functions as defined in sediar? for multi-scale imaging, and all
convolutions shown here are implementea Fourier transforms.
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Each Hessian bloc[4—| ‘?8] is a convolution operator Kf; 4] is a convolution op-

erator and convolution is associative and commutativez;).karnelIﬁl'i,?f is constructed by
taq

convolving each multi-frequency convolution kerne‘f§f (Egn.6.37) with a pair of scale
basis functions (similar to Eq6.9).

f f
Fgg = 15" 1P 15 (7.9)
These convolution kernels from the first row of Hessian b#ogk= 0,t = 0, p € {0, Ns —
1}, g € {0, N; — 1}) represent the instrument’s response functions to a fluxpoorant of unit
total flux whose shape is given by th# scale basis function and whose spectrum is given
by theg" Taylor function.

7.1.2.3 Principal Solution

As described in the sectidgi1.2.3for multi-scale imaging and in secti@h2.2.3
for multi-frequency imaging, the principal solution heo®t is found by using a diagonal
approximation of each Hessian block to creat@F" as anN;Ns x N;Ns element matrix,
inverting it and applying it to all pixels of the dirty imageme pixel at a time.

When the principal solution is to be used within an iterajoret deconvolution, a
few simplifying assumptions may be needed to trim compaoiteti costs. For a source with
complicated spatial structure the number of distinct gthatiale basis functions is typically
Ns ~ 10, and for power-law spectra with indices around -NO= 4 or N; = 5 terms in
the series are required to accurately model the power latv avjgolynomial (across a 2:1
bandwidth). Therefore typically\sN; ~ 50. Although the inversion ofH?*® may be
tractable, the computational cost of a 5®0 matrix multiplication applied per pixel to a
set of 16 pixels over a large number of iterations may be prohibitiveemparison to the
numerical accuracy that this exact inversion provideseBdapproximations can be made
about the structure oHP®3 to simplify its inversion, and it is important to understhiie
numerical implications of these tradés

One possible simplification is a block-diagonal approxioraof the full Hessian
(i.e. using only those blocks of the Hessian in E@rb for which s = p). This approx-
imation ignores the cross-terms between spatial scalesassuines that the scale basis
functions are orthogonal. Now, a multi-frequency printigalution (as described in sec-
tion 6.2.2.3 can be done separately on each remaimpg N; block, one spatial scale at a
time (Vv s € {0, Ns — 1}). The MFS principal solution for each scalés given below (same
as Eqn6.38for each spatial scalg).

| Piepsol — [pypeak- iy pixdity  for each pixel and scales (7.10)

Here, H2*% is the s block (of sizeN, x N; on the diagonal of fi**2, and ™" s
the N; x 1 vector constructed frot"™ v t € {0, N,-1}. Note that the process of solving
t



130

the multi-frequencyfiP®@q for each scale automatically does a normalization acroskes
that corresponds to a diagonal approximation of the mehiesH Pe3 (see section§.1.2.5
and6.1.3for alternate ways of computing the multi-scale solution).

The main result of using such an approximation while comqgusolutions for
each pixel location and scale size is that the per-pixel imatultiplications are much
smaller. However, this approximation is never accurateabse a set of tapered truncated
paraboloids cannot form an orthogonal basis set. This uracy is not a major problem
while finding flux components because in the context of amikeg optimization the main
penalty of taking slightly inaccurate steps is slower cogeace and the resulting com-
putational cost is usuallyftset by the smaller per-pixel operations to make this a useful
trade-df. In other words, this approximation works not because tttgogilonality assump-
tion is valid, but because an iteratiyd-minimization process tolerates inaccurate steps
during each iteration. The update step of the iterative dewlation still needs to evaluate
the full LHS of the normal equations while subtracting outux tomponent.

7.1.2.4 Properties ofHPe

Some properties o ¢34 for multi-scale multi-frequency imaging are given below.

1. Each element oP®¥ is given by

HPeak = mid{l*gsf}:tr [ZM+Q[Tssivwmsva] (7.11)

tq &¢]

Vs pe {0.Ns—1}, t,g € {0..N; -1}

2. The elements on the diagonal 6fT2 are a measure of the instrument’s sensitivity
to a flux component of unit total flux whose shape and spectsugiven by each of
the NsN; possible pairs of spatial and spectral basis functions.

3. The df-diagonal elements measure the orthogonality betweersith@us basis func-
tions, for the giveruv-coverage and weighting scheme (compare with footbaia
page94). For some choices af\-coverage, frequency coverage, and scale size, the
visibilities measured by the instrument for twdfdrent spatial scales can become
hard to distinguish. The element df§°3] corresponding to this combination could
have a higher value, indicating that there is no informatiothe data and sampling
pattern to distinguish between spatial or spectral streatthile modeling the visibil-
ity function. The condition number of this matrix can be usada metric to choose
a suitable basis set.
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7.1.2.5 lterative Block Deconvolution (MS-MFS algorithm)

This section describes an iterative joint deconvolutiarcpss that produces a set
of N, Taylor codficient images als different spatial scales. The algorithm presented here
(listed in two parts as Algorithri on pagel33and Algorithm6 on pagel34) follows a set
of steps similar to those for multi-scale and multi-freqeyedeconvolution (Chaptes).

Pre-compute Hessian : Convolution kernels for all distinct blocks in thésN; x NsN;
Hessian are evaluateth Eqns.7.9and6.37. All kernels are normalized by, such that
the peak ofESf is unity, and the relative weights between Hessian blocgsgserved. This

0
0,0

is equivalent to defining the weight imadf# as the diagonal of thd—[go] Hessian block,
and normalizing all the RHS vectors by it. A setld§ matrices each of’shapﬁ x N; and
peal

denoted asHlg k] are constructed from the diagonal blocks of the full Hesgldocks for
whichs = pin Egn.7.5). Their inverses are computed and stored-irﬁe[""(l].

Initialization :  All NsN; model images are initialized to zero (or amriori model).

Major and minor cycles :  The normal equations are solved iteratively by repeating
stepsl to 5 until some termination criterion is reached. Stdpand5 form one major
cycle, and repetitions of Stef2go 4 form the minor cycle.

1. Compute RHS : The dirty images for the RHS of the normal equations are cdatpu
via Eqn.7.8by first computing the multi-frequency dirty images and tkeroothing
them by the scale basis functions.

2. Find a Flux Component : The principal solution (as described in sectiti.2.3
is computed for all pixels, one scale at a tima Eqn.7.10. The principal solution
consists ofNs sets ofN; Taylor-codficient images. For iteratioh) the N; element
solution set with the dominaigt= 0 component across all scales and pixel locations
is chosen the current flux component. Let the scale size i@stt bep.

The result of this step is a setNf model images, each containing as®éunction that
marks the location of the center of a flux component of shﬁ?@e The amplitudes of
theseN,; o-functions are the Taylor céiécients that model the spectrum of the total

flux of this component. Let these model images be denot&%ﬂ;"%%e'} g € [0, N.
i

3. Update model images :A single multi-scale model image is accumulated for each
Taylor codficient.

[rocel— ffrose . g(oselu [2%9) v e [0, N (7.12)
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whereg is a loop-gain that takes on values between 0 and 1 and cstitektep size
for each iteration in thg2-minimization process.

4. Update RHS : The RHS residual images are updated by evaluating and stibra
out the entire LHS of the normal equations. Since the chosercimponent corre-
sponds to just one scale, the evaluation of the LHS is a suiomater only Taylor

terms. -
-
ites _ jtes _ psf rmodel
ftes = g[Z[Iig x 1T ]] (7.13)

Repeat from Step2 until the minor-cycle flux limit is reached.

5. Predict : Model visibilities are computed from each Taylor-@iogent image, in
the same way as in Eqf.42for multi-frequency imaging. Residual visibilities are
computed as?res — \jcorr _ yymodel

Repeat from Stepl until a global convergence criterion is satisfied.

Restoration: The final Taylor co#ficient images are restored and interpreted in the same
way as described in standard multi-frequency restorati@s¢ribed at the end of section
6.2.2.5.
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Algorithm 5: MS-MFS CLEAN : Set-up and majoninor cycle iterations

w NP

© o

10
11
12
13
14
15
16
17
18
19
20

21
22
23

24
25

Data: calibrated visibilities V" vy

Data: uv-sampling function : §,]

Data: image noise threshold and loop gatt,, Js
Data: scale basis functionslfhva € {0,Ns— 1}
Result model codicient images ﬁq“ v¥q e {0, N; — 1}

Result spectral index and curvaturd™, I}“

for te {O,N;—1},ge {t,N; -1} do
Compute the spectral PSE'
for se {O,Ns—1},pe{s Ns— 1} do
‘ Compute the scale-spectral PB:;Ff " M

end
end
for se {0,Ns— 1} do
‘ Construct HZ*] from mid(1?%") and computetiZ**]
tq
end

Initialize the model?“ forall t € {0, N; — 1} and computésigeiobe

repeat /* Major Cycle *

for t € {0, N;-1} do
Compute the residual imadgs
for s€ {0, Ns-1} do
| Computei’s = I3"P x [fes
end
end
Calculatefjmy from Ifes

the following page)
until Peak residual iffes < fimi
Compute model visibilitie¥)" from I Vt € {O.N; — 1}

until Peak residual if{*® < oy
Calculatel™, I, i from 1" vt € {O.N; - 1} and restore the results

repeat /* Minor Cycle */
Computel ™ Vg € {0.N; — 1} and updaté’es Vs, t (Algorithm 6 on

Compute a new residual imad¢/é® from residual visibilitiesv°" — V"
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Algorithm 6 : MF-MFS CLEAN : minor cycle steps

Data: residual images E7¢®

Data: scale basis functions
Data: scale-Spectral PSFSQ’;,Sf V se{0,Ns— 1}, pe{s Ns— 1}

Data: Hessian for each scaIeHEeak] VY se{0,Ns— 1}
Result model codficient images 13’ Vq € {0, N; — 1}
Result updated residual imagesg;® Vs € {O,Ns — 1}, t € {0, N; — 1}

I_Shp

for se {0, Ns-1} do

[N

2 | if Peak ofi’® > 10 oy then

3 foreach pixel do

4 Construct { s anN; x 1 vector fromlIS V t € {0, Ni-1}
5 Compute principal solutioht® = Hpea‘cl] |ths

6 end

7 Choosd *° = max1%%, V¥ se€ {0, Ns-1}}

8 else

9 Find the location of the peak NG, ¥ s € {0, Ns-1}

10 Constructi"s, from 13° for the chosers, at this location
1 Computel 5o = [Hpea‘c 111 at this location

12 end

13 end

14 for t € {O,N; — 1} do

15 | Update the model imagel™ = IM + g4 157 % 150

16 for se {0, Ns-1} do

- Update the residual image [ = 1155 — g 555" S i;’;f * 130
18 end

19 end
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7.2 Correction of Frequency-Dependent Primary Beams

This section describes the combination of the multi-scaldtiffrequency de-
convolution algorithm described in the previous sectieri)(with methods to correct for
direction-dependent instrumentafects (chapted); in particular, the antenna primary
beam and its frequency dependence.

The angular size of the primary beam of the antenna decreatfean increase in
observing frequency (see Fig2, section5.1.2. Sources away from the pointing center of
the beam are attenuated byfdrent amounts across the frequency band and this introduces
artificial spectral structure into the measurements. T@wvec both spatial and spectral
structure of the sky brightness across a large field of viea/ftequency dependence of the
primary beam must be modeled and removed during multi-aqy synthesis imaging.

Section7.2.1describes the multi-frequency primary beam as a polynomial
frequency (for each direction on the sky) and describes hevcodficients of this polyno-
mial are computed. Sectionh2.2then describes how this model is used within the multi-
scale multi-frequency synthesis imaging and deconvatuiiamework. Algorithms7 on
pagel53and8 on pagel54describe the complete wide-field multi-scale multi-freqgeye
deconvolution algorithm. Chaptérlater shows wide-field imaging results derived from
applying this algorithm to simulated and real data.

7.2.1 Multi-Frequency Primary-Beam Model

Let us assume that the primary beam at each frequer({denoted a$,,) is
known either from a theoretical model @ia measurements. The spectrum of the multi-
frequency primary beam can be described by a polynomiaMeryedirection on the sky.

Ni—1

Po, = ) WPy (7.14)

4=0

Here, PEq is the g" cogficient of the polynomial representing the frequency depende
primary beam ana\! are the corresponding basis functions (Taylor-weightsyefa set
of single-frequency primary beams the fogents of this N, — 1) order polynomial can
be computed as a least-squares solution by solving thenimlgpnormal equations.

Nz_l{z vvtjq} Poq = ZWLP;V Vte (0N - 1) (7.15)

=0 v

The unknowns in this system a?éq. The weights are known and the RHS can be computed

from the known single-frequency primary beams. A seP&{ can then be computed by
solving this system of equations for every direction on tke s
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Figure 7.1:Multi-frequency primary beams : The plots on the left showtof 1-D Gaussians that
represent primary beams at threéelient frequencies (Eqi.16with v = {vy/2, vo, 3vo/2} from top
to bottom). The plots on the right are the first threefGoeents of the Taylor-polynomial required
to represent the frequency dependence of the primary beameseTlcofficients were evaluated
numerically by solving Eqn7.15(compare with the functions shown in EqAsl7to 7.19.

7.2.1.1 Coficients of the primary beam polynomial

Figure7.1shows a 1-D example of a multi-frequency primary beam anditsie
three Taylor polynomial cd&cients that represent it. For simplicity, consider a Gaarssi
primary beam whose width scales inversely with frequencyepresents the angular dis-
tance from the center of the primary beam).

Po(x.) = & <) (7.16)

The first three co@cients of a Taylor polynomial (Eqt®.25) fitted to the spectrum of the
primary beam at each locationare given as follows.

Poo = Po(X vo0) (7.17)
Pyy = —XPpo (7.18)
P, = —X*(1-X%)Pyo (7.19)

The plots on the right of Figz.1 show the numerical estimates Bf,, Py, P,, computed
using the three primary beams shown in the left column ofspldh this simple exam-
ple with three widely-spaced frequencies,-@rder Taylor-polynomial is ingficient to
model the primary beam spectrum very accurately and in jpe@dtigher order polynomi-
als are used.
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7.2.1.2 Evaluating the Multi-Frequency Primary-Beam modé

Eqn.7.15shows the system of equations to be solved to compute thaests
of the multi-frequency primary beam model. However in piciw, andw."® are not the
only weights that are used. In a real observation, in additiothe frequency-dependent
shape of the primary beam, the sensitivity of the instruntemds to vary across frequency
due to diferent measurement and imaging weights, and across timeodbe totation of
azimuthally asymmetric beams. Therefore we need to comgruaverage primary beam
by following the exact measurement process present in é&pkt dataset and modeling
the resulting average beam and its frequency dependence.

The following is a thought experiment to describe how suchalautation of
primary-beam cocients fits into the MFS imaging framework. The purpose ofhsac
description is to illustrate how theffect of the average primary beam can be both mea-
sured and removed during MFS imaging. It uses the idea thahvehflat sky (constant
unit amplitude) is imaged using an interferometer with ctetguv-plane sampling&-
function PSF) and a direction-dependent gain (primary Hetima observed image will be
the primary bearn The normal equations for such a system can be re-writtergarate
the primary beam from the instrument, creating anotheresystf equations that can be
easily solvedvia the MFS principal solution (sectiof.2.2.3. The result of this process
is a set of polynomial caicients of the primary beam that include information aboet th
time-variability of the primary beam and the measuremedtiaraging weights.

Sky model : Let a flat sky model (with no frequency dependence) be demye@f’de',

an interferometer with full sampling described wit8,] = diag(i) and a frequency-
dependent primary beam given B[] = diag(Pp,).

Measurement equations : The measurement equations for this system are given by

Ni—1
Vs = N WF][Py, ]I (7.20)
=0
Hlat sky _ 7 1 Cflat sk
where  [[F°Y=1 and I *¥=0 (7.21)

Our goal is to solve the normal equations for this system &atliate the set of polynomial
codficientsPy, (introduced in Eqn7.14).

We will begin by writing expressions for the dirty imagesrfoed with this in-
strument and sky brightness, and then show how they foldth@mormal equations.

2 Note that this is only an alternate interpretation of tifieet of the primary beam, and in practice, an
interferometer with fulluv-sampling or a flat sky are not required to compute the prinb@gm co#icients.
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Observed image : Thet™" observed(dirty) image can be written as follows.

[P = ) WFT WV (7.22)
Ni—1
- Z {Z qu[FTWVF][PbV]} el using Eqn7.20for VoS (7.23)
=0 v
- Z W[F W, F]Pp, using Eqn7.21for I{°%' (7.24)
Ni—1
- Z {Z vvtjq[FTWVF]} Pog using Eqn7.14for P,,  (7.25)
g=0 v

Egns.7.22to 7.25show four diferent ways of expressing the same observed (dirty) image.
We can arrange these equations into LHS and RHS pairs to fgstaras of equations with
known quantities on the RHS and unknowns on the LHS. We candbke the resulting
system of equations to calculate the unknowns. Here, theavmks are the cdicients

of a Taylor polynomial that describes the primary beam, dedkinown quantities are the
single-frequency primary bearhs

Normal Equations : Let us denote the normal equations constructed from E@@.as

[HMs0.pb] [Tlat sky _ [bbs pb (7.26)

wherel 2t s andi®bs Pare vertical stacks df* *’andi?”® Prespectively (from Eqng.21
and7.22. The matrix H™s%-P"] can be described by writing each block-row (of EGr26)
as a system of equations formed with Egr23as the LHS and Eqrv..24as the RHS.

Ni—1
2 {Z vvi*q[F*WvF][Pby]} e = ) WIF'WFIP;, (7.27)

=0 v

Each block of H™SPP] js given by the expression within curly braces on the LHS of
Eqn.7.27. This system represents the use of an interferometer witipteteuv-sampling
and frequency-dependent primary beams to observe a flatrapeflat sky and produce
images given by Taylor-weighted sumsFf,. Figure7.2is a pictorial representation of
Eqn.7.26computed using EqQrY..27.

3In this example with completev-sampling, the dirty image will be called the observed image

“Note that this process is numerically identical to fitting/IBa polynomials to the primary beam spectrum
one pixel at a time. It is described in this manner only to @ynthe connection between this process and
multi-frequency deconvolution, and show that primary beaudficients can be computed from the same
weight images that the MS-MFS algorithm already computesuses.



139

Now, our goal is to solve for the series d¢beients of the primary beanPZq). To
do this, we can re-write the LHS of EqA.27using Eqn.7.25

N—1
2 {Z ""tfq[FTWvF]} Poa = ) WIF'W,F]P, (7.28)

q=0 %

We can now write a new set of normal equations as follows.
[HMs], "' = fobs po (7.29)

Here F?bmfS is a vertical stack of primary-beam daeients F?bq as defined in EqQn7.14,
[H™fS®] is the MFS Hessian matrix computed with fulv sampling and without any pri-
mary beams Fig.7.3is a pictorial representation of Eqi.29computed using Eqrv..28

Therefore, given a set of single-frequency primary beahesRHS of Eqn7.29
can be easily evaluated and Taylor fia@ents of the primary beam can be computed one
pixel at a timevia the the MFS principal solution (Eq®.38. This analysis can be taken
further to show how these primary beam ffa@ents can be separated from the true sky
brightness distribution.

7.2.1.3 Separating the primary beam from the sky

This section shows how the wide-band primary beantttments can be used for
image-domain primary beam corrections (basically, a adwviof two polynomials). Let
Iﬁkypb ¥ q € {0,N;—1} be a set of Taylor polynomial c@ecients that represent the product
of the skyITq”Ode'and the primary bearﬁbq. The first three terms of this polynomial product
can be written as follows.

skypb 5 jmodel

s ¥b _ pjgjinode (7.30)
> >

|_]S-k¥pb — PblIO?Tlode|+ Pbollfnodel (731)
> > >

FZSkypb — szlofllode|+ Pblllfnode|+ Pbolzil odel (732)

This polynomial product can be written as the product of ablower triangular matrix
(which we shall call P,™ ™) and a stack of image vectorgnede).

If we re-write F?bmfsin Eqgn.7.29as the product of the primary beam and a flat sky, we get
the following system of equations (depicted pictoriallyFig.7.4).

[H SO pym sty Tt s _ feos oo (7.33)

SCompare the expression within curly braces in Eg28 with the expression for a MFS Hessian block
given in Eqn.6.35and set §] to an identity matrix to emulate fulivsampling. Also, the magnitudes of the
diagonal elements oH™$°] (shown asd-functions in Fig.7.3) are equal to the elements ¢ fead for MFS
imaging (Eqn6.39.
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Note that the RHS vectors in Figs2, 7.3 and7.4 are identical. This suggests that al-
though the true measurement process requires that the rgrijeam be treated as part
if the instrument, we can separate the primary beam fromrnkgument to compute its
Taylor-codficients and also separate it from the sky brightness digtoibdo correct the
reconstructed image.

Finally, this factorization can be used with a real intesfeeter (incompleteiv
sampling) to give the following normal equations (derivgdamalogy with Eqn7.33.

[Hmfs][PbmfsmuIt] rﬁkymfs — rdirty,mfspb (7.34)

Fig.7.5is a pictorial representation of these factorized normabdigns. This factorization
of Py out of both the MFS Hessian and the sky model allows the uséaatiard MFS
deconvolution techniques, followed by a post-deconvolutmage-domain correctionig
polynomial division) to separate the primary beam from tkyelsrightness. Note that this
process is equivalent to solving this system of equationswgrting each matrix on the
LHS from left to right and applying these inverses in the samder to the RHS vectors
(see Fig4.1for the single-frequency equivalent of Fig.5).

8If incomplete sampling is included in Eqriz22to 7.24, [F'W,F] becomes F'SIW,S,F] = [B,] (the
Beam matrix for frequency). However, the factorization cFﬁJq out of the frequency summation still holds.
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mfs, &, pb 7 flatsky jobs pb
[H3[HX3[H ] I3[Il><1 Ii’l’le

Figure 7.2:Evaluating the multi-frequency primary beam model - 1: Tdiimgram is a pictorial
representation of Eqrv.26 and describes an observation of a flat spectrum flat sky witheali
aperture interferometeb{function PSFs) and frequency-dependent primary beams skyimodel
[flatskyjs given by Eqn7.21, the matrix on the LHS is the MFS Hessian matrix with fusampling
and primary beams. The symmetric taper across the diagdraoh block in the LHS matrix is
a Taylor-weighted primary beam. The RHS vectors are Tayleighted averages of the single-
frequency beams. The frequency-dependent primary beaetsinghis example are the same as
those shown in Figz. 1

Figure 7.3:Evaluating the multi-frequency primary beam model - 2 : Tdisgram is a pictorial
representation of Eqrv.29and is another way of obtaining the same RHS as Edfté (compare
with Fig. 7.2). The codicients of the primary-beam polynomial form the sky briglsseistribution

(comparelfbmfswith the right column of plots in Figr.1), and the LHS matrix is the MFS Hessian
matrix with full uv-sampling (similar to the Hessian in Fig.6 but with 8-functions) but no primary
beams (all diagonal elements per block are equal). Thisisyistem of equations to be solved to
compute polynomial cdicients for the primary beam spectrum from weighted averafjsmgle-
frequency primary beams, by using 73] constructed for the multi-frequency principal solution
(section6.2.2.3.
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Figure 7.4: Evaluating the multi-frequency primary beam model - 3 : Ttlisgram is another
representation of the imaging equations shown in Figsaand7.3. It shows how the fect of the
primary beam can be separated from the MFS Hessian as wealbmsthe sky model, but still
give the same RHS. It follows Eqgfi.33 and shows the matrix-vector product of the frequency-
dependent primary beam and the flat sky. The block lowengtitar form of the primary beam
matrix implements a polynomial multiplication between fir@nary beam and sky brightness, in
terms of their polynomial cd&cients (Egns7.30to 7.32).

mfs mfs, mult = sky, mfs Fdirty ,mfs ,pb
[H3m><3m] [Pb Einxiin] I3[n><1 I3m><1
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Figure 7.5:Multi-frequency normal equations with the primary beamtdaed out : This diagram
represents an observation of a field of two point sources mati-flat spectral structure, using an
interferometer with incompletev-sampling and frequency-dependent primary beams. Itvicllo
Eqgn. 7.34 in which the Hessian matrix (on the left) and the sky mod&¥™fs are the same as
shown in Fig.6.6 (for multi-frequency imaging with no primary beams). Theltiplicative efect
of the average primary beam is showia the matrix [P,™ ™! (similar to Fig.7.4). This system
can be solved from left to right. MFS deconvolution appliecctly to the RHS vectors produces
a set of cofficients that represent the product of the primary beam andkidorightness. The
sky brightness and its spectrum can be recovered in a setemdyg computing and applying the
inverse of the lower-triangular polynomial-multiplier inia [ P,™S™U. (see Fig4.1for the single-
frequency version of this system).
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Figure 7.6:Average Primary Beam, Spectral Index and Curvature : Thesgeés show the fre-
guency dependence of the primary beam and its variation ditiiction on the sky. They are the
result of computing primary beam déieients (sectior/.2.1.9 from the set of single-frequency
primary beams shown in Fig.2 and calculating thefeective spectral index and curvature from
these cofficients {ia Eqn.6.43to0 6.45. The average primary beam (also first Taylor ff@gent)
(top), its spectral index (left) and curvature (right) al®wn over a field of view extending past
the second sidelobe at the reference frequency. Note thaketerence primary bearﬁbvo has a
smooth extended sidelobe at the few % Ievel,I&g,tand P}B are smooth functions only within the
main lobe where the frequency variation is monotonic. Thexspl index of the main lobe of the
primary beami(e. no sidelobes) is shown in more detail in FglL

7.2.1.4 Spectral index and curvature of the Primary Beam

This section briefly discusses a power-law interpretaticthe frequency depen-
dence of the primary beam in order to illustrate ifi€et on the MFS imaging process. The
spectral index and curvature due to the primary beam can to@eted from the first three
primary-beam polynomial cdicients (as shown in EqB.43t0 6.45).

Figure7.6 shows images of the reference-frequency primary beam ansigbc-
tral index and curvature associated with the average beanenfEVLA antenna. These
beams were computed from the single-frequency primary Bestmawn in Figh.2
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Figure 7.7:Spectral Index and Curvature of the EVLA Primary Beam : Theegiot shows 1D cuts
through the EVLA primary beam at three L-band frequenci€s 1.5 and 2.0 GHz. The cut was
chosen to pass through a peak in the first sidelobe, and shdwsre half of the beam (the X-axes
is in units of image pixels with the pointing center at 512hebottom plot shows the corresponding
average beam, spectral index and curvature (from7Fy.also as a function of angular distance
from the pointing center in units of image pixels. Note thatre locations of the nulls of the
reference frequency (1.5 GHz, green limeandp diverge, but have stable values within the main
lobe as well as in a significant part of the first sidelobe.

TheP,” andP,” images, show that outside the main lobe of the reference pbeam
the spectral index and curvature taken on high values andraardly. This indicates that
a power law model with varying index is valid only in region$igve the primary beam
spectrum is monotonic (regions in or near the null are bldriet and appear with value
zero). Figure?.7 further illustrates this point. The top plot shows a one-gliisional cut
through the multi-frequency primary beams shown in Fig(the cut was chosen to pass
through a sidelobe peak in the individual beams).The bofpdwh shows the values of

spectral indexP, and curvaturePﬁ,ﬁ as a function of angular distance form the pointing

center. Note that at the null of the reference-frequencnary beamP,” and P, are
unstable, but again take on stable values in the first sible-lorhis behaviour decides
the regions of the image for which the frequency-dependentgsy beam can or cannot
be corrected for using a spectral indexrvature representation (in the general case, the
polynomial codficients can be used directly for the image-domain correstjon
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7.2.2 Imaging Equations and Block Deconvolution

This section describes an algorithm for multi-scale misguency synthesis
imaging with the correction of direction-dependefieets that vary with antenna, baseline,
time and frequency. It uses the multi-frequency primarynbeaodel derived in section
7.2.1and folds it into the iterative deconvolution process désct in sectiory.1for multi-
scale multi-frequency imaging. The correction of direntibependentféects is donevia
the methods described in chapiem particular the primary-beam correction algorithm de-
scribed in sectiod.3.2to remove the fiect of the antenna primary beana a combination
of visibility-domain and image domain operatidns

For visibility-domain operations, the frequency-depammieof the primary beam
can be naturally accounted for by scaling the size of thetapeillumination function
and using it to construct a gridding convolution functiom &ach observing frequenty
For image-domain operations, the frequency-dependenteegbrimary beam has to be
absorbed into the image model by describing the observedskize product of the true
source spectrum and a frequency dependent primary beam {Efn By independently
measuring and modeling the spectral behaviour of the aatprimary beam, we can sep-
arate the two and recover the true sky brightness and spectru

7.2.2.1 Wide-Band Image Model with the Primary Beam

Forimage-domain operations, we will define a flux model ferabserved bright-
ness distribution as the product between the true sky bragstand the primary beam, both
represented as power-laws with varying spectral indices ¢ection$.2.1and7.2.1.9.

 \[a+ael+[8+peeliog( )
) (7.35)

obs __
17> = Iyonvo(V—0

The image model used in the measurement equations is asoalg-multi-frequency rep-
resentation (defined in Eqii.1) of this observed sky brightneﬁ%’s. The model imagd?:f‘S
for each spatial scaleand termt in the series now represents a collectiordeffinctions
that describe the location and total flux of flux componends tlescribe the product of the
sky brightness and the primary beam (and not just the skyhbréss, as was the case in
section7.1.1, Eqn.7.1).

"Note also that the flat-skysflat-noise discussion in st&pof the algorithm described in sectidn3.2for
single-frequency primary-beam correction applies to iftdiquency primary-beam correction as well.

8 This is suficient for direction-dependentfects such as the-term and beam squint which are also
frequency-dependent. For a given baseline, the value dfianges with frequency and the appropriate
projection kernel must be chosen to construct the griddimgyvelution function for each frequency (see
section4.2.2.4. The beam squint (a polarization-dependent pointifiged for reflecting dishes withfb
axis feeds) is a fixed fraction of the primary-beam width ameréfore varies with frequency and requires
a frequency-dependent phase to be applied to the apetwmréribtion function used to construct gridding
convolution functions.
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7.2.2.2 Measurement and Normal Equations

This section describes the MFS normal equations formed weimage model
shown in Egn7.35is used with methods for correcting direction-dependéietogs. Let us
combine the normal equations for MFS imaging (shown in Eqrgband6.36) with those
for single-frequency primary-beam correction (shown imE4.12 for the measurement
equation shown in EqrL.9). Let the resulting normal equations be denoted as follows.

[Hmfspbz] [Skymfs _ rdirty,mfspb2 (7.36)
Each block row of this system is written as follows.
Ni—1
> {Z W 9[P1IB,II PbV]} I39= )" Wh[Py, ]I (7.37)
g=0 v v

Here,l}dirty is the dirty image computed for frequeneyia Eqn.3.10and [B,] is the Hessian
(Beam) matrix constructed from EqB8.12for eachv. Note that there are no multi-scale
terms in this equation. This is because we are analysingerdagnain &ect of the primary
beam on the full multi-scale image (the result of a linear boration of basis functions
(Egn.6.1)) and not the multi-scale model image which consists of @k&tfunctions.

By analogy with Eqns7.22to 7.24 and Eqgn.7.34for MFS normal equations
with primary beams, we factor the primary beams out of thersation over and re-cast
Eqn.7.36in terms of a pre-multiplication and a post-multiplicatiohthe MFS Hessian
with the primary beam.

[PbmfsmuItT] [Hmfs] [Pbmfsmult] rékymfs _ rtlirty,mfspb2 (7.38)

Note that the factorization of the wide-band primary beanttanleft of the MFS Hessian
is an approximation, and is shown here only in analogy witm.Egl12 for the single-
frequency case.

Fig.7.9shows this factorization (Eqii.38 for an example in whiclN; = 3, Ng =
1 and the sky is composed of two point sources witkedent spectral characteristics (the
same sky brightness distribution, and MFS Hessian as showigi6.6).

This factorization shows that when gridding convolutiondtions are constructed
from aperture illumination functions and used during ghidy the system of normal equa-
tions contains two instances of the primary beam and itaisaqy dependengeThis set
of equations is solved from left to right as a pre-deconvotuhormalization by the pri-
mary beam, MFS deconvolution, and a post-deconvolutiorection of the primary beam
to separate it from the sky brightness distribution.

9The presence of two instances of the primary beam in the n@quations when aperture-illumination-
based gridding convolution functions are used is similasitmle-frequency case described in sectoB
Also, when standard gridding is used (similar to sectio®.1for the single frequency case), there will be
only one instance of the primary beam and its frequency daégrece.
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Figure 7.8:Normal Equations for MFS with Primary-Beam Correction : §diagram represents
the normal equations shown in EGh36in which the antenna primary beams are included in the
measurement equation, and the dirty images on the RHS anedbby applying visibility-domain
corrections for direction-dependerftectsvia gridding convolution functions. The multi-frequency
PSFs used for this example are shown in Bi§, the primary beams are shown in Figland the

sky model is the same as in Fig.6. Note that the diagonals of all Hessian blocks are scaled by

W o |5b2 (compare with Figt.2 for the single-frequency case).

mfs, mult T mfs mfs, mult = sky, mfs = dirty ,mfs, pb’
[Pb 3mx3m ] [H31T1X31T1] [Pb 3[r1><3m] I3m><1 I3rn><1
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Figure 7.9:Normal Equations for MFS and Primary-Beam Correction : Tdisram represents
the same system as shown in Fig8 but with the wide-band primary beam factored out of the
MFS Hessian (Eqn7.38). This matrix product is similar to that shown in Fg3 for the single-
frequency case, but here, the factorization of the leftirpasnary beam matrix out of the Hessian
is an approximation (and the RHS vectors are not identicah¢se in Fig.7.8). Note that the
matrix in the middle is the MFS Hessian that contains no tiveedependentféects. The solution
of this system of equations proceeds from left to right. Thenary beam matrix on the left of the
MFS Hessian is eliminated first by dividing the RHS by the iHuéquency polynomial. The MFS
Hessian is then eliminatada a multi-frequency deconvolution. The second polynomialtiplier
matrix is eliminated as a post-deconvolution step. All ghgteps are done with the minor cycle of an
iterative image reconstruction process (when MS-MFS isliaad with primary-beam correction).
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7.2.2.3 lterative Block Deconvolution with Primary-Beam orrection

Each step of an iterative block deconvolution will now beatdsed in detail. This is a
multi-scale multi-frequency deconvolution algorithm tliellows the methods described
in section4.3.2for the correction of direction-dependertexts (algorithm7 on pagel53
lists the relevant steps).

Pre-compute Hessian:  All NsN;xNgN; terms inthe MS-MFS Hessiah ¢ € [0, Ni]; s, p €
[0, Ng]) are evaluated by computing all uniqgue multi-scale mirkiguency convolutional
kernelsi s’ (Egn.7.9. This step is the same as that described in se@i@r?.5for MS-

t

MFES deconvolution.

tq

7 - s

whereiP*"is the PSF computeda Eqn.3.11 All the convolution kernels are normalized
by Weum Such that the peak of the z&mrder function is unity, and the relative weights

between aIIﬁE,?f are preserved. A set & [HP*®] matrices is constructed for each spatial

t,
scales. Each'is a matrix of siz&\l; x N, representing a block diagonal approximation of
the MS-MFS Hessian (shown in Egnb5).

Pre-compute Weight Images: A set of weight imagel%*”t are constructed from weighted
sums of the aperture illumination functions used to formdimy image vectors.

[ = S WAIFIS,SIWIS, ] ~ 3 witr[WP,] (7.40)

where [*] = diag(i™) and [P,.] = diag(P,.). [S*] ~ [S,][G] = [S,]IFP,,F']is a
convolution operator on the spatial frequency plane wheprahary beams are assumed
to be identical. In practice this implies the use of an appnate average primary beam
for image-domain corrections, but it is understood thatigibility-domain corrections are
still done using baseline and time-dependent functior{&,[fis unitary, then 5!G,] is the
Identity matrix, and the weight image will contain only thens of the measurement and
imaging weights. For the primary beang,] is non-unitary and the process of gridding
does not correct it completely and the weight image will stesidence of this (compare
with Eqn.4.14for the single-frequency case).

Pre-compute Primary Beam :  Polynomial coéicients for the average primary beam
are obtained by applying the inverse bfig‘k] to the above set of weight imag%. Thisis
similar to the process described in sectif.1to calculate the primary beam polynomial.
Compare the expression for the weight image in EgA0with the RHS of the system
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of equations used to compute the primary beanfiaments (Eqn.7.24). The form of the

RHS vector is the same, but it is now a weighted surﬁ%ﬁf(and not a weighted sum of
Pb,). The principal solution computed for each pixel now repres the cofiicients of a
polynomial formed from the square of the primary beam. Th#esecodficients of the
primary beam I(ybq) are extracted from these d@eients by calculating the square root of
the resulting polynomial in terms of its cfheients (again, compare with Egf.14for the
single-frequency case).

A polynomial square root is equivalent to a division by twolag-space. For
N; = 3, the calculation of the polynomial square root is numdigagdentical to converting
these cofficients into power-law parametétgusing Eqns6.43to 6.45, computing a
reference-frequency image, a spectral index image and @rapeurvature image, and
then taking the square-root of the reference-frequencynbelividing the spectral index
and curvature images by two, and recomputing Tayloffodents F?bq for a polynomial
representation of this new power law (using EGr29. Let us denote the parameters of
this new power law aﬁ’ﬁbwJ for the primary beam at the reference frequerféy, as the
spectral index due to the primary beam dﬁg for spectral curvature (see Fig%.6 and
5.4for 2D images). These primary beam parameters represeiffteitpeency dependence
of the weighted average of the individual primary beams.

Initialization :  Iterations begin by initializing the set of model images éaich Taylor-
term ﬁqmde'v q € {0,N; — 1} to zero or to ara priori model.

Major and minor cycles :  The normal equations for MS-MFS imaging (shown in
Eqn. 7.5 are solved iteratively by repeating step$o 7 until some termination criterion
is reached. Step$,2 and7 form the major cycle, and stefs 4 and 6 form the minor
cycle. Direction dependenttects are corrected during the major cycle and thect of
these corrections on the minor cycle depends on the typerafazation chosen for the
residual images.

1. Compute RHS :Residual images for all pairs of spatial scales (0, Ns] and Taylor
terms € € [0, N;]) are computed as follows.

|‘fes
S

t

= [Py [fes (7.41)
where I{* = ' W[FRSUWMVIE~ 3 WP, ]Il (7.42)

10 Note however, thaN; = 3 may not be sficient to accurately model the primary beam spectrum in
regions outside the main lobe. In this case, an explcdrder polynomial square root needs to be computed.
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Since we intend to use the MS-MFS deconvolution algorithmttie minor cycle,
all direction dependentfiects need to be removed by the time the RHS vectors are
computedvia Eqn.7.41 If not, the minor cycle has to be interpretedidrently.

These dirty images need to be normalized before beginnegninor cycle. Based
on the form of the normal equations when visibility-domaimnrections for direction-
dependent féects are done, there are several types of normalizationsy &te de-
scribed below as parts of stepand6.

. Normalization : There are two ways in which the RHS dirty images can be pre-

processed before beginning the minor cycle iterations ¢eeton2 for the single-
frequency version of this discussion).

(a) Flat noise : The first approach is to divide the RHS vectors by one instaihce
the multi-frequency primary beam. This is equivalent tonghiating the upper-
triangular block matrix on the left oH,,¢¢ in Fig.7.9and can also be done by
computing the dirty image separately for each frequencydividing it by Py,
We are left with one instance of the primary beam, and theesysif equations
being solved are equivalent to those shown inFig(the case where standard
gridding is used to compute the dirty images and no visibidibmain correc-
tions of direction-dependentfects are applied). The noise in the image is the
same across the entire field of view, but the flux is modulatetthe instrument
primary beams. The primary beam on the right f7 9] is treated as part of
the sky model and taken out of the final result of each minolecyc

(An alternate approach is to divide all the RHS imageﬁgy(i.e. not a poly-
nomial division). This corrects for one instance of an agerarimary beam
and creates flat-noise RHS images, but leaves in the fregtgamendence of
the beam. The minor cycle model image will contain one faot(’f?bvo and two

factors ofPy, andPyy.)

(b) Flat sky : The second approach is to divide the RHS image by the weight
imagesl?Vt or to apply a polynomial division with the céiients of the square
of the primary beam (see secti@r.2.3. Thisis equivalent to dividing the dirty
image at each frequency by the square of the primary beanmagfrdguency
Pi..

These operations produce RHS images that represent thespedkightness
not modulated by the primary beams, but the noise is not unifacross the
images and this has to be accounted for while searching forctimponents.
Further, the normal equations in Egh37and Fig7.9 show the two primary
beams on either side of the MFS Hessian, and any operatibngba a single-
step image-domain correction by the square of the primaanmbwill be an

approximation.
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(An alternate approach is to divide the RHS imagestSg. This will give a
flat-sky intensity image, but the minor cycle model imagd still pick up and
two factors ofPy, andPy.)

It is important to note that both types of normalization mhstdone toii"™ in
Eqn.7.41beforesmoothing it to diferent spatial scalesa Eqn.7.41 Thisis because
the image model is a multi-scale representation of the skiyipfied by the primary
beam(3, [P [ = PoI®%) and multiplication and convolution do not commute.

3. Find a Flux Component : A flux component is chosen in the same as as described
in step2 of the MS-MFS deconvolution algorithm and principal sabatidescribed
in sections/.1.2.5and7.1.2.3 The principal solution is computed for all pixels, one
scale at a tim&ia Eqn.7.10 TheN; element solution set of Taylor cfiients with
the dominanty = 0 component across all scales and pixel locations, is chibgen
current flux component. Let the scale size for this sepb&he chosen solution set
for iterationi is given by{ I@‘(’i‘;e'}; g € [0, N{.

P,

4. Update model images : Multi-scale model images are accumulated for each Taylor

codficient (same as Eqii.12).
[rocel [hiocely g (Iyedela 130%) e (0N = 1) (7.43)

whereg is a loop-gain that takes on values between 0 and 1 and cetitebktep size
for each iteration in thg2-minimization process.

5. Update RHS : The RHS residual images for each Taylor term are updatedlas/fo
(same as Eqrv..13.

Ni—1
res _ jres E psf model

Repeat from Step3 until a pre-computed flux-limit is reached.

6. Correct for PB : Depending on the choice of normalization (s8p the multi-
frequency model at the end of the minor cycle needs to be d@extdor the primary
beam and its frequency dependence.

(a) Flat noise : This step is equivalent to a polynomial division that eliatis the
primary-beam matrix on the right of the MFS Hessian in Fig. In the case of
flat-noise normalization, the model image contains oneimst of the primary
beam and its frequency dependence. The model images forTegtdr coef-
ficient are corrected using their power-law interpretatiofrirst the reference-

INote that the numerical steps involved in primary-beamexiionvia a power-law model are exactly
equivalent to a polynomial division (when the sky and thenaty beam are both modeled by polynomials
in frequency). FolN; = 3, the choice of a power-law instead of a polynomial to repnéshe frequency-
dependence of the primary beam is irrelevant from the pdinteav of an image-domain correction.
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frequency imagel{"de) spectral index and curvature imagé&ele [nodeis)
are calculated from the model d@ieientsvia Eqns.6.43to 6.45and then the
primary beam is removed dg°deho /Py, [modele _ 5 [fmodels _ 5 Polyno-
mial codficients for this new power law are then recomputedEqn.6.22and
filled into [Modely t e {0, N, — 1} (to be used during prediction).

(b) Flat Sky : No corrections are required because the flux model is alrdadgid
of primary-beam ffects (in regions away from the nulls).

In both the above cases, the alternate forms of normalizatescribed in steg
require diferent multiples oP,, Py, andPy,; to be removed from the model image.

The advantage of using the power-law model to separate iheapr beam from
the sky brightness is that fidelity constraints can be agpdie the resultingr and

B images before converting them back to Taylor{ticeents. The disadvantage of
using this power-law model is that it will be accurate only parts of the primary
beam that are well represented by a power lawldnd 3 sufices to model it (within
the main lobe). Out in the sidelobds, > 3 terms are usually required to describe
the primary-beam polynomial and is more accurate to do tlkeeborrectiorvia an
explicit polynomial division in terms of its céicients.

7. Predict : Model visibilities are computed from each Taylor-@d@ent image in the
same way as in Eq.42for multi-frequency imaging.

Ni—1
\—/»Lnodd _ Z[Vvtmfs][sddTGpcRT FII rbSJ—ll‘tfnodel (7.45)
0

t=

The use of $99'] during de-gridding re-introduces all the direction degent éfects
so that the model visibilities can be compared with the datg¥ computation (com-
pare with Egn4.16for the single-frequency case). Since these directioredéent
effects are re-introduced in the visibility domain, it is doegarately for each base-
line, timestep and frequency, and takes into account anghiity. Therefore, even
if the minor cycle uses approximate average primary beanesptediction step and
the major cycle are always computed accurately and thisdessary for the itera-
tions to eventually converge.

Residual visibilities are computed §&s = \jeorr — \jmodel

Repeat from Stepl until a convergence criterion is reached.

Restoration: The final Taylor co#ficient images are restored and interpreted in the same
way as described in standard multi-frequency restorasent{on6.2.2.5.
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Algorithm 7: MF-MFS CLEAN with MF-PB correction : Majgminor
cycles

=

14

15
16

17
18
19

20
21

Data: calibrated visibilities V" vy

Data: primary beams Py, Vv

Data: uv-sampling function : §,]

Data: image noise threshold and loop gatf,, Js

Data: scale basis functionsIEhva € {0,Ns— 1}
Result model codicient images g € {0, N, - 1}

Result spectral index and curvaturd"ode! Iznode'
Use Algorithm8 on the following page to pre-compute
I_EPSf’ [ngaﬁ, F?bv(p F?ba/’ FS)bﬁ

tq

Initialize the model™d'for all t € {0, N; — 1} and computefsigeiope

repeat /* Major Cycle *

for t € {0, N;-1} do
Compute the residual imadfs
Normalizel{es by Py,
for se {0, Ns-1} do
| Computei’ss = I3"° x [fes
end
end
Calculatefim; from [fes

Computel °%'vq € {0.N; — 1} and updatd’s® Vs, t (Algorithm 6
on pagel34)
until Peak residual iffes < fimi
qn jin fin del
Calculate power-law parametersy, 1%, 15" from [5°°¢'Vq
Remove primary beam :
[Pew = 110 /Py, [ho% = T — 2P, Thew = [ — 2Py,
Re-compute Taylor cdgcientsi®" Vg from [fiew, [hew jhew
Compute model visibilitie¥/;"*%'from 17" ¥q € {0.N; — 1}
Compute a new residual imag¢/és from residual visibilities
\eorr _ Vmodel
until Peak residual iff*® < oy
Calculate spectral index and curvature images, and retenesults

repeat /* Minor Cycle */
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Algorithm 8 : MS-MFS with MF-PB correction : Pre-Deconvolution Setup

Data: primary beams P,, Vv

Data: uv-sampling function : §,]

Data: scale basis functionsl*thS € {0, Ng — 1}
Result scale-spectral PSFSIﬁ_E,’pS L [HP*Y

Result primary beam model vao, Poa» Pog
for te {O,N;—1},g€e {t,N; -1} do
Compute the spectral PSE®"
for se {O,Ns—1},pe{s Ns—1}do
Compute the scale-spectral PB’Ff

w NP

-Shp* I—Shp* rpsf

end
end
for se {O,Ns— 1} do

Construct H2*® from mid(l pSf) and computeti?ea< ]

9 end

10 for t € {0, N; — 1} do

1 | Compute the weight imagdt = 3, wh (tr[W™])[ Py-]
12 end

13 foreach pixeldo

14 Constructi™s, from I at this location

~N o o b

—h

. . - sol
15 | Compute the primary beam Taylor deientsP, = [nga'cl] [ths
16 end

sol  sol - sol

17 Compute power-law parametel?g » Poy 5 Phyg from Pbt Vt € {O N — 1}

|
>sol o |§ sol S

18 Compute primary-beam paramet@r@0 = \Pby, > Poo =




CHAPTER 8

WIDE-BAND IMAGING RESULTS

This chapter presents a set of wide-band imaging resultkistrate the capabil-
ities of the multi-scale, multi-frequency deconvolutidga&ithms described in chaptér
The examples presented here focus on the EVLA at L-band (I3d2) but the results are
generic enough to be transferred to other arrays and fremgeenThe description of each
example emphasizes the accuracy with which spatial andrapstructure can be recov-
ered for a particular type of source and signal-to-noiseraind discusses how the choice
of image model and algorithmffected the imaging process. Error estimates, dynamic-
ranges and performance metrics are presented and disoubsegler relevant in order to
convey an idea of what to expect when one uses these methosisaitio-spectral image
reconstruction.

Section8.1 describes imaging results based on simulated EVLA datantode
strate the capabilities of the MS-MFS algorithm for narrowd avide-field wide-band imag-
ing. Sectiond.2 demonstrates the applicability of this algorithm to sitoa$ with incom-
plete spectral sampling whegepriori information in the form of an image model is used
to bias the solution towards a physically appropriate dpgon of the sky brightness. Sec-
tion 8.3shows the imaging results from a set of wide-band VLA obdema of Cygnus A,
M87 and the 3C286 field. Sectiédh4 summarizes several practical aspects of wide-band
imaging and lists the main factors to keep in mind while ushyMS-MFS algorithm for
spatio-spectral imaging.

The MS-MFS algorithms described in the chaptevere implemented using the
CASA libraries (version 2.4), validated using data simedifor the EVLA and applied to
wide-band VLA observations taken as a series of snapshoisifiple frequencies. The
multi-scale, wide-band flux model used for all the imaginggn this chapter is given by
Eqn.7.1 Spatial structure is modeled with a collection of multalecflux components, and
the position-dependent spectrum of the sky brightnessilalision is written as a Taylor
polynomial in frequencyi(e. a polynomial inl vs v space, and not in log) vs log(v)
space). The simulations used for these tests represent@dhamr synthesis run with the
EVLA in D configuration at L-band with an instantaneous bardilvof 1 GHz. Wide-band
data were obtained from the V0Lia a series of short observations that cycled through a
list of frequencies between 1 and 2 GHz. The end result of sucbbservation was a
series of 10 to 20 VLA snapshots at 10 to 16 discrete freqesnweithin the range of the
new EVLA receivers at L-band for those antennas that had thednwithin the range of
the VLA receivers for the rest.
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Telescope EVLA (D configuration)
Observing Band Lband (1-2 GHz)

Phase reference center 19:59:28.5+40.44.01.5 J2000
Angular resolution 60, 40, 30 arcsec at 1.0,1.5,2.0 GHz
Cell size 8 arcsec

Image size 1024x1024 pixels (34 arcmin)
Number of channels 20

Channel Width 10 MHz

Spacing between channels 50 MHz

Instantaneous bandwidth 200 MHz (spread across 1 GHz)
Reference Frequency 1.5GHz

Total integration time 8 hours

Integration time per visibility 200 s

System temperaturBsys 35K

Noise per visibility 7.2 mJy

Single-channel point-source sensitivity 22.8uJy (theoretical)
Continuum point-source sensitivity 5.1wly (theoretical)
Expected dynamic range 8000

Achieved continuum RMS (®source) 8 uwJy/beam

Achieved dynamic range 4000

Number of spectral series diieients N =5

Set of spatial scales 0,6,10 pixels

Table 8.1:Parameters for Wide-Band EVLA Simulations : These simataiwere designed to
minimize the size of the simulated dataset and consist ot afs20 frequency channels spread
across the full 1 GHz instantaneous bandwidth with vidipiamples being measured once every
3.3 minutes. A very low noise level was used in order to tedtatidate the algorithm.

8.1 Algorithm validation via simulated EVLA data

The multi-scale multi-frequency deconvolution algorithdescribed in chaptér
were validated using datasets simulated for the EVLA. $a@il.1lpresents narrow-field
imaging results and sectighl.2illustrates the ffect of a frequency-dependent primary
beam and shows imaging results with and without primary¥bearrection.

The simulations used wide-band flux components construate?D Gaussians
whose amplitudes follow a power-law with frequency. Extetiémission was modeled
by a sum of these flux components. Overlapping flux componeitisdifferent power-
law spectra we used to construct sources whose spectra weggure power laws and
also varied smoothly across the source. For wide-field im@gagests, antenna primary
beams were included in the simulations by using visibilioyrdhin convolution functions
that were constructed from frequency-dependent apeitureination functions that rotate
with time and have phase variations that model the EVLA beguins. The parameters
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of the simulated EVLA observation are listed in TaBld. The data products that were
evaluated were the sky brightness distribution at a referdérequency along with maps of
spectral index and spectral curvature.

8.1.1 Narrow-field imaging of compact and extended emission

Objective :  The goals of this test are to assess the ability of the MS-Mg&ighm to
reconstruct both spatial and spectral information abowiace in terms of a linear combi-
nation of compact and extended flux components with polyabsmectra (flux model de-
scribed in section.1.]) as well as to test how appropriate this flux model is when e t
sky brightness is a complex extended source whose spebtaedateristics vary smoothly
across its surface.

Sky brightness :  Wide-band EVLA observations were simulated for a sky bmgiss
distribution consisting of one point source with spectnaleéx of—2.0 and two overlapping
Gaussians with spectral indices-e1.0 and+1.0. Fig8.1 shows the reference frequency
image of this simulated source, plots of the spectrum f#éint locations on the source,
and the resulting spectral index and curvature maps. Therghendex across the resulting
extended source varies smoothly betwedn0 and+1.0, with a spectral turnover in the
central region corresponding to a spectral curvature of@pmately 0.5. Fig3.2 shows
the first three Taylor cdcient maps that describe this source.

MS-MFS Imaging :  Two wide-band imaging runs were done using the MS-MFS algo-
rithm and the results compared. The first used a multi-scalerflodel (sectiory.1.]) in
which N; = 3 andNs = 4 with scale sizes defined by widths af@)18, 24 pixels and the
second used a point-source flux model in whith= 3 andNg = 1 with one scale function
given by thed-function (to emulate the MF-CLEAN algorithm described @t8on6.2.1).

A 50 flux threshold of about 2Q)y was used as the termination criterion.

Results :  The results from these imaging runs are shown in Bi§.(three Taylor co-
efficients), FigureB.4 shows residual images over a larger region of the sky, andgig
shows the intensity at the reference frequency, spectdaiximnd spectral curvature. All
figures show the results with both MS-MFS and MF-CLEAN.
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Figure 8.1:Simulated wide-band sky brightness distribution : Thesages represent the wide-
band sky brightness distribution that was used to simulsie/data to test the MS-MFS algorithm.
The image on the top left shows the total intensity image @thurce at the reference frequeiigy
The plots on the bottom left show spectra (and their powerdarameters) at 4 fierent locations.
The spectral index varies smoothly between abduand-1 across the extended source andss
for the point source. The spectral curvature has signifigahtes only in the central region of the
extended source where the spectrum turns over within th@leghnange. The images on the right
show these trends in the form of spectral index (top) andtsgezurvature (bottom) maps.

Figure 8.2:True Taylor coéficient images : These images show the first three Taylofficants
for the polynomial expansion of the wide-band flux distribotshown in Fig.8.1. These images
are the (left) intensity at the reference frequengy= 1,,, (middle) first-order Taylor-cdcient
l1 = al,, and (right) second-order Taylor-cdieient |, = (a(a — 1)/2+ ) |,, (see Eqn6.22). All
images are displayed at the same flux scale.
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Figure 8.3: Reconstructed Taylor cfiicient images : These images show the first three Taylor
codficients (similar to Fig8.2) obtained using two dlierent wide-band flux models. The top row
shows the results of using a multi-scale wide-band flux m@d&-MFS) and the bottom row shows
the results of using a point-source wide-band flux model (ME=AN, or MS-MFS with only one
spatial scale given by &function). All images are displayed at the same flux scale.
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Figure 8.4:Residual images : This figure shows the residual imagesr@atafter applying MS-
MFS to wide-band EVLA data simulated for the sky brightnetstrithution shown in Fig.5. The
residual image on the left is obtained when a multi-scalerfioxlel was used (MS-MFS). The RMS
noise on source is about 20y and df source is JuJy. Compare this with the residual image on the
right from a point-source deconvolution (MF-CLEAN) wheleton source RMS is about 0.2 mJy
and df source is 5Quly. (Note that the displayed data ranges affedint for these two images.
The flux scale for the image on the left#©.3 x 104 and for the right is+0.3 x 10°3.) This clearly
demonstrates the advantage of using a multi-scale flux model
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Figure 8.5:MS-MFS final imaging data products : These images show thdtsasf applying MS-
MFS to wide-band EVLA data simulated for the sky brightnemsdrithution described in Fi§.1
The left column shows the results of using a multi-scale wiidad flux model (MS-MFS) and
the right column shows the results of using a point-sourageviniand flux model (MF-CLEAN, or
MS-MFS with only one spatial scale given bydaunction). The top, middle and bottom rows
correspond to the intensity image at the reference frequggcthe spectral index and spectral
curvatures maps respectively. The flux scale for each/tafht pair of images is the same, and the
sharp source boundaries in the spectral index and curvataps are because of a flux threshold
used to compute them. With a multi-scale flux model (MS-MIe8), the reconstructions af and

B are accurate to within 0.1 in high signal-to-noise regiowith a point-source flux model (MF-
CLEAN, right), deconvolution errors break extended enoissinto flux components of the size of
the resolution element and these errors transfer non#lingéa the spectral index and curvature
maps. Table3.2 compares the true and reconstructed valuds o, 8 for three regions of this sky
brightness distribution.
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The main points to note from these images are listed below.

1. With a multi-scale multi-frequency flux model (MS-MFSkthpectral index across
the extended source was reconstructed to an accurasy &f 0.05 with the max-
imum error being in the central region where the spectraéingoes to zero and
N; = 3 is too high for an accurate fit (secti@n2.4describes how the choice d§
affects the solution process). The spectral curvature achesextended source was
estimated to an accuracy 8B < 0.1 in the central region with the maximum error
of 88 ~ 0.2 in the regions where the curvature signal goes to zero amddhrce
surface brightness is also minimum (the outer edges of thecsh

2. With a multi-frequency point-source model (MF-CLEANEthccuracy of the spec-
tral index and curvature maps was limitedde ~ 0.1,08 ~ 0.5. This is because
the use of a point source model will break any extended earissto components
the size of the resolution element and this leads to decatwal errors well above
the df-source noise level (note thefidirence between the intensity imagés) pro-
duced with MS-MFS/s MF-CLEAN). Error propagation during the computation of
spectral index and curvature as ratios of these noisy réxamted images leads to
high error levels in the result.

3. The imaging run that used a multi-scale image model wasitated at a & noise
threshold. The peak residual is about|2ly and the fi-source RMS is pJy (close
to the theoretical RMS of 8Jy as listed in Tabl®.1). The imaging run that used a
point-source model was terminated after at least four |siee major cycles failed
to reduce the peak residual below 209 despite an apparant decrease in the resid-
uals during the minor cycle iterations. Th& source RMS in the result is about 50

udy.

Error Estimates :  The errors on the reconstructed intensity map at the referéme-
guency, spectral index and curvature were estimated basadomparison with smoothed
versions of the corresponding true images. Tabkshows these numbers for three regions
on the simulated sky brightness distribution (labelled @ahd 3). One general point
to note from these results is that MS-MFS tends to give mocairate results than MF-
CLEAN because the errors on the reconstructethds depend strongly on the magnitude
of the deconvolution error in the ciient images. MF-CLEAN has larger deconvolu-
tion errors in the coicient images, and since it is unlikely that these errorsguesthe
ratios between the cfiicient images, the errors in the spectral index and curvahaps
increase. With sficient signal to noise (SNRO(10)'for spectral index and SNRO(100)
for spectral curvature), it is possible to reconstruct thecsral index and curvature across
the source to accuracies of within 0.1.

1The expression O(n) represents 'of the order of n’.
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Observed Errors with MS-MFS| Region 1 Region 2 Region 3
Peak brightnesk (Jy/beam) 0.0292 0.0128 0.0032
On-source residuds 1x 1079 1x 107 2x10%
Off-source residudls 3x 107 3x 107 3x 107
Sl =lg — 1€ 1x10°% 4x 1070 1x 107%
S NR= lg/maxI:s, dl) 1800 320 32
Measuredr + o« 0.99+ 0.005 |-0.13+0.11 |-2.45
Measureg + 68 0.016+0.01 | 0.61+0.05 -1.12
Observed Errors with MF; Region 1 Region 2 Region 3
CLEAN

Peak brightnesk (Jy/beam) 0.0309 0.0129 0.0031
On-source residuds 2x107% 4x 109 2x 107
Off-source residudl’ss 1.2x10°% 1.2x10°% 1.2x10°%
Sl =lg — 1€ 1x 1079 1x 107% 1x 107%
SNR= lg/maxI:s, dl) 190 43 31
Measuredr + da 0.7+ 0.17 -0.17+ 0.26 -2.58
Measureg3 + 68 -0.5+0.3 -0.5+0.35 -1.19

Table 8.2: Measured errors with MS-MFS on Simulated Data : These tatmespare the true
and measured values of the peak flux, spectral index andrapegtvature for three regions of the
simulated sky brightness distribution (labelled as 1,2&mdFig.8.1) and two algorithms (top) MS-
MFS and (bottom) MF-CLEAN (see Fi@.5 for the corresponding images). The purpose of this
comparison is to (a) show that when there iffisient SNR, MS-MFS is more accurate than MF-
CLEAN and (b) give examples of how the error barssoandg vary as a function of SNR. In region
1, the spectrum is close to a pure power law with no curvature 0.99,5 = 0.0). In region 2, there

is a strong spectral turnover but the average spectral ilegry small ¢ = 0.031,3 = 0.535).
Region 3 is the point source located at the edge of the extieeniéssion ¢ = —2.5,8 = —1.0). The
measured errorda, 68 were obtained by constructing error images from thedénce between
the true and reconstructed spectral index and curvaturgesjaand then calculating the standard-
deviation of all points within a finite region of thesdigrence maps (they are approximate). Region
3 contains no error-bars an B8 because the above calculation cannot be done with one pixel.
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8.1.2 W.ide-field imaging with Primary-Beam correction

Objective : The goal of this simulation is to test the MS-MFS algorithnthyprimary
beam correction to reconstruct both compact and extendéskem whose spectral struc-
ture is modified by the frequency dependence of the primaayrbeThe primary beams
are simulated with time-variability arising from their ation with time as well as beam
squint. This is to test for any fierence in performance and imaging fidelity when direction-
dependent corrections are applied as a single post-deletiaovoimage-domain correction
versus a combination of visibility-domain and image-domaperations.

Sky brightness and primary beams :  Wide-field wide-band EVLA observations were
simulated for a sky brightness distribution consisting né darge 2D Gaussian (about 10
arcmin in diameter) with a constant spectral index of -11@sg its entire surface and two
point sources with spectral indices of 0.5 and 0.0. The Ganss centered at the 80%
point of the reference frequency primary beam and the splectlex due to the primary
beam ranges between 0 and -0.5 across its surface. The twiospoirces are located near
the 70% point of the reference-frequency primary beam wihieeespectral index of the
beam is about -0.5. EVLA primary beams were simulated fromewcally derived aper-
ture illumination functionsBrisken 2003 and appliedvia time-varying visibility-domain
convolution functions during the simulation (as shown imEg8).

MS-MFS Imaging with Primary-beam correction:  The MS-MFS algorithm was run
with N; = 5, andNg = 3 with the scale-widths in pixels are [0,6,20]. A-®Tonvergence
threshold was used as the termination criterion. Wide-g@imdary-beam correction was
done in two diferent ways and their results compared. The first method ussdgée
post-deconvolution image-domain correction that divided a polynomial model of the
time-averaged primary beam (as described in the captiongof ). The second method
used a combination of visibility-domain and image domainections that accounted for
the time-variability of the antennas (rotation with timejdathe é€fect of beam squint (a
polarization dependent pointingteet arising from the location of the feeds on EVLA
antennas).

Results :  Figure 8.6 shows the results of these simulations. The image on theefop |
shows the reference frequency intensity image after cooreéor the primary beam. The
image on the top right shows the spectral index map withoumany beam correction
and the bottom row of images are the corrected spectral inthps obtainedia the two
methods described above.



164

The main points to note from these results are as follows.

1. From the un-corrected spectral index image we can sedhbatpectral indices of
the point sources are the sum of that of the source and of theapr beam at that
location. The spectral index of the extended source igltilligh the numbers ranging
between-1.0 and-1.5 from one edge of the source to the other. Both point ssurce
have taken on an additional spectral index of -0.5.

2. From the bottom two images we can see that both methodgiwdlthe same qual-
itative reconstruction of the true spectral index of therseubut the second method
(right) has much better noise properties. This is only beeatiaccounts for the vari-
ability of the primary beam and is not restricted to the use tine-averaged primary
beam.

3. The accuracy to which the spectral indices of the point@siwere reconstructed
was abouda = 0.01. For the extended source, the errors are dominated by the
residual multi-scale deconvolution errors that preventaath reconstruction even
in the (top right) image of the uncorrected spectral index@band versions of the
MEM and ASP-CLEAN algorithms might be required to reducestherrors). The
accuracy with which the spectral index was computed acilossxtended source
was abouba ~ 0.2.

These results show that for a field of view within the HPBW @& frimary beam
at the reference frequency, it is possible to model the ®agqy dependence of the beam
by a power law with varying index, and use this model to do iexdgmain corrections
of the beam. The largest field-of-view over which this modas lheen shown to work is
down to the few-percent point of the beam at the highest &#aqu (near the first null at the
highest frequency and close to the HPBW at the lowest fregyesee Figh.3). Beyond
this field-of-view, the power-law model breaks down, andlexgpolynomial division will
be required to correct for the primary beam.
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Figure 8.6: MS-MFS with wide-band primary beam correction on simula&d_A data : The
image on the top left is the intensity image at the refereneguiency and shows two point sources
(spectral index of+1.0 (top) and 0.0(bottom)) and one extended source with atanhspectral
index of —1.0. The image on the top right shows the spectral index magtaated by using MS-
MFS without any primary beam correction. The apparant speridices of the point sources are
+0.5 (top) and-0.5 (bottom) and range from1.0 to—1.5 for the extended source (left to right).
The second row of images shows the spectral index maps aiftesiy-beam correctiomia a single
post-deconvolution image-domain correction with an agerarimary beam and its spectrum (left,
section4.2.7) and a combination of visibility and image domain correetidhat takes into account
the time-variability or rotation of the beam and théeet of beam squint (right, sectigh2.2).



166

8.2 Feasibility Study of MFS in various situations

This section consists of a set of imaging examples thattilites the feasibility
of wide-band synthesis imaging mainly when tinesampling is insfficient to directly
measure all the spatial and spectral structure within therdnge of spatial frequencies
allowed by the broad-band receivers. These examples weenlto emphasize the role
of an appropriate flux model in an image reconstruction dlgor and how it can often
provide physically realisti@a priori information to the solution process (see the first two
pages of chapter for an introductory discussion about the choice of an appatg flux
model).

Section8.2.1describes the reconstruction of source spectra at spatildsthat
are unresolved at the low-frequency end of the band butveddat the high-frequency end.
This example shows that for broad-band synchrotron emmssis possible to reconstruct
the source spectrum at the angular resolution allowed biititeest frequency in the band.
Section8.2.2describes the reconstruction of spectra at very large amtales for which
the visibility function falls within the central hole in the~coverage for the upper half of
the frequency range. This example illustrates an ambiduetyveen spatial and spectral
structure that can arise from such measurements and shatwvthéuse oa priori total-
flux constraints can solve this problem. Sect®.3shows how the multi-scale wide-
band flux model used in the MS-MFS algorithm naturally sefgsr¢he contributions from
overlapping sources thatfter in spatial and spectral structure. Sectioh.4demonstrates
how the MS-MFS algorithm performs when the spectrum of thitBor@mission is not a
smooth low-order polynomial. This example tests the appilidy of the wide-band model
to band-limited emission which can be represented witH @®higher order polynomial
(and not just power-law spectra).

8.2.1 Moderately Resolved Sources

Objective :  Traditionally, spectral structure has been measured frodeawand inter-
ferometry data only after making a set of narrow-band imagyessmoothing them to the
angular resolution of the lowest frequency in the band. Rerz:1 frequency ranges now
becoming available, the angular resolution changes bytarfa€two across the band, and
smoothing the images to the lowest resolution results imaicderable loss of information.
The goal of this test is to demonstrate how a flux model thalirately describes the type
of emission being observed can influence the wide-band imggmiocess to reconstruct the
spectral structure of the incoming radio emission at theutargesolution of the highest
frequency in the sampled range, even though the lower fre;yudata measure the sky
brightness at lower angular resolutions.
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Figure 8.7: Moderately Resolved Sources — Single-Channel Images :€eTtgsres show the 6
single-channel images generated from simulated EVLA datevden 1 and 4 GHz in the EVLA
D-configuration. The angular resolution at 1 GHz is 60 arcaed at 4 GHz is 15 arcsec and the
white circles in the lower left corner shows the resolutiéengent decreaseing in size as frequency
increases. The sky brightness consists of two point sourssh of flux 1.0 Jy at a reference
frequency of 2.5 GHz and separated by 18 arcsec. The pixelsizd in these images is 4.0 arcsec.
From these single-channel images we can see that the stnaigieso be resolved only at the higher
end of this frequency range, and at the lower end of the babdrily distinguishable from a single
point source centered on the bottom point source. The tap pource has a spectral index-et.0
and the bottom one has a spectral index bf0.

EVLA Simulation : Wide-band EVLA data were simulated for the D-configuration
across a frequency range of 3.0 GHz with 6 frequency chartmetégeen 1 and 4 GHz (600
MHz apart). This wide frequency range was chosen to emphd#sezdiference in angular
resolution at the two ends of the band (60 arcsec at 1 GHz, aiadcsec at 4.0 GHz). The
sky brightness chosen for this test consists of a pair oftgmiarces separated by a distance
of 18 arcsec (about one resolution element at the highesgidrecy), making this a moder-
ately resolved source. These point sources were givéerent spectral indices+(.0 for
the top source andl.0 for the bottom one). Figui&7 shows the 6 single-channel images
of this source. At the low frequency end, the source is alnmadistinguishable from a
single flux component centered at the location of the bottoorce whose flux peaks at
the low-frequency end. The source structure becomes amtpamy in the higher frequen-
cies where the top source (with a positive spectral indeRjighter. FigureB8.8shows the
multi-frequencyuv-coverage and the sampled visibilities in this simulatethsiet. These
plots show that the double-source structure becomes aptparly beyond the first few fre-
guencies in the range, making this a suitable dataset tooussttthe MS-MFS algorithm
on sources that are unresolved at one end of the band andedstlthe other.
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Figure 8.8: Moderately Resolved Sourcesuv-overage and Visibility-Plot : These plots show
the multi-frequencyuv-coverage (left) and the sampled visibilities (right). Téwours indicate
frequency, going from red to violet as frequency increasgle visibility plot shows that at the
lowest frequency, the interferometer sees the sky as aespwht source whose flux is the sum of
both point sources~(2.9 Jy) at 1 GHz. As the frequency increases, the doublezsostructure
becomes apparant in the form of visibility-domain fringes.

MS-MFS Imaging Results :

1. These data were imaged using the MS-MFS algorithm iWjte 3 andNg = 1 with
only one spatial scale @&function). Figure8.9shows the results of this imaging run.
The intensity distribution, spectral index and curvaturéhes source were recovered
at the angular resolution allowed by the 3.6 GHz samples (d$ea). These results
show that for a source that can be modeled as a set of flux canpo(in this case
point-sources) with polynomial spectra, even partial sjgéeneasurements at the
highest angular resolution arefBaient to reconstruct the full spectral structure.

2. A second imaging run was performed using only the first astidhannels (1.0 GHz
and 4.0 GHz). The source is almost completely unresolved&t (point sources
separated by 18 arcsec within a 60 arcsec resolution elg¢raard just resolved at
4 GHz (with an 15 arcsec resolution element). The goal oféRescise was to test
the limits of this algorithm and the ability of the flux model¢onstrain the solution
when the data provide infiicient constraints. The MS-MFS algorithm was run with
N; = 2 andNs = 1 and used the same number of iterations as the previous éxamp
Fig.8.10contains the resulting intensity image and spectral indag end shows that
itis still possible to resolve the source and measure itstsglendex at the resolution
of the highest frequency. However, the deconvolution srewe considerably higher.
The obtained peak residual of 5 mJy is not much larger tha thdy level obtained
when all 6 channels were used while imaging, indicating thistreconstruction is
not well constrained by the data and the model plays a venjifgignt role.
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Figure 8.9:Moderately Resolved Sources — MSMFS Images : These imagesthi results of
running MS-MFS on EVLA data that was simulated to test th@mtlgm on moderately resolved
sources. The test sky brightness distribution consistsofibint sources with spectral indice4.0
(North) and-1.0 (South) separated by one resolution element at the $tigfegjuency. The four
images shown here are the intensity at 2.5 GHz (top left)réb&lual image with a peak residual
of 3 mJy (top right), the spectral index showing a gradieriveen—1 and+1 (bottom left) and the
spectral curvature which peaks between the two sourcesadisdiff on either side (bottom right).
These results demonstrate that an appropriate flux modetovistrain the solution to a physically
realistic one even when the spectral measurements are ptetenat the highest resolution.
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Figure 8.10:Moderately Resolved Sources — MSMFS Images using first adheannels : These
images show the result of MS-MFS on two channels of data vétl different angular resolutions
(60 arcsec at 1 GHz, and 15 arcsec at 4 GHz). The intensitydrfief) and the spectral index image
(right) show that the intensity and spectrum have been wtoarcted at the 15 arcsec resolution.
However although the peak residual (middle) of about 5 mJdyismuch higher than in Fig.9,
there are visible deconvolution errors that lead to ermgdak intensity and spectral index.
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8.2.2 Emission at very Large Spatial Scales

Objective :  This section demonstrates an ambiguity between spatiaspectral struc-
ture that can arise when multi-frequency measurements ade rof very large-scale emis-
sion. The goal of this exercise is to show thEeet of this ambiguity in the images and
spectra of very large scale emission that are reconstrumtede MS-MFS algorithm and
to suggest a possible remedy.

Consider a very large (extended) flat-spectrum source whissdality function
falls mainly within the central hole in thev-coverage at the highest observing frequency.
With multi-frequency measurements, the size of the certodd in theuv-coverage in-
creases with observing frequency, and for this source timenmoim spatial frequency sam-
pled per channel will measure a decreasing peak flux levaleagiéncy increases. Since
the reconstruction below the minimum spatial frequencyives an extrapolation of the
measurements and is un-constrained by the data, thesadieg@eak visibility levels can
be mistakenly interpreted as the result of a source whosditaichp itself is decreasing
with frequency (a less-extended source with a steep spektrUsually, a physically re-
alistic flux model is used to apply constraints in these urmdadiregions of theiv-plane
and MS-MFS models the sky brightness with polynomial sgeassociated with a set of
extended 2D symmetric flux components. However, with thisleha large flat-spectrum
source and a smaller steep-spectrum source are both allweedonsidered equally prob-
able. This creates an ambiguity between the reconstructdd and spectrum that cannot
always be resolved directly from the data, and requirestauhdil information (perhaps a
low-frequency narrow-band image to constrain the spaitiatture, low-resolution spectral
information, or total-flux constraints).

EVLA Simulation : Wide-band EVLA data were simulated for the D-configuration
across a frequency range of 3.0 GHz centred at 2.5 GHz. (Gidérexy channels located
600 MHz apart between 1.0 and 4.0 GHz). The size of the cembtalin theuv-coverage

was increased by flagging all baselines shorter than 100 nirenaiide frequency range
was chosen to emphasize théelience between the largest spatial scale measured at each
frequency. (0.3kor 10.3 arcmin at 1.0 GHz, and 1.3 kr 2.5 arcmin at 4.0 GHz).

The sky brightness chosen for this test consists of one agxspectrum 2D
Gaussian whose FWHM is 2.0 arcmin (corresponding to 1.&tkhe reference frequency
of 2.5 GHz), and one steep spectrum point-soutice 1.0) located on top of this extended
source at 30 arcsec away from its peak.

MS-MFS Imaging Results :  These data were imaged using the MS-MFS algorithm
with N; = 3 andNg = 3 with scale sizes given by [0,10,30] pixels. Two imagingswere
performed with these parameters and both were terminated 0 iterations in order to
be able to compare their performance in terms of the pealuals.
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Fig. 8.11 shows the visibility amplitudes present in the simulatethdgeft column) as
well as in the reconstructed model (right column) at eachhef@ frequencies for these
two imaging runs (top,bottom). Fi§.12shows images of the intensity, spectral index and
residuals for these runs and compares them to the true slgthass reconstructed when
all frequencies sample at least 95% of the total flux of theau

1. The firstimaging run applied the MS-MFS algorithm to thagiated data after flag-
ging all baselines below 200m. No additional constraintsewesed on the recon-
struction. The visibility plots and imaging results showttfrom these data it is not
possible to distinguish large flat-spectrum source fromghtly less-extended steep
spectrum source. This occurs because the visibility fomds unconstrained by the
data within the centralv hole and given the MS-MFS flux model, both source struc-
tures are equally probable. Note that the spectrum of thetysmiurce was correctly
estimated as-1.0. This run was repeated a few times with slightlffetient input
scale sizes, and the results changed between a flat-spesituroe and a source with
a steep spectrum. If a scale size corresponding to the eizacbkthe source was
present in the set, the algorithm was able to reconstruatdirect flux and spectrum.

2. A second imaging run was performed on the same datasdhibutme with addi-
tional information in the form of total-flux constraints aah observing frequency.
These constraints were added in by retaining a small nuntbesrg short-baseline
measurements at each frequency in order to approximateréisenqce of total-flux
(or integrated flux) estimates (only baselines between 2&al@0 m were flagged
from the original EVLA D-configuration simulated data). Imagtice, these con-
straints could be provided by single-dish measurementstimates from existing
low-resolution information about the structure and speutof the source. The vis-
ibility plots and imaging results with this dataset showtttie short-spacing flux
estimates were slicient to bias the solution towards the correct solution inclvh
the large extended source has a flat spectrum and the pontesioas a spectral in-
dex of—1.0. Note that the residuals are at the same level as in th@pserun. This
demonstrates that without the additional information alotal-flux per frequency,
both flux models are equally poorly constrained by the datangelves.

These results show that in the central unsampled regioneofidplane where there are
no constraints from the data, the MS-MFS flux model can predcimbiguous results and
additional information about the flux at low spatial-frequis is required (perhaps in the
form of total-flux constraints per frequency). For compl@atal structure on these very
large scales, the additional constraints may need to coone éxisting low-resolution im-
ages of this field and the associated spectra. One way to tusigroblem altogether (but
lose some information) is to flag all spatial-frequenciesken thanup, at vmax and not
attempt to reconstruct any spatial scales larger than whatllows.
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Figure 8.11:Very Large Spatial Scales - Visibility plots : These plotewstthe observed (left) and
reconstructed (right) visibility functions for a simulaii in which a large extended flat-spectrum
source is observed with an interferometer with a large edéhwle in itsuv-coverage. The dierent
colourgshades in these plot represent 6 frequency channels spepaddn 1 and 4 GHz. These
data were imaged in two runs. The first imaging run (top rowgdusnly baseline® >100 m to
emphasize the changing size of the central hole initheoverage across the broad frequency range.
The plot on the top left shows how theffdirent frequencies measure veryteient fractions of the
integrated flux of the large flat-spectrum source. The plothenright shows that these data can
be mistakenly fit using a less-extended source with a steegtrsi;n (instead of the large single
source with a flat spectrum). This is possible because witieéncentraluv hole the spectrum is
un-constrained by the data and given the MS-MFS flux modeh bource structures are equally
probable. The second imaging run (bottom row) used basgire25m in addition tdo >100m to
approximate the addition of nearly total-flux measuremamtke first dataset to attempt to constrain
the solution. The plot on the bottom right shows that thisitiaithl information in the form of
short-spacing constraints (or very low-spatial frequen@asurements) is ficient to be able to
reconstruct the correct sky brightness distribution. Fégui12shows the images that resulted from
these tests.
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Figure 8.12:Very Large Spatial Scales - Intensity, Spectral Index, Resls : These images show
the intensity distribution (left), spectral index (midyliend the residuals (right) for threeft#irent
imaging runs that applied the MS-MFS algorithm to the sirredeEVLA D-configuration data de-
scribed in this section (note that the flux scale used for éis&dvual images in the right column is
3 orders of magnitude smaller than the scale used for thasityeimage in the left column). The
true sky flux consists of one large flat-spectrum symmetric dmmponent and one steep-spectrum
(@ = —1.0) point source.

Top Row : When all baselines are used for imaging, each fregyusamples more than 95% of the
integrated flux. This is dficient to reconstruct the true brightness distribution gmetsum.

Middle Row : When the centralw-hole is increased in size by using only baseline 100m, the
reconstructed model is a slightly smaller flux componentr(gare the left column of images) with
a steep spectrum (compare the middle column of images).

Bottom Row : When very short spacing (approximately totak¥lestimates are included during
imaging (using spacings < 25m andb > 100m), the true sky brightness distribution is again re-
covered. Note that the large-scale residuals in all thres are at the same level (2 mJy). These
results show that the spectra are unconstrained by the dataiy large spatial scales whose vis-
ibility functions fall within the centraliv-hole at the highest frequency in the band, and additional
information is required.
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8.2.3 ForegroungBackground Sources with Diferent Spectra

Objective :  This section contains a simple example of wide-band imagiitly back-
ground subtraction for the case where a compact foregrooumts of emission lies on top

of a more extended source with gfdrent spectrum. When there are overlapping sources
with different spectral structure, the result of wide-band imagéepgesents the combined
flux and spectrum. Similar to standard imaging, if the flux apdctrum of the background
are available, the flux and the spectrum of the foregroundceotan be separated from the
backgroundsia a simple polynomial subtraction (using the polynomialfticents).

The use of a multi-scale flux model has an additional advanméten it comes
to background subtraction. When the spatial scales of tregfound and background
flux are very diferent, the MS-MFS algorithm naturally separates the tworandels the
integrated flux as a sum of compact and extended flux compsmetit different spectra.
Note that this is true for any multi-scale image flux modaiespective of spectrum. In
the ASP-CLEAN algorithm where the final data product is careded from a list of flux
components, this separation is done naturally and compgsican be picked out from the
results.

EVLA Simulation : Data were simulated for the EVLA D-configuration with 6 fre-
guency channels spread between 1 and 2 GHz. The sky brightasesists of one large 2D
Gaussian of integrated flux of 100 Jy over a 4 arcmin radiusk leix of about 1 Jgpeam
at 30 arcsec resolution (EVLA-D at 2.0 GHz)) and1.0, two 1 Jy point sources on top
of this extended source with spectral indices giveruby-0.5, -0.5, and one isolated 1 Jy
point source withr=-0.5.

MS-MFS Imaging Results :  The MS-MFS algorithm was applied to this dataset using
N; = 5 andNs = 3 with the set of scales sizes given by [0, 10, 30] pixels.atiens were
terminated using a 1 mJy threshold. Fig@&&3shows the resulting images of the first
two polynomial coéficients and the spectral index. Background subtraction meds a
polynomial subtraction. The first two polynomial dheients are given as follows.

total _ back front

ol = gack ) (8.1)
total back . back front front _ jtotal _total

1, = g7+ ) =g a (8.2)

The values of '@, 112 |pack and o2 are measured from the images. The background
flux and spectrum are estimated from a region near the fovegigource. The measured
and corrected flux and spectral indices of the two foregrosmarces are listed in Table
8.3 These results show how background subtraction can berpetbusing the polyno-
mial codticient images before constructing the spectral index mafiermatively, if only
intensity and spectral maps exist, polynomialfticents can be constructeth Eqns.8.1
and8.2 before subtracting them.
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Figure 8.13Intensity and Spectral Index : These images show the resfidgsplying the MS-MFS
algorithm to a simulated dataset in which the sky flux has egfddreground point sources on top of
an extended background. The top two images show the first blympmial codficients (¢-order
codficient or intensityl @ : top left, %-order codlicient1!°®® : top right) and the bottom image
is the spectral index map computed as the ratio of thdficoent images. The flux and spectral
index of the extended source and isolated point soure amavered correctly, but the two point
sources located within the extended source have the wrdngs/aTable3.3 shows how the flux
and spectral index of the two foreground sources can be eeedvia a polynomial subtraction.

Foreground |éotal | total ool |gack | back aPack |(f)f0nt | front o front
1 1 1

Source

top 1.172| 0.321 | +0.27]| 0.185| -0.196| —-1.05| 0.987| 0.517 | +0.52

bottom 1.434| -0.979| -0.68| 0.429| -0.466| —-1.08 | 1.005| -0.513| -0.51

Table 8.3:True, measured and corrected intensity and spectra fogrfoued sources : This table
lists the first two polynomial cd&cients and the spectral index for the two foreground pointses
on the extended background (‘top’ refers to the topmostamuand "bottom’ refers to the point
source in the middle of the image). The true flux valueslgtd Jybeam a=+0.5 for the top point
source andg=1 Jybeam,a=-0.5 for the bottom point source. These two sources are onftap o
background source with = —1.0. The corrected intensity is given H)%om = |0l —15ack and the
corrected spectral index is given by™"" = (1101a — |back) () lotal _ | back)
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8.2.4 Band-limited signals

Objective :  The goal of this test is to evaluate how well the MS-MFS altoni is
able to reconstruct the wide-band structure of a source vitieremission is detected in
only part of the sampled frequency range; in other words a®imnited signal. Since the
MS-MFS algorithm uses a polynomial to model the spectrumhefdource (and is not
restricted to a power-law spectrum) it should be able tomstroct such structure as long
as it varies smoothly. It should however be noted that forreddamited signal, the angular
resolution at which the structure can be mapped will be &ohito the resolution of the
highest frequency at which the signal is detected (and rdtifhest resolution allowed by
the measurements).

One type of band-limited radiation is synchrotron emisdi@m solar promi-
nences where fterent frequencies probeftBrent depths in the solar atmosphere. The
structures are generally arch-like with lower frequenaampling the top of the loop and
higher frequencies sampling the legs. So far, multi-freqyeobservations of such sources
have been made by a set of simultaneous narrow-band measugenit may be advanta-
geous to use the combineg-coverage Gered by multi-frequency synthesis during imag-
ing, especially since solar prominences are highly timgazde and long synthesis runs to
accumulate single-frequenay-coverage are not possible.

EVLA Simulation:  Data were simulated for the EVLA D-configuration with 20 chan
nels spread between 1 and 3 GHz (each channel is 100 MHz .apée)wide-band sky
was constructed to follow a loop structure as seen fromaaiyi above it. The lower fre-
guencies show the structure of the connected part of the dodpthe higher frequencies
(that represent deeper layers) show the two legs of the lagmint source was also added
to one of the legs to test the angular resolution to which ¢ltemstruction was possible.

MS-MFS Imaging Results: The MS-MFS algorithm was run on these simulated data,
usingN; = 5 to fit a 4"-order polynomial to the source spectrum (to accomodatecitsly
band-limited nature) anbtll; = 3 with scales given by [0, 10, 30] pixels. Iterations were
terminated after 200 iterations. Fig3.14 and8.15show a comparison of the true and
reconstructed structure at Sidirent frequencies between 1 and 3 GHz. These images show
that except at the ends of the frequency range where the gitytbess is at its minimum,
the reconstruction is quite close to the true sky flux. A secam was performed using
only one timestep of data to simulate a snapshot observafitre results were similar
between 1.2 and 2.2 GHz but were worse at the ends of the samgige. Tests with
more realistic wide-band sky brightness distributionsragpiired. These results show that
it is possible to reconstruct the structure of band-limg&dcture as long as the flux varies
smoothly with frequency anll; is chosen appropriately.
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Figure 8.14:Band-limited Signals - Multi-frequency images : These iemghow a comparison
between the true sky brightness (left column) and the bmiggd reconstructed using the MS-MFS
algorithm (right column) at a set of five frequencies (1.0},11.8, 2.2 and 2.6 GHz on rows 1
through 5). All images are at the angular resolution allowgdhe highest frequency in the band.
This structure represents the arch-like structure of argmaminence viewed from above, with
higher frequencies probing deeper into the solar atmogph&he images on the right show that
most of this structure is recovered with the largest erraiadpin the central region where the signal
spans the shortest bandwidth. Also, the point source onighé was reconstructed at an angular
resolution slightly larger than that of the highest samgteduency and corresponds to the highest
frequency at which this spot is brighter than the backgroemission.
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Figure 8.15:Band-Limited Signals - Spectra across the source : Thegs phmw the true (left
column) and reconstructed (right column) spectra fiedént locations for the example discussed in
this section (shown in Fi§.14). The spectra in the top row correspond to the left end ofdbe kt
the location of the leg and shows smooth structure stregchlimost all across the band. The spectra
in the middle row correspond to the middle of the source wileeeonly structure in the line-of-
sight is the upper part of the loop. At this location, therensission only within a small fraction
of the band. The bottom row shows spectra for a point on th# Bgd of the loop at the location
of the point source. Here, there is broad-band emissiont(ties leg) with relatively narrow-band
emission on top of it. From these plots we can see that exoefité ends of the frequency range,
the reconstruction is close to the true sky brightness.
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8.3 Wide-band imaging results with (E)VLA data

This section describes imaging results using wide-band data to test the MS-
MFS algorithm along with wide-band calibration techniquasthe time these tests were
performed, 11 VLA antennas had been fitted with interim EViegeivers (1-2 GHz, new
wide-band L-band feeds but with VLA polarizers), and the agning antennas had the old
VLA L-band feeds and receivers (1.2 to 1.8 GHz). The VLA clater had a maximum
instantaneous bandwidth of 50 MHz and wide-band data hac taken as a series of
narrow-band snapshot observations that cycled through @t siscrete frequencies span-
ning the full frequency range allowed by the receivers. &msnapshot observations of
the VLA primary calibrator source 3C286 were interlacedhthese frequency cycles in
order to derive the flux scale for all the observations. TaBlé and8.5list the observation
parameters that were used to acquire data for the Cygnus M&dields, and Fig.16
shows an example of the single-frequency and multi-frequen-coverage that resulted
from these observations.

Section8.3.1describes how these data were used to test the ability of the M
MFS algorithm to reconstruct spatial and spectral strectar a complex extended source
from a set of incomplete single-frequency measuremenisil&iobservations were made
for M87 to test the algorithm on a source with very extended $ignal-to-noise spatial
structure and a total angular size extending out to the 75% pbthe primary beam (sec-
tion 8.3.2. The resulting spectral index map was then used to studyrtieed-band spectra
of features across the M87 halo (described in detail in @ré)t The flux calibrator for
both these observations was 3C286, a field containing ddwagat (50 mJy) background
point sources spread out to the 70% point of the primary bdalmaGHz. These calibra-
tor data were used independant of Cygnus A and M87 to test &V¥AS algorithm with
wide-band primary beam correction (secti®3.3.

Note that all the wide-band data used for the tests in thissecame from an
interferometer that produced only narrow-band outpubpQMHz). Wide-band data were
taken by cycling through frequencies during the observatiod there were no simultane-
ous full-bandwidth measurements. These were the only typede-band data available
at the time the MS-MFS algorithm was being developed andemphted.

8.3.1 Wide-band imaging of Cygnus A

Objective :  Wide-band VLA observations of the bright radio galaxy Cygmwere

used to test the MS-MFS algorithm on real data as well as tostasdard calibration
methods on wide-band data. Most of the images so far made gfi@yA and its spec-
tral structure have been from large amounts of multi-coméigan narrow-band VLA data
[Carilli et al. 199] designed so as to measure the spatial structure as comgstpossi-

ble at two widely separated frequencies. The goal of thiswes to use multi-frequency
shapshot observations of Cygnus A to evaluate how well theM\FS algorithm is able to
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Telescope VLA (B configuration)

Observing Band 800 MHz at Lband (1.3 - 2.1 GHz)
Target Source Cygnus A (19:59:28.356840.44.02.0750)
Calibrator Source 3C286 (13:31:08.314;30.30.31.156)
Angular resolution 4.1,3.2,2.6 arcsecat 1.3,1.7,2.1 GHz
Cell size 0.7 arcsec

Image size 1024x1024 pixels (11.9 arcmin)
VLA correlator modé (4 IF) RR/LL (6.25 MHz = 32 0.195 MH2z)
Number of spectral windows (SPWSs)| 9 (out of 18)

Number of channels per SPW 19 (out of 32)

Channel width 0.195 MHz

Instantaneous bandwidth 3.7 MHz (out of 6.25 MHz)
Reference Frequency 1.7 GHz

Total integration time per SPW 30 min

Integration time per visibility 3.0 sec

Total time on source ~ 5 hours

System temperaturtsys ~ 250 K for Cygnus A

Noise per visibility 3.0 Jy theoretical

Single-SPW point-source sensitivity | 1.1 mJy

Continuum point-source sensitivity | 0.3 mJy

Expected dynamic range 240000

Table 8.4:Wide-band VLA observation parameters for Cygnus A : Widecbaata were taken

using the VLA by cycling through a set of 9 frequency tuningsl aaking narrow-band snapshot
observations at each tuning. This cycle was repeated 23 timgive a total of about 30 minutes
per frequency tuning. Figur8.16 shows the single and multi-frequency-coverage for these

observations.

simultaneously reconstruct its spatial and spectral &iredrom measurements in which
the single-frequencyv-coverage was inglicient to accurately reconstruct all the spatial
structure at that frequency.

Cygnus A Cygnus A an extremely bright (1000 Jy) radio galaxy with a éibright
compact hotspots about 1 arcmin away from each other onreiitie of a very compact
core, and extended radio lobes associated with the hotspat$ave broad-band syn-
chrotron emission at multiple spatial scales. From mangtagd measurementEhrilli
and Barthel 1995 this radio source is known to have a spatially varying s@gendex
ranging from near zero at the core, -0.5 at the bright hotspotl up to -1.0 or more in the
radio lobes.

2|F represents intermediate frequency, a label used at th& téldenote frequency ranges that are sent
into the correlator simultaneously. Another label for thé®quency ranges is spectral window (SPW).
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Figure 8.16: VLA multi-frequency uv-coverage : This figure shows the multi-frequenoy
coverage of VLA observations of Cygnus A, taken as a seriesigbw-band snapshot observations.
The plots on the left show th@~coverage from one frequency channel (20 snapshots at 17j.GH
By zooming into the central region (bottom left) and comparihe spacing between the measure-
ments to the size of thev grid cells being used for imaging we can show that the sifigiguency
measurements are incomplete. The plot on the right showshthi-frequencyuv-coverage using
nine frequency tunings. A zoome-in of the same central redmottom right) shows that for the
chosenuv grid cell size (or image field of view over which the image ist® reconstructed) the
combined sampling leaves no unmeasured grid cells. Theimgagsults from these observations
will test our ability to reconstruct both spatial and spatcinformation from incomplete spatial
frequency samples at a discrete set of frequencies.

Observations :  Wide-band data were taken as described in T8blaising the VLA 4-
IF mode which allowed four simultaneous data streams coimgiRR and LL correlations
at two independent frequency tunings. A set of 18 frequenwiere chosen such that
they spanned the entire frequency range allowed by the nekAB¥ceivers (1-2 GHz).
Visibilities that used antennas with the older receiversaiiagged for regions of the band
not covered by the receivers (below 1.2 GHz and above 1.8 GH®uv-coverage for this
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dataset for the RR correlations is shown in Big6 The data were inspected visually and
visibilities that were &ected by strong radio frequency interference were flaggesked).

Calibration :  Standard techniques were used to calibrate these datac&libbxation at
each frequency was dowéa observations of 3C286. Phase calibration was done using an
existing narrow-band image of Cygnus A at 1.4 Gl&afilli et al. 1991 as a model.

At the time of these observations, the VLA correlator wadiggtinputs from
a combination of VLA and EVLA antennas. A gain control systirat was temporarily
put in place to accomodate the use of new EVLA antennas wWaN1tkA correlator treated
the two independent frequency tunings in the 4-IF modkedintly?. This caused errors
in the correlator input for very strong sources (Cygnus Agttimcreased the input power
level beyond the linear power range of the VLA correlator.s®lvations of the calibrator
source 3C286 were noffacted by this problem. We were therefore able to calibratdeal
frequency tunings for Cygnus A and use the resulting widedbepectrum along with the
known integrated flux and spectral index of Cygnus A to idgnfibich of the frequency
tunings of Cygnus A werefBected. It was found that every alternate frequency (therskco
of each pair of simultaneous frequency tuningdXBin the VLA 4-IF mode) was fiected.
Therefore to safely eliminate théfect of this problem for our tests, one of the two simul-
taneous frequency tunings were flagged from the recordedilities reducing the number
of spectral windows from 18 to 9. The final dataset used forgimg consisted of nine
spectral windows each of a width of about 4 MHz and separageabbut 100 MHz.

Imaging : These data were imaged using two methods, the MS-MFS digorind a
hybrid method consisting of STACKk MFS on residuals (see sectibr®.1.4for a descrip-
tion of this method). Their results were compared to evaltla¢ merits of the MS-MFS
algorithm over the much simpler hybrid method that used algoation of existing stan-
dard methods. The data products evaluated were the taadsity image, the continuum
residual image and the spectral index map. Tifiect of the primary beam was ignored in
these imaging runs because the angular size of Cygnus A ig @barcmin, which at L-
band is within a few percent of the HPBW of the primary beanggaan where the antenna
primary beam and its spectrafects can be ignored.

3 To allow the use to new EVLA antennas with the old VLA corretaan automatic gain control had
to be used at each EVLA antenna to mimic the old VLA antennasessure that the input power levels to
the VLA correlator were within the range over which it hasreelir response. The type of gain control was
being done dterently for the two simultaneous frequency tunings in thed\VA-IF mode. The AC IF stream
used an automatic gain controller based on power levelsune@di 1 second and the/B IF stream used a
static look-up table to decide attenuation levels. Thislted in a diference in power levels for the/& and
B/D data streams for all baselines that involved EVLA anterwiasn the source being observed was bright
enough to contribute to increasing the overall system teaipee.
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1. MS-MFS : The MS-MFS algorithm was run with &2order polynomial to model
the source spectrum and a set of 10 scale basis functionstefedit spatial scales
to model the spatial structuré®l{ = 3, Ns = 10). Iterations were terminated using
a 30 mJy stopping threshold. A theoretical continuum peoufce sensitivity of
0.38 mJy was calculated for this dataset using an increassdmns temperature of
Tsys= 250 (due to the high total power of Cygnus A).

2. Hybrid : The second approach was a hybrid algorithm in which the M&A&N
algorithm was run separately on the data from each specimdlow and then a single
MS-CLEAN run was performed on the continuum residuals (tAA&K + MFS
on residuals hybrid algorithm described5r2.1.4. The total intensity image was
constructed as an average of the single channel image @ugshlt of the second
stage on the continuum residuals. This method is the sameaasiged in section
5.2.3to test the hybrid algorithm for the case of dense singlgtfemcyuv-coverage.
Note however that the observations being described in dusan do not have dense
single-frequencyiv-coverage, and the purpose of applying this hybrid methadd is
emphasize the errors that can occur if this method is usgubmoariately.

Results :  Figure8.17shows the reconstructed total-intensity images (top rowd) the
residual images (bottom row) obtained from these two methdelgure8.18 shows the
spectral maps constructeth the two methods described above as well as from existing
images at 1.4 and 4.8 GHz.

1. Intensity and Residuals :Both methods gave a peak brightness of 7/Bdgm at the
hotspots and a peak brightness of about 400/beBm for the fainter extended parts
of the halo. The residual images for both methods showeeleded residuals due to
the use of a multi-scale flux model composed of a discretefsatabes (small-scale
correlated structure within the area covered by the solmgeno visible large-scale
deconvolution errors due to missing large-scale flux).

The df-source noise level achieved in the continuum image with\FES was about

25 mJy, giving a maximum dynamic range of about 3000. The peasource resid-
uals were at the level of 30 mJy. Further iterations did ndtice these residuals, and
the use of a higher-order polynomild] > 3 introduced more errors in the spectral
index map (see sectidgh2.4.1for a discussion about errors on the spectral index as
a function ofN; and the SNR of the measurements). Tiiesource RMS reached
by the hybrid method was about 30 mJy, with the peak residndlee region of the
source of 50 mJy. Deeper imaging in either stage did not rethese residuals.

Note also that both methods were almost two orders of maggmitibbove the theoret-
ical point-source sensitivity shown in Talffe4 (calculated for an equivalent wide-
band observation). However, the achieved RMS levels wearmsistent with the best
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RMS levels previously achieved with the VLA at 1.4 GHz forgtiparticular source
at L-band ¢20 mJy, [Perley, R. (private communication)]).

2. Spectral Index : The image on the top left is the result of the MS-MFS algorithm
and shows spectral structure at multiple scales acrossthiees For comparison, the
image at the bottom is a spectral-index map constructed éxisting narrow-band
images at 1.4 and 4.8 GHz, each constructed from a combmativyLA A, B, C
and D configuration dat&Jarilli et al. 199]. These two images (top-left and bottom)
show a very similar spatial distribution of spectral stiret This shows that despite
having a comparatively small amount of data (20 VLA snapsladtd frequencies)
the use of an algorithm that models the sky brightness bigian appropriately is
able to extract the same information from the data as stdna@thods applied to
large amounts of data. The estimated errors on the spesti@akimap are 0.1 for
the brighter regions of the source (near the hotspots)>a0@® for the fainter parts
of the lobes and the core.

The image on the top right shows the spectral index map asctstt from a spectral
cube (a set of 9 single-channel images) containing the teestilrunning the MS-
CLEAN algorithm separately on each frequency and then shaogthe results down
to the angular resolution at the lowest frequency in the earigote that the single-
frequency observations consisted of 20 snapshots of Cygndsis uw-coverage
is too sparse to have measured all the spatial structuremqrés the source, and
the non-uniqueness of the single-frequency reconstmgEtaused the images at the
different frequencies to filer from each other enough to adversefieat the spectra
derived from these images.

3. Spectral Curvature : Note that although Cygnus A itself has more thaffisient
signal-to-noise to measure any spectral curvature, verydeel deconvolution errors
(3 orders of magnitude below the bright 77/dgam hotspot) dominate the region
around the very bright hotspots and this isfsient to destroy the spectral curvature
images. That is, the signal-to-error ratio of the highetesrcodficient images is too
low to measure a physically plausible curvature term (&poading to a change in
a of < 0.2 across 700 MHz at 1.4 GHz).

Wide-band Self Calibration: A few tests were done to test whether a self-calibration
process that used wide-band flux models would yield any ingarent on the gain solu-
tions or imaging results.

Two sets of calibration solutions were computed and contpafeor the first
set of solutions, several rounds of amplitude and phasecaglbration were run, begin-
ning with a point-source model and using the MS-MFS algaritb iteratively build up a
wide-band flux model. Self-calibration was terminatedrafiewv gain solutions were indis-
tinguishable from that of the previous run. The second sebhftions was found by using
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a single 1.4 GHz model for amplitude and phase self-caldmgtvith gain amplitudes nor-
malized to unity to preserve the source spectrum). No siganifidiference was found and
the second set of solutions were chosen for imaging.

As an additional test, the final wide-band flux model generai the MS-MFS
algorithm was used to predict model visibilities for a wiblend self-calibration step (am-
plitude and phase) to test if this process yielded arfferint gain solutions. Again, on
these data, there was no noticeable improvement in therzanti residuals or on the sta-
bility of the spectral-index solution in low signal-to-rsei regions.

This suggests that either the use of a common 1.4 GHz modgkifioa all indi-
vidual frequencies did not introduce much error, or thatrémdual errors are dominated
by the dfects of multi-scale wide-band deconvolution and the flux ed@dsumed by the
MS-MFS algorithm. Further tests are required with much $enpky brightness distribu-
tions and real wide-band data, in order to clearly ascewdien wide-band self-calibration
will be required for high-dynamic range imaging.
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Figure 8.17:Cygnus A : Intensity and residual images : These images shetotal intensity (top
row) and residual images (bottom row) obtained by applying wide-band imaging methods to
Cygnus A data taken as described in Tahie The images on the left are the result of the MS-MFS
algorithm and those on the right are with the STAGHMIFS hybrid in which MS-CLEAN was used
for all the deconvolutions (single-channel deconvoluidollowed by second deconvolution on the
continuum residuals. The total intensity images show naisagant diterences. Both residual
images show correlated residuals of the type expected &M8B-CLEAN algorithm that uses a
discrete set of scale sizes (the error pattern obtained dysthg a nearby but not exact spatial scale
for a flux component will be a ridge running along the edge ahefux component). The peak
and df source residuals for the MS-MFS algorithm are 30 mJy and 2p and with the hybrid
algorithm are 50 mJy and 30 mJy respectively, showing a vealg improvement in continuum
sensitivity with the MS-MFS algorithm.
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Figure 8.18: Cygnus A : Spectral Index image : These images show spedaidaximaps of
Cygnus A constructedia the MS-MFS algorithm (top left) and the hybrid algorithmgtaght) ap-
plied to the data described in Taldlel. The image at the bottom is a spectral index map constructed
from two narrow-band images at 1.4 and 4.8 GHz obtained frdrA ¥,B,C and D configuration
data at these two frequenciezdrilli et al. 199]. The spatial structure seen in the MS-MFS spectral
index image is very similar to that seen in the bottom image.cBemparison, the spectral index map
on the top-right clearly shows errors arising due to norguaisolutions at each separate frequency
as well as smoothing to the angular resolution at the lowesguincy.
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Telescope VLA (C)

Observing Band 800 MHz at L-band (1.1 — 1.8 GHz)

Target Source M87 (12:30:49.606-12.23.19.078)

Calibrator Source 3C286 (13:31:08.314;30.30.31.156)

Angular resolution (C) 16.5,12.5,10.11 arcsec at 1.1, 1.45, 1.8 GHz
Cell size 3.0 arcsec

Image size 1024x1024 pixels (51.2 arcmin)

Correlator mode (2 IF) RR/LL (12.5 MHz = 16x 0.781 MH2z)

Number of spectral windows (IFs) 16 (out of 20, due to RFI)
Number of channels per SPW (IF) 10 (out of 16, eliminating end channels)

Channel width 0.781 MHz

Instantaneous bandwidth 7.8 MHz (out of 12.5 MHz)
Reference Frequency 1.45 GHz

Total integration time per SPW 20 min

Integration time per visibility 50s

Total time on source ~ 5.5 hours

System temperaturtsys ~ 50K

Noise per visibility 0.2 Jy theoretical

Single-SPW point-source sensitivity | 0.6 mJy
Continuum point-source sensitivity | 0.05 mJy
Expected dynamic range 300000

Table 8.5:Wide-band VLA observation parameters for M87: Wide-bansesiations of M87 were
done using the VLA in C and B configurations and cycling thitoagset of 16 frequency tunings
with narrow-band snapshots at each frequency. All freqesnweere cycled through 10 times, to
generate about 20 minutes of data per frequency tuning. téble shows the parameters for the
C-configuration observation. Two similar observationseveairried out in the B-configuration and
the data later combined.

8.3.2 Wide-band imaging of M87

Objective : Wide-band VLA observations of the M87 cluster-center ragiidaxy were
taken in order to make a high angular resolution image of pleetsal index along various
features within its radio halo. The goal of this project wastmbine the spectral index
information obtained from these data with existing spédtrdex information below L-
band in order to study spectral evolution models fdfedent parts of the M87 halo. This
study is presented in detail in chaptr Also, this source consists of a bright compact
region of emission on top of a relatively faintfilise background. This structure is useful
to test the dynamic range capabilities of the MS-MFS algariind the fect of low-level
deconvolution errors on the reconstructed spectral inéser{ when the signal-to-noise
ratio on the background emission isiscient to be able to measuag.
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M87 : M87 is a bright (200 Jy) radio galaxy located at the centethefVirgo cluster.
The spatial distribution of broad-band synchrotron ensisgrom this source consists of a
bright central region (spanning a few arcmin) containinga&$pectrum core, a jet (with
known spectral index 0£0.55) and two radio lobes with steeper spect@.5> o > —0.8)
[Rottmann et al. 1996a@wen et al. 200D This central region is surrounded by a large
diffuse radio halo (7 to 14 arcmin) with many bright narrow filatsgls 10" x 3'). Further,
the bright central region is roughly two orders of magnitumghter than the brightest
filaments in the surrounding extended halo.

Observations : Wide-band VLA observations of M87 were carried out in bothr@ &
configurations (10 hours in C and 20 hours in B). The obseagtarameters for the C-
configuration are shown in Tab&5. The observations consisted of a series of snapshots at
16 different frequencies within the sensitivity range of the EVLA&nd receivers. Note
that the minimum spatial frequency required to detect thgelst spatial-scale (about 7 ar-
cmin) present in the M87 emission isSlOZ\. At 1.4 GHz, the minimum spatial frequency
measured in the C-configuration isL@%\ and in the B-configuration is.Q5k\. There-
fore, the B-configuration data could measure only the rethticompact emission (bright
central region and filaments in the halo) and was includeddrease the angular resolution
of those measurements. Datiéeated by radio frequency interference were flagged after
visual inspection.

Calibration: Standard calibration techniques were used to calibratettiata. Flux cal-
ibration at each frequency was dovia observations of 3C286 and phase calibration was
done using an existing narrow-band image of M87 at 1.4 GHzdQ@QW. (private commu-
nication)] as a model. This calibration was done separditglthe C and B configuration
data which were then combined for imaging.

Imaging :

1. MS-MFS : The MS-MFS algorithm was applied to these data to make imaigibe
reference-frequency intensity and the spectral index. gdr@ameters used for this
run wereN; = 3, Ns = 11 with a set of spatial scales given by scale basis functions
of widths 0, 3, 9, 12, 16, 20, 25, 30, 60, 80, 140 pixels. lierat were terminated at
a threshold of 10 mJy because the spectral solutions beggat tomstable below this
threshold (see sectidh2.4.1for a discussion on how the errors on the spectral index
vary with N; and the SNR of the data). This threshold was an order of madmit
above the theoretical point-source sensitivity.

2. Primary-beam correction : The 7 x 14 radio halo extends out to the 85% level
of the EVLA primary beam at 1.4 GHz where the intensity is ratt@ed by 15%.
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The dfective spectral index at this angular distance from thetpagrcenter is about
—-0.3, but for most of the halo and regions of bright filamenis 8pectral index
is < —0.05. Primary beam correction was dovia a post-deconvolution image-
domain correction by dividing the intensity image by an imag the main lobe
of the primary beam at the reference frequency and subtigatkie image of the
primary-beam spectral index from the uncorrected M87 spkttdex map (stejd
on pagel51lin section7.2.2.3describes this image-domain correction).

3. Single spectral-window imaging : To verify the MS-MFS reconstruction of the
wide-band spectrum, data from the 16 individual spectradews were also imaged
independently and the spectrum of the integrated flux witiébright compact cen-
tral region was compared between the two methods. This cosgpawas possible
only for the bright compact central region for which the dex§requency snapshot
uv-coverage sfiiced.

Results :  Fig.8.19 shows the resulting intensity (top left) and spectral indeps for
M87 at an angular resolution of 12 arcsec (C-configuratiéig.8.20shows the on-source
and df-source residuals. Fig.21shows the intensity, spectral index and spectral curvature
maps of the bright central region at an angular resolutio® afcsec (&B-configuration).
Fig.8.22shows a plot of the spectrum formed from the integrated flukhéncentral bright
region.

1. Intensity and Residuals :

The peak brightness at the center of the final restored iityemsage was 15 Jy
with an df-source RMS of 1.8 mJy and an on-source RMS of about betweed 3 a
10 mJy. The residual images show low-level correlated tedglat the location of
the source but deconvolution errors are almost absent flamrdst of the image,
indicating that the bestfBbsource RMS noise level for these data has almost been
reached. The maximum dynamic range (ratio of peak briglsttedt-source RMS)

is about 8000, with the on-source dynamic range (ratio okdeéghtness to on-
source RMS) of about 1000. The peak brightness in the brigiménts is about 50

to 70 mJy (on-source SNR of about 10), and the peak brighingkg faint difuse
halo is 10 to 20 mJy (on-source SNR of a few).

2. Spectral Index : The spectral index mépof the bright central region (at 3 arcsec
resolution) shows a near flat-spectrum core with = —0.25, a jet witha, = -0.5

4The spectral index between two frequency baAdsnd B will be denoted asrags. For example, the
symbolap corresponds to the frequency range between P-band (327 Rfdizl -band (1.4 GHz), and,_.
corresponds to two frequencies within L-band (here, 1.11a8d5Hz). A similar convention will be used for
spectral curvaturg.
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and lobes with-0.6 > a | > —0.7. The bright halo filaments show a steeper spectral
index ofa | ~ —0.8 + 0.1 and the diuse halo emission shows, ~ -1.1 + 0.1.

The signal-to-noise ratios at various parts of the sourcebsaused to compute er-
ror bars on the spectral index and curvature (presentedale8a6). These numbers
show that in the bright central region and in the halo thegefiscient signal-to-noise
to measure the spectral index but any realistic spectrabture (for broad-band syn-
chrotron emission) is detectable only within the centradjtr region. Further, the
region immediately surrounding the central regionfi®eted by very low level de-
convolution errors that are much stronger than the on-sorgsiduals. Thefiective
signal-to-error ratio in this region is about 5.0 which @sponds to an error of0.3
on a spectral index 0f1.0. The errors on the spectral index map are a very strong
function of deconvolution errors (as can be seen from atsfaround the bright
central region) which as demonstrated by this example igifsiant problem for
high-dynamic-range imaging of extended emission.

. Spectral Curvature :

This bright central region had ficient (~100) signal-to-noise to be able to detect
spectral curvature. The third panel in B2 1shows the spectral curvature measured
within this region. Note that the error bars on the spectuaVature are at the same
level as the measurement itself. Therefore, a reliablenesé can only be obtained
as an average over this entire bright region. The averagature is measured to be
B = —0.5 which corresponds to a changeniracross L-band bya = 2> ~ -0.2.

These numbers were compared with two-point spectral isdicenputed between
327 MHz (P-band), 1.4 GHz (L-band), and 4.8 GHz (C-band) fexisting images
[Owen et al. 200P[Owen, F. (private communication)]. Across the brighttral
region,—0.36 > ap, > —0.45 and-0.5 > o, c > —0.7. The measured values@.5 >
ayL > —0.7 andaa ~ 0.2) are consistent with these independent calculations.

. Comparison with single-frequency maps :The points in Fig8.22shows the inte-
grated flux over the central bright region of M87 (shown in(ldgs log(v/vo) space)
from the 16 single-spectral-window images. The curved fiasesing through these
points is the average spectrum that the MS-MFS algorithroraatically fit for this
region. It corresponds te ~ —0.52 andaa ~ 0.2 across the source. The straight
dashed lines correspond to constant spectral indiceaf2 and-0.62 and show
that the change ir across the band is approximately 0.2 (as also calculated fro
BiL = —0.5 that the MS-MFS algorithm produced). Note that the scagen on the
points in the plot is at the 1% level of the values of the pafsitgnal-to-noise of 100).
Also evident from the plot is the fact that the curvature sige at a signal-to-noise
ratio of 1. These results show that a signal-to-noise 400 is required to measure
a change in spectral index of 0.2 across 700 MHz at 1.4 GHz.
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Figure 8.19:M87 halo : Intensity and Spectral Index : These images shewesults of applying
the MS-MFS algorithm to wide-band VLA data taken as desdrilbeTable8.5. The images are
at 12 arcsec resolution, and show the intensity distrilbbufar M87 at 1.5 GHz (top ), and the
corresponding spectral index (bottom) and Fig8rel shows the bright central region at a higher
angular resolution and Tab&6 lists flux values, spectral indices and error-bars fdfedent parts

of the source.
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Figure 8.20:M87 halo : Residual Images : These images show the residagdrat two dferent
fields-of-view. On-source residuals are shown on the topdafidource residuals at the bottom.
Thes residuals are displayed using an flux scale 10 timedesnthan that used in the intensity
image in Fig.8.19 The peak on-source residial is at the level of 10 mJy, bubffisource residuals
show no clearly visible trace of large-scale deconvolugorors.
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Figure 8.21:M87 coréjet/lobe : Intensity, Spectral index, Curvature : These imapes/s3-arcsec
resolution maps of the central bright region of M87 (cget and inner lobes), where the signal-to-
noise was sflicient for the MS-MFS algorithm to detect spectral curvatdree quantities displayed
are the intensity at 1.5 GHz (top left), the residual image fight), the spectral index (bottom left)
and the spectral curvature (bottom right). The spectraind near zero at the core, varies between
—0.36 and-0.6 along the jet and out into the lobes. The spectral curgasuon average 0.5 which
translates tona = 0.2 across L-band. The peak of the source is 4.6 Jy, the ona®KS is 40
mJybeam and this gives an on-source signal-to-error ratio ofiah00. Note that the flux scale on
the residual image (top right) is about 2 orders of magnitiesleer than the total-intensity image

(top left).
core jet lobes filaments diffuse halo
lo (Jybeam) | 4.5 4.6 1.7 0.09 0.03
Residual>®> | 0.04 0.04 0.04 0.015 0.01
SNR=lp/I5S | 112 115 42 6 3
a + da 0.005+0.05 | -0.36+0.02 | -0.63+0.06 | -0.95+ 0.1 | -1.5+ 0.3
B+ -0.8+0.3 -0.9+0.7 -0.2+0.2 — —

Table 8.6:Measured errors fok,,,  andg in M87 :

This table shows the signal-to-noise ratio for

different features of M87, and the observed valuesrfandg for those features. The fluxes are in

units of Jybeam and the erroida and dp are estimates based on the measured variations across

different pixels within each feature.
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Figure 8.22:M87 coréjet/lobe : L-band spectrum : This plot shows the spectrum formmeuh f
the integrated flux within the central bright region betwdeh and 1.8 GHz. The points are the
integrated flux measured from single-spectral-window rhodages, the curved line is the average
spectrum that the MS-MFS algorithm automatically fit to #hesta in this region. This spectrum
corresponds to an averagg, = —0.52 and a change ofa ~ 0.2 across the band (1.1 to 1.8
GHz). The straight dashed lines represent pure power-lagtsp with indices-0.42 and-0.62

and are another way of showing that the change actross the band is about 0.2. These numbers
are consistent with two-point spectral indices computagveen 327 MHz (P-band), 1.4 GHz (L-
band), and 4.8 GHz (C-band}@.36 > ap, > —0.45 and-0.5 > a ¢ > —0.7) from existing images
[Owen et al. 200P[Owen, F. (private communication)].
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8.3.3 Wide-field wide band imaging of the 3C286 field

Objective :  The goal of this observation is to verify the accuracy of wimnd primary
beam correction in combination with MS-MFS using a simplé&fief widely separated
point sources. The corrected spectral indices of sourcey d&&em the pointing center
are then verified by direct measurements (by pointing diyexttone of these background
sources). The accuracy of the primary-beam model being stk correction is also
verifiedvia measurements of the primary beam at multiple frequencies.

3C286: The 3C286 field consists of a bright 14 Jy compact synchratadio source
surrounded by an almost perfect grid of about six compadtdpatind objects ranging in
brightness from 20 mJy to 300 mJy. These background souredscated about 8 to 12
arcmin away from 3C286. The EVLA antenna primary beam at heb@l.4 GHz) is 28
arcmin across and these background sources are roughlg &0#b to 70% level of the
primary beam where the spectral index due to the primary bedatween-0.5 and-0.7.

Observations :  Both the observations described in the previous sectiopg{(@s A and
M87) used 3C286 as a flux calibrator so no new observations reguired to obtain wide-
band data for this field. To verify the corrected spectralded of the background sources,
two additional test observations were done. The first wag afd®lographyruns at two
frequencies (1.185 and 1.285 GHz) from which the amplitddeeantenna primary beam
was measured and a two-point spectral index computed astdnf angular distance. At
the half-power point, the measured spectral index was akibdt which matches the values
obtained from the theoretical models used in the imagingrédlgns. The second test was
to make a direct measurement of the spectral index of oneeob#ttkground sources 8
arcmin away from 3C286 by pointing directly at it and elinting any spectral ffects due
to the primary beam. This observation also places 3C286 istade of 8 arcmin from the
pointing center, giving another independent pair of measients of source spectral index
(one direct and one indirect) to test the accuracy of the@timeasurmeent.

Calibration:  Since 3C286 was the calibrator chosen for observations ghGy A and
M87, gain solutions were found by using ampriori model for its spectrum, a pure power
law with spectral index 0£0.476 Perley and Taylor 20Q&cross L-band. The data with a
background source at the pointing center were calibratedjssans taken during the same
observation run with 3C286 at the pointing center.

50One meaning of the term ‘holography’ is the process of meagihe primary beam and the aperture
illumination pattern of a reflecting dish and antenna systdoiography observations were used for this test
to measure the actual primary beam and its frequency depeadle order to compare them with the model
primary beams that are used in the image reconstructiorepsocT he purpose of this test was to ensure that
the true instrumental primary beam and the models used iimthge reconstruction software to correct their
effect are nearly identical to each other.
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MS-MFS Imaging: The 3C286 calibrator data (taken in the VLA C-configuratiam-d
ing observations of M87) were imaged using the MS-MFS atboriwith N; = 3 and
Ns = 1, first without any primary-beam correction and then witlie/sand primary-beam
correction taking into account the time-variability andabesquint.

The later test observations were taken when the VLA was iBthenfiguration.
At this higher angular resolution, 3C286 is slightly resaly and at 8 arcmin away from
the phase center thdfect of thew-term becomes significant enough for it$eets to be
visible in the image. At the time of these observations, th®-MFS algorithm could
work either with primary-beam correction or with multi-feencyw-projection (section
4.2.2.4and Cornwell et al.[2009), but not both togethér Therefore, these data were
imaged in two runs and the results compared. The first run psatary-beam correction
methods that use a combination of visibility-domain andget@domain operations to derive
corrected intensities and spectral indices (secti@2describes the algorithm used here).
The second run used only-projection in the visibility domain and implemented pripa
beam correction as a post-deconvolution image-domairecbon (section4.2.1). The
corrected spectral indices obtained by these two methodstiven compared to the values
measured by direct measurement (with the source at theipgicenter).

Imaging Results :  Figure8.23shows the imaging results (intensity and spectral index)
for the C-configuration data and Fig24 shows the intensity images for the test observa-
tion taken in the B-configuration. Fi§25shows 3C286 imaged without and with multi-
frequencyw-projectior.

1. Intensity and Residuals : The peak fluxes measured from the intensity image from
the C-configuration data were verified with flux values frora torresponding field
within the NVSS catalogQondon et al. 1998 The peak of 3C286 was 14 /beam,
and the background sources range between 2Qbedyn and 400 mJgeam. The
off-source RMS was measured as 0.5 mJy, close to the theogicédsource con-
tinuum sensitivity for the calibrator data.

2. Spectral Index of the sky : The spectral index of 3C286 (at the pointing center) was
measured as0.476 (the spectral index for which the data were calibfat®dhen
the primary beam was ignored, the background sources shextrapindices ranging
between-1.1 and-1.4. With primary beam correction, they reduce to roughly5

SNote that the algorithm described in sectié3 to correct for direction-dependenffects can include
a combination of direction-dependerffexts and is not restricted to correcting only one of them ata.t
However, the software implementation of the primary-beamextion algorithm in CASA at the time these
data were analysed did not include tiiderm and therefore it had to be done separately.

"Multi-frequencyw-projection refers to the use wkprojection during multi-frequency synthesis imaging
(i.e. the gridding convolution functions areftiirent for each frequency because the valug ofianges across
frequency).
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Figure 8.23: MFS with wide-band primary-beam correction : 3C286 field q@xfiguration) :

These images show the results of applying MS-MFS with pryatezam correction on the C-
configuration calibrator data (3C286 field) taken duringeavleations of M87. Shown here are the
intensity map (top) and two spectral index maps; one witlamyt primary beam correction (bot-
tom left) and with wide-band primary-beam correction (bottright). The large circle represents
the FWHM of the reference primary beam (1.5 GHz). In the umemied spectral index map, the
off-center sources show spectral indices between -1.1 andmiigh become -0.5 to -0.7 in the

corrected map.

to —0.7. The measured and corrected spectral indices of 3C2B6ranof the back-
ground sources (due East of 3C286) are shown in Talie These numbers show
that for a field of isolated point sources, it is possible tarect for the frequency
dependence of the primary beam to an accuracy 611 at least within the FWHM
at the reference frequency.

3. Spectral index of the primary beam : A pair of 1-D primary beam profiles were
obtained from a holography scan that measured the beam imectidns within the
main lobe. The measured beams and two-point spectral ;idmaputed from them
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Source 3C286 3C286 Background | Background
Location Center West of Centel| East of Center| Center
Peak brightnesk 14 Jy 14 Jy 200 mJy 200 mJy
Off-source RM3"* | 1 mJy 10 mJy 1 mJdy 10 mJy
SNR= lp/I™s 14000 1400 200 20

OAMFS+PB -0.476 — -0.602 —

AMFS+WP -0.476 -0.994 —-0.976 -0.577
QMFS+WP:PB -0.476 -0.442 -0.475 -0.577

Table 8.7:Spectral Index of 3C286 field with and without primary-beaomrection : This table
shows the spectral index of 3C286 and one background souweesured directly as well as with
primary-beam correction ang-projection. The first and third columns represent the olzem in
which 3C286 was at the pointing center (all calibrator obatons for M87 in the B-configuration).
The second and fourth columns represent the short testwabwer (and hence high RMS) in which
the background source due East of 3C286 was placed at théngoienter {v-projection was
required for this imaging run to eliminate errors around 862 These numbers show thdfdrence
between the values of measured directly with the source at the pointing centeriadidectly via
an explicit primary-beam correction. For 3C286 (first twdurons), this diference is 0.034. For

the background source (last two columns) thigedence is about 0.1. These numbers suggest that

with a SNR of at least 20, and a field of isolated point sourités possible to remove theffect of
the primary beam on the sky spectral index to an accuracywdleq or better than 0.1 am (within
the FWHM at the reference frequency).

match those obtained from the theoretical model used imtlagjing algorithms. For
the locations of interest in this test, the primary-beanfij@® from the holography
data showed a spectral index-6f0.6 (at the 70% point of the beam).

4. Multi-frequency w-projection :

The images of 3C286 produced from VLA B-

configuration data in which the phase center is 8 arcmin away the source show
expected dterences when MS-MFS is used without and with multi-freqyenc

projection. The peakfé-source residuals reduce from 260 mJy to 110 mJy with the

use ofw-projection. Note that multi-frequenaey-projection is automatically accom-
plished by the regulawn-projection algorithm that chooses the gridding convalati
kernel based on the value wffor each baseline and frequency channel.
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Figure 8.24:MFS with PB correction : 3C286 field (B-configuration) : Théseges show the
intensity maps for the test observation of the 3C286 fieldA\B-configuration). The circle repre-
sents the HPBW of the reference-frequency primary beam.ifmhage on the left shows 3C286 at
the pointing center. It was made using all the calibratoa diedm the B-configuration observations
of M87 and the RMS achieved was 1 mJy. The image on the rightsboe background source at
the pointing center and 3C286 located 8 arcmin away. It wadenuging test observation data (at
five frequencies across L-band) and reached an RMS of 10 nmgysfectral indices measured for
these sources are listed in TaBlé.

Lior

2 &2
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Figure 8.25: MFS with w-projection : 3C286 field (B-configuration) : These imagesvslthe
region around 3C286 made from VLA B-configuration data inahh8C286 was located 8 arcmin
away from the phase and pointing center. The image on thdsldfie result of MFS without
w-projection and the peakflessource residual is 260 mJy. The image on the right is withtimul
frequencyw-projection and has a pealffesource residual of 110 mJy. Th&@ource RMS (away
from 3C286) for both runs was about 10 mJy. No primary-beamection was done in these runs
and the measured spectral indices included the frequenmgndence of the primary beam. The
time-variability of the primary beam (due to rotation andiisd) was not accounted for, and might
explain the high peak residual compared to tifesource RMS.
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8.4 Points to remember while doing wide-band imaging

This section briefly summarizes several practical aspdatsde-band imaging.
The goals of this section are (a) to list out the key points$ éina needed to makefective
use of the MS-MFS wide-band imaging algorithm, (b) to untéerd sources of error as
well as the implications of various choices of parametersafgiven type of broad-band
sky brightness distribution, and (c) to recognize when teaf such methods will provide
a significant advantage over much simpler single-channéiods and when they will not.
Note that all the wide-band data used for the tests in thigediation were either simulated,
or came from interferometers with narrow-band receiverthwihich wide-band data were
taken by cycling through frequencidse( no simultaneous full-bandwidth measurements).
Therefore, in addition to the current results, severaktesth real wide-band data will be
required in order to establish a robust data analysis patwifite-band imaging.

Section8.4.1discusses the MS-MFS algorithm and explains the meaninguof f
main parameters that control it. SectiBnit.2discusses dynamic-range limits when var-
ious spectral ects are ignored, lists various sources of error tliggch the accuracy of
the spectral reconstructions, and summarizes the abilitheoMS-MFS algorithm to re-
construct an accurate wide-band model of the sky brightdessbution when additional
information about the source is required. Sectioh.3compares single-channel methods
of wide-band imaging with those that use multi-frequenaytbgsis, and discusses the im-
age fidelity, dynamic range and computational complexigoagmted with both types of
methods. SectioB.4.4lists topics for related future work (additional tests atgbathmic
improvements).

8.4.1 Using the MS-MFS algorithm

Algorithm :  The MS-MFS algorithm models the spatial sky brightnesgifigion as a
sum of 2D Gaussian-like functions (with equal major and migces). The spectrum is
modeled by allowing the amplitude of each flux component lofoan N'"-order polyno-
mial in frequency. Extended emission with spectral striecthat varies across the source is
modeled by the sum of multiple flux components witlelient spectra. The MS-MFS al-
gorithm combines multi-scale deconvolution with mulgduency-synthesis and performs
a linear least-squares optimization to solve for the pohgiad codticients for each chosen
flux component.

Data Products : The basic products of the MS-MFS algorithm are a sé¥lef 1 multi-
scale co#ficient images that describe the spectrum of the sky brightakesach pixel (co-
efficients of arN'"-order polynomial). The B-order codficient image is the Stokes | inten-
sity image at the reference frequency (not the continuungar@gefined as the integrated
flux across the full sampled bandwidth). To create the contimimage, the polynomial
has to be evaluated and summed over all frequency channel$veD quantities such as
the spectral index and spectral curvature are computed fhencodficient images (see
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Eqns.6.43t0 6.45).

User-controlled parameters : There are four main parameters that control the operation
of the MS-MFS algorithm.

1. Reference Frequency : A reference frequency is chosen near the middle of the
sampled frequency range. It is the frequency about whichyéor@xpansion of the
power-law spectrum is done while forming the polynomialfGoeents.

2. Number of polynomial codficients N, : The user must specify the appropriate
number of polynomial cd@&cients to use to describe the source spectrum. In general,
we are using a truncated Taylor series to model a power-lattsnumber of terms
to use will depend on the (expected) spectral index of thebsightness (note that
the only power-laws that can be exactly fitted with a finite [dageries are those
whose indices are positive integers).

(a) If the source spectrum can be represented by a straighitril vs v space,
or if MS-MFS is being done using only two sets of narrow-baathgd choose
N; = 2. In this case the only data products are mape of the refergaquency
intensity and the spectral index

(b) Sources with negative spectral indices of abelub across a 2:1 bandwidth will
requireN; = 3. This is an empirically derived estimate based on the in@gi
runs described in this chapter and secto®. 4.2 Note that although images of
intensity, spectral index and curvature can be computed the first three co-
efficient images, it is often necessary to he> 3 for spectral indices stronger
than—1.0 in order to fit the spectrum better and hence improve thaeracy of
the estimates of the first three ¢heients. Some prior knowledge of the source
spectrum and the signal-to-noise ratio of the measurenergguired in order
to make an appropriate choice I§f.

(c) For extended emission, deconvolution errors will ciimitie to the error in the
spectral index and curvature maps. This is because it cammguaranteed
that deconvolution artifacts will preserve the ratios begw coéicient images.
N; = 3toN; = 5 have given the best results so far for the types of obsensiti
and simulations described in this chapter.

(d) The signal-to-noise ratio of the data should also bertak& account to avoid
trying to fit a high-order polynomial to a very noisy spectru8ection6.2.4.1
gives empirically derived suggestions gy for different signal-to-noise ratios.

8Note that a straight line ihvs v space does not represent a power-law. However, since to&ajiadex
of a power law can be obtained from the first two fimgents of the Taylor expansion of a power-law (see
Eqn.6.22), a straight-line fit to the spectrum invs v space can be used to estimate the spectral index of the
power law.
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3. Set of spatial scaleNs : The user must specify a set of scales sizes (in units of
pixels) to use for the multi-scale representation of thegenfgCornwell 200§. For a
field of isolated point sources a scale vector of R} & 1) will run a point-source
version of MS-MFS. For an extended source with structure ahiipte spatial scales,
this scale vector must be chosen such that the most obvialessizes present in the
image are represented. This choice is therefore highlymbgrg on the structure in
the image itself. If the source structure is partially kno@nom previous imaging
runs) then the vector of scale sizes can be chosen by coyrikaty across various
features in the imagee(g.[0, 6, 20] for an imaging run in which extended features in
the image are roughly 6 and 20 pixels across). Overall, tisene well-established
method of choosing an appropriate set of spatial scales.

4. Stopping threshold : A user-specified flux threshold is used on tHed¥der resid-
ual image to control when iterations are terminated. Fod$ietith isolated point
sources, this threshold can be chosen to be comparable tabeetical continuum
noise level. However, for complex extended emission, a gegp deconvolution can
increase the on-source errors in the higher-ordeffement images (by adding flux
that is not well-constrained by the data and is thereforehecent across theftier-
ent codficient images). These errors then propagate non-lineattytire spectral
index maps. Therefore, for complex extended sources, #dsmmended that the
iterations be terminated oncé&@ource residuals become noise-like, irrespective of
there being on-source residuals at or slightly above thsaurce noise leval

Wide-band self-calibration :  The broad-band flux model generated by the MS-MFS
algorithm can be used within a self-calibration loop in ékathe same manner as standard
self-calibration. The purpose of such a self-calibratiayule be to improve the accuracy
of the calibration.

Software Implementation : The MS-MFS algorithm described in secti@rl has been
implemented and releaseih the CASAC software package (version 2.4 onwards). Wide-
band primary-beam correction (secti@r?) has been implemented and tested within the
CASA system, but is yet to be formally released. These algmis were implemented in
C++ within the existing majgminor cycle code framework of CASAPY and can be ac-
cessediatheclean task and themager tool. The minor cycle of the MS-MFS algorithm
was implemented as part of the CASACore set of libratiesVide-band self-calibration

®Note that this description applies only to the MS-MFS althori which does not yet have built-in con-
straints based on a astrophysically-plausible range efegthat all the higher-order spectral fiagents are
allowed to take on.

19%Common Astronomy Software Applicatioisused by théational Radio Astronomy Observatory

ICASACore is a set of libraries that implement basic funddiiiies required for radio interferometric
data analysis and is currently being shared by the NRAO f@BYLA and ALMA, the ATNF for ASKAP,


http://casa.nrao.edu
http://www.nrao.edu
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and the STACKMFS hybrid method were implementgd CASAPY (python) scripts us-
ing the tool interface, and these scripts are not part of anpél release. The MS-MFS
algorithm was also implemented in the ASKAPs$bfoftware package for use with the
ASKAP telescope and was tested within the ASKAPsoft pdradigon framework.

8.4.2 MS-MFS error estimation and feasibility

Section8.4.2.1describes various sources of error that can arise when the MS
MFS algorithm is used for wide-band imaging. Sect®a.2.2then describes how the al-
gorithm is expected to perform in situations where addaionformation about the source
is usually required.

8.4.2.1 Error Estimation

Dynamic-range limits when source spectra are ignored : If continuum imaging is done
with only MFS gridding and source spectra are ignored, spkstructure will masquerade
as spurious spatial structure. These errors Wike regions of the image both on-source
and df-source and their magnitudes depend on the availableoverage, the frequency
range being covered, the choice of reference frequencythenidtensity and spectral index
of the source. A rough rule of thumb for an EVLA-typs-coverages (see sectiéri2.4.9

is that for a point source of with spectral index= —1.0 measured between 1 and 2 GHz,
the peak error obtained if the spectrum is ignored is at a mynaange of< 10°. Note
that when all sources in the observed region of the sky hawmgasispectral indices, these
errors can be reduced by dividing out an average spectrakif@he single number over
the entire sky) from the visibilities before imaging th€m

Factors dfecting the accuracy of the measured spectral index : Deconvolution errors
contribute to the on-source error in the Taylor flament images, and these errors propagate
to the spectral index map which is computed as a ratio of tvefficeent images. Tabl8.2
lists the estimated and observed errors in spectral indexcarvature for a simulated ex-
ample and shows that the deconvolution errors that resudtvapoint-source flux model is
used to deconvolve extended emission, can increase theébarson the spectral index and

and ASTRON for the LOFAR telescope.

2pustralian SKA Pathfinder softwaie being developed at thsustralia Telescope National Facility

3Note that such a division will reduce the signal-to-noigéraf the higher-order terms of the series (for
the remaining spectral structure). Therefore, althoughrémoval of an average spectral index could reduce
the level of imaging artifacts obtained when source sperdgnored, the lower signal-to-noise ratio of the
spectral signature could increase the error on the deripedtsal index when MS-MFS is used. Note also
that this point is not specific to the MS-MFS algorithm, buaigeneral statement about how the accuracy of
a fit depends on the SNR of the signal being fitted.


http://www.atnf.csiro.au/projects/askap/computing.html
http://www.atnf.csiro.au/
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curvature by an order of magnitude. The accuracy to whielndg can be determined also
depends on the noise per spectral data point, the numbenmpied frequencies, the total
frequency range of the samples, and the number of spectiamhngserd\; in the fit. Sec-
tion 6.2.4.1discusses empirically derived error bars for the spectraéx based on these
factors.

Effect of the frequency-dependence of the Primary beam : When wide-band imaging
is done across wide fields-of-view, sources away from thetpaj center will be attenuated
by the value of the primary beam at each frequency. Wide-lrmading results from such
data ignoring the primary beam will contain spurious spcditructure. For the EVLA
primary beams between 1 and 2 GHz, this extra spectral intéxeahalf-power point
is about -1.4 and about -0.6 at the 70% point (see Figand7.7). Note that even if
the source has a flat spectrum, this artificial spectral intiex cause errors at the levels
described for ignoring source spectra in the restored gitgmmage.

Accuracy to which the primary beam spectrum can be removed : Tests on simu-
lated and real data show that up to the 70% point of the prirbeagm (at the reference
frequency), the spectral index can be corrected to withdb @or point sources with signal-
to-noise ratios of greater than 100, and to within 0.1 fompsburces with signal-to-noise
ratios of about 10. For extended emission, the errors arerdied by the fects of multi-
scale deconvolution errors and not primary-beam corractin high signal-to-noise sim-
ulations (SNR-100) with extended sources located at the 60% point of thegysi beam
at the reference frequency, the spectral index was recdvereithin an error of 0.2.

8.4.2.2 Feasibility of wide-band imaging

Unresolved and Moderately resolved sources Consider a source with broad-band con-
tinuum emission and spatial structure that is either urvesioat all sampled frequencies
or unresolved at the low-frequency end of the band and redatthe high-frequency end.
The intensity distribution as well as the spectral indexufrsemission can be imaged at
the angular resolution allowed by the highest frequencyéltand. This is because com-
pact emission has a signature all across the spatial fregyygane and its spectrum is well
sampled by the measurements. The highest frequenciesaaortsie spatial structure and
the flux model (in which a spectrum is associated with eachdtumponent) naturally fits a
spectrum at the angular resolution at which the spatiattira is modeled. Note that such
a reconstruction is model-dependent and may require exfisannation in order to distin-
guish between sources whose observed spectra are due tm@ehanges in the shape
of the source with frequency and those with broad-band (ptawe) emission emanating
from each location on the source.

Very large sources : At the lower end of the sampled spatial-frequency rangesibe of
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the centraliv-hole increases with observing frequency. For very larggiapscales whose
visibility functions are adequately sampled (more than &f%e integrated flux) only at
the lower end of the frequency range, an ambiguity betweatiadpscale and spectrum
can arise during the reconstruction. This is because thersjpe of this source is not well-
sampled by the measurements. A flat-spectrum extendedescamde mistaken for a steep
spectrum less extended source, ame-versa This problem can be avoided by providing
short-spacing flux constraints (from single-dish obseoves) to bias the solution, or by
flagging all spatial frequencies belaw;, at vimax (the smallest spatial frequency sampled
by the highest observed frequency) to filter out these |lapg¢ia scales.

Overlapping sources : When overlapping sources havefdrent spectral structure, the
result of wide-band imaging is the combined intensity andgieel spectrum. However,
when the foreground and background structure has emissi@madifferent spatial scales,
a flux model that associates a spectrum with each flux compaoratuarally separates the
overlapping sources and represents the source as a sumrtdppiag sources with dif-
ferent spectra. The intensity and spectrum of foregrounolcgs can be recovered from
the final output cogicient images by performing a polynomial subtraction (tsgactrum

- background spectrum), before computing the spectrakiate curvature of foreground.
Note that this is a simple extension of standard backgroubttaction.

Sources with band-limited emission : The observed spectrum of a source whose structure
itself changes with frequency cannot be described usingreptaw spectral model, but

it can sometimes be described by a high-order polynomNal(4). The MS-MFS model
with a high-order polynomialN; > 4) can be used to model these 'spectra’ as long as
the emission varies smoothly across frequency. In this, ¢asees of spectral index and
curvature have no meaning, and the final reconstructed isTagest be interpreted in terms
of polynomial codficients or by evaluating a spectral cube from thesedfments. Note
however, that the highest angular resolution at which stineccan be imaged is controlled
by the highest observing frequency at which the emissioetsaled.

8.4.3 Multi-frequency synthesisvssingle-channel imaging :

Image Fidelity and Dynamic Range : The main advantage of multi-frequency synthesis
over single-channel imaging (for continuum imaging) is thereased image fidelity and
dynamic range allowed by the use of the combinea@overage and broad-band sensitivity
during image reconstruction.

Spatial resolution : The angular resolution of the continuum emission is at teeltgion
allowed by the highest frequency in the band. Further, MAS& wisuitable flux model can
reconstruct the spectral structure of the source also aaigellar resolution allowed by
the higher end of the sampled frequency range. Note thatsitfle-channel imaging, the
spectral structure can be recovered only at the angulaluteso of the lowest frequency
in the band.
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Spectral Structure : The signal-to-noise ratio required to measure spectratsitre is
the same for both single-channel and MFS methods. Specatraecaeasured accurately
only for sources that are several timesX0) brighter than the single-channel noise level.
The smallest spectral index that can be measured correspodlux variation across the
band that is comparable to the single-channel noise levete that these single-channel
noise levels include errors in wide-band calibration.

Channel Averaging : Even if data are measured with a very high frequency resmiuti
(Nchan > 10000) the process of imaging almost never requires it. iG&/elesired image
field-of-view, one can calculate the bandwidth-smearingtliand average multi-channel
data up to that limit. This will reduce the computational dwead for gridding and de-
gridding. Note also that this is possible only for imagingliBration (and self-calibration
loops) will still require the full frequency resolution.

Computation Cost: In general, MFS imaging is less expensive than single-ablamag-
ing methods. However, single-channel methods are emisangiyg parallet*and therefore
very easy to distribute over a set of compute-nodes. Themsyuabe of deconvolution MS-
MFS imaging is hard to parallelize but the major cycle is eagyarallelize and significant
speed-ups are still possible (this has been demonstratdte ASKAPsoft implementation
of MS-MFS).

Hybrid Methods : When wide-band measurements have very denseoverage per
frequency, wide-band calibration errors are minimal, dredterget science does not require
a very high angular resolution for spectral reconstrujdhen a simple hybrid of single-
channel imaging followed by a second stage of MFS imagindhercontinuum residuals
might sufice for high-fidelity and high dynamic-range continuum inmagi Also, if all
sources of emission in the field of view have similar spedtrdices, a common average
spectral index can be removed from the calibrated data eefantinuum MFS imaging, to
reduce the level at which errors due to unaccounted for sgdegtriations occur.

8.4.4 Future Work

Tests with real wide-band data : The imaging results presented in this chapter used either
simulated wide-band EVLA data or multi-frequency data fethfrom a set of narrow-band
VLA observations. This is because real wide-band EVLA dagmeanot available at the
time these algorithms were being developee. (during the transition between the VLA
and EVLA telescopes and before the EVLA wide-band correlaézame available).

1. Data from the multi-frequency VLA observations demoaistd the ability of the
MS-MFS algorithm to reconstruct spatial and spectral stmgcover wide-fields of

14Using parallel computing terminology, embarrassinglyafiat problems are those that can be easily
split into several smaller problems that can be operated imatependently and require minimal amounts of
communication between compute nodes.
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view, but did not test its high-dynamic-range capabilitidhe MS-MFS imaging
algorithm as well as the STACKMFS hybrid need to be tested on real wide-band
EVLA data to ascertain their high dynamic range imaging tdjjees.

2. The dfects of removing an average spectral index from a wide-batalseét before
imaging need to be evaluated in terms of high-dynamic-raragability as well as
the accuracy of the reconstructed spectrum.

3. Wide-band self-calibration needs to be tested to evalwhaether existing methods
will suffice for high dynamic-range imaging.

4. Also, MS-MFS has been used only on extremely bright aneheldéd objects (Cygnus A
and M87) and a field of point sources (3C286) and tests on mpreai sources are
required before the conclusions described in this sectiornbe applied generically.

Algorithm Improvements : There are several aspects of the MS-MFS algorithm for
which improvements are possible.

1. One aspect of the MS-MFS algorithm that needs more worlovs to determine
appropriate values fa¥; andNs and to select a set of spatial scales. These parameters
depend on the wide-band spatial structure of the sky bregsnthe multi-frequency
uv-coverage of the interferometer, the weighting scheme,ss®tithe signal-to-noise
of both spatial and spectral structure.

2. The MS-MFS algorithm uses a polynomiallivs v space to model the sky spec-
trum, even though broad-band radio emission usually falpewer-laws. This is
because the chosen flux model describes the wide-band siytieiss as a sum of
overlapping extended flux components with fixed spectraggpalver-law sky spec-
trum cannot always be written as a sum of more power-laws. é¥ew for sources
with pure power-law spectra.¢. isolated point sources, or extended emission with
a constant spectral index across the source) a polynomiadinvs logv space may
be more appropriate in terms of the accuracy of the recoctsttiwalues ofr andg.
This point needs to be tested, preferably on a field of comgmatces.

3. The stability of the MS-MFS algorithm in the low signaHtoise regime is yet to
be understood. Non-linear constrained optimization teqpies might have to be
used instead of the simple linear least-squares methodsilges in the previous
chapters in order to constrain solutions to astrophysigaHusible values when the
constraints from the data itself are irtgaient.

Additional methods : All the algorithms described in this dissertation ignoreise
polarization and the ability to do full-polarization imagj using wide-band data is required
for high sensitivity polarization measurements. This imes the use of an appropriate flux
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model that accounts for the polarization signature of thes®as a function of frequency
during MFS imaging, and this is still a subject of research.

Another important application of wide-band imaging is thenstruction of a
broad-band model of the continuum flux for the purpose of iooiim subtraction. The
standard practice has been to image the continuum emissiog only those channels
with no known spectral lines in them, and then subtract itafuhe entire dataset. The
same approach can in principle be used along with the MS-M§&ithm to model and
remove the broad-band continuum, as long as channels wetttrgplines in them can be
identified (or markedvia a-priori information) before wide-band imaging. This needs to
be tested with real wide-band data. As of now, continuumraghibn in the presence of a
large number of unknown spectral lines remains a researtdbigm.



CHAPTER 9

A HIGH-ANGULAR-RESOLUTION STUDY OF THE
BROAD-BAND SPECTRUM OF M87

Cores of the densest galaxy clusters are expected to haliegfiows that trace

radiative losses from the intra-cluster medium (ICM) andeheooling times shorter than a
Hubble time. However, the hot cores of many clusters showideace of cooling below
a temperature of roughly a third of the measured temperatutiee inner regions of the
cluster. One way of reconciling this cooling-flow problenhesatingvia accretion powered
outflows from an active galactic nucleus (AGN) at its core s@ations of cluster-center
radio galaxies (CCRGSs) that host these AGN have suggestsetiadck model that might
be responsible for balancing the cooling flow. One aspedhisffrocess that is not well
understood is the mechanism by which energy from AGN outfloodd be transported out
into the thermal ICM and the timescales on which this happ&asfar, most calculations
of the lifetimes of features seen within the radio haloess@irces like M87) have been
based on source expansion models. Synchrotron spectralpranother way of studying
the energetics and lifetimes of features in the halo. Oleskwide-band spectra can be
compared to those predicted by various evolution modelgptaen how they formed.

In this project, wide-band spectra of several regions ofMi& radio halo were
constructed from existing high angular-resolution image4 MHz (4-band), 327 MHz
(P-band), and 1.4 GHz (L-band) and a spectral index map leetwel and 1.8 GHz (con-
structed from wide-band VLA L-band observations). Theseca were compared with
model spectra derived from two spectral evolution modelgiél-injection and ongoing-
injection). Preliminary results suggest that spectra mitiner few kpc (the inner radio
lobes) are consistent with an ongoing injection of partickéth the energy distribution as
seen in the jet. For features in the halo, timescales camgigtith expansion and buoyancy
timescales can be obtaineid the initial-injection model, but the data constrain the pow
law index of the initial electron energy distribution to leegper than that observed at the
jet. These features can also be modefedhe ongoing-injection model for a wide range of
initial energy distribution indices and give timescaleattrange from twice the expansion
timescales for steep injected spectra to a few times snthberthe expected cooling time
when the energy injection index is the same as that obsemtéeijet. Note, that the large
error-bars on the current L-band spectral index estimatnader all the wide-band spectra
used in this analysis consistent with pure power laws arglititroduces a high degree
of uncertainty on any conclusions derived from estimatdsreék frequencies beyond the
measured range.

210
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Section9.1briefly describes the cooling-flow problem and the idea of Algéd-
back and summarizes the relevant existing information 8lRl®r. Sectiorf.2contains the
basics of synchrotron spectra and their evoluti@atwo different models and lists the cal-
culations used for estimating B-fields and source lifetingesction9.3shows the results of
spectral fits to these theoretical models for M87. Secligrnterprets the results in terms
of plausible evolution models, ages and injected electramgy distributions.

9.1 The M8T7 cluster-center radio galaxy

M87 is a large elliptical radio galaxy located at the centethe Virgo cluster.
Galaxy clusters usually show evidence of hot cores withngtrg-ray thermal emission
from the ICM near the center of the cluster. The total enemgytent of the hot ICM is
given by its temperature ds = %nkaT, radiative loss rates are proportional to density
squared I( o« n2), and a cooling time can be computed as their ratio. Thisiegdime is
inversely proportional to the density, «« ~ or in other words, high-density regions cool
faster. This means that the center of the cluster cools foowed by outer regions, and
this is called a cooling flow.

The expected cooling time can be calculated by measuringehsity and tem-
perature of the thermal ICM (from X-ray measurements of tteertsstrahlung spectrum).
For M87, the cooling time estimated from X-ray measuremeéntg,, ~ 1Gyr. and the
cooling radius is not much larger than the observed sizeefdlio halo. The first prob-
lem one encounters is that, is often much less than the Hubble time, suggesting that
the cluster cores ought to have cooled by now and not stillvdigh temperatures. The
second problemis the lack of X-ray emission lines from thaliog gas below a third of the
measured temperature of the cluster core. The frequencymptitude of X-ray emission
lines from the ICM gas (on top of bremstrahlung emission spet) can be predicted for
different temperatures. The observed lines can be matchedsi phedictions for a range
of temperatures that it passes through as it cools, with @wémum being the background
temperature. For sources like M87, these predicted linepisent down to a temperature
of 3.5 x 10°K [Peterson et al. 2003This means that the gas is losing energy, but also not
cooling below this point. These observations and calcut&tsuggest there must be some
internal source of energy, possibly correlated with theeplsd radio halo, that balances
the cooling below that temperature, and keeps the clustertuat.

One possible source of energy input capable of balancingdbkng flow is an
accretion powered outflow from an AGN containing a supersivasblack hole (SMBH)
at the center of the cluster. The M87 galaxy hosts an AGN witlolaserved jet outflow,
making it an ideal candidate for the study of AGN feedback psssible explanation of the
cooling-flow problem. Calculations of the jet power in M8A/Badbeen shown to roughly
balance the energy loss due to thermal radiation in the ICWdn et al. 200D The
mechanism of this energy transfer is thought to be a feedlmagkin which the cooling
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mM87

Visible = Hubble + R. Gendler

Figure 9.1: RadigX-ray/Optical images of M87 : The image on the left is a composite mf o
tical, radio and X-ray images of the elliptical galaxy M87rédits: X-ray: NASACXC/CfA/W.
Forman et al.; Radio: NRA@UI/NSHW. Cotton; Optical: NASAESA/Hubble Heritage Team
(STScfAURA), and R. Gendler). The image on the right is a compoditadio and X-ray images
that shows the structures in the M87 halo and a strong ctioelbetween X-ray and radio emission
(Credits: Radio : NRAQAUI/NSFHF.N.Owen; X-ray: NASACXC/Cfg/W.Forman et al.).

ICM gas sinks to the bottom of the gravitational potentiallwéthe cluster and feeds the
AGN via accretion so that the AGN pumps out a corresponding amownerigy through
jet outflows. This energy is then transported out to the ICMdat it up again.

The least-understood step in this loop is the mechanism lighvthe jet power is
transfered across very large distances to heat up the ICM diirections. In some galaxy
clusters, there is evidence of bubbles rising buoyantlyinmdme cases, these bubbles are
seen to displace the thermal ICM plasma and form cavitiekarXiray loud thermal ICM
(evident as bounded regions of low X-ray luminosity comgate the surrounding, and
often coincident with regions of high radio synchrotron sgimn). The inner lobes of the
M87 radio emission coincide with one such X-ray cavity, duictures outside this region
in the M87 halo do not (no observed X-ray cavity on large sjallnstead, the radio halo
shows evidence of buoyant bubbles of plasma rising up fraAtBN, and features seen in
X-ray emission correlate roughly with some features in tio halo, suggesting possible
mixing of the radio plasma and the ICM. Another way of trarmsipg energy to the ICM is
through sound-waves and observations of the Perseus agal alusters show ripples that
look like propagating sound waves. FigWreél shows two images of M87 to illustrate the
relation between its observed optical, X-ray and radio siors
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9.1.1 Studying M87 evolution

The next step towards explaining the cooling flow problemNt@7 via AGN
feedback is to study the evolution of various structures se¢he radio and X-ray images
and to understand the energetic processes present widnn theedback processes and the
timescales at which they may be occuring for the Virgo cluséa be studied by modeling
the formation and evolution of various features in the M8Jadalo. One way of studying
this is to use direct dynamics to model the source as a buoyalnitven and expanding bub-
ble that physically transports energy between the AGN aedhbrmal ICM. Synchrotron
spectra are another way of studying how various featuresaiM87 halo evolve spectrally
as they carry energy away from the AGN. Synchrotron agesraependent of direct dy-
namics (bubble rigexpansion timescales, sound speed, etc), but are highgndept on
B-field estimates and the chosen model for the evolution @fetiiergy distribution of the
ensemble of radiating particles. Some dynamical age etssrderived from bubble ex-
pansion and buoyancy timescales are listed below, alorgexitsting information about
B-fields in the halo and information derived from low-redaa synchrotron spectra.

Fig. 9.2 shows an image of M87 at 327 MHz in which various features ae |
beled. Radio emission from M87 shows an energetic 2kpc j@tagpair of bright~5kpc
inner radio lobes. Outside this bright central region is & ph~20kpc East-West struc-
tures that appear to be connected to the bright centralmegid are labeled as the ear-lobe
(East) and ear-canal (West). To the North and the South ointier lobes are a pair of
large ~40kpc difuse structures (labeled as halos) with well-defined outantaries. All
structures outside the inner radio lobes are comprised wbwaextended bright features
(labeled as filaments) with low-brightnesgfdse emission in between (labeled as back-
ground).

Magnetic fields :  If the M87 halo is an expanding lobe modeled by a fluid flow in
pressure equilibrium with the ICM outside the bubble, thebmmt pressurd®,, of the
surrounding ICM can be used to calculate an upper limit orategage internal B-fiel8gyn,
(viathe expressioP,m, = B?/8x). From X-ray measurements of the ICM temperature, we
getPamp = NyksT = 1.2 ~ 4 x 107 dyn/cn? whereT = 9 ~ 28 x 1(PK andn = 0.01
[Owen et al. 2000Shibata et al. 200Molendi 2003. The B-field calculated fron®Pay, is
Bayn = 17 ~ 31uG.

Bayn is an upper limit only on the average internal B-field (ovex #ntire halo),
and turbulent flows and shock compressions on much smakéescan enhance the B-
fields in localised regions in the halo. The total energy dgris given bypV? + Pamp =
B?/8n wherev is the local turbulent flow velocity and is the density. The amount by
which the B-field is enhanced due to turbulence will depend/ amd its relation to the
sound speed in the ICM{ = VKT/m). For example, in the case of a supersonic turbulent
flow (oV? > Pamp), the additional magnetic energy density scales as thasagfithe Mach
number M = v/cy).
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Figure 9.2: Labeled image of M87 : This is a 327 MHz image of the M87 raditagg made
using the VLA [Owen et al. 200D It shows a bright central region with a 2kpc radio jet angh&k
inner radio lobes, a pair 6f20kpc structures to the East (ear-lobe) and West (earJcafiale bright
central region, and twe40kpc halos to the North and South. Narrow extended filanmgsteucture
is seen throughout the ear Igbanal structures and the halo, with low-leveffdse background
emission in between.
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Faraday-rotation measuremen@®qen et al. 199Destimate the B-fields around each inner
radio lobe to be between 20 and dG. Owen et al[200q show that the B-field consistent
with the minimum pressure in various parts of the outer higloétween 7 and 10G.

Dynamical Age (driven bubble) : For an expanding lobe powered by a constant energy
source at the center and overpressured with respect tarasings, the age of the source
can be estimated as the time taken for the outer edge of tieadodxpand to a certain size
(volume). The volume of the lob¥(t) is related to the input power, external number-
density and lifetime as follows.

v( = )] ©.1)

E \°.0
Vt = t_ t =
O=0(m) ¢ = tan
wherec, is an order unity constangflek 1996. Using this expression with, = 0.01,
volumeV(kpc) = 3n40° we gettqy, ~ 120Myr for E ~ 10*erg/sec(n, ~ 0.01 and
E ~ 10™erg/secwere obtained fronOwen et al[2000).

Dynamical Age (passive buoyant bubble) : For a buoyant bubble rising up through an
atmosphere of hot plasma, models sug@igsfan:~ 40 ~ 60Myr for a distance of about 40
kpc [Churazov et al. 2001 An upper limit on the speed of such a bubble is given by the
sound speeds = /kT/m,. For example, foll = 2x 10'K, = c¢s=4.0x 10°cm/sec
and the sound travel time for a distance of 20 kpc is 50 Myr (&v@ Myr for 40 kpc).

Synchrotron spectra (jet) High angular-resolution studies of the M87 jet have shown
that its spectral index at radio wavelengthsvis = —0.5 (Owen, private commn.) and
Bicknell and Begelmafi1994 reconstruct this resultia models of the jet outflonPerlman
and Wilson[2004 also show that the broad-band spectrum of the jet betweda gand X-
rays is consistent with a continuous injection of energaidicles {e: ~ —0.6), or in other
words, an active jet.

Synchrotron spectra (lobes and halo) Low-resolution synchrotron spectr&gttmann

et al. 1996ashow that the P-L spectral index (between 327 MHz and 1.4)&ithe halo

is ap. = -0.7~-1.3 and the C-X spectral index (between 5 GHz and 10 GHa)js=-
2.0~-2.8. Rottmann et al[1996 analyse images at 333 MHz, 1.4 GHz and 10.55 GHz
and suggest a spectral break between 5 and 11 GHz and timest&0-40 Myr for the
ear lobgcanal regions (but they do not quote B-fields). These agesaghly consistent
with the timescales calculated from direct dynamichiirazov et al. 20Qwith B=6.5.G.
However, the angular resolution in these images isffigant to study the spectral vari-
ations across tlierent features of M87 (lobes, bubbles, halo filaments anédvaand).
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High resolution images of the 40 kpc-scale structure in tl8¥Malo Pwen et al. 200D
have so far been made only at frequencies of 1.4 GHz and batayprobe only the edge
of the expected region of spectral turnover (1 to 10 GHz).a&srthis range (75 MHz to
1.4 GHz), there is no clear sign of a spectral break or ¢hit-o0

Goal of this project (test evolution models for M87) : In order to study the broad-
band spectra of various isolated features in the M87 halalahtieir spectral evolution
as a function of distance from the jet, and constrain thaickyotron ages, we need high
angular-resolution observations that directly measweesfiectrum between 1 and 10 GHz.
The project described in this chapter is the first step andlved a wide-band observa-
tion of M87 between 1.1 and 1.8 GHz and the use of the wide-lrmading algorithms
described in chapter to construct a spectral-index map across L-band. This 11.80
GHz spectral index map was used along with existing imag&4 afiHz, 327 MHz and
1.4 GHz to constrain the slope of the spectrum at the higipiacy end of the measured
range (spectral slope at 1.4 GHz). Two types of synchrotvatuéion models were tested
by fitting these wide-band spectra to numerical models ottspehat were evolved over
the approximate lifetime of the source, starting witffelient electron energy distributions.

9.2 Synchrotron spectra and their evolution

Section9.2.1summarizes the basics of synchrotron speddacholczyk 1970
Section9.2.2describes the concept of spectral ageing, two models ofrsgtron ageing
based on an initial or a continuous injection of particlethva power-law energy distri-
bution and shows the filerence between the observed spectrum for these two caskes. Ca
culations of the minimum-energy B-fields used in the syntbroage estimates are also
described here. Sectiéh3 later describes the spectra obtained from multi-frequemzy
ages of M87, the process of fitting models to the data to olidast-fit estimates of the
critical frequency, and using them to calculate the agesnbus features in the M87 halo.

9.2.1 Synchrotron radiation - basic facts

A charged particle moving in a magnetic field gyrates arouradjmetic lines of
force, feels an acceleration towards the axis of its hebchit, and radiates with a dipole
power pattern around the direction of acceleration. Whendfarged particle moves at
relativistic speeds, this is called synchrotron radiation

For relativistic particles, the radiation pattern for egmdrticle is no longer a
symmetric dipole pattern and the power is boosted along tteettbn of motion of the
particle (synchrotron beaming). To a distant observes, tdiation appears pulsed because
as each particle moves around its orbit, its radiation be#ersects the observers line of
sight only for a small fraction of its total orbit. The obsedsduration of these beamed
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synchrotron pulses gives rise to a characteristic frequegg of the observed radiation.

3 e .
Veyn = EH:B y?sing (9.2)

wherey denotes particle energy = E/mc andé is the pitch angle. The shape of the
synchrotron spectrum from a particle of enengis given by a modified Bessel function.

Panl.7) = @fn—Bcf'm(l) I kst (99

Vsyn

The low-frequency end of this spectrum follows a power lawthed form v3, the high-
frequency end shows an exponential deeay™~ and the spectrum peaks at 0x3 The
total radiated power averaged over an ensemble of partvtesenergy given by and an
isotropic distribution of pitch angles is given by

(Peyrd = S%Bzyz = 2Ly (9.4)
Here,or is the Thomson scattering cross section. Astrophysicaicesucontain charged
particles with a wide range of energies. From the observedepspectrum of cosmic rays,
we choose a power-law distribution of particle enerdis) = Nqoy° (s is the spectral
index of the power law for an energy ranggin < ¥ < ¥max Whereymax>> ymin). The total
synchrotron spectrum is given by a convolution of the sirgglergy spectrum and(y).

oyrly) = f N()Peyr(v.y)dy o BF (Ci) where a:—%l (9.5)

1

wherec; = 6.3 x 10'®Hz The result (in the above energy range) is another power e w
a spectral index.. The spectral shape at the low and high frequency ends o$pleistrum
follow that of the single electron energy spectrum.

9.2.2 Ageing of synchrotron spectra

Section9.2.2.1describes the computation of synchtron age from a measured
break frequency, and secti@n2.2.2describes two evolution models that producte
ent spectral shapes on either side of the observed break.

9.2.2.1 Break frequency and synchrotron age

For an ensemble of particles with the same initial energhere is a characteris-
tic timescale associated with the lifetime of these rad@particles. This is known as the
synchrotron age, and is estimated from the ratio of the &algy E = ymc) to the rate
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of energy loss due to synchrotron radiatidh ¢ —y?B?). Thereforet, = E/E o« 1/B%
and particles with higher energies (or located in regiortsgiier B-field) radiate faster and
have a shorter lifetime.

In an ensemble of particles spanning a wide range of initiatges, the higher-
energy particles radiate and deplete faster. After a tijradl particles at energies high
enough such thdg < t would no longer be radiating. This creates a break in thetrelec
energy distribution ag. such that, = t. WhenN(y) « y~3, a break in the energy distribu-
tion aty. causes a break in the power-law of the observed synchrgpextrsim at a critical
frequencyv, (related toy, via Eqn.9.2). The shape of the spectrum on either side of the
observed break will depend on the initial valuesadind the time dependence Mty). As
time progresses, this break will move to lower frequenciastbe shape of the spectrum
on either side of the break will not change.

If the B-field is known, the age of a population of relativisparticles can be
estimated from measurements of the critical or break fraque.. Let B denote the local
B-field with which the observed synchrotron emission is agged. LetB;,g = V8tU,qq
(whereU,,q « T* and T=2.7 K) denote the equivalent B-field due to inverse-Compton
losses (the mininunB,,q = 3uG and corresponds to energy lost when CMB (cosmic mi-
crowave background) photons scattéf the relativistic particles and gain energy). The
energy loss rate due to synchrotron radiation (Eg4) is given by

dy 2/R2 |, R2 _ 9T
i ky“(B°+ Bf,y) Where k= rm— (9.6)

Eqgn.9.6can be solved to obtain an expression for a critical engggy his critical energy
represents the maximum particle energy present in the driseafter a timetsy, = fdt
(tsynis called the synchrotron lifetime).

1
" K [[BR(t) + B2 Jdt

B(t) represents a time-varying B-field as encountered by thicparThe critical energy.
can be relatedia Eqn.9.2to a critical frequency.. This critical frequency is a measured
guantity, and is the observed break frequency of the symahrespectrum. Givenyg, a
synchrotron agésy, can be computed from Eqn8.7 and9.2 for two different situations,
as follows (note that aliy, calculations in this chapter use electron massesmy).

Ye (9.7)

Homogeneous B-field : If the particles have seen a constant B-field over their entir
lifetime, either by moving through a homogeneous B-field ymiot moving very far in
an inhomogeneous B-fieldB(t) = B), we can calculate the synchrotron lifetirhg, as
follows.

2

B Ve (9.8)

tsyn = [ 2
[B%+ B ]2
Here, tsy, is in secondsy; is in Hz andB is in Gauss. Eqn9.8 can be written assy, =

_1 .. - .
1.6 x 1098‘%1/(;2 years, wherd is in uG, v is in GHz andB;,q is neglected.
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Inhomogeneous B-field : If the particles have encountered varying B-fields duriregrth
lifetimes, a modified calculation @f,,is required. A particular measured critical frequency
vc o By?2 can be obtained either from particles at a high energy andldield, or by lower-
energy particles in a higher B-field. Therefore, if the paes have spent a large fraction of
their lifetime in a low field region before moving to a highléleegion from where they are
currently radiating, a synchrotron lifetime calculatedrrthe observed, via Eqn.9.8will
give ages that are shorter than the true lifetime of the gagi(Eqn.9.8 assumes that the
particle has spent its entire lifetime in the (higher) Bdighat it is currently encountering).

To account for this discrepancy, we can re-write Eg& in terms of past and
present B-fields. LeB,q represent the B-field from which the particles are currerdatji-
ating. LetB(t) = (B) represent an average B-field that the particle has encashtierough
most of its lifetime. We can calculate a synchrotron ageas follows.

1
BI’lOW lz —

1
27memc|?
Ve (9.9)

2

Nl

syn = o1
If a particle spends most of its lifetime in a low B-field regibut is currently radiating from

a high B-field region, usin@.,w > (B) will give a larger and perhaps more accurtig.
This calculation can be used to interpret the observed sgiram spectra in regions that
appear to have localized high B-fields compared to theiosumdings (for example, narrow
magnetically confined filaments located within a large ragib diffuse radio emission).
This model may be useful in situations where E@8.gives lifetimes that are much shorter
than any physically plausible dynamical model of particensport across large distances
(i.e. from the source of energetic particles to the locations wiieey are currently radiating
from), especially if there is additional evidence to sugdesalized high B-field regions or
sites of local particle re-acceleration.

9.2.2.2 Ageing models and spectral shapes

The age of an ensemble of radiating patrticles is related eoottserved break
frequencyv, but the shape of the observed spectrum on either side obteak depends
on the initial particle energy distribution and how this ggyedistribution evolves with time.
As the source ages, decreases, but the shape of the spectrum below and apolees
not change.

Let N(y,t) describe the electron energy distribution function inrterof energy
v and timet. As patrticles age and lose energy the change in the shalé¢yof) can be
written in terms of a continuity equation for the number dgnsf radiating particles in a
one-dimensional energy space (see section 6F3aoholczyl197Q).

ON(y,t) 0 dy|
oy [N(% t)a] = Q(r.1) (9.10)
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whereN(y, t)% is the flux of electrons with energies passing through theesaln one unit
of time as the result of losses and gains of energy by therelet The source function
Q(y,t) gives the number of electrons at each energy that are @geato the radiating
region at unit time and per unit energy interval.

1. Initial Injection model : An initial power law distribution of particles is allowed to
age without further replenishment. This is modeled ustg, t) = &(t — tp)y 3. As
the particles age, a critical energyforms, beyond which all particles have stopped
radiating and this gives a spectral breakafrelated toy. via Eqn.9.2).

Within the energy range over which this initial synchrotspectrul power-law holds
(ymin < ¥ < vYmax, the spectral index on the low-frequency side of this briesak
a = —5”71 where s is the power-law index of the initial energy distributiomad

the spectrum on the high-frequency side shows exponergcyd(from the single-
energy power-spectrum at the highest surviving energy).

2. Ongoing Injection model : A set of particles with a power-law distribution of en-
ergies is continually injected into the system. Particlealleenergies are therefore
aging as well as being replenished. However, since the higihgg particles age
faster, there will still be a break in the spectrunvgtbut this break is not as sharp as
for the initial-injection model.

This form of ageing is modeled by choosify,t) = y~° to represent a constant
input of particles with the same energy distribution, artdrs:g% = 0 to calculate
a steady-state solution above the break frequency. Thigigolis given byN(y) o
y~D - With this N(y) in Egn. 9.5, the resulting spectrum has a spectral index of
a-0.5 wherea = —5;21. Therefore, the observed spectrum bebgws a power law
derived from the initial power law distribution of electrenergies and it steepens by

Aa =-0.5 across the break frequency.

Spectral models representing the two above cases can haexbtay numerically solving
Egn.9.10 For M87, a set of spectra were generated using electromggmstributions
whose power-law indices range from 1.8 to 2.8 in steps of 0.1 and evolving them over
60 Myr. These solutions were obtained for the initial injentas well as ongoing injection
models described abovand the only dference between the two models is the form of the
source ternQ(y,t). The resulting spectra are given in termsvgf. wherev, represents

a critical frequency at which a spectral break occurs. F@guB shows an example of the
predicted wide-band spectra fi(y) o y~20 resulting from no ageing (initial conditions),
and ageingia the initial and ongoing injection models.

These numerical solutions were computed by J.A.Eilek ahtth@lspectral fits described in this chapter
used the resulting model spectra.
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Spectral Ageing Models (s = 2.0)
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Figure 9.3:Spectral Ageing models : This plot shows examples of theigted wide-band spectra
resulting from no ageing (initial conditiona), and ageuigthe initial and ongoing injection models.
These spectra are plotted as functions pof; to show the steady-state solutions. A particle energy
distribution of N(y) o« y=20 was chosen, giving rise to an initial power-law spectrumhwit =
—0.5. Ageingvia the initial injection model shows an exponential decay lbelyq. Ageingvia the
ongoing injection model shows a steepening of the spectdaix by 0.5 across the break.

Other models : There are several other theoretical models for the evalutibsyn-
chrotron spectra that are based on non-uniform or timeatsei B-fields and turbulence.
Eilek et al.[2003 discuss how local MHD turbulence could energize partittesughout
the halo, replenish the high-energy particles, and preventbserved spectrum from steep-
ening.In-situ particle acceleration can also occur in regions with vagyBafield strengths
due to particles scatteringfaurbulent Alfven waveskHilek et al. 1997. However, there
are no established methods of predicting the electron sgircim spectra resulting from
this form of in situ acceleration Eilek et al. 2008 Power-law synchrotron spectra with
spectral breaks can also result from power-law distrimgiof B-field strengthsHilek and
Arendt 1996.

9.2.2.3 Computing Equipartition B-fields

Calculations of the synchrotron age of a sow@eEqn.9.9 require that the B-
field be known. In the absence of measurements that directlyepthe B-field strength,
equipartition provides a commonly used estimate.

The observed synchrotron luminosityy, depends on the magnetic fieRR) as
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well as the total electron enerdye;, both of which are unknown. The total energy of a
synchrotron source is the sum of the energy in the magnetdsfend from relativistic
particlesUy,: = Ug + Ug. Minimizing the total energys,; With respect toB results in a
relation of approximate equality betwebl, andUg (equipartition).

Ug = §(1+ KU = Uig(min) = ;1(1+ K)Uel = :—ZUB (9.11)

wherekUg = Uy, is the energy contribution from protonJ:(min) is then considered
as the minimum total energy required to make a synchrotramcgo and can be related
directly to Lgy, and the volume of the source. The total minimum energy dgngit,
and the minimum-energy B-fielBe, (often refered to as the equipartition B-fiéldan be
computed as follows.

: 7
_ Ywa(min) _ (i) @+RiofviLy, (9.12)

Umin = =
min oV 13 A

whereLsy, is the source luminosity/ is the source volume) is a fraction of the source
volume occupied by the magnetic field, and is a constant that depends on the spectral
index and frequency range over which this calculation is\pgerformed (tabulated in
PacholczyH1970). The minimum-energy B-field can then be computed as fadlow

Govoni and Feret{i2004 rewrite Eqn.9.12in terms of measured quantitidg [mJy/ ase¢]
at a frequencyo [MHZ], spectral indexr between two frequencies, v, and source depth
D [kpd). uUmin can be written in units ofgrgs/cn?] as

(9.13)

4 da 12+4a 4 4
Umin = £(, vi, v2)(L+ K)o 7 (1 +2) 7 17D (9.14)
. ) 22 1-20)/2_ (1-20)/2
wherez is the source redshift, anta, v1,v,) = (5=%) L+——%=—. Tabulated values of
2a-1 W )_V(Z )

[ are presented for, = 10MHz v, = 10GHz for « betwéen 0.0 and 2.0 in increments of
0.1. Note that these values contain the assumptioratbhinges by less than 0.1 between
10 MHz and 10 GHz. When spectral curvatude (> 0.1) is measured, a piecewise linear
approximation of the log spectrum may be more appropriatevéver, for the calculations
in this chapter, we usekk=1, and the listed values dfl@, LOMHz 10GH2), specifically
{=6.77x 103 fora = 0.9.

For a constant homogeneous B-field filling the entire volurhthe source, the
source depttD is estimated from the spatial extent of the observed enmnissi bright

2The minimum-energy B-field is derived by minimizitdt,; = Ul + Ug, the minimum-pressure B-field
is derived by minimizingPi: = Per + Pg, and the equipartition B-field is derived from settidg = Ug. All
three methods give similar B-fields, and are often useddhtargeably.
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filament atop an extended background may be considered g&a d high B-field, com-
pared to the background. Therefore B-fields can be compwpdrately for foreground
and background features, with a source depth corresponditige diameter of a filament
for the foreground calculation.

9.3 Data, Spectral Fits and Synchrotron Ages

Section9.3.1describes the multi-frequency images of M87 that were ugkithis
project and shows the measured spectra and calculatedagtifimn B-fields for diferent
regions of the source. Sectiéh3.2 describes the spectral-fitting process used and the
results obtained (best-fit critical frequencies folfelient electron energy distributions, for
two evolution models). Sectidh3.3lists the synchrotron ages calculated using the best-fit
critical frequencies.

9.3.1 M87 Spectral data

Intensity Images: The intensity images used for this analysis were existing Wfhages

of M87 at 4, P, and L bands for the halo (see gid). and 4, P, L and C bands for the
inner bright region (core, jet and inner lob&s)mages at each of these frequencies were
smoothed to 25 arcsec resolution to match the angular resolof the 74 MHz image (the
measured flux values are in unitsbf/beam= Jy/(25arcseg?).

1.1 to 1.8 GHz spectral Index map : A spectral index map across L-band (1.1 to 1.8
GHz) was obtainedia the wide-band observations discussed in se@i@®2 This spec-
tral index map was used along with the existing 1.4 GHz intgmeap to estimate the
total intensity at 1.1 and 1.8 GHz. The L-band intensity gmectral index maps were cor-
rected for the VLA primary beam and its frequency dependefie@ post-deconvolution
correction.

Error-bars :  The data used for spectral fits were at 74 MHz, 327 MHz, 1.1 GH%,
GHz and 1.8 GHz (including 4.8 GHz for the bright central cegi Error-bars for the data

points were computed aa/a%,uxsca,; 02 Whereo fuxscae IS @ 3% error due to absolute

amplitude calibrationo s is an image-based rms error, derived from thiesmurce rms
and averaged by the number of pixels in the flux calculati%gl)( Forthe 1.1 and 1.8 GHz
points, errors were computeth error-propagation using the errors on the 1.4 GHz image
and the L-band spectral-index map.

3The VLA images of M87 at all four bands were obtained from BiNen and then regridded and
smoothed to match their angular resolutions.



224

30"
80 28!
26

24

(wpeg/Ar)
(wpeg/Ar)

22!

J2000 Declination
J2000 Declination

30 20"

18'

12°16'
12"31M12°%  op° 30M48° 36° 30° 24° 12"31M12%  op° 30M48° 36° 30° 24°
J2000 Right Ascension J2000 Right Ascension

30"

28"

26

24

(wpeg/Ar)

22!

J2000 Declination

J2000 Declination
(pupg—1 ssaiop) xspu| |pJyoedg

20

18'

12°16'
12"31M12%  op° 30M48° 36° 30° 24° 12"31M12%  op° 30M48° 36° 30° 24°
J2000 Right Ascension J2000 Right Ascension

Figure 9.4:M87 : Stokes | images at 74 MHz (top left), 327 MHz (top rightilal.4 GHz (bottom
left), and the spectral-index map between 1.1 and 1.8 GHzofmaright). All images at 25 arcsec
resolution and the total-intensity images are displayeti thie same flux-scale. The spectral index
map was constructed from smoothed versions of the first tveffic@nt images produced by the
MS-MFS algorithm.

Average spectral index across the source : Figure9.5shows spectra derived from these
data for 11 regions across M87, along with the result of fittnpure power law (single
spectral index across the entire frequency range) to thehe régions were chosen as
follows. L and M are measured in the cjet and inner lobes, A, B and C are in filamentary
regions in the bright 'ear-lobe’ and 'ear-canal’ regionskE@nd F are in fainter filamentary
structure in the outer halo and G,H and | are meant to reptésedifuse halo background.

1. The first point to note from the fitted spectral indices &t tine central bright region
shows an average spectral index consistent with that megdtom high angular
resolution images of the M87 jet and inner lobes.
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2. Second, the fitted values @foutside the bright central region show a slight gradient
in the spectral index (a steepening of about 0.1) betweeteé#nestructures and the
rest of the outer halo. However, the uncertainty on the fitdde ofa is itself about
0.05 (estimated from the spectral variations within eack)bmaking the results
consistent with no spectral gradient.

3. Finally, all the spectra for regions outside the centraghi region show only a slight
hint of steepening at 1.4 GHz. Using the current VLA L-bandctpal index map
the single-pixel error bars are large enough that this steieg is consistent with no
steepening, but when the image RMS is averaged over thenegmarked by the
boxes, the error bars become comparable or less than thenhwicateepening.

Overall, these wide-band spectra are consistent with poweeplaws. There are hints of
spectral steepening across L-band, which is consisteht existing low-resolution mea-
surements that show a significant steepening somewhereedetly GHz and 10 GHz.
However, additional measurements are required to confiisn lim particular, since the cur-
rent L-band spectral index map was constructed from 10 VL&pshots at 16 frequencies
between 1.1 and 1.8 GHz, a real wide-band EVLA D-configuratibservation at L-Band
is expected to improve the deconvolution results and tbesgduce the error-bars on the
L-band data points (a D-configuration observation will ab&dter constrain the spectrum
of the low-level extended halo emission). Further, highudagresolution observations be-
tween 2 GHz and 10 GHz are also required to confirm if this ey suggested by the
L-band spectral index maps is real or not and to assess # #wer significant dierences
between dierent parts of the halo. Note that at these higher frequsneith the EVLA,
wide-band mosaicing observations will be required.

Section9.3.2describes a series of spectral fits that were done with thstiegi
data and the L-band steepening it suggests, to estimatéreyran ages for the initial
injection and ongoing injection models of spectral evalnti
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Figure 9.5:Spectral index - all over the source : This figure shows thesweal intensities at 74
MHz, 327 MHz, 1.1 GHz, 1.4GHz, 1.8 GHz (and 4.8 GHz for the @ntegion) for 11 regions
across M87, along with the result of fitting a pure power laindke spectral index across the entire
frequency range) to them. A few trends to note from thesesg@ae (a)r in the central bright region

is consistent with the knowa of the M87 jet. (b) there is a slight gradiemid¢ < 0.1) between
inner and outer regions of the halo (A,ByS G,H,l), but this variation within the error bar of the
fit (0a ~ 0.05) and (c) most regions show a slight steepening of the spedt 1.4 GHz, but this
steepening is significant with respect to the error-barg wien averaged over several image pixels.
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Region| D [kpc] | Io[mJyased] | a Beq [LG]
L 5(10) | 54.251 -0.50| 33.2(27.2)
M 5(10) | 43.196 -0.53| 32.9(27.0)
A 20 (40) | 0.845 -0.89( 10.0(8.2)
B 20 (40) | 0.764 -0.84 | 8.6 (7.03)
C 20 (40) | 0.950 -0.93| 9.8 (8.07)
D 40 0.437 -0.92| 6.2

E 40 0.573 -0.96| 7.4

F 40 0.359 -1.02| 6.7

G 40 0.302 -0.93| 5.8

H 40 0.132 -0.94| 4.6

| 40 0.120 -1.01| 4.7

Table 9.1: Minimum-energy B-fields in M87 : This table shows minimumeegy/equipartition
B-fields computed for several regions across M87. The iitierdy were picked from the 1.4
GHz image (at 25arcsec resolution and scaled to comiguiteunits of mJyase@), and spectral
indicesa were from single power-law fits, for the regions labeled ig.Fi.5. Eqn.9.14was used
to compute the B-fields, for the listed values of distanDesThese B-field values were used in
Eqgn.9.9to compute the synchrotron ages listed in Tehlgusing the assumption @now = (B).

9.3.1.1 Calculating B-fields

Minimum energy B-fields were computed for several regions187 (as labeled
in Figure9.5). The values ot were taken from the L-band{ =1.4 GHz) image, and
is the best-fit single: across the full sampled frequency range. Minimum energyeBidi
were computedia Eqn9.14with z = 0.02 andk = 1. The following tables list the min-
imum energy B-field computed for each region along with thesem source depth, the
observed intensity and average spectral index. Taldlshows the B-fields computed us-
ing the observed intensities. Taldde2 shows B-fields computed by treating the observed
filaments as foreground sources on fiie background. Filament intensities and spectral
indices were computed by subtracting the average flux medsuitwo regions and recom-
puting the spectral index. The source depth used for thgfoumd B-field calculation was
estimated from the observed width of the filamentd (kpc).

The B-fields listed in Tablé®.1 for regions D through | roughly agree with
minimum-pressure estimates listed@wen et al.[2000 as well asOwen et al.[199(0
which derive B-fields from Faraday-rotation measuremensirzd the inner radio lobes
(regions L and M). The numbers also show that B-fields in neg)i&,B and C are stronger
than elsewhere in the halo (even when the same source degthkgfc is used for all re-
gions). The central bright region shows a significantly leigB-field (with a source depth
of 5to 10 kpc), as do the filament B-fields computed with sodegeths of 1 kpc. For com-
parison, the maximum average B-field computed using predsalance arguments from
the energy density of the external ICM thermal gas (measueeids temperature) ranges
betweerByy, = 18 ~ 31 uG for the observed range of temperatures.
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Filament Iti [mJyase€] | asii | Beq[nG]
A-l 0.724 -0.87| 21.5
A-H 0.711 -0.89| 22.2
B-I 0.643 -0.78 | 19.6
B-H 0.629 -0.81 | 18.0
C-lI 0.846 -0.91| 21.3
C-H 0.828 -0.93| 22.1
D-I 0.317 -0.86| 16.5
D-H 0.300 -0.91| 15.7
E-I 0.459 -0.94| 19.1
E-H 0.441 -0.96| 194

Table 9.2: Minimum-energy B-fields for M87 filaments : This table showsnimum-
energyequipartition B-fields computed for several filamentaryioeg across M87. These regions
are spatially compact but long and are treated as beingaepfaom the difuse background. The
filament intensities and spectral indices were computetusie diference between the intensities
measured on a filament and théfdse background. A source sizedf= 1.0 kpc was used for all
these calculations, to represent the filament thicknesees fsom high resolution images. These
filament B-fields are later be used to compute synchrotretitifes (listed in Tabl®.4) via Eqn.9.9
whereBnow = Beg for the filaments, angB) asBeq for the background (from Tabl@. 1).

9.3.2 Spectral Fitting

This section describes the process used to fit the measudkthand spectra
to the initial injection and ongoing injection spectral Bxtmn models, and the results
obtained for diferent parts of the source. Model spectra were obtained asiloeg in
section9.2.2.2for 11 values ofs ranging from 1.8 to 2.8N(y) « y~%) and evaluated
for 30 frequencies ranging from 10 MHz to 10 GHz. The data tred 5 (or 6) flux
measurements between 75 MHz and 1.8 GHz (or 4.8 GHz).

Goal : For each value o$, find av, that gives the best fit of the data to the model. Obtain
best-fit solutions for both the initial injection and onggimjection models.

Method : The two variable parameters argand an amplitude scaling factor. The model
spectra are described in termsygf.. Therefore, for the process of fitting, is a free
parameter that decides how the data points shift along ties<{defined by /v;). The
amplitudes of the models are arbitrarily scaled. To complaeen with the data, they need
to be scaled to match the data at one frequency. (The choieen@s 74 MHz.) For each
model,y? was computetifor a range of possible values feg, and value corresponding to
the minimumy? was chosen as the bestsfit

4Reducedy? values were computed using these 5 data points, 3 degreeseufoin (sincer is the
only parameter being fit for eac), and an estimate of the data variance obtained as a fewrpgartée
flux at L-band. However, such an estimate made from 5 irrebputgpaced data points with non-Gaussian
errors is not a robust measure of the goodness of fit that caingared to the ideal value of 1.0. The
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Figure 9.6:Spectral Fits y? as a function osandy for region | : (Left): Initial, (Right) Ongoing.
Darker regions correspond to lower values)df These plots show that for the initial-injection
model, better fits are obtained for higher values ahd givev; values greater than 3.0 GHz. For the
ongoing-injection model, all values sbetween 1.8 and 2.8 give good fits withranging between
10 MHz and 4 GHz. Note that below/= 2.1 and aboves = 2.5 there is a higher uncertainty og
(the widths of the darker regions increase for these valfiess. oThis is because we are fitting the
asymptotes by a spectrum consistent with a single powerdady is almost unconstrained there.

Output :  The results of these spectral fits is a valuevgfor each value of, for dif-
ferent features across the source. This is the criticalkeegy to be used to calculate the
synchrotron age. Values of vs swere computed for the two ageing models described in
section9.2.2.2

Error bars :  The uncertainty on the best-fit value @fwas estimatedia a Gaussian fit
to the 1Dy? function (evaluated for several) in the neighbourhood of the minimum. For
these data points and models, the average uncertainty dregéity, was+30%.

Results : Figure 9.6 shows they? surface as a function of two variablssand v, for a
subset of the region labeled as | in Figsand Figure®.7 and9.8 show the corresponding
model spectra and data points.

1. Initial Injection model : The left panel of Fi§.6 showsy? for the initial injection
model and Fig9.7 shows the corresponding spectra plotted using the besiiies
of v, for (s=2.0, 2.2, 2.4 and 2.6). Both these figures show that loweregaf
x¥? (< 10) are obtained only fos > 2.3 and givev, values between 1 and 8 GHz.
This is because the five sampled frequencies do not showestiegpconsistent with

distribution for 3 degrees of freedom shows that there is% B@obability of the reduceg? being less than
0.8, a 10% probability of it being less than 0.2 and a 1% chahdebeing greater than 3. Further, the true
number of degrees of freedom for this problem lies betweendlL3asince the three L-band data points are
not independent (the 1.1 GHz and 1.8 GHz data points areetkefiom the 1.4 GHz values and the L-band
spectral index). Therefore, thegé values were used only to measure how the goodness of fit waitles
andv.. These trends were verified by doing a Kolmogorov-Smirnevdesigned for a small sample set and
this showed the same trendsés
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an exponential dropfdand therefore must all be below or negr Therefore it is
not unexpected that better fits are obtained only when 2GHzand all data points
fall in the single-power-law region of the synchrotron sjpem where the average
spectral index of -0.9 constrains the valuesdb be about 2.8. Note however, that
whenvy, does not lie within the sampled frequency range, anfits are based on
extrapolated spectra and are more uncertain.

Ongoing Injection model : The right panel of F&@6 shows they? surface for the
ongoing injection model and Fi§.8 shows the corresponding spectra plotted with
best-fitv, values for £2.0, 2.2, 2.4 and 2.6. In this case, low valueg®dre obtained

for all sampled values df, suggesting that the spectral steepening is too gradual for
these data points to constrain the model. However note hiegetfits show a basic
trend of particles with a steeper particle energy distidouhaving higher best-fit,
values and hence shorter lifetimes (the particles requéleaater amount of time to
steepen to the currently observed spectrum).

Figures9.9 and 9.10 show y? plots similar to Fig.9.6 for 11 regions of the M87 halo.
They show that for each value sfsteeper average spectra give lower best:fitalues and
the darker regions of these plots moves towards the top-fdfo, brighter regions have
sharpery? minima indicating slightly smaller error-bars on the béistsalues ofv.. All
plots show that steeper electron energy distributions shlceter amounts of time (higher
best-fitv;) to reach the observed steepened spectra.
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Figure 9.7: Spectral Fits - Initial Injection model : This plots show®th data points (cicles)
overlaid on four model spectra (solid lines) derived forrfdifferent values of = 2.0, 2.2, 2.4, 2.6.

The slanting dashed lines passing through the data poiptssent a single spectral-index fitted to

all 5 data points¢ = —0.93). The vertical dashed line indicates the critical fregwev., and all

spectra have been shifted such thafor all the fits are aligned. These data points were obtained

from a subset of the region marked | in Fig& and9.9. Values ofy? for these fits are shown in the

left image in Figured.6 and show that higher values shave better fits. This is because these data

points are consistent with a power-law (singlpand can only correspond to the belewregions

of the synchrotron spectrum. The slight steepening sedreithree L-band points provides a strong
constraint onve (which also makes any fits highly dependent on the error in the measured L-band

spectral index).
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Figure 9.8: Spectral Fits - Ongoing Injection model : This plots shows hdata points (ci-
cles) overlaid on several model spectra (solid lines) @erivor four diferent values ofs =
2.0,2.2,2.4,2.6. The dashed lines passing through each set of data pgmésent a single spectral-
index fitted to all 5 data points((= —0.93). The vertical dashed line indicates the critical fratye

ve, and all spectra have been shifted such thdor all the fits are aligned. These data points were
obtained from a subset of the region marked | in Figsand9.1Q Values ofy? for these fits are
shown in the right image in Figu&6. These fits show that these data do not constrain the value
of v or sfor the ongoing injection model. This is because the modeisvsa very slow steepening

of the spectrum around. and the data points are also consistent with a power-lawglésir) and
show only a slight steepening across L-band.
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Figure 9.9:Initial Injection model - all over the source : These plot®wtthe values of? as a
function of sandv.. Darker regions correspond to lowef values. The central bright region does
not fit the initial-injection model for ang between 1.8 and 2.8. For the rest of the halo, these data
appear to rule out the initial-injection model fer 2.4. These plots show that the initial injection
model gives relatively good fits only for values sf> 2.3, and the corresponding best-fit critical
frequencies lie above 2 GHz (consistent with low-resotutiteasurements that suggest steepening
between 1 and 10 GHz). Regions with steeper spectra shogha shift of they? minima towards
higherv. values and steeper initial particle energy power laws.
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Figure 9.10:0ngoing Injection model - all over the source These plotswstie values of¢? as

a function ofs andv.. Darker regions correspond to lowef values. The central bright region
shows relatively good fits fos = 2.0, 2.1 andv, > 2GHz a result consistent with the idea of radio
lobes being continiously fed by a jet with an injection ind&2.1 (and measured spectral index
of -0.55). In the rest of the halo, all values sbetween 1.8 and 2.8 give best-fif values with
comparable absolutg? values. This shows that with the current data, the ongoijegtion model
cannot be ruled out. Regions with steeper observed spdubia & slight shift of thee> minima
towards lowenw values (more ageing) and steeper injected spectra. Howthessteepening across
the spectral break as well as the measured spectrum areddaoajrto be able to constrain bath
andy. simultaneously.
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9.3.3 Calculating Synchrotron lifetimes

Synchrotron ages of fferent features across the source were calculated using
best-fit values of'. for spectral models witls = 2.0 ands = 2.5 for ongoing-injection and
s = 2.5 for initial-injection. s = 2.0 was chosen because high angular-resolution wide-band
observations of the M87 jet have shown a constant spectlakiof -0.5 (corresponding
to an injection index ok = 2.0). s = 2.5 was chosen for the the rest of the calculations,
as it gave best-fit solutions for most regions in the halo lierinitial-injection model (no
good fits were obtained fos < 2.4 with initial-injection). The ongoing injection model
gave valid fits for all tested values ef Here,s = 2.0 ands = 2.5 are representative of the
best-fit values in regions of the spectrum where we are fiisygnptotes, and they bracket
the range of best-fit; values allowed by this model.

Synchrotron ages were computed using both equipartitidielBs shown in Ta-
bles.9.1and9.2 and the maximum average B-fiel&«, = 27uG) given by the ambient
pressure. Tabl8.3lists the synchrotron ages calculated using Egfiwith Bo, = (B) =
Beq to represent a homogeneous B-field seen by the particleghout its lifetime. Ta-
ble 9.4 lists synchrotron ages of filamentary structures treatgdusgely from the diuse
background. Two sets of calculations were done usB)g= By from Table9.1 as back-
ground B-fields. The first useBhow = Beq from Table9.2for filament B-fields and and the
second use8oy = Bayn.

The main trends shown by these numbers are

1. The inner radio lobes (regions L,M) gitg, = 3 ~ 5 Myr for ongoing injection with
s = 2.0 (with bothBeq andBgyy).

2. With equipartition B-fields, the ear lofwanal (regions A,B,C) givey, =~ 20 Myr
for initial injection ands = 2.5, andtsy, = 30 ~ 200 Myr for ongoing injection
(2.0 < s < 2.5). With Bgyn = 27uG these ages are5 times smaller.

3. With equipartition B-fields, the halo (regions D througlgive ts,, = 40 ~ 70 Myr
for initial injection ands = 2.5, andtsy, = 90 ~ 800 Myr for ongoing injection
(2.0 < s< 2.5). With Byyn = 27uG these ages are8 times smaller.

4. For the filaments, we geéd,, ~ 100 Myr for initial injection ands = 2.5 andty, =
100~ 1000 Myr for ongoing injection.

For comparison, timescales obtained from direct dynanfieestQ kpc) includépyoyant~ 60

Myr from a buoyant bubble modeChurazov et al. 20Q1tgiven = 50 ~ 120 Myr from a
driven expanding bubble model with = 10* ~ 10* ergsec anch, = 0.01 [Owen et al.
2000 andtsoung ~ 100 Myr from the local sound speed. Timescales from low-resolution
wide-band spectrajottmann et al. 1996lare 30 to 40 Myr for the ear lobeanal regions
(regions A,B,C, 20 kpc scale).
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D ve[MHZ] [ 5 tor [[veMHZ] [tesd  [tor [veMHZ] [tesd [t
[kpc] | Ongoing|[Myr] [Myr] ||Ongoing| [Myr] |[Myr] || Initial [Myr] |[Myr]
s=2.0 s=2.5 s=2.5

L [5(10) |7100 |3.2(4.3) [4.3

M |5 (10) |5000 |3.9(5.2) [5.1

A |20 (40)100  |150(190y35 |1300 |42 (54)[10 | 6200 |19 (25)4.6
B |20 (40) 190  |140(175)26 2900 |35 (44)|7 7100 |22 (28)4.3
C |20 (40)| 66 190 (250)44 |[820 |54 (70)[13 [4400 |23 (30)5.5
D[40 |81 300 40 940 |90 |11 |[4700 |40 |53
E |40 |57 300 48 710 |85 |13 |[3600 |37 6.1
Fl40 |17 600 87 310 [140 |20 |[2300 |52 |75
Gl40 |70 360 43 (820 |100 |12 |[4100 |46 |57
H[40 |66 460 44 (820 [130 |12 |[4100 |58 |[5.7
| 40 |21 800 78 |440 |180 |17 |[2700 |71  |7.0

Table 9.3:Synchrotron lifetimes : This table lists the synchrotrdietimes calculated using the
best-fit critical frequencies for=22.0 and s2.5 for the ongoing-injection model and foe2.5 for
the initial-injection model. The uncertainty on the fittedvalues is abou30% which gives an
uncertainty of£15% on the synchrotron lifetime.

veMHZ] [tgn [toh [lvelMHZ] [tgn [t [velMHzZ] [t [t
Ongoing|[Myr] | [Myr] || Ongoing|[Myr] |[Myr] || Initial [Myr] | [Myr]
s=2.0 s=2.5 s=2.5
A-1 140 630 |700 |1800 180 |200 (7200 |88 |100
A-H|110 760 |850 |/1400 210 |240 |6300 100 |110
B-1 |280 420 |500 |7200 |84 |99 7200 |88 |99
B-H | 230 480 |600 |4700 100 |130 (7200 |87 |100

C-l |87 790 {900 {1000 230 |260 |/5000 100 |120
C-H |66 1000 | 1100 || 820 290 |320 4400 120 |140
D-1 1130 570 |730 /1800 160 |200 |7200 78 100
D-H|87 740 |970 /1000 210 |280 |4700 100 |130
E-l |75 800 |970 | 820 250 |290 4400 100 |139
E-H |61 970 |1200 | 760 280 |330 |/ 3800 120 |150

Table 9.4:Synchrotron lifetimes for filaments : This table lists th@slyrotron lifetimes calculated
using the best-fit critical frequencies foe2.0 and s2.5 for the ongoing-injection model and for
s=2.5 for the initial-injection model. The spectral data u$edthese fits were computed as the
difference between the filament and background intensities. sBigof calculations were done
using the the equipartition field calculated for the backgib (regions | and H) a&) in Eqn.9.9.
The first used filament B-fields from Tab%2 and the second usdgly, as the filament B-field.
Here too, the uncertainty on the fitteglvalues is about30% which gives an uncertainty afl5%
on the synchrotron lifetime.
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9.4 Interpretation

This section discusses whether or not any of the synchragaing models fit
the data, whether or not the synchrotron ages are consistdnother age estimates, and
what these results (and better measurements) could tetlawg ghe synchrotron processes
at play within the M87 radio halo.

9.4.1 Do these ageing models fit ?
9.4.1.1 Core/ Jet/ Inner lobes

For the bright central region (labeled as L and M) consisththe core, the 2
kpc jet and inner radio lobes5 kpc from the core, the ongoing-injection model fits well
for s » 2.0, giving a best-fit, > 5GHzand an age ok 5 Myr for the inner-lobes. No
valid fits were obtained for the initial injection model wistbetween 1.8 and 2.8, or for the
ongoing injection model witls > 2.2. Note that a synchrotron age ©f5 Myr is smaller
than the timescale of 17 Myr derived from the sound-speedsacs kpc (using F10'K,
derived fromP = 145 x 10-'dyn/cn? at a distance of 5kpc from the coreQwen et al.
200Q), but is consistent with a 2 4 Myr dynamic expansion time calculated for a driven
bubble (Eqn9.1) over a distance of 5 kpc with ~ 10*erggsec. Also, within this region,
the equipartition B-fields are similar to the equivalent &ldithat balances the external
pressure and gives similar timescales.

An injection index ofs = 2.0 for the M87 jet is consistent withjer ~ —0.5 as
known from high resolution observations of the M87 jet (Owprivate commn.). Also,
Perlman and Wilsof2003 show that the broad-band spectrum of the M87 jet (radio to X-
rays) is consistent with a continuous injection indexsef 2.2, and the critical frequency
estimated from measurements of the jet spectrum betweén i@atical and X-ray bands
is at about 100 THz (infrared).

9.4.1.2 Halo: Initial Injection model

The simplest spectral evolution model for regions outsieelright central re-
gion is the initial-injection model in which energetic pales are produced in the jet and
the travel outwards in the form of buoyant or expanding babland ageia synchrotron
radiation with no additional sources of energy.

Outside the central bright region, the data and spectratdits out all values
of s < 2.4 for the initial-injection model. The model spectra predecfors < 2.4 have
below-, spectral indices of -0.7 (and less) that are flatter than vieeage spectral index
of -0.9 measured between 75 MHz and 1.8 GHz. Also, the iAitjagiction model predicts
significant curvature even in the sampled frequency ran§eMRAz to 1.8 GHz), and the
lack of such curvature is a strong indicator even without sneaments between 1 and 10
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GHz. This means that if=22.0 is the only possible source, something is preventing the
higher-energy electrons from cooling and steepening teetsypm and this system cannot
follow the initial-injection model.

Better spectral fits were obtained fer= 2.5 and above, leading toyg of be-
tween 1 and 10 GHz. These numbers are consistent with loglutgsn measurements
from Rottmann et al[19964 that show significant steepening between 1 and 10 GHz, and
numerical models fron€hurazov et al[2007]] that predict an average spectral index of -1.0
below 1 GHz and a dropfbbeyond 5 GHz.

These critical frequencies give synchrotron ages or 20 td/$0 for regions
A,B,C and about 35 to 70 Myr for regions in the outer halo. Ehages are computed from
equipartition B-fields (timescales of 5 to 7 Myr are obtainsihg the maximum B-field
derived from arguments of pressure balance with the ICMj.démparison, sound speed
calculations (from F 10K, [Shibata et al. 20Q}] give timescales of 70 Myr and 140 Myr
for 20 kpc and 40 kpc respectively. Also, expansion timessédr a driven bubble are 16
Myr and 53 Myr for 20 kpc and 40 kpc respectively, wih~ 10*erggsec anch, = 0.01.
The buoyant bubble simulations Ghurazov et al[200] suggest that a distance of 40 kpc
can be reached in 67 Myr.

These timescales match within their uncertainties, bubtbgest discrepency in
these results is that the jet has an observed injection iofd€x5, corresponding te = 2.0,
but outside the central bright region it is clearly not pbssio fit the data witts = 2.0 and
the initial injection model. However, if we consider the réabe/canal’ and structures in
the outer halo to have formed from a previous cycle of AGNwaigtithere is no reason for
the previous injection spectrum to have been 2.0. If it had a steeper injected spectrum
and a low B-field £ 7uG, similar to the computed equipartion fields), the inifigkction
model gives plausible ages. Further, an agéedénce of~ 100 Myr between the inner
radio lobes and the outer halo could further suggest a 100diyr cycle of AGN activity.

Finally, note that the observed spectra are nearly comsigiéh a pure power-law
and only the L-band spectrum shows slight steepening (coabjsto the size of the per-
pixel error-bars). Therefore, all these spectral fits arest@ined largely by the current L-
band spectral index map (which contains tftee of deconvolution errors and low signal-
to-noise of the halo emission). Also, these fits workty for v, greater than any observed
frequency. Therefore one can only obtain a lower limitgnand therefore, a upper-limit
on the associated synchrotron lifetimes.

However, these data do suggest af a few GHz, and further observations at C-
band (4.8 GHz) and higher are required to see whether thenxazspower law continues,
or a turn-over followed by an exponential drofi-s observed.
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9.4.1.3 Halo: Ongoing Injection model

The ongoing-injection model applies only to regions that@mntinuously fed by
an energy source, or to regions where there is some local ébnparticle injection. Out
in the halo, a continuous patrticle injection is an unliketgsario, but particles may be
locally re-energised by scatteringf eurbulent Alfven waves in an inhomogeneous B-field
(for example).

Outside the bright central region, all values ©f= 1.8 ~ 2.8 give good fits
with the ongoing-injection model witix, ranging all the way from 30 MHz to 6 GHz and
give synchrotron lifetimes ranging from 90 Myr to 800 Myr. 8%e timescales range from
bubble expansion and buoyancy timescales, to values caimpawith the expected cooling
timeteyo ~ 1 Gyr.

One interpretation of having such a wide range of valid sohs is that the syn-
chrotron evolution model does not follow a continuous éetinjection model with a fixed
injection index, and other processes such as B-field inhemiegies may be at play. How-
ever, the most likely reason for these multiple solutiorthé all the spectra are consistent
with pure power-laws and these fits have a high degree of taiogr. Values ofs <2.1
and>2.3 give better fits because the beloywand above+. power-laws match the observed
power-law spectraa ~ —0.9 matches the spectrum fer= 2.8 belowy, and fors = 1.8
abovey.). Also, since in these regions we are fitting asymptoteis not well constrained,
and only upper and lower limits can be obtained. Furtherpiteglicted curvature across
the break is very gradual, and spectra that are consistehtampure power-law (within
error-bars) give reasonable spectral fits even across therref curvature although these
fits have highep? values than fits to the asymptotes. However, note that inrgkrtae
absolute? values obtained with the ongoing-injection model were staatly lower than
those obtained with the initial-injection model (most likéhe result of large error-bars).

9.4.1.4 Filaments

The apparent correlation between structures seen in the aadl X-ray in the
'ear-lobe’ and ’ear-canal’ regions suggests some form oéll@ctivity that might con-
tribute to the transfer of energy between the radio plasnththa surrounding thermal
ICM. Also, the compact filamentary structure seen throughioeihalo suggests regions of
high B-fields and possible sites of local particle re-ererngj. To check if either of these
models apply, we need to isolate the filaments from tliuske background and analyse
them separately.

Ages derived using Eq9.9for ongoing-injection in filaments give timescales of
0.5to0 1.0 Gyr fors = 2.0 (again, comparable tg,, ~ 1 Gyr) and 0.1 to 0.3 Gyr fos = 2.5.
The timescales calculated for the filaments are consigtéanther than those computed
with the total observed intensity, affect expected for particles moving from lower B-field
regions to higher B-fields regions from where they are culyeradiating (Eqn.9.9 for
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inhomogeneous B-fields). This model and the obtained tislesenay imply the presence
of structures (with high B-fields) that are perhaps peratsaaross cycles of AGN activity
and produce high frequency synchrotron radiation wherigg@astmove into them. Instead
of (or in addition to) increased B-fields, these regions dalso be sites ah-situ particle
re-acceleration where the fraction of high-energy patidks increased (note that in this
case, the spectral shape is likely téfeli from the ongoing injection model). Alternatively,
these largds,, values could be the result of over-estimating the B-fieldtha filaments
or under-estimating the average background B-fiekel (if equipartition does not hold).
Therefore, these data do not rule out the possibility ofélfédaments being isolated sites
of activity (possibly with high B-fields) other than simplgeing of particles with an initial
energy spectrum. Also, timescales obtained with the iAmigction model and = 2.5 are

~ 100 Myr, which is still comparable to the dynamic age of théeotalo. This suggests
that these filaments are also consistent with spatially @mingegions with high B-fields
compared to the surrounding, passively moving through #ie &s it expands.

To probe these ideas further and ascertain whether thergisignificant difer-
ence between the filaments and their surroundings, we neisdlade filament and back-
ground spectra more accurately, especially in the frequesege of 1 to 10 GHz where
there should be a measureabl&elience if these filaments do represents local sites of par-
ticle re-energising. If a significant flierence in the spectral shape is measured between
structures in the halo and regions in the ear Johral where increased X-ray emission is
present, it may give evidence for the ear |@amal regions to be sites of local energetic
activity and energy transfer between the radio plasma aatGN.

9.4.2 Conclusions and Future Work

Spectra in the inner few kpc (the lobes immediately aroueddt) are consistent
with an ongoing injection of particles with the energy distition as seen in the jst~ 2.0,
and a synchrotron age ef 5 Myr which is also consistent with dynamical estimates. For
features in the halo (filaments, background and large-areeges), ages consistent with
expansion and buoyancy timescales20 Myr for regions A,B and C, and 40 70 Myr
for the halo) can be obtained with the initial injection mbdésynchrotron ageing with
s ~ 2.5. These data appear to reject all initial-injection fits $ox 2.4, suggesting that
if this model were to apply, the radiating particles needdwehoriginated from perhaps a
previous cycle of AGN activity in which the injected energgtdbution had a steep@i(y).
There is also a slight hint of spectral steepening from theiimegions to the outer halo, but
these variations are within the calculated uncertaintresraeed better measurements and
imaging (across L-band) to confirm. Outside the inner radhmek, the ongoing injection
model gives plausible solutions for a wide ranges¢1.8 to 2.8), showing that the spectral
data used for these fits are unable to constrain the model.et#wthis model cannot be
ruled out, and more sensitive observations are requiredderdo ascertain whether the
predicted shallow steepening is present or not.
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The above results can be combined to suggest that the irheldo#es and the 40
kpc halo may have originated from twoftérent cycles of AGN activity (one with = 2.5
and one withs = 2.0) and possibly separated by100 Myr. The inner radio lobes are
continuously being fed by particles from the jet, whereasriuch larger structures are
the result of passively ageing particles. The only partdheftialo where something other
than passive synchrotron aging may be happening are thbtliiigments. Timescales
of 100 ~ 200 Myr are obtained with the ongoing-injection modsl£ 2.5) for bright
filaments in regions A,B and C (where the X-ray emission app&abe correlated with
the radio). These timescales are up to a factor of 2 larger dyaamical estimates, and
correspond to particles radiating from high B-field regiohkese B-fields are comparable
to the maximum possible field derived from pressure-balawvitte the surrounding ICM,
and could signal regions with inhomogeneous B-fields anal lagergetic activity that may
contribute to the transfer of energy between the radio hatbthe ICM.

9.4.2.1 Future observations

To take the ideas discussed above to their logical conalssiurther observa-
tions are required to (a) probe the high-angular-resotusioucture of the halo at frequen-
cies above 2 GHz and (b) produce high dynamic-range speocfamation to treat fila-
ments separately from theftlise background.

With real EVLA data at L-Band it is expected that spatio-gpEaeconvolution
errors will reduce, making the L-band spectral index mapemnetiable. The EVLA D-
configurationuv-coverage is required for sensitivity to large spatial ssgldifuse halo),
and C and B configurations will provide the required angutsiotution to isolate filaments
from the background.

Measurements at 4.8 GHz and higher are required to test ethibth slight steep-
ening suggested by the current L-band data is real or noif &ns| whether there is a sharp
drop-df in flux between 1 and 10 GHz at small spatial scales (simildrdbobserved from
low-resolution images), or whether the entire halo or paft$ show flatter spectra. Such
observations with the EVLA C-band (in D-configuration) walquire a mosaic observation
with wide-band primary-beam correction, and perhaps shulith observations to fill in the
short spacing flux.



CHAPTER 10

CONCLUSION

In accordance with the goals of this dissertation outlimedhapterl, a general
purpose multi-scale multi-frequency deconvolution aigpon (MS-MFS) was developed
for use in broad-band radio interferometry, and then appiteemulti-frequency VLA ob-
servations of the M87 radio galaxy to study the observeddimand spectra of various
features in its radio halo. Sectid®.1summarizes the work done to develop the MS-MFS
algorithm with its current capabilities, points out the uggment for tests using real wide-
band data, and lists a few topics of future research in waledhimage reconstruction.
Section10.2summarizes the results obtained from a high angular rasalstudy of the
broad-band spectrum of the M87 radio halo and suggestsefutioservations required to
take the next step.

10.1 Wide-band image reconstruction

Summary :  The first step of this project was to evaluate the applicbdi existing
wide-band image reconstruction methods to data from bbzad! interferometers and
identify areas that required algorithmic improvements.st$eon simulated EVLA data
showed that the existing multi-frequency synthesis metteovd adequate for narrow-field
imaging of isolated point sources with pure power-law sgediut inadequate for sources
with extended emission or spectra that are not pure powes:Id hese tests also showed
that when the single-frequenaw-coverage of the interferometer isfaient to unam-
biguously reconstruct the spatial structure of the souas@mple hybrid of single-channel
imaging and multi-frequency synthesis could potentialyiveer required image dynamic
ranges on the continuum image. However, spectral infoonatiould still be a by-product
and available only at the angular resolution of the lowesdiency in the band.

Based on the results from the above tests, the next step wdesvgdop a new
multi-frequency synthesis algorithm that combined msittale deconvolution techniques
along with a spectral model capable of representing argitsat smooth spectral shapes.
For wide-field imaging, methods to model the frequency ddpane of the primary beam
and correct for it during multi-frequency synthesis andadeolution were also developed.

In order to understand the details involved in formulating anplementing such
algorithms, it became necessary to work out and describleabie numerical optimization
framework used in most established calibration and imagiggrithms in radio interfer-
ometry. Recently developed algorithms that correct foedion-dependent instrumental

242



243

effects, perform multi-scale deconvolution and multi-fregcye synthesis imaging were
also described in this framework in order to clarify the ceations between all these meth-
ods and show how they could be extended individually and @sabined into a practical
implementation. An analysis of the existing multi-scal& anulti-frequency deconvolu-
tion algorithms in this framework led to ideas for demoniskeamprovements in both the
algorithms.

The resulting MS-MFS algorithm parameterizes the 2-D skyhiness distribu-
tion using a multi-scale basis and describes the spectrurpipel as a polynomial. The
data products are a set of ¢heient images describing this polynomial for each pixel, and
images of the continuum emission, spectral index and sgextrvature can be derived
from them. The MS-MFS algorithm improves upon existing wizdnd imaging meth-
ods in the following ways (a) a multi-scale parameterizatsoited to both compact and
extended emission, (b) a flexible spectral model to allovit@ty spectral shapes includ-
ing partially band-limited signals (c) the use afpriori information about synchrotron
spectra to reconstruct spectral structure at the angutaiuton allowed by the highest
frequency in the band, and (d) a method to model the frequdepgndence of the antenna
primary beam and to evaluate and use this model within thgéaconstruction process.
The MS-MFS algorithm was implemented within the CASA and A#§oft data analysis
packages.

Since the MS-MFS algorithm was developed and implementtadesal wide-
band data from the EVLA was available, all algorithm validattests were performed
either on simulated wide-band EVLA data or data from muiiguency VLA observa-
tions between 1 and 2 GHz (taken as a series of narrow-barnmklsoobservations).
The algorithm was tested on sources with spectral struatarenultiple spatial scales,
moderately-resolved sources with power-law spectra,lappmg sources with élierent
spectra, sources with band-limited emission and sourc#s hvoad-band emission over
wide fields-of-view. These tests have shown satisfact@ylte in terms of dynamic range
and accuracy. Further tests of both the MS-MFS and the smhglarid algorithm using
real wide-band EVLA data would help in order to quantify esrand establish a general-
use data analysis path.

Future work :  This new generation of broad-band interferometers hasexpap a wide
range of astrophysical opportunities that will requiretifier algorithm research and devel-
opment. For example, the use of wide-band data for fullfmaéion high dynamic-range
imaging will have to take into account th&ects of frequency-dependent source and in-
strumental polarization, and it is not clear whether theiapand spectral flux models used
in the MS-MFS algorithm are appropriate for wide-band Sso®eU and V imaging. Then,
the possibility of combining recently developed rotatimeasure synthesis with wide-band
imaging is also worth exploring from the point of view of sittaneously obtaining accu-
rate spatial and spectral reconstructions and therefereasing the fidelity of the results.
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Even for Stokes | imaging, other algorithms must be expldoedddress areas
where the MS-MFS formalism may not be the best choice. Highadyic-range wide-
band imaging simulations have shown that the algorithm iseadly limited by its choice
of multi-scale image parameterization. Therefore, widadextensions of algorithms like
ASP-CLEAN are worth exploring in combination with more adead numerical optimiza-
tion techniques. An initial investigation into such an aggwh has shown very promising
results (not included as part of this dissertation) and rhaséken to its logical conclusion.
Wide-band primary-beam correction with the MS-MFS alduorithas shown good results
only within the main lobe of the primary beam at the highestjfrency (about the HPBW
at the lower end of a 2:1 bandwidth). A careful evaluationh& involved errors must be
carried out for fields-of-view beyond this limit, at leasttime context of accurate model
prediction for wide-band mosaicing applications.

Finally, the benefits of using broad-band receivers are teatgst when the
narrow-band spatial-frequency coverage of the imagingriatometer is too sparse to be
useful on its own, or if the source of emission is time-vaeadnd synthesis observations
cannot be spread out in time. VLBI imaging is one such areaevhavide-band imaging
algorithm that reconstructs both spatial and spectratsire simultaneously from incom-
plete measurements could yield significant improvemen&s cenventional techniques.
Wide-band image reconstruction applied to sources whose-tiarying spatial and spec-
tral structure is of astrophysical interest is another asbach could benefit from such
algorithms.

10.2 The spectral evolution of M87

Summary :  The MS-MFS algorithm developed in the first part of this drss#on
project was applied to data from multi-frequency VLA obsgions of the M87 cluster-
center radio galaxy between 1.1 and 1.8 GHz in order to commgxhe existing low-frequency
measurements of the broad-band spectrum of various featuits 40 kpc halo. The result-
ing spectra were compared with a set of model spectra defivetdtwo different spectral
evolution models. Best-fit break frequencies were estithael synchrotron ages were cal-
culated and interpreted in the context of dynamical evotutnodels and their timescales
for various features observed in the M87 radio halo.

A spectral index map constructed from multi-frequency Indb@bservations of
the M87 radio halo was combined with existing images at 75 V827 MHz and 1.4 GHz
in order to constrain the slope of the broad-band spectruimeatipper end of the sampled
range. These wide-band spectra were then compared witlrgpdtained from two dier-
ent synchrotron evolution models, one representing thsiy@aageing of a set of energetic
particles with an initial power-law distribution of eneegi, and the other representing a
continuous injection of energy either by a continuous flove@me reheating mechanism.
A series of spectral fits were performed to estimate breajuieacies and synchrotron ages
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for both spectral models and various features across the Inadb.

The main results of this study are as follows. Spectra in émdral bright region
corresponding to the active 2 kpc jet and inner radio lok&spc from the core) are con-
sistent with a continuous ongoing injection of particleshvan energy power-law index of
s ~ 2.0 and give ages of 5MYT, all of which are consistent with existing high angular
resolution measurements of the jet spectrum. Elsewhereerhalo, the data fit the ini-
tial injection model only fors > 2.4 and give synchrotron ages consistent with dynamic
estimates. These results suggest that the inner lobes aentty being powered by a jet
outflow with an injection index of ~ 2.0, and the outer halo is the remnant of a previous
cycle of AGN activity in which the injection index of the petes wass > 2.4 and not the
currently observed = 2.0. The spectra of a few bright filamentary structures wera the
analysed separately from theftise background, as being regions of either high B-fields
or local energetic activity in which the particles have dpamly a small fraction of their
lifetime. This analysis yielded filament B-fields strongean the surroundings, and syn-
chrotron ages longer than dynamical estimates of the hapsagygesting that these high
B-field regions are either sites of local energetic actiyitiher than ongoing-injection) or
high B-field regions persistant across cycles of AGN agtiinally, outside the inner ra-
dio lobes, all spectra yield acceptable fits for the ongoimgetion model for 18 < s < 2.8,
suggesting that this model also works but these data ardeuttabdequately constrain it.

Future Work :  Further observations are required to confirm these resattause most
of the spectral fits gave break frequencies above 2GHz where twere no data points.
Also, the spectral fits were strongly influenced by the measdstope at L-band, which
given the error bars were also consistent with no steepenmgrue EVLA wide-band
observation of the M87 radio halo at L-band (1-2 GHz) is expeto reduce deconvolution
errors and therefore improve the quality of the slope camnsts.

Also, high angular-resolution observations at C-band (@&, D-configuration)
are required in order to confirm whether or not the halo shawsxgonential drop4b be-
tween 2 and 10 GHz as suggested by these data and shown bgdolution observations,
and to also see if there is anyfiiirence between the spectra of the bright filaments and the
background between 2 and 8 GHz. At C-band, the field-of-vie&mEVLA antenna is
a few times smaller than the angular extent of the M87 radlo had this measurement
would require a mosaic observation. The MS-MFS algorithrthwvide-band primary-
beam correction can in principle be used for wide-band noirsgy but this has not been
demonstrated yet. Therefore, a wide-band mosaic of M87 la&i@ would (a) probe the
halo spectra at high resolution and help confirm or rejecirttial-injection model of spec-
tral evolution and (b) serve as a good target field on whiclest the MS-MFS algorithm
for mosaicing and establish a data analysis path for futuch sbservations.



APPENDIX A

IMAGING SENSITIVITY

The sensitivity (lowest detectable flux above the noise)tifier output from a
single baseline (or, the noise per visibility value) is giv®y

l SEFD
s \V2AVTace

whereSEFD = 107%Tss(2ks/n.A) Jy is the Source-Equivalent Flux Densjtdefined
as the source flux density thaffectively doubles thdl s s of the receivers. 7 is the
per visibility integration time insecondsAv is the channel bandwidth iHertz, A is the
collecting area of an antennadn?, n, is the antennaficiency,s is the systemféiciency
andTsysis the antenna system temperaturdin

AV = (A.1)

The image sensitivity for a single channel stokes | imaga@RR and LL data)
is given as
1 SEFD
V275 VNN = DAVT

wheret, is the total integration time iseconds The factor of V2 in the denominator
is for the two independant data channels (RR and LL). The exsamsitivity for a multi-
frequency image oveX., channels is given asl,,/ VNgh.

(A.2)

m

In terms of eqmA.1, this is equal to the numerical estimate based on the number

of data points as given by

Aly = : (A.3)

\/N(I\zl_l) I\IchNthol
whereN; = 7int/Tacc IS the number of timesteps aiN}, = 2 for a stokes | image that uses
the RR and LL polarizations.

For example, foiTsys = 35K,n, = 055575 = 0.78N = 27 A = (125F)cn¥,7ine = 8hr,

SEFD : 357.803 Jy

Total effective bandwidth : 1280 MHz
Noise per visibility : 5.92e-03 Jy
Image Sensitivity : 2.01e-06 Jy
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APPENDIX B

LINEAR LEAST SQUARES

Measurement Equations :  An instrument that measures a physical quantity can often
be characterized as a system of linear equations. Consigetr @n measurements of a
physical quantity that is described by a listrofparameters. Let4] be a measurement
matrix of shapen x m, X a vector of parameters of shapex 1 describing the physical
guantity, and the data vector of shapex 1.

[AIX =D (B.1)

The matrix |A] describes how the physical quantitygets modified by the instrument dur-
ing the measurement process, and is calledtttuesfer functionof the instrument. The
effect of this transfer function has to be removed from the measualues to recover a
true estimate ok. This corresponds to finding\f'] and computingg = [A™] b.

If the matrix [A] is square, positive definite and of full rank and there is nsa
in the measurement, then an exat}] exists andxX can be exactly computed. In a real
system, there is usually noise associated with the measuteand A] may not be positive
definite by construction. In both these cases, an ex&ci will not exist, but a pseudo
inverse A*] can be calculatedia y? minimization designed to give a (weighted) linear
least-squares estimate far

Normal Equations :  Let [W] be ann x n diagonal weight matrix associated with the
measurement noise ;.

¥ = ([AIx-B) (W] ([AIX-B) (8.2)
= X[A'WAX+ b [W]B - X [A'W]B — b [WAX (B.3)

To minimizey?, take its derivative w.r.to the parametei*)sand solvevy? = 0.
Note thaf v .| X = 0.
v x% = [A'WAX - [A'W]b = 0 (B.4)
[A'WAIX = [A'W]b (B.5)

These are called the Normal Equations, and the matrix onetitdn&ind-side is given by
[A'WA = 1 v2y? and is called the Hessian matrix.
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Pseudo-Inverse : The solution is given by

% = [A'WA L [ATW]b (B.6)
[A*] = [ATWA]"1[ATW] is the pseudo inverse of the system. A fis unitary, then A*] =
[A7].

EgnB.6can be evaluated exactha LU or Cholesky decomposition iy’ W A] is
invertible. When a direct computation of the solution is featsible or AW A] is singular,
an iterative approach is required to solvg? = 0.

lterative Solution :  The solution ofvy? = 0 is a root-finding problem. Consider the
Taylor expansion of a functiof(x).

f(x) = f(a)+ f'(X)]a(x— ) (B.7)
Settingf(x) = 0, gives
1
X=a- f(a B.8
TE &9
Therefore,vy? = 0 can be solved iteratively from an initial guess as follows.
%1 = % + o[ AWA ™ ([A'W]B - [AWAX) (B.9)

whereae{0, 1} is a step-size andindicates iteration number. Various approximations of
[A'WA]~! can be used in this iterative process. In a first-order ogation, A'WA ! is
approximated by the inverse of the main diagonal of the H@sand a step size < 1 is
used to dampen thdtect of this inaccuracy (steepest descent, levenberg-ragiggHiigher
order methods provide better approximationsAf A~ (BFGS, etc..)

Linear least squares in Interferometric Imaging :  For the problem of interferomet-
ric imaging, the measurement matrix is usually singular asedneed to work with the
normal equations. For standard imaging, the Hessian m@&fw A] is a Toeplitz matrix
with a shifted version of a single function in each row. Wheplaed to a column vec-
tor of image pixels, it implements the shift-multiply-adelgsience of a convolution. The
associated convolution kernel (elements of the middleHfitesl) row) is called the point-
spread-function. The RHS of the normal equations is theegtfre result of a convolution
between a vector of image pixels representing the sky br&g# distribution and another
vector of image pixels containing the point-spread-fumcti Therefore, in the context of
interferometric imaging, the iterative process descriabdve is called a deconvolution. A
diagonal approximation of the Hessian matrix and its inegexduces to a pixel-by-pixel
normalization of the RHS by the peak of the point-spread:fiom. The pixel amplitudes
at the locations of the source peaks measure the source fahysical units, and provide
enough information to construct a model to addito
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General Block Linear Least Squares : Another way to write the measurement equa-
tions are to express the linear system of equations as a ssevefal such systems. The
Hessian matrix and normal equations are derived in the saayelwt are now written in
block matrix form. In certain situations, such as when thepeeters are themselves mod-
eled as a linear combination of unknown fflt@ents and known basis functions, such a
form allows a simple butféective approximation of the Hessian and its inverse.

Let [Ap] be ann x mmeasurement matrix for the quantiy written as aimx 1 list. A set

of N, measurements are added together to form art list of data 5). The block-matrix
equivalent of EqrB.1is given as follows.

Np
DA%, =b (B.10)
p=0

The measurement and normal equations can be written inatbtbck matrix form, and
an iterative solution computed similar to regular lineaasesquares. For simplicity, let
N, = 3, and let there b parameters in each subsgt

Measurement Equations in Block form :

X
[Ad [A]d [Al] || % |=DB (B.11)
X

All N, measurement matrices of shapex m are placed side-by-side to form a larger
measurement matrix. The list of parameters becomes a akstack ofN, vectors each of
shapemx 1. The new measurement matrix of shaye mN, operates on amN, x 1 list

of parameters to form amx 1 list of measurements.

Normal Equations in Block form : The normal equations can also be written in block-
matrix form. Note that matrix products can be written bldokblock to follow the element-
by-element multiplications implicit in Eqn8..2to B.5 (which show how normal equations
are constructed from measurement equations). The folgpwquation shows Eqi.5 in
block matrix form, before multiplying out the matrix blocks

[ATq] Xo [Afq]
[AT] [IW]] [A] [A] [A] || % | =] [AT1] |[W]Db (B.12)
[A] X5 [AT)]

When these block matrices are multiplied out, the normabé&quos become a system of
equations in which the Hessian has the shrapg x mN, and the list of parameters and the
RHS vector contaimN, x 1 elements each.
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[AToWA] [AOWA] [AWA] || % [AToW]b
[ATWA] [ATWA] [ALWA] || % | =] [AT,W]b (B.13)
[ATWA] [ATWA] [ATWA] || % [AT,W]b

The full Hessian consists ™, x N, blocks, each of sizen x m. the list of parameters is
a stack ofN, column vectors, and the RHS vector is a selNgfveighted inversions of the
data vector.

Iterative Solution in Block form :  An iterative solution to this system is obtained by
following Eqn.B.9 with block matrices.

(AOWA] [AGWA] [AWA] | | [AGWIB - 52 J[AT WA,

% %
% | =] % |+e| [AUWA] [AUWA] [ATWA] || [ALW]B - 22 [ALWAX,
ol DR L] awal (WAL TAWAL || [ALWIB - S2[ALWAK,

(B.14)

A few points to note about this solution process are :

1. The computation of the RHS of the normal equaticiag A" p\/\/]B Is equivalent to a
matched-filtering process, where th# RHS vector is a measure of how close the
data match a template (contained AJ).

2. Off diagonal Hessian blocks are a measure of the non-orthagooékhe p basis
functions. A Hessian with non-zero blocks only on the diajamplies a perfectly
orthogonal basis set, and then each parameter can be sotlegaeindent of the oth-
ers. If df-diagonal blocks contain non-zero elements, it implies tha parameters
are coupled and need to be treated together during the solprtocess.

3. The condition number of the block Hessian matrix gives asnee of how robust an
inversion would be. For example, if the basis functions aredrly dependent, the
block Hessian will be rank-deficient, there will be some aigalues equal to zero,
and the condition number rises sharply, indicating thasthlation process is highly
sensitive to variations in its parameters.

4. If the p basis functions form a geometric progression, then thiskbldessian is
a Vandermonde system with a geometric progression in eaghara column. A
useful property of such a system is that the diagonal bloc&slee result of even
powers of basis functions and the system is guaranteed ttobl positive definite
and block-invertible or block-diagonalizable.
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Block Linear least squares in Interferometric Imaging :  For interferometric imaging
in which the model is represented as a linear combinatiorodticients and basis func-
tions, each Hessian block is a Toeplitz convolution operdtbe RHS vector is therefore
a sum of convolutions of élierent image pixel vectors and convolution kernels, and the
process of solving such a system is called a block or joinbdealution. In this particular
form, the Hessian can be approximated by a matrix of diagbloaks where the elements
on the diagonal of each block is the peak of the point-spfaadtion represented by that
block. This provides a better estimate of its inverse thah gudiagonal approximation of
the full Hessian, and forms aN, x N, matrix to be inverted per pixel. WheN, = 1,
this process is equivalent to a pixel-by-pixel normaliaatby the peak of the point-spread-
function. When the basis functions involve a geometric pgssgion, this per-pixel, x N,
matrix is exactly invertible, and simultaneously produessmates for all the cdicients
involved in describing the amplitude of that pixel.
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