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ABSTRACT

The introduction of broad-band receivers into radio interferometry has opened
up new opportunities for the study of wide-band continuum emission from a vast range of
astrophysical objects. To take full advantage of such instruments and achieve continuum
sensitivities, we need image reconstruction algorithms that are sensitive to the frequency
dependence of the instrument as well as the spectral structure of the sky brightness distri-
bution. This dissertation project involved a study of existing methods to deal with wide-
band effects during interferometric image reconstruction, followed by the development of
a multi-scale, multi-frequency, synthesis-imaging algorithm (MS-MFS) that (a) takes ad-
vantage of the multi-frequencyuv-coverage while reconstructing both spatial and spectral
structure for compact, extended and moderately resolved sources, (b) constructs intensity,
spectral-index and spectral-curvature maps at an angular resolution given by the highest fre-
quency in the band, and (c) corrects for the frequency dependence of the antenna primary
beam to enable wide-band imaging across wide fields of view. The MS-MFS algorithm
has been implemented in the CASA and ASKAPsoft data-analysis packages, and validated
through a series of feasibility tests. This algorithm was then applied to multi-frequency
VLA observations of the M87 radio galaxy to derive a 1.1 - 1.8 GHz spectral-index map
to complement existing high-angular-resolution low-frequency images. The resulting 75
MHz to 1.8 GHz spectra were compared with models predicted bytwo different spectral
evolution models, and synchrotron lifetimes for various halo features were estimated and
interpreted in the context of the dynamical evolution of structures in the M87 radio halo.
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CHAPTER 1

INTRODUCTION

1.1 Goals of this dissertation

A new generation of broad-band radio interferometers is currently being designed
and built to provide high-dynamic-range imaging capabilities superior to that of existing
instruments. With large instantaneous bandwidths and highspectral resolutions, these in-
struments will provide increased imaging sensitivity and enable detailed measurements of
the spectral structure of a variety of astrophysical sources, all with less telescope time than
previously possible.

One desired data product from such instruments is a continuum image. A con-
tinuum image is a 2-D map of the sky-brightness distributionintegrated over a range of
frequencies, and the noise in such a map is inversely proportional to the square root of the
total bandwidth used. However, the response of the interferometer varies with frequency.
Also, continuum emission from most astrophysical radio sources shows significant spec-
tral structure over the frequency ranges for which these newreceivers are being optimized.
Therefore, to make a continuum image at the desired sensitivity, it is essential to measure or
reconstruct the spectral structure of the sky-brightness distribution before constructing an
image of the integrated flux, and to do this while accounting for the frequency dependence
of the instrument.

While the main goal of wide-band imaging is to obtain a high dynamic-range
continuum image, the reconstructed spectral structure canalso be a useful astrophysical
measurement. This is especially true since wide-band spectra can now be measured across
a continuous range of frequencies and not just a few widely-separated narrow frequency
bands. For sources of broad-band continuum emission, this will enhance the ability to
measure spectra and detect and localize frequencies at which spectral steepening, flattening
or turnovers occur. For observations in which different frequencies probe source structure
at different physical depths, these continuous measurements provide information about the
3-D structure of the emitting source. When both spectral-line and continuum emission is
present, such instruments will allow the measurement of a more accurate broad-band model
for background subtraction.

So far, wide-band image reconstruction techniques have focused on optimizing
the accuracy and dynamic range achievable in the continuum image by suppressing de-
convolution errors that arise when the spectral structure of the sky-brightness is neglected
[Conway et al. 1990; Sault and Wieringa 1994]. However, the spectral models used in these
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techniques are appropriate mainly for narrow bandwidths and give visible deconvolution
errors when applied to the large bandwidths offered by new receivers. Also, any spectral
information obtained is only a by-product of the continuum imaging process and attention
is not paid to the accuracy of these spectral reconstructions as astrophysical measurements.
Therefore, with the large instantaneous frequency ranges to which new instruments are
sensitive, it becomes worthwhile to design algorithms thatreconstruct both the spatial and
spectral structure of the sky-brightness accurately enough for astrophysical use, while still
producing the desired high dynamic-range continuum image.

Goals : The two main goals of this dissertation are listed below.

1. Evaluate the applicability of existing wide-band imaging techniques to data from
new broad-band interferometers and identify areas that require algorithmic improve-
ments. Develop and implement a multi-frequency image reconstruction algorithm
that combines a multi-scale parameterization of the sky-brightness with a spectral
model capable of representing arbitrary but smooth spectra. To enable wide-band
imaging over wide fields of view, this algorithm must also correct for the frequency-
dependence of the antenna primary beam.

2. Apply this algorithm to data from multi-frequency VLA observations (1 to 2 GHz) of
the M87 cluster-center radio galaxy. Combine the obtained spectral information with
existing images of M87 at lower frequencies, and compare broad-band spectra of
various features in the M87 radio halo to spectra predicted by two different spectral
evolution models. Estimate synchrotron lifetimes from both models and interpret the
results in the context of the dynamical evolution of variousfeatures seen in the M87
radio halo.

1.2 Background

This section first summarizes the state of the art in multi-frequency, multi-scale
and wide-field image reconstruction techniques for radio interferometry, and motivates the
choices made for the algorithm developed as part of this dissertation. This is followed
by a brief description of feedback processes due to an activegalactic nucleus (AGN) as
a possible source of energy that prevents the cooling flow in the hot core of the Virgo
cluster, and discusses what new information a high-angular-resolution study of the broad-
band spectra across the M87 radio halo can provide.

Wide-band Imaging Techniques : The simplest method of wide-band image recon-
struction is to treat each frequency channel separately andcombine the results at the end.
However, single-channel imaging is restricted to the narrow-band sensitivity of the instru-
ment and source spectra can be studied only at the angular resolution allowed by the lowest
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frequency in the sampled range. While such imaging may suffice for some science goals,
it does not take full advantage of what a wide-band instrument provides. The spatial-
frequency coverage of the interferometer varies with observing frequency. This is a signif-
icant advantage from the point of view of image reconstruction because wide-band instru-
ments sample a larger fraction of the spatial frequency plane than measurements at a single
frequency. By combining measurements from multiple discrete receiver frequencies during
imaging in a process called multi frequency synthesis (MFS), one can potentially increase
the fidelity and sensitivity of the resulting image.

MFS was initially done to increase the spatial-frequency coverage of sparse ar-
rays by using narrow-band receivers and switching frequencies during the observations.
However, it was assumed that at the receiver sensitivities of the time, the sky-brightness
was constant across the observed bandwidth. The next step was to consider a frequency-
dependent sky-brightness distribution.Conway et al.[1990] describe a double-deconvolution
algorithm based on the instrument’s responses to a series ofspectral basis functions.Sault
and Wieringa[1994] describe a similar multi-frequency deconvolution algorithm (SW-MF-
CLEAN) which models an image as a collection of point sourceswith linear spectra and
uses the fitted slopes to derive an average spectral index foreach source. For pure power-
law spectra, both methods suggest using a linear spectral model in logI vs logν space
instead ofI vs ν space. These methods were developed for relatively narrow bandwidths,
and these approximations can be shown to be insufficient to model typical spectral structure
across the large frequency ranges that new wide-band receivers are sensitive to. Therefore,
new algorithms need to work with a more flexible spectral model.

So far, these CLEAN-based MFS deconvolution algorithms used point-source
flux components to model the sky emission. This choice is not well suited for extended
emission, where deconvolution errors due to the use of a point-source flux model are en-
hanced in the spectral index image because of non-linear error propagation. Multiscale
deconvolution techniques that model images using flux components of varying scale size
are more accurate at deconvolving large-scale emission.Cornwell [2008] describes the
CH-MS-CLEAN algorithm which performs matched filtering using templates constructed
from the instrument response to various large-scale flux components. To improve the per-
formance of multi-frequency deconvolution in the presenceof extended emission, such
multi-scale techniques need to be included.

Finally, none of the existing wide-band imaging methods address the frequency
dependence of various direction-dependent instrumental effects. The dominant such effect
is the changing size of the antenna primary beam across frequency. Wide-band imaging
across wide fields of view therefore requires this frequency-dependence to be modeled
and corrected for. If unaccounted for, the frequency-dependent attenuation of the incom-
ing radiation will create spurious spectral structure in the reconstructed spectral structure.
Bhatnagar et al.[2008] describe an algorithm for the correction of time-variablewide-field
instrumental effects for narrow-band interferometric imaging, and this algorithm needs to
be adapted to work for wide-band imaging as well.
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Spectral evolution of the M87 radio halo : M87 is a large elliptical galaxy at the cen-
ter of the Virgo cluster. It hosts an AGN with an active jet, and contains a 40kpc radio
synchrotron halo. Measurements of the current jet power suggest that this AGN plays a
significant role in reheating the intra-cluster medium (ICM) at the center of the Virgo clus-
ter and preventing cooling below a certain temperature. However, the mechanism by which
this feedback may be occuring and the relevant timescales and periodicity are not well un-
derstood. Ages of the observed radio halo estimated from models of bouyant or driven
and expanding bubbles yield timescales an order of magnitude smaller than the expected
cooling time, rendering the system incapable of reheating the cluster core on the required
timescales by mechanical energy transport alone. However,observations of X-ray emis-
sion from the core of the Virgo cluster show possible correlations with some features in
the observed M87 radio halo, suggesting that these are sitesof possible energy transfer be-
tween the radio plasma and the thermal ICM and that energeticprocesses other than simple
synchrotron ageing may be at play.

The goal of this project is to study high-angular-resolution broad-band synchrotron
spectra of various features in the M87 radio halo to assess whether or not there is evidence
for anything other than simple synchrotron ageing as the energetic particles travel outwards
from the jet into the radio halo. High-resolution studies are required in order to separate
bright filamentary structure from the apparently diffuse background and see whether any
significant spectral differences appear. So far, high-angular-resolution images ofthe M87
halo have been made only at 74 MHz, 327 MHz and 1.4 GHz, and showspectra consistent
with pure power-laws of very slightly varying index.

This project uses a spectral-index map constructed by applying the MS-MFS al-
gorithm to multi-frequency VLA observations between 1.1 and 1.8 GHz to constrain the
shape of the spectrum at the upper end of the sampled frequency range. The resulting
wide-band spectra are then compared with those predicted from two different synchrotron
evolution models, one representing simple synchrotron ageing after an initial injection of
energetic particles, and the other representing synchrotron ageing with continuously in-
jected (or re-energized) particles. Synchrotron lifetimes computed from these spectral fits
are then analysed in terms of plausibility with respect to estimated dynamical ages of vari-
ous features observed in the M87 radio halo.

1.3 Chapter Outline

Chapter2 introduces the idea of image formation using a simple lens aswell as
an imaging interferometer, and then describes the measurement process of a radio interfer-
ometer as a system of linear equations that have to be solved in order to construct an image.
The goal of this chapter is to present the relevant theory in alinear algebra framework, from
which image reconstruction algorithms and their numericalimplementations can be easily
derived.
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Chapter3 covers established calibration, imaging and deconvolution techniques,
and introduces the generic numerical optimization framework used by CLEAN-based it-
erative deconvolution algorithms. The basic theme emphasized in this chapter is the de-
sign of an image-reconstruction algorithm based on a linear-least-squares approach, and its
adaptation to the inherently non-linear process of interferometric image reconstruction by
splitting the process into major and minor cycles. This framework forms the basis of all the
algorithms described in later chapters.

Chapter4 describes recent advances in wide-field imaging algorithms. Algo-
rithms that correct for time-varying and direction-dependent instrumental effects are de-
scribed within the imaging framework introduced in Chapter3 to show how such correc-
tions are performed in practice as a part of the iterative image reconstruction process.

Chapter5 introduces the problem of wide-band imaging, and discussesthe major
factors that affect the process of image reconstruction when wide-band receivers are used
with an imaging interferometer. This is followed by a brief description of several existing
wide-band imaging techniques and the results of a study doneto test their suitability for
continuum imaging with the EVLA telescope and identify areas of required improvement.

Chapters6 and7 are technical chapters that contain the main contributionsof
this dissertation to the existing literature on CLEAN-based deconvolution algorithms. The
general theme of these chapters is the parameterization of the sky-brightness distribution
as a linear combination of images and the use of this model within the iterative major
and minor cycle framework introduced in Chapters3 and4. These chapters contain (a)
formal derivations of a multi-scale and a multi-frequency deconvolution algorithm, (b) a
comparison of the resulting algorithms with the existing CH-MS-CLEAN and SW-MF-
CLEAN implementations with suggestions of ways to improve them, (c) the combination
of these ideas into a practical multi-scale, multi-frequency deconvolution algorithm (MS-
MFS), and (d) a multi-frequency parameterization of the antenna primary beam and an
algorithm to model and correct for it during MS-MFS deconvolution.

Chapter8 discusses a set of wide-band imaging examples that illustrate the capa-
bilities and limits of the MS-MFS algorithm and wide-band primary-beam correction. The
tests described in this chapter include sky-brightness distributions with structure at multiple
spatial scales and arbitrary but smooth spectra, moderately resolved sources, emission at
very large spatial scales, band-limited signals, overlapping sources with different spectra
and emission across wide fields of view. These tests involve applying the MS-MFS algo-
rithm implemented within the CASA package to simulated wide-band EVLA data as well
as data from multi-frequency VLA observations of Cygnus A, M87 and the 3C286 field.
This chapter concludes with a summary of various practical aspects of wide-band imaging
and potential sources of error, and lists a set of ideas for anend user to keep in mind while
using the MS-MFS algorithm.

Chapter9 describes a study of the wide-band spectra of various features in the
radio halo of the M87 galaxy. A 1.1 to 1.8 GHz spectral index map of the M87 radio halo
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was constructed using the MS-MFS algorithm, and combined with existing high angular
resolution images at 75 MHz, 327 MHz and 1.4 GHz to construct wide-band spectra with
constraints on their slopes at the higher end of the sampled frequency range. These spec-
tra are then analysed in the context of synchrotron evolution models and the dynamical
evolution of structures observed in the M87 radio halo.

Chapter10 contains a brief summary of the work done and results obtained, and
lists some topics of future research in wide-band imaging techniques.



CHAPTER 2

SYNTHESIS IMAGING AND RADIO INTERFEROMETRY

This chapter introduces the theory of image formation and aperture synthesis and
describes the working of a radio interferometer. Section2.1describes the process of image
formation with a simple lens as well as with an imaging interferometer, with the goal of
relating the formal theory of interferometric imaging withthe familiar concept of a lens.
Section2.2then describes the measurement process of a radio interferometer and expresses
it as a system of linear equations that must be solved in orderto construct an image. The
goal of this section is to present the theory of synthesis imaging in a linear-algebra frame-
work, from which image-reconstruction algorithms and their numerical implementations
can be easily derived. The basic theory in this chapter follows that described in [Thompson
et al. 1986; Taylor et al. 1999; Briggs 1995; Bhatnagar 2001; Cornwell 1995a;b; Hamaker
et al. 1996; Sault et al. 1996].

2.1 Image Formation

An image of a distant object is formed when radiation from theobject passes
through an aperture of finite size and falls on a screen made upof some material capable
of recording the intensity of the incident radiation. This is a natural process that can be
explained with the basic concepts of wave interference and Fourier transforms. This section
first describes the form of the far-field radiation pattern produced when a wavefront of
electromagnetic radiation passes through an aperture, andthen describes how an image of
the resulting intensity distribution can be formed using a lens as well as an interferometer.

The simplest way to form an image of a distant object is with a convex lens that
focuses parallel rays of light onto a screen placed at the focal plane of the lens. The size
of the lens defines its aperture, the opening through which the incident light passes. The
aperture of a one-dimensional lens can be described as an infinite collection of slits located
within a given maximum distance from each other. When illuminated by a plane wave-front
of electromagnetic radiation, each slit produces a diffracted wavefront that propagates out
behind the aperture. Consider one pair of slits. The diffracted wavefronts from both slits
are coherent, and will interfere with each other to produce afar-field wave-front whose am-
plitude varies sinusoidally with position on the wave-front. The resulting intensity pattern
is called an interference fringe. When illuminated from a direction normal to the plane of
the slits, the zeroth-order maximum of the fringe pattern isin line with the point directly
between the slits, and the wavelength of the fringe is inversely proportional to the dis-
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tance between the slits. When there are more than two slits, the observed intensity pattern
is that formed from the superposition of the sinusoidal wavefronts created by each pair of
slits. Therefore, for electromagnetic radiation incidenton a lens aperture, the amplitude and
phase of the resulting wavefront can be described as the superposition of an infinite number
of sinusoidal wavefronts spanning a continuous but finite range of fringe wavelengths and
phases. This is a Fourier series, and the complex coefficients of this series form the spatial
Fourier transform of the incident radiation field at the aperture. The intensity of the re-
sulting far-field radiation pattern is the image of the object as viewed through the aperture.
Image formation is the process of capturing and recording this intensity distribution.

2.1.0.1 With a Lens

To form a real image of the intensity distribution behind theaperture, a lens
is needed to focus the radiation onto an image plane. The curvature of the lens surface
introduces differential path delays between the light passing through multiple slits. This
alters the phase of the sinusoidal wavefront from each pair of slits, such that for a normally
incident a plane wave front (from a distant point source), the wavefronts from all slit pairs
add purely constructively only at a single point, creating an image of a point source on the
focal plane. Radiation from a distant object of finite size (larger than a single point) can
be described as the superposition of plane wavefronts incident from multiple directions.
Within a certain angular distance from the lens axis, wavefronts from directions other than
the normal will be focused at different locations on the focal plane, thus forming an image
of the incident brightness distribution.

2.1.0.2 With an Interferometer

An interferometer forms an image of the intensity distribution behind the aper-
ture by directly measuring the spatial Fourier coefficients that describe the far-field radia-
tion pattern and then performing a Fourier inversion to forman image. A finite set of points
(or slits) are defined on the aperture, and the amplitude and phase of the interference wave-
front from each pair of slits is computed by measuring the electric fields (E-field) incident
at the two aperture points and correlating them (taking the expectation of their product).
By this process, each pair of slits measures the spatial Fourier transform of the radiation
field incident at the aperture, at the spatial frequency given by the physical separation of
the slits in units of wavelength (see next section). This is an indirect imaging technique
called aperture synthesis where a finite collection of spatially separated detectors are used
to construct a lens aperture of size given by the largest separation between any two pairs of
slits. A synthesised aperture differs from the true aperture of a lens of the same size in that
it is not continuous, but made up of a discrete and finite set ofaperture points.
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2.1.1 Theory of Interferometric Imaging

This section formally describes the process by which an interferometer measures
the spatial Fourier transform of the sky brightness distribution, starting with the electro-
magnetic waves emanating from the source and ending with theformation of an image.

To make a 2-D image of a distant object that emits electromagnetic radiation,
we need to measure the power of the radiation field produced bythe object along a set of
directions covering different parts of the source. To form such an image, the source needs
to be spatially incoherent, where the radiation produced byone part of the source is not
correlated with the radiation from any other part of the source. If this were not the case
(spatially coherent source) then the radiation from different parts of the source will interfere
with each other, and the observer will sample this interference pattern instead of the total
power from each point on the source [Anantharamaiah et al. 1989].

Let ξ(~R, t) represent the time-varying amplitude of the E-field component1 of
an electromagnetic wave (EM-wave) emanating from the direction ~R. For a monochro-
matic EM-wave emanating from a time-invariant source of radiation, we can writeξ(~R, t) =
Re{ξν(~R)e−2πiνt}, whereν is the frequency of the EM-wave andξν(~R) is a complex function
of position (also called the complex amplitude of the E-field[Goodman 2002]). The spa-
tial coherence2 of this radiation field between two points~R1, ~R2 on the source is given by
〈

ξν( ~R1)ξ∗ν( ~R2)
〉

where〈 〉 denotes a time-average. For a spatially incoherent source,this

function is non-zero only when~R1 = ~R2 and it becomes
〈

ξν(~R)ξ∗ν(~R)
〉

=
〈

|ξν(~R)|2
〉

which is

proportional to the total power (brightness) emanating from the point~Ron the source.

When the radiation travels from the source to the observer, the radiation inci-
dent on the observer is partially coherent. This is because for a source of finite angular
size, as the distance from the source increases, the wave-fronts become planar and it be-
comes increasingly difficult to distinguish between radiation from slightly different points
on the source. The van-Cittert-Zernike theorem of partially coherent light, states that the
degree of spatial coherence of the radiation field from a distant spatially incoherent source
is proportional to the spatial Fourier transform of the intensity distribution across the source
[Thompson et al. 1986]. The process by which an interferometer measures this degree of
spatial coherence, and the way it is related to the source intensity distribution, is described
below.

1 The instantaneous E-field component of a polarized EM-wave is usually described by a vector defined
in the plane perpendicular to the direction of propagation of the EM-wave. This vector is described by
two orthogonal polarization componentsX,Y corresponding to linear polarizations. For this analysis,let us
consider only one component (say X) of the E-vector for a monochromatic EM-wave.

2The spatial coherence of a wavefront describes the amount bywhich two secondary wavefronts ema-
nating from a pair of spatially separated points on the original wavefront will interfere, at a later time. It is
defined as the cross-correlation of the radiation field at twospatially separated points, averaged over time.
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2.1.1.1 Spatial Coherence of the incident E-field

Consider the E-field component of a quasi-monochromatic EM-wave emanating
from a source located at~R and incident on a detector located at~r. The complex amplitude
of the E-field incident at the detectorEν(~r) can be related to the strength of the EM-wave
ξ(~R)3 emanating from the direction~R via the Huygens propagator [Clark 1999].

Eν(~r) =
∫

S
ξν(~R)

e2πiν(R−r)/c

|R− r | dS (2.1)

dS is a surface element on the celestial sphere andS represents the projected shape of the
source on the celestial sphere.

Consider the E-fields emanating from locations~R1 and ~R2 within the source apertureS.
The degree of spatial coherence between the E-fields incident at two locations~r1, ~r2 on the
aperture of the imaging instrument is given as follows.

〈

Eν(~r1)E
∗
ν(~r2)

〉

=

〈∫

S

∫

S
ξν( ~R1)ξ

∗
ν( ~R2)

e2πiν(R2−r1)/c

|R2 − r1|
e−2πiν(R2−r2)/c

|R2 − r2|
dS1dS2

〉

(2.2)

whereν is the frequency of the incident EM-waves. Assuming that theradiation at the
source is spatially incoherent,

〈

ξν( ~R1)ξν( ~R2)
〉

is non-zero only when~R1 = ~R2 ≡ ~R. Eqn.2.2
can be re-written as follows.

〈

Eν(~r1)E
∗
ν(~r2)

〉

=

∫

S

〈

|ξν(~R)|2
〉 e−2πiν(r1−r2)/c

(

1− r1
|R|

) (

1− r2
|R|

)

dS
|R|2

[∫

S
dS1

]

(2.3)

The quantity
∫

S
dS1 ≡ AS is the area across the source aperture (in units ofm2). Also, each

surface elementdS is related to the corresponding solid angledΩ asdS = |R|2dΩ and an
integration overS can be replaced by an integration over the entire celestial sphere (ξν(~R)
will be non-zero only within the aperture). Due to the large distance between the source
and the detectors, we can assume thatr1

|R| << 1, r2
|R| << 1. Also, let ŝ = ~R

|R| denote the unit

vector in the direction~R. Finally, letτ12 = (~r1 − ~r2)/c represent the difference between the
time taken for the EM-wave to propagate from~R to ~r1 and~r2. Eqn.2.3becomes

〈

Eν(~r1)E
∗
ν(~r2)

〉

= AS

∫

〈

|ξν(ŝ)|2
〉

e−2πiντ12dΩ (2.4)

3 The amplitude of the E-field component of a propagating EM-wave at a distanceR from a source of
amplitudeA is given byA

Re2πiνR/c. In Eqn.2.1, A =
∫

S
ξdS and therefore, the quantityξν(ŝ) has units ofV m−2

[Eilek, private communication]. The quantityEν(~r) then represents the E-field (in units otV/m) incident at
the detector due to the whole radiation source (approximated as a point source of total amplitudeA located at
R>> r).
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Let Iν(ŝ) denote the intensity or brightness distribution in units4 of Wm−2Hz−1Sr−1. Then,
we can write the power per unit area incident on the detector (due to radiation from the
whole source) as

Iν(ŝ) dν dΩ = AS

〈

|ξν(ŝ)|2
〉

µ0c
(2.5)

whereµ0c is the impedence of free space, anddν represents an infinitismal bandwidth at
the detector. Eqn.2.4becomes

〈

Eν(~r1)E
∗
ν(~r2)

〉 ∝
∫

Iν(ŝ) e−2πiντ12dΩ ≡ V(~r1 − ~r2, ν) (2.6)

The quantityV(~r1 − ~r2, ν), a complex number, is a time-averaged correlation coefficient
called a visibility and its value depends on the physical separation of the pair of detectors
~r1 − ~r2 but not on their absolute locations [Clark 1999]. An interferometer consists of
an array of spatially separated detectors, and visibilities are measured for every pair of
detectors. The length of time over which these correlationsare averaged to form each
visibility is called the integration time, and will be denoted by∆τ.

2.1.1.2 Co-ordinate systems

Visibilities measured from a collection of detector pairs (at one frequencyν) are
combined to form an image of the intensity distribution at that frequency. To describe
this process, we need to define a set of co-ordinate systems that relate the sky brightness
distribution with the aperture that is being synthesized aswell as the physical locations of
the detectors.

Figure2.1defines the three co-ordinate systems that are required to describe the
measurement and imaging process for a radio interferometerlocated on the surface of the
Earth. X̂ŶẐ represents a terrestrial co-ordinate system in which the physical locations of
the antennas are defined. The point on the sky towards which the interferometer is to be
steered is called the phase-reference center ˆs0, expressed in terms of source declination
δ0 and hour-angleH. The l̂m̂n̂ co-ordinate system is used to describe the sky brightness
distribution projected onto the celestial sphere which is written asI (l,m, n) = Iν(ŝ) where
l,m, n =

√
1− l2 −m2 are direction cosines describing a direction ˆs. The phase reference

center is given by~s0(l = 0,m= 0, n = 1) and a point away from the phase center is given by
ŝ = ŝ0 + ŝσ. The final 2D image that is formed is a projection of this intensity distribution
onto the tangent plane at ˆs0 (defined bŷlm̂). The plane defined bŷUV̂ is the aperture plane
of the array, defined as the plane perpendicular to the instantaneous direction ˆs0 (alsoŴ).

4 The power per unit area (at the detector) carried by an EM-wave from the whole source isAs|ξν(ŝ)|2/µ0c
in units of W m−2 (note thatµ0c is the impedance of free space).dν (Hz) anddΩ (Sr) represent infinites-
mal bandwidth and solid angle respectively. Therefore, theintensity (or brightness)Iν(ŝ) has the units of
W m−2Hz−1S r−1 or Jy S r−1 [Kraus 1986] where the unit of Jansky is defined as 1Jy= 10−26W m−2Hz−1.
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TheÛV̂Ŵ system is related tôXŶẐ by a co-ordinate rotation defined by the two anglesδ0

andH.
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wherex, y, z are physical distances measured in theX̂ŶẐ system in units ofmetres, and
u, v,w are distances measured in theÛV̂Ŵ system in units of signal wavelengthλ = ν/c.
As the Earth rotates and the hour-angleH changes, the co-ordinates of each detector in the
ÛV̂Ŵ system follow ellipses on thêUV̂ plane. The vectors~r1, ~r2 in Eqn.2.6 are defined
as ~r1(u1, v1,w1) and ~r2(u2, v2,w2) in units of wavelength, in thêUV̂Ŵ system. A baseline
is defined as the 3D vector between~r1 and ~r2 and is given by~b(u, v,w) = ~r1 − ~r2 with
u = u1 − u2,v = v1 − v2 andw = w1 − w2. Note that~r1, ~r2 need not lie exactly on the
aperture plane (~r1 · ŝ0 = w1 , 0 and~r2 · ŝ0 = w2 , 0). This means that at a given instant, the
two detectors will not sample the same wavefront of the incident radiation. The time delay
between the wavefront reaching the two detectors is given byτ = ~b · ŝ0/ν = (w1 − w2)/ν
and needs to be accounted for before the signals from each detector are correlated.

2.1.1.3 Delay Correction

The correlation coefficients measuredvia Eqn.2.6require that~r1 and~r2 lie on the
aperture plane so that all detectors measure the same wavefront of radiation incident from
direction ~s0 with no time delay between the measurements. However, for most synthesis
arrays the detectors do not lie exactly in the aperture plane. Delay correction is the process
of delaying the signals from each detector such that an any given instant, all detectors
sample the wavefront incident at the aperture plane (and notat the physical locations of the
detectors).

The delay applied to the detector at~r1 is the signal travel time across a distance
~r1 · ~s0 = w1 (written here in units of wavelength). Whenδ0 = 90◦, w1 = w2 = 0 and the
two detectors~r1, ~r2 always sample the same incident wavefront. Whenδ0 , 90◦, w1 and
w2 are usually non-equal and~r1, ~r2 sample the incident wavefront at time delays given by
τc1 = w1/ν andτc2 = w2/ν relative to the chosen origin of the terrestrial co-odinatesystem.
To correct these delays, the signals sent to the correlator are E(~r1, t − τc1) andE(~r2, t − τc2).
These delays change as the Earth rotates, and continuously correcting them has the effect
of pointing the aperture towards a fixed point on the sky~s0.

Now consider an EM-wave incident from a direction ˆs = ŝ0 + ŝσ. The time
delay between the wavefront at the two detectors after delaycorrection will beτ12 =
~b · (ŝ− ŝ0)/ν = (ul + vm+ w(n − 1))/ν. This time delay is the same as theτ12 in Eqn.2.6
which contributes to the phase of the measured complex visibility.



13

2.1.1.4 Spatial Fourier transform

We can now write Eqn.2.6 in terms of the baseline componentsu, v,w and the
direction cosines for various points on the skyl,m, n (see Fig.2.1). For a source defined on
the celestial sphere,dΩ = dldm

n , and Eqn.2.6becomes

V(u, v,w) =
∫∫

I (l,m, n)
n

e−2πi(ul+vm+w(n−1))dl dm (2.8)

Here,l andm are 2D co-ordinates on the tangent plane at~s0. For a point on the sky given
by ŝ= ŝ0 + ŝσ, the term (n− 1) describes the distance between the true curved sky and the
tangent plane at ˆs0. The productw(n − 1) is called thew-term and is proportional to the
phase difference between the radiation reaching the two detectors forming the baseline~b,
due to the curvature of the sky.w(n−1) , 0 implies that even after delay correction, the two
detectors are not sampling the same phase front of incident radiation, and the terme−2πiw(n−1)

is the Fresnel diffraction kernel that accounts for the propagation of a spherical wave across
the distanceλ w(n − 1) for one detector so that both detectors in the baseline measure the
same wave-front. If the region of the sky being imaged is close to the phase center (n ≈ 1),
the w-term goes to zero and Eqn.2.8 describes a 2D spatial Fourier transform relation
between the mutual coherence function and the source brightness.

V(u, v) =
∫∫

I (l,m)e−2πi(ul+vm)dl dm (2.9)

Eqn.2.9is also called the van-Cittert-Zernike theorem. This 2D spatial Fourier transform of
the source brightness is called the visibility function. Eqn. 2.6describes the measurement
of this continuous visibility function at one spatial frequency point. The values ofu =
u1−u2 andv = v1−v2 denote the spatial frequency measured by the pair of detectors at~r1, ~r2,
and they are defined in units ofλ = c/ν whereν is the observing frequency5. The visibility
function is defined across the spatial frequency plane (alsocalled theuv-plane) whose axes
û, v̂ correspond to thêU, V̂ axes in Figure2.1 when baseline vectors are anchored at the
origin. Each baseline measures the complex-valued visibility function at one point on the
uv-plane. The amplitude and phase at each measured spatial frequency describes the 2D
interference fringe that is measured by the pair of detectors on the aperture plane. If the
visibility function were to be sampled continuously at all spatial frequenciesu, v, then
Eqn. 2.9 can be invertedvia the Fourier transform to yield an image of the brightness
distribution of the source radiation.

I (l,m) =
∫∫

V(u, v)e2πi(ul+vm)du dv (2.10)

An interferometer synthesizes an aperture using a finite setof discrete points. Therefore
in practice, the visibility function is never sampled continuously on the spatial frequency
plane. The next section discusses the consequences of this incomplete sampling.

5The frequency at which the EM-wave is measured will be refered to as the observing frequency or just
frequency.
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2.1.1.5 UV coverage

An interferometer measures the visibility functionV(u, v) at a discrete set of spa-
tial frequencies. WithNa antennas, there areNa(Na−1)/2 baselines that make simultaneous
measurements at spatial frequencies given by the projections of the 3D baseline vectors
~b(u, v,w) onto the aperture plane. This sampling of the spatial frequency plane defines the
instantaneous transfer function of the synthesis array andis called theuv-coverage. It can
be represented by a collection of Kroneckerδ-functions as

S(u, v) =
∑

k

δ(u− uk)δ(v− vk) (2.11)

wherek is an index that represents a measurement from one baseline.The spatial frequency
plane can be further sampled by varying the positions of the antennas with respect to the
direction of the phase-reference center. For ground-basedarrays, the Earth’s rotation makes
all projected baseline vectors~b·~s0 trace ellipses on the spatial frequency plane, slowly filling
it up. This is called Earth Rotation Synthesis. Since the measured spatial frequencies are
defined in units of the wavelength of the radiation, measurements at multiple observing
frequencies can be used to increase the sampling of the spatial-frequency plane, and this is
known as Multi-Frequency Synthesis. Since the spatial frequency measured by a baseline
changes with time and observing frequency, measurements must be made at sufficiently
high time and frequency resolution to prevent smearing (averaging of visibility data) on the
spatial frequency plane. The result is generally a centrally dominateduv-plane sampling
pattern with a hole in the middle and tapered outer edges.S(u, v) now represents the total
collection of sampled spatial frequencies (discretized asa function of baseline, time and
frequency)6.

The sampling function oruv-coverageS(u, v) defines the imaging properties of
the synthesis array. The maximum measured spatial frequency defines the angular resolu-
tion of the instrument. The smallest measured spatial frequency defines the largest spatial
scale that the instrument measures. The density of samples within the measured range
defines the instruments natural sensitivity to different spatial scales.

2.1.1.6 Imaging Equation

For a synthesis array with a givenuv-coverage, the image formed by Fourier
inversion of the measured visibilities can be described as follows. The measurement pro-
cess multiplies the true visibility function (of the sky brightness) by theuv-coverage of the

6Earth-rotation-synthesis and multi-frequency-synthesis require the assumption that the sky brightness
distribution is invariant across the time and frequency range being sampled, so that measurements at different
times and frequencies sample the same visibility function,but at different spatial frequencies. The large-scale
brightness distribution from most astronomical sources remains constant over typical observation timescales,
so the first assumption is, in general, satisfied.Conway et al.[1990] describe the effect of relaxing the
flat-spectrum assumption for wide-bandwidth systems and algorithms to deal with the consequences.
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instrument. The observed visibility function isVobs(u, v) = S(u, v)V(u, v) and the image
formed by direct Fourier inversion of the measurements is given by

Iobs(l,m) =
∫∫

S(u, v)V(u, v)e2πi(ul+vm)du dv (2.12)

The convolution theorem of Fourier transforms states that apoint-wise multi-
plication of two functions in one domain is equal to a convolution in the other Fourier
domain. The raw or dirty imageIdirty(l,m) is therefore the result of a convolution of the
true sky brightnessI (l,m) with the point spread function (PSF) of the instrumentI ps f(l,m)
given by the Fourier transform of theuv-coverage.

Iobs = I ⋆ I ps f (2.13)

where I ps f(l,m) =
∫∫

S(u, v)e2πi(ul+vm)du dv (2.14)

where ’⋆’ denotes convolution. The point spread function describesthe instrument’s re-
sponse to a point source (V(u, v) = 1 for a point source of unit brightness at the phase
reference center). In other words, it is the image that the interferometer will produce when
a plane monochromatic EM wave is incident on the aperture from only one direction on the
sky. Since the observed image is a convolution of the sky brightness with a known instru-
mental point spread function, an estimate of the the true skybrightness can be obtainedvia
a deconvolution process (described in Chapter3).

Eqn.2.12 is the result of a theoretical analysis that defines the raw image that
the interferometer will produce under ideal measurement conditions, and unpolarized elec-
tromagnetic radiation. The next section describes some practical aspects of measuring the
E-field component of polarized electromagnetic radiation at radio frequencies, and folds it
into the above analysis.
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Figure 2.1:Co-ordinate Systems for Radio Interferometry : This diagram shows (a) the three co-
ordinate systems involved in radio interferometric imaging, and (b) how a baseline vector is defined.
X̂ŶẐ represents a terrestrial co-ordinate system in whichẐ points toward the North celestial pole
and theX̂− Ŷ plane is the equatorial plane of the Earth.X̂ is the intersection of the equatorial plane
with the local meridian plane (defined as the plane through the poles of the Earth and the reference
location of the array).̂Y is towards the East (with respect toX̂). ~s0 defines the direction to the point
on the sky being imaged, expressed in terms of source declination δ0 and hour-angleH. The l̂m̂n̂
co-ordinate system is used to describe the 3D sky brightnessdistribution around~s0. The ûv̂ plane
is the aperture plane of the array, oriented perpendicular to the line of sight to the source~s0 (also
ŵ). Theûv̂ŵ system is related tôXŶẐ by a co-ordinate rotation defined by the two anglesδ0 andH.
Let (x1, y1, z1) and (x2, y2, z2) represent the locations of two antennas in the terrestrialco-ordinate
system (in units of metres), and (u1, v1,w1) and (u2, v2,w2) be the corresponding co-ordinates in the
ûv̂ŵ system in units of wavelengthλ. The distancesw1 andw2 are proportional to the delays that
have to be given to the signals from antennas 1 and 2 (relativeto the chosen origin of the terrestrial
co-odinate system) to ensure that at any given instant, all antennas sample the same wave front
of radiation incident from~s0. The 3D baseline vector between antennas 1 and 2 is given by as
~buvw = (u2 − u1)û+ (v2 − v1)v̂+ (w2 −w1)ŵ. The 2D spatial frequency measured by this baseline is
given by (u2 − u1), (v2 − v1). As the Earth rotates, the hour-angle of the source changes, causing the
projected antenna locations (and baseline vector) to traceellipses on the now rotating ˆuv̂ plane.
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2.2 Measurement Equation for Radio Interferometry

The previous section described the theory of image formation and the working
of an ideal interferometer. This section describes the process by which the electric field
incident at a detector is measured, the effect of this measurement process on the input sig-
nal, and how the ideal imaging equations get modified when these effects are accounted
for. This section introduces the concept of the measurementequation, a construct com-
monly used to describe the effect of the measurement process on the input signal. It is usu-
ally written in terms of the transfer function of the instrument, a function which describes
the measurement process. The transfer function of an imaging interferometer includes its
spatial-frequency sampling function as well as several factors that affect the incoming EM-
wave before, during and after measurement. The process of image reconstruction (recovery
of the input signal) is equivalent to solving the measurement equationviaa process that may
or may not involve the actual inversion of the transfer function.

Section2.2.1describes the E-field measured at each detector and the process of
computing of a complex visibility from a pair of such measurements. It describes the prac-
tical implementation of the theory in section2.1.1.1for general polarized radiation. It uses
a matrix notation commonly used in signal processing where orthogonal components of the
E-field are listed as elements of a 2× 1 vector and the effect of the instrument on such a
signal is a 2× 2 matrix operator. Section2.2.2describes the full measurement equation of
the interferometer and introduces the matrix notation thatwill be used throughout the rest
of this dissertation. The sky brightness distribution is represented by a list ofmparameters
and the instrument’s transfer function (uv sampling function and the effect of signal mea-
surement per antenna) is described as an × m matrix operator. The product of these two
matrices yields a list ofn measurements. This matrix equation represents a system of linear
equations which has to be solved in order to reconstruct an image of input sky brightness
distribution. Chapter3 describes this solution process in more detail.

2.2.1 Signal Measurement

The electric field components of the incoming electromagnetic radiation are mea-
sured at the locations of all antennas/detectors. The signals from each pair of antennas are
then correlated (to evaluate Eqn.2.6) to form a set of complex numbers that measure the
source visibility function at the spatial frequencies given by the baseline vectors. This
section follows the derivation and notation ofHamaker et al.[1996].

2.2.1.1 Electric Field at each Antenna

The electric field component of a polarized electromagneticwave at a given in-
stant is represented by a 2D vector lying in the plane perpendicular to its direction of
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propagation. Let~Ei =

[

eX

eY

]

i

= [eX, eY]T
i represent the two orthogonal components7X,Y

of this 2D vector8 for radiation measured at antennai. Note that~Ei represents a continuous
signal at one instant in time.

The radiation from an astrophysical source is modified when it propagates through
the Earth’s atmosphere and is measured by a an electronic receiver system. Jones ma-
trices9describe this modulation for the incident electric field as it passes through various
elements of the measurement system. Such effects can be instrumental or non instru-
mental, and may or may not depend on the direction on the sky. Asequence of these
effects are represented by a product of individual Jones matrices. Direction-independent
effects for antennai are usually described as [Jvis

i ] = [JG
i ][ JD

i ][ JC
i ], a 2× 2 matrix prod-

uct of complex antenna gains (JG), polarization leakage between the nominally orthogonal
dipoles (JD) and feed configuration (JC). Direction-dependent effects are described by
[Jsky

i ] = [JE
i ][ JP

i ][ JF
i ], a product of antenna illumination patterns (JE), parallactic angle

effects (JP) and tropospheric and ionospheric effects and Faraday rotation (JF).

The two-component Jones vector measured at each antenna is

~Eobs
i = [Ji] ~Ei where [Ji]2×2 = [Jvis

i ][ Jsky
i ] (2.15)

Linear polarization components (X,Y) of the electric field are measured using a pair of
dipoles positioned perpendicular to each other and orthogonal to the direction of propaga-
tion of the incident radiation. Circular polarization components (R, L) are measured using
a pair of helical antennas, and signals can be electronically converted between linear and
circular, if required. The measured E-field is in the form of atime-series of voltages for
each polarization component. These signals are amplified and then sent to a backend sys-
tem that applies delay corrections and computes visibilities. The signals can be digitized
before or after delay correction or correlation.

7This discussion usesX,Y to denote the two orthogonal linear polarization components of an EM-wave.
These derivations will hold ifX,Y are replaced byR, L for right and left circular polarization states.

8Notation : Matrices are denoted by [A]. Vectors are denoted by~A or [A]n×1 (for an n-element vector).
TheT superscript denotes a matrix transpose, and the† superscript denotes conjugate transpose or operator
adjoint.

9 The vector~Ei is a Jones vector; a commonly used notation to describe polarized light. A Jones matrix is
a complex-valued 2×2 matrix operator that describes the effect of passing an EM-wave through a system that
modifies it. It acts on an input Jones vector to produce an output Jones vector of modified EM-wave compo-
nents. For example, for a measurement that uses a radio receiver, the diagonal elements of the Jones matrix
correspond to instrumental gains that are applied to each component of~Ei and the off-diagonal elements
describe the amount of leakage introduced between them during the measurement process.
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2.2.1.2 Correlation for each Baseline

According to Eqn.2.6, a visibility (or correlation coefficient) is measured as the
time-averaged product of the complex amplitudes of the E-fields incident at each detector
pair (Eν(~r1) andE∗ν(~r2)). However, in practice, neither the incident radiation nor the mea-
surement system is truly monochromatic. Also, the E-field component of the EM-wave
E(~r , t) incident at each detector varies with time. Therefore, thefirst step in the measure-
ment process is to sample the incidentE(~r , t) at a finite time resolution. To represent the
complete signal, the sampling time interval must be shorterthan the reciprocal of twice the
signal bandwidth (the Nyquist rate).

There are two ways of computing the correlation coefficient for each detector
pair using these high time-resolution samples. In both cases, the result is obtained at a fi-
nite time-resolution∆τ (the desired integration time), a finite frequency-resolution∆ν (the
desired channel width) and across a total bandwidth (controlled by the signal sampling
rate). The first method is known as an FX correlation. In this method, we accumulate
measurements ofE(~r , t) over a time intervaltmax, compute its temporal Fourier transform
to obtainξν(~r) at a set of different discrete frequenciesν separated by∆ν = 1/tmax, compute
the productEν(~r1)E∗ν(~r2) for eachν and then average the results over the desired integration
time∆τ (again, for eachν). The second method is known as an XF correlation. Here, we
use the high time-resolution measurements ofE(~r , t) to compute the correlation product
E(~r1, t)E∗(~r2, t− τlag) for a series of time lags (τlag), and then compute the temporal Fourier
transform of this product to obtain the power spectrumEν(~r1)E∗ν(~r2) at a frequency resolu-
tion of∆ν = 1/tlag, and finally average the results over the desired integration time∆τ (for
eachν). The output from the correlator is a series of visibilities(discrete samples of the
continuous visibility function).

~Vobs
i j = 〈~Eobs

i ⊗ ~Eobs∗
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where〈〉 denotes a time-average and⊗ denotes an outer-product that generates four cross-
correlation pairs (two cross-handpq, qp and two parallel-handXX,YY) per baseline10.
ep

i , e
q
i are the elements of~Eobs

i . The time average represents a discretization of the con-
tinuous signals at a sampling rate given by the integration time per visibility∆τ. [Vobs

i j ] is a
4×1 coherency vector11 for the baseline formed from antennasi and j and it can be written

10 The outer product (direct, tensor or Kronecker product) of two matrices [A] and [B] is given by a
matrix whereai j is replaced byai j [B]. Therefore, for two vectors~A = [A]2×1 and ~B = [B]2×1 the outer
product is a 4× 1 vector given by [a1b1, a1b2, a2, b1, a2, b2]T . For two 2× 2 matrices the outer product is a
4× 4 matrix where thei, j quandrant is given byai j [B]2×2. An important property of these outer products is
[A⊗ B][C ⊗ D] = [AC] ⊗ [BD].

11The coherency vector is a 4× 1 vector of cross-correlations formed from the four elements in the outer
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in terms of the antenna-based Jones matrices as follows.

~Vobs
i j = 〈~Eobs

i ⊗ ~Eobs∗
j 〉 = 〈[Ji] ~Ei ⊗ [Jj]

∗ ~E∗j 〉 = ([Ji] ⊗ [Jj]
∗)〈~Ei ⊗ ~E∗j 〉 = [Ki j ]~Vi j (2.17)

Therefore the measured coherence vector of visibilities isgiven by ~Vobs
i j = [Ki j ] ~Vi j where

[Ki j ] = [Ji] ⊗ [Jj] is a 4× 4 matrix and ~Vi j is the true visibility that Eqn.2.6measures. (If
only one polarization component of the E-field is measured (say p), the Jones matrices and
vectors become scalars (only one non-zero element) and Eqn.2.17simplifies to a single
complex number per baselineVobs

i j = gig∗jVi j , where [Ji] = gi represents a multiplicative
complex gain for antennai.)

2.2.1.3 Measurement Equation for one baseline

The ideal van Cittert Zernike theorem (Eqn.2.9) can now be combined with the
effect of the measurement process, to derive the full-polarization measurement equation.
The visibility function sampled by baselinei j at one instant in time and at one frequency is
given as follows12.

~Vobs
i j (u, v) =

[

Kvis
i j

]

∫∫

[

Dsky
i j (l,m)

]

~I sky(l,m) e−2πi(ul+vm)dldm (2.18)

Here,~I sky(l,m) is a 4× 1 vector of the sky brightness distribution (in the direction l,m)
corresponding to the four correlation pairs.u, v represents the spatial frequency sampled
by baselinei j at one instant in time (given by the components of~bi j in units ofλ). [Kvis

i j ] is
a 4× 4 matrix that represents direction-independent instrumental effects that are constant
across the field of view of each antenna (e.g. receiver gains). [Dsky

i j (l,m)] is a 4× 4 matrix
that represents effects that vary with position on the sky (e.g. antenna primary beams,
pointing offsets, ionospheric effects and thew-term).

The effect ofDsky
i j (l,m) in Eqn.2.18is multiplicative in the image domain and can

be represented as a convolution in the visibility domain. Let Kdd
i j (u, v) represent the Fourier

transform ofDsky
i j (l,m) (for each of the four correlation pairs). Eqn.2.18can be re-written

as follows.

~Vobs
i j (u, v) =

[

Kvis
i j

]

{

[

Kdd
i j (u, v)

]

⋆

∫∫

~I sky(l,m) e−2πi(ul+vm)dldm

}

(2.19)

Here,⋆ represents convolution for each correlation product.

product of two 2× 1 Jones vectors.
12 In practice, each measurement is made over a finite bandwidth∆ν and time range∆τ and contains the

integral of the visibility function over these time and frequency ranges. Section2.2.2.2elaborates on this
discretization.
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Eqns.2.18 and 2.19 describe the measurement equation for one visibility. In
practice,~Vobs

i j is measured for allNa(Na−1)
2 pairs of antennas (i = 1 − Na and j = i − Na)

for a series of integration timesteps and observing frequencies. All visibilities (baselines,
timesteps and frequencies) for each correlation productXX,XY,YX,YYare then combined
for imaging13.

The next section rewrites Eqn.2.19 in a form where the sky brightness is no
longer a continous function of positionl,m, but is described by a discrete set of parameters
(e.g. pixels of an image of the sky). The true visibility function is also discretized and this
allows us to represent the spatial frequency sampling function (uv-coverage) in the form
of a matrix operator. The complete measurement equation canthen be written as a matrix
equation, or a system of linear equations that need to be solved in order to reconstruct an
image of the input sky brightness distribution.

2.2.2 Measurement Equation for Synthesis Imaging

This section introduces the use of standard linear-algebrato describe the mea-
surement process of an imaging interferometer. The sky brightness distribution is param-
eterized in some basis and the measured visibilities are expressed as functions of the sky
parameters. The solution of the measurement equation can then be treated as a numeri-
cal optimization problem. This section introduces the linear-algebra notation that will be
used in the rest of this dissertation to describe the measurement equation for various image
parameterizations, instrumental effects and image reconstruction algorithms.

2.2.2.1 Generic measurement equation

Let the sky brightness distribution be described bym parameters listed in vector
form as~I sky

m×1, and let~Vobs
n×1 be a vector ofn visibilities14. A generic measurement equation

can be written as
~Vobs

n×1 = [An×m]~I sky
m×1 (2.20)

where [A] describes the process of makingn measurements of the visibility function of the
sky brightness distribution in terms of them image parameters. [A] is a generic label for a
measurement matrix and the following chapters will discussmeasurement equations using
different specific forms of [A].

The next few sections describe how various parts of Eqn.2.19are represented in
this matrix notation and combined to construct the full measurement matrix [An×m].

13 The 4 correlations can either be imaged directly or after computing a Stokes vectorI ,Q,U,V of visibil-
ities (via a linear 4× 4 transform [Sault et al. 1996]).

14Typically, m = N2
pix for an image of sizeNpix × Npix, parameterized by its pixel amplitudes, andn =

Na(Na−1)
2 × Nf requency channels× Ntimesteps× Ncorrelation pairs
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2.2.2.2 Discretization of the visibility and image domains

Theuv-coverage described by Eqn.2.11is a set ofδ-functions located on a con-
tinuous spatial frequency plane. However, in practice, visibility samples from each baseline
are measured at finite time and frequency resolution (∆τ,∆ν). Note that∆τ,∆ν always need
to be smaller than the limits set by the temporal and spectralcoherence of the incident ra-
diation. When mapped to the spatial frequency plane, the shortest baseline will give the
smallest∆u,∆v that the interferometer measures15. Let us construct a spatial-frequency
grid with cell sizes defined bymin(∆u,∆v), such that all visibility measurements naturally
map directly to pixels on this grid, and limits due to signal coherence are also satisfied.
Let the number ofuv-pixels bem, such that the largest measured spatial frequency is ac-
counted for. A discrete Fourier transform (DFT) of this gridcorresponds to an image of the
sky extending across a field of view given by1

∆u,
1
∆v radians, and pixel size defined by the

maximum spatial frequency covered by theuv-grid.

Let ~I sky
m×1 represent a one-dimensional pixelated image of the sky, over the entire

field of view allowed by the measurements16. The complete but discretized visibility func-
tion for the sky brightness is then described as~Vsky

m×1 = [Fm×m]~I sky
m×1, where [Fm×m] is the

DFT operator17. This analysis can be directly generalized to two dimensions.

When all four correlation pairs{XX,XY,YX,YY} are measured, we can write
~I sky
4m×1 and~Vsky

4m×1 as stacks of 4 vectors, eachmpixels long and representing one polarization
pair. The DFT operator becomes a 4× 4 block diagonal matrix and will be denoted by
[F4m×4m].

15This relation is derived from∆u = ∂u(t,ν)
∂t ∆t + ∂u(t,ν)

∂ν
∆ν whereu(t, ν) is given by Eqn.2.7. The hour angle

H is a function of time,λ = c/ν andx, y, zare the lengths of the shortest baseline.
16 A pixel-based flux model is the most widely-used form of imageparameterization, and is sufficient to

describe all the main concepts related to image reconstruction via standard algorithms. The main focus of
this dissertation is the use of advanced image parameterizations for multi-scale and multi-frequency image
models. The models chosen for these algorithms can be described as linear combinations of pixellated images,
and this formulation remains valid. (In this dissertation,non-pixel methods are discussed only when relevant.)

17 The normalization convention used for all Fourier transforms described here is such that [F†F] = m[~1m],
where [~1m] is anm×m identity matrix. The normalization is chosen as part of the reverse/inverse transform
[F]−1 = 1

m[F†]. Therefore,F is not a unitary operator. This choice is in accordance with the amplitude
normalization convention used in radio interferometry. For a 5Jy point source at the phase center, calibrated
visibilities are normalized to an amplitude 5Jy. While making an image, the amplitude of a point source
at the phase center can be calculated as the vector average ofn such visibilities (involving a normalization
by n). In practice this is a weighted average, and a normalization by the sum of weights is done separately,
only for the reverse (inverse) transform. For efficiency, the FFT algorithm [Cooley and Tukey 1965] is used
to implement all Fourier transforms (unless otherwise stated). Note also that the FFT algorithm requires a
regularly sampled set of data points, whereas a DFT explicitly evaluates the Fourier transform integral and
can be computed for an irregularly sampled set of data points.
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2.2.2.3 Spatial frequency coverage in matrix notation

Theuv-coverage of a synthesis array (described in section2.1.1.5) can be written
as a sampling matrix [Sn×m] defined on this fine spatial-frequency grid. It operates on~Vsky

m×1,
to yield n visibility measurements. [Sn×m] is a projection operator that maps elements
from anm× 1 list onto a list ofn measurements, and contains only ones and zeros (theuv-
coverage listed in Eqn.2.11consists of Kroneckerδ-functions). Each row inSn×m picks out
one spatial frequency, and therefore can have only one non-zero entry. There can however
be multiple measurements of the same spatial frequency, andcolumns of [Sn×m] can have
more than one non-zero entry. Unmeasured spatial frequencies correspond to columns of
[Sn×m] with no non-zero elements (the column rank of [Sn×m] is < m).

The same sampling function applies to all four correlation pairs{XX,XY,YX,YY}.
Therefore, full-polarization sampling can be described bya 4n× 4mblock-diagonal matrix
constructed from 4 instances of [Sn×m].

2.2.2.4 Direction-independent effects in matrix notation

Direction-independent instrumental effects (described in section2.2.1.1, and de-
noted byKvis

i j in Eqn. 2.19) can be written in matrix form for alln baselines and all 4
correlation pairs{XX,XY,YX,YY}. Let [Kvis

4n×4n] be a 4× 4 block matrix constructed from
diagonal matrices of sizen× n (when each element of [Kvis

i j ]4×4 in Eqn.2.18is written out
for all n baselines, it forms onen× n block with non-zero elements only on the diagonal).
Non-zero off-diagonal blocks in these full-polarization matrices describe the coupling be-
tween different polarizations during the measurement process (i.e. off-diagonal terms of
Eqn.2.17).

2.2.2.5 Direction-dependent effects in matrix notation

Eqn. 2.19 shows that the visibilities measured by baselinei j are the result of
a convolution of the true visibility function with a 2D function Kdd

i j (u, v) that represents
direction-dependent effects18. The visibility measured by baselinei j is no longer a sample
of the visibility function at one spatial frequency, but theintegral of the visibility function
over a region defined by the shape ofKdd

i j (u, v) around that one spatial frequency.

For each correlation pair, we can define a visibility-domainoperator that con-
volves the true visibility function with~Kdd

i j before baselinei j samples it. Let [Sdd
n×m] repre-

sent a modified form of the sampling matrix [Sn×m] in which each row contains the vector
~Kdd

i j centered at the spatial frequency measured by that baseline(given by the location of the
correspondingδ-function in [Sn×m]). The subscripti j indicates that these effects can be dif-

18Kdd
i j (u, v) is one element of the 4× 4 matrix [Kdd

i j (u, v)] used in Eqn.2.19 and represents auv-plane
convolution function for one correlation pair.
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ferent for different baselines and times. Therefore,~Kdd
i j can vary across the rows of [Sdd

n×m].

The effect of multiplying [Sdd
n×m] with the true visibility function~Vsky

m×1 is a baseline-based
convolution during the sampling process.

When all baselines have the same direction-dependent effects (~Kdd
i j =

~Kdd) the
sampling function can be separated from this baseline-based convolution. We can write
[Sdd

n×m] = [Sn×m][Gdd
m×m] where [Gdd] = [FDskyF†] is a convolution operator19 with ~Kdd

as the convolution kernel20. [Dsky
m×m] = diag([F†] ~Kdd) is a diagonal matrix that represents

the multiplicative image-domain effect of the visibility-domain convolution (compare with
Dsky in Eqn.2.18).

When all four correlation pairs are measured, the sampling matrix becomes a
4n × 4m block matrix. Eachn × m block contains [Sdd

n×m] constructed with a~Kdd
i j for the

corresponding correlation pair. An important difference between [Sdd
4n×4m] and [S4n×4m] is

that [Sdd] contains non-zero off-diagonal blocks that describe the coupling between the
different polarizations.

2.2.2.6 Measurement equations in matrix form

The full measurement equation in block matrix form is given by writing Eqn.2.19
for all baselines and combining it with theuv-coverage and other instrumental effects.

~Vobs
4n×1 = [Kvis

4n×4n][Sdd
4n×4m][F4m×4m]~I sky

4m×1 (2.21)

where ~Vobs
4n×1 consist of 4 segments ofn visibilities each (one for each correlation pair).

From this equations, we see that the measurement matrix [A] in Eqn. 2.20can be written
as a product of a series of matrices as [A4n×4m] = [Kvis

4n×4n][S
dd
4n×4m][F4m×4m]. A solution of

the complete measurement equation includes imaging and deconvolution along with the
correction of direction-independent and dependent effects, both for all polarization compo-
nents of the incident radiation and their correlations.

The algorithms described in this dissertation will focus onvisibility data from
only one correlation pair, assuming that the incident radiation is either unpolarized or has
no linear polarization (when the X,Y components are measured and Q=0) or no circular po-
larization (when the R,L components are measured and V=0). In this case, the dimensions

19 The convolution of two vectors~a ⋆ ~b is equivalent to the multiplication of their Fourier transforms.
A 1-D convolution operator is constructed from~a and applied to~b as follows. Let [A] = diag(~a). Then,
~a ⋆ ~b = [F†diag([F]~a)F]~b = [C]~b. Here, [F] is the Discrete Fourier Transform (DFT) operator. [C] is a
Toeplitz matrix, with each row containing a shifted versionof ~a. Multiplication of [C] with ~b implements the
shift-multiply-add sequence required for the process of convolution.

20The function with which a convolution is done is called the convolution kernel. It is the function that
is shifted to all pixel locations during the shift-multiply-add sequence of convolution. For a convolution
kernel~a, an image-domain convolution operator is constructed as [F†diag([F]~a)F], and a visibility-domain
convolution operator is constructed as [Fdiag([F]~a)F†]
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of all the matrices in Eqn.2.21lose the factor of 4, and [Kvis
n×n] is a diagonal matrix. The

measurement equations for observing unpolarized incidentradiation and recording only
one correlation pair are given below (matrix equivalent of Eqn.2.19).

~Vobs
n×1 = [Kvis

n×n][S
dd
n×m][Fm×m]~I sky

m×1 (2.22)

When instrumental effects are time-invariant and identical for all baselines, they can be
factored out of the sampling matrix ([Sdd

n×m] = [Sn×m][Gdd
m×m]) and written in the image-

domain (matrix equivalent of Eqn.2.18).

~Vobs
n×1 = [Kvis

n×n][Sn×m][Fm×m][Dsky
m×m]~I sky

m×1 (2.23)

In general,~Vobs,[S] and [F] are known and~I sky, [Kvis] and [Dsky] are unknown. Estimates
for [Kvis] and [Dsky] are obtained either by solution from the measured data or from existing
measurements or models, leaving only~I sky as the unknown variable to solve for.

The next two chapters describe the solution of the measurement equations shown
in Eqns.2.22and2.23. Standard synthesis imaging techniques address imaging and decon-
volution with the correction of only direction independenteffects. They solve Eqn.2.23by
ignoring [Dsky] and estimating [Kvis] from separate observations of a source for which~I sky

is known. Chapter3 describes these standard methods in detail. Techniques forcorrecting
direction-dependent effects solve Eqn.2.22and usea-priori estimates for~Kdd

i j used to con-
struct [Sdd]. These more recent techniques are described in Chapter4. Chapters6 and7
describe and solve extensions of these measurement equations for broad-band radio inter-
ferometry in which the sky brightness distribution, the spatial frequency sampling pattern
and instrumental effects vary with observing frequency.



CHAPTER 3

STANDARD CALIBRATION AND IMAGING

This chapter describes well-established calibration and imaging algorithms in the
context of a linear-least-squares solution of the measurement equation. The algorithms de-
scribed in this chapter follow the general ideas inTaylor et al.[1999] andBriggs [1995],
and cover the calibration of direction-independent instrumental effects, and image recon-
structionvia an iterative deconvolution process.

To begin with, let us consider a simplified form of the measurement equation
(given in Eqns.2.21and2.23) for only one correlation product and only direction-independent
instrumental effects [Kvis].

~Vobs
n×1 = [Kvis

n×n][Sn×mFm×m]~I sky
m×1 (3.1)

The unknowns in Eqn.3.1are the sky brightness~I sky and the elements of [Kvis].
Calibration (Section3.1) is the process of computing and applying an approximate inverse
of [Kvis]. Imaging (Section3.2) is the process of reconstructing the sky brightness,~I sky, by
removing the effect of the instrument’s incomplete spatial frequency sampling (extensions
to the full polarization case are made within the discussions in Sections3.1 and3.2, and
direction-dependent instrumental effects [Dsky] are discussed in Chapter4).

3.1 Calibration

To make an image that represents the true sky brightness distribution, the mea-
sured visibility data must first be calibrated to undo various instrumental effects that corrupt
the incoming signals. Calibration is the process of first computing the elements of [Kvis]
from visibility measurements of a source whose structure isknown, and then using these
solutions to remove the effect of direction-independent complex gains from the observed
visibilities of the source of interest.

This section describes the basic procedure for calibratingvisibility data, lists
various types of calibration schemes, and briefly describesfull-polarization calibration.

26
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3.1.1 Gain solution and correction

The elements of [Kvis] are computed by solving Eqn.3.1, written in the following
form.

~Vobs
n×1 = [Kvis

n×n]~V
model
n×1 (3.2)

where~Vmodel
n×1 = [Sn×mFm×m]~Imodel

m×1 are visibilities that are computed from a known model of
the source~Imodel

m×1 by taking its spatial Fourier transform and sampling the result usingS.

For the simple case of only one correlation pair, each element on the diagonal of
[Kvis] can be described as a product of two complex numbers.Kvis

i j = gp
i g∗pj wheregp

i andgp
j

are multiplicative instrumental gains for antennasi and j. These complex gains are Jones
matrix elements for the polarization components used to construct the correlation. The
number of unknowns in this system isNa, andVmodel

n×1 providesO(N2
a) constraints to uniquely

factor the baseline-basedKvis
i j into Na antenna-based complex gainsgp

i . A weighted least-
squares solution [Cornwell and Wilkinson 1981] of Eqn.3.2is found by minimizing

χ2 =
∑

i j

wi j |Vobs
i j − gig

∗
jV

model
i j |2 (3.3)

and directly estimating antenna-based complex gains, where wi j is a measured visibility
weight, given by the inverse of the noise variance.

Gain corrections for all baselines (diagonal elements of [Kvis
n×n
+]) are computed

from the antenna-based gain solutions asKvis
i j
∗
= 1/(gig∗j ) (for the element corresponding

to baselinei j ) and then applied to the observed visibilities to correct them1.

~Vcorr
n×1 = [Kvis

n×n
+
]~Vobs

n×1 (3.4)

An alternate formulation expresses theNa(Na − 1)/2 elements of [Kvis] as an
Na × Na correlation matrix with elementKi j in the i th row and j th column, and uses eigen-
value decompositions to solve for antenna-based complex gains. In cases where the mea-
surements at each baseline contain random additive noise that cannot be factored into
antenna-based terms (closure noise), baseline-based calibration is sometimes done to solve
for the elements of [Kvis] directly. However, this process is poorly constrained compared to
standard antenna-based calibration, is not always a physically accurate approach, and must
be used with caution.

1 The+ superscript denotes the pseudo-inverse of a matrix. A pseudo-inverse is an approximate inverse
of a matrix. It is often used when an exact inversion is eitherimpossible or intractable, either when the matrix
being inverted is rank-deficient and has no inverse, or when the presence of noise in the data prevents an
exact solution. A pseudo-inverse is often used to obtain a least-squares solution of a system of equations in
the presence of noise. One way of computing the pseudo-inverse of a matrix [A] is [A+] = [A†A]−1[A†]. This
involves computing and inverting [A†A] or some approximation of it, say, a diagonal approximation. Other
methods use various matrix decompositions of [A] to construct [A+].
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3.1.2 Types of Calibration

Several commonly used calibration techniques are briefly summarized below.

3.1.2.1 Standard Calibration

For standard calibration, astronomical sources of known amplitude and/or struc-
ture are observed at regular intervals during an observation of a source of interest. The
known true/model visibilities are used to compute antenna-based gain solutions for the
time intervals over which the calibrator was observed. These gain solutions are interpo-
lated across the time ranges where the source of interest is observed, and used to correct
the observed visibilities (seeFomalont and Perley[1999]; Cornwell and Fomalont[1999]).

The solution for antenna gains is often split into computingamplitudes and phases
separately. Bright sources whose amplitudes are well knownand do not vary with time are
used as flux calibrators to compute gain amplitudes. Sourceswhose absolute positions are
accurately known are used as phase calibrators to constraingain phases. Ideal calibrators
are extremely compact sources whose visibility functions are constant across the range of
spatial frequencies measured by the synthesis array, but extended sources can also be used
if their structure is also accurately knowna-priori. Bandpass calibrators are flat-spectrum
sources or those with a well-known spectral behaviour, and are used to compute the varia-
tion of instrumental gains as a function of frequency.

To increase the signal-to-noise ratio of correlations going into the algorithm that
solves for the elements of [Kvis], the visibility data are sometimes pre-averaged along data
axes over which the solution is likely to remain stable. For example, bandpass calibration
often uses time-averaged data because the bandpass shape isusually stable across certain
time-intervals. Time-variable gain fluctuations are solved for during a second pass, where
the now calibrated bandpasses are averaged across frequency to give a single measurement
for each time-step.

3.1.2.2 Self Calibration

Since gain solutions for the target source are computed onlyby interpolating
between calibrator scans, any gain fluctuations during the time when the target source is
being observed will not be accounted for. Self-calibrationis a process where a model of
the target source itself is used to compute gain solutions during the time it is being ob-
served. This model of the target source could be froma-priori information in the form
of an existing image, or could be built up by a bootstrap method from the observed data.
In general, self-calibration [Schwab 1980; Cornwell and Wilkinson 1981; Thompson and
Daddario 1982] is an iterative combination of calibration and imaging. Itis a two-stageχ2

minimization process that iterates between the parameter subspaces of~I sky and [Kvis] and
applies constraints appropriate to the different physics involved. During the computation



29

of [Kvis] for calibration, the most current model of~I sky is held constant and used in evalu-
ating Eqn.3.1 to compute model visibilities. Similarly, during imaging,the most current
calibration solutions ([Kvis]) are applied and held constant.

If a high quality initial model of~I sky is available, self-calibration often requires
only one iteration. Depending on the availability of an external calibrator source, this
calibration stage solves for either gain amplitudes or gainphases, or both. For example,
a standard flux calibrationvia an external flux calibrator can be followed by a phase-only
self-calibration step using a model whose structure is known to be the same as the target
source. If an amplitude and phase calibration is required but the model and target differ in
amplitude, the solution gain vector is scaled to unit norm topreserve the overall flux level
of the target source.

When there is noa-priori information about the source or an external calibrator,
the initial sky model is chosen as a point source of unit flux atthe phase center and all
antenna gains are unity. In this general case, several iterations of calibration and imaging
are usually required before both the calibration solutionsand the sky model converge to
stable values. Also, the absolute position of the source (given by a common phase term
across all antennas) and its absolute amplitude, are absorbed into the gain solutions, and
are lost when the gain correction is applied. This iterativeprocess is usually feasible only
for sources with simple spatial structure.

3.1.2.3 Peeling

Peeling [Nijboer and Noordam 2007] is a technique where self-calibration is
done one source at a time, with the calibration being undone after each source has been
subtracted and replaced with a model. Peeling can either be done on all prominent sources
one after another, or in combination with regular self-calibration in which it is applied
only to sources whose calibration parameters differ significantly from a global solution.
This method accounts for some directional dependence of theantenna gains, by calculating
them separately along a few directions containing bright sources.

3.1.2.4 Full-polarization calibration

Full-polarization measurements contain correlations from all four polarization
pairs. Each baseline measures the product of [Kvis

i j ] = [Jvis
i ]⊗ [Jvis

j
†] with the true coherence

vector seen by that baseline. Eqn.3.2becomes

~Vobs
4n×1 = [Kvis

4n×4n]~V
model
4n×1 (3.5)

and the elements ofKvis
i j are computed as described in section3.1.1. For a source with

known polarization characteristics, the true coherence vector is known (constant× [1,0,0,1]
for circular feeds and an unpolarised source) and one can form a system of linear equations
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with the elements of [Kvis
i j ] as unknowns. For a single baseline, there are up to 10 de-

grees of freedom and 4 equations [Sault et al. 1996]. However, with ana-priori source
model, measurements from all baselines provide enough constraints to uniquely factor the
baseline-based [Kvis

i j ] matrices into antenna-based 2× 2 Jones matrices (4× Na(Na − 1)/2
equations and 4× Na unknowns). In its most general form, the elements of [Jvis

i ] can be
computed by minimizing

χ2 =
∑

i j

|~Vobs
i j − [Jvis

i ⊗ Jvis
j
†
]~Vm

i j |2 (3.6)

with respect to the antenna-based [Jvis
i ]. Corrections can be applied by direct computation

of [Kvis+] from these solutions.

To simplify this solution process, polarization calibration is usually done in stages.
First, only the diagonal elements of the Jones matrices are solved for, assuming zero leak-
age between the orthogonal feeds. Corrections are applied and a second stage solves only
for the off-diagonal terms. Another method of simultaneously solvingfor antenna-based
gains and leakages from only parallel-hand correlationsXX,YY is described inBhatnagar
and Nityananda[2001].

3.2 Imaging

After calibration, the corrected visibilities~Vcorr
n×1 are ready to be converted into an

image. The complex visibilities are mapped onto the spatialfrequency gridvia S†m×n. An
inverse Fourier transform of these gridded visibilities gives the raw or dirty image over the
full field of view allowed by the time and frequency resolution of the visibility measure-
ments2. Full image reconstruction involves the removal of the effect of the instrument’s
known sampling function (uv-coverage). In interferometric imaging, there are some spatial
frequencies that are actually not measured, so even if the instrument’s transfer function (ef-
fect on the incoming signal) is completely known, the reconstruction of the sky brightness
is a non-linear process. This is because it involves estimating the values of the visibility
function at unmeasured regions of the spatial frequency plane. Various physical constraints
are required to achieve this.

This section describes the process of interferometric image reconstruction in
terms of the matrix equations being solved. Several linear-algebra concepts are introduced
here to emphasize the relation between imaging techniques currently in use and the applica-
tion of standard numerical optimization theory to solve inverse problems. Chapters4 and
6 will later apply these same numerical optimization ideas tomore complicated systems
of equations, to derive imaging algorithms for multi-scale, multi-frequency image models
along with wide-field instrumental effects.

2In practice, an image is usually made over a smaller field of view, and this is accomplished by resampling
the visibilities onto a coarser spatial frequency grid before Fourier inversion. See Section3.2.2on gridding.
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3.2.1 Writing and Solving the Imaging Equations

This section describes the imaging properties of the instrument, and introduces
the standard algorithmic framework used by most radio interferometric imaging techniques.
Sections3.2.2, 3.2.3and3.2.4later list details of the main computational steps involvedin
this image reconstruction process.

3.2.1.1 Measurement Equations

Using Eqns.3.1and3.4, the measurement equation after calibration is given by

[Sn×mFm×m]~I sky
m×1 =

~Vcorr
n×1 (3.7)

Here,~I sky represents the sky brightness as a set of pixel amplitudes, and ~Vcorr is a list of
measured visibilities. The measurement matrix ([A] in Eqn.2.20) is given by [A] = [S][F].

3.2.1.2 Normal Equations

A weighted least-squares estimate of~I sky is found by solving the normal equa-
tions3 constructed from the above measurement equation.

[F†S†WS F]~I sky
m×1 = [F†S†W]~Vcorr

n×1 (3.8)

Here, [Wn×n] is a diagonal matrix of signal-to-noise-based measurement weights and [S†]
denotes the mapping of measured visibilities onto a regulargrid of spatial frequencies4.
The matrix on the LHS of Eqn.3.8 is called the Hessian matrix [H] and it describes the
imaging properties of the instrument. The vector on the RHS is the dirty image~Idirty defined
as the image produced by direct Fourier inversion of the calibrated and gridded visibilities.

[H] = [F†S†WS F] (3.9)
~Idirty = [F†S†W]~Vcorr (3.10)

In the next two sections, we will describe the properties of [H], define the point spread
function~I ps f, and show that for standard interferometric imaging, Eqn.3.8 describes the
dirty image as the result of a convolution between the sky brightness and the point spread
function (i.e. a discretized and 1-D version of Eqn.2.13).

3 The weighted least-squares solution for a system of linear equations [A]~x = ~b is found by forming and
solving the normal equations [A†WA]~x = [A†W]~b. Here, [A] = [S][F] is the measurement matrix, [W]
is a diagonal matrix of weights and [H] = [A†WA] is called the Hessian matrix. (See AppendixB for a
derivation.)

4Note that the subscripts on the matrices in Eqn.3.7have been dropped in Eqn.3.8. Hereafter, the shapes
of individual matrices will be listed only when relevant to the point being made, and will default to their
shapes as first defined.



32

3.2.1.3 Point Spread Function

The point spread function (PSF,~I ps f) is the impulse response function of the
instrument. The PSF for a given direction on the sky is the image produced by a point
source at that location. If the PSF is shift-invariant, it can be computed once, for a source
at the phase center. Let us define~I ps f as the image produced by observing a point source
of unit flux at the phase center. The PSF is the dirty image formedvia the RHS of Eqn.3.8
for a constant visibility function of unit amplitude (represented by an × 1 vector of ones)
or the inverse Fourier transform of the gridded weights (weights accumulated onto anm×1
grid via the sampling matrix [S]).

~I ps f
m×1 = [F†S†W]~1n×1 = [F†] ~WG

m×1 where ~WG
m×1 = [S†W]~1n×1 (3.11)

~WG is anm× 1 vector containing a weighted average of the number of samples measured
at each discrete spatial frequency. Since [S] contains only ones and zeros, we can write
[WG] = diag( ~WG) = [S†WS] as a diagonal matrix formed from the vector of gridded
weights5. Note that~I ps f is the same asI ps f(l,m) from Eqn.2.14but written with weights
and in vector form.

Figure 3.1 shows a 1-D example of gridded weights and the PSF that is con-
structed from it. Note that if the sampling function were continuous (~WG contains all ones
and no zeros), the PSF would be a Kroneckerδ-function.

The shape of the PSF is controlled by theuv-coverage [S], and the visibility
weights [W]. The minimum width of the main lobe of the PSF defines the angular reso-
lution of the telescope and is controlled by the largest measured spatial frequency (given
in units of radians asθps f = 1/umax whereumax is the maximum baseline length in units
of λ). The PSF has sidelobes (ripples with negative and positiveamplitude) produced as
a result of missing spatial frequencies. Also, an interferometer always has a central hole
in its spatial-frequency coverage ranging from the origin of the uv-plane up to the shortest
measured spatial frequency, and this gives a PSF with zero integrated area. The peak of
the un-normalized PSF is given by the sum-of-weightswsum = tr[WG] and represents the
sensitivity of the instrument to a point source of unit amplitude.

3.2.1.4 Beam Matrix and Convolution

In this section, we show that the normal equations in Eqn.3.8describe the dirty
image as a convolution of the sky brightness distribution with the PSF of the instrument.

Consider the Hessian matrix for standard imaging (Eqn.3.9). By construction,

5Note that Eqn.2.14defines the PSF as the inverse Fourier transform of theuvsampling function without
any measurement weights. Eqn.3.11 is a discretized and practical version of this definition in which the
samples are allowed to be weighted non-uniformly.
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Figure 3.1:Sampling Weights and the Point Spread Function : This diagram shows a 1-dimensional
example of the gridded weights and the point spread functionthat is constructed from it. The plot on
the left shows the sample weights as a function of spatial frequency. The non-uniform amplitudes
in this plot indicate a non-uniform sampling in which some ofthe measured spatial frequencies are
sampled more than once. The plot on the right shows the point-spread-function (PSF) formed from
the Fourier inverse of these gridded weights (Eqn.3.11). The PSF has been normalized such that
its peak value is unity. The width of the central lobe of the PSF defines the angular resolution of
the interferometer. It is given byθps f = 1

umax

180×60
π

arcmin, whereumax is the maximum spatial

frequency in units ofλ (in this example,umax= 1.3 kλ andθps f = 2.6′ where′ denotes arc-minute).
The lower-level structures seen on either side of the central peak are called sidelobes.

[H] = [F†S†WS F] is a circulant convolution operator6 with ~I ps f (given by [F†] ~WG where
~WG is the diagonal of [S†WS]) as the convolution kernel7. This special form of [H] in

which each row contains a shifted version of the PSF (or instrument beam) is called the
Beam matrix (denoted by [B]). The convolution equation of interferometric imaging is
given as follows.

[Bm×m]~I sky
m×1 =

~Idirty
m×1 where [B] = [F†S†WS F] (3.12)

6A circulant matrix is one that is diagonalized by the Fouriertransform operator and its eigen-values are
given by the Fourier transform of one of its rows. A convolution operator constructed as [F†diag([F]~a)F]
(for ~a as the convolution kernel) is a circulant matrix andeig([C]) = diag([F]~a) (see footnote19 on page24
for the definition of a convolution operator). For a two-dimensional convolution, [F] is the outer product of
two one-dimensional DFT operators, and [C] is block-circulant with circulant blocks.

7In general, a matrix of the form [F][diag(~X)][F†] is a convolution operator with [F†] ~X as its kernel (the
function that the operator applies the convolution with).
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Figure 3.2:Normal Equations for Basic Imaging : This diagram represents the linear system of
equations that describe the imaging process of an interferometer (Eqn.3.12). The matrix on the left
is the Beam matrix which consists of a shifted version of the PSF in each row (rowi contains the PSF
shifted to the locationi on the sky). The column vector in the middle represents a one-dimensional
empty sky with two point-sources and the vector on the right (~Idirty) represents the dirty image.
When the Beam matrix [B] (on the left) is multiplied with the sky image~I sky, it implements the
shift-multiply-add sequence of a convolution. Therefore,this system of equations describes the
dirty image as the result of a convolution of the sky with the PSF. This is the system of equations to
be solved to reconstruct the image of the sky and the solutionprocess represents a deconvolution of
the PSF from the dirty image. The PSF used in this example is the same as that shown in Fig.3.1.

Figure3.2 is a pictorial representation of this convolution equation. The matrix
on the left is the Beam matrix [B], in which each row contains a shifted version of the
PSF. The column vector in the middle represents a 1-D empty sky with two point-sources.
When [B] is multiplied by the sky image, it implements the shift-multiply-add sequence of
a convolution, and the vector on the right represents the dirty image formed as a result of
this convolution between the sky image and the PSF.

Eqn.3.12and Fig.3.2 represent the system of equations that needs to be solved
to obtain an estimate of the true sky brightness. This solution process is called a deconvo-
lution, and the reconstructed estimate of~I sky is called a model image (denoted as~Imodel).

The diagram in Fig.3.2was constructed using 1-D (noise-free) numerical simula-
tions of a simple sky brightness distribution and the PSF shown in Fig.3.1(with m= 256).
The elements of the Hessian matrix were explicitly evaluated, and a matrix-vector product
computed to obtain the RHS vectors. The diagram therefore represents a realistic result
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and is not a toy illustration. The 1-D functions shown in the matrix on the LHS are from a
selected subset of rows from the full matrix, chosen to illustrate the shape of the 1D func-
tions in each row, and the locations of the peaks in each row correspond to the diagonal
elements of the matrix. Several such diagrams are shown in later chapters of this disserta-
tion, to illustrate the imaging equations in various situations (multi-scale, multi-frequency,
and wide-field imaging). All these diagrams were produced using similar 1-D simulations
that use the same sampling function and basic PSF as shown in Fig. 3.1.

3.2.1.5 Properties of the Hessian

A few properties of the Hessian are worth noting.

1. The elements on the diagonal of [H] correspond to the peaks of the PSFs (given by
the sum of weights) for each location in the image, and represent the sensitivity of
the instrument to a point source of unit flux (in all directions). When [H] = [B] the
Hessian represents an imaging instrument in which the PSF isspatially invariant8 and
all pixels in the weight image~Iwt are equal towsum.

2. A weight image~Iwt can be defined as anm × 1 column vector constructed from
these diagonal elements. When [H] = [B], all elements (pixels) of the weight image
contain the same number (wsum). In the general case this is not true, and this weight
image will be later used as a measure of the direction-dependent sensitivity of the
instrument.

3. The eigen-values of [H] are given by the diagonal matrix of gridded weights [WG] =
[S†WS] = diag([F]I ps f) (see Eqn.3.11). When [H] = [B], these are also the singular
values9.

8 The rows of [B] contain shifted versions of a single function, the PSF. This means that the instrument’s
impulse response function is identical for all directions on the sky. When direction-dependent instrumental
effects are included in the measurement equations, the instrument’s response changes with direction on the
sky. The PSFs become spatially-variant, and the elements of~Iwt are different from each other and describe
the direction-dependent sensitivity of the telescope.

9 The singular value decomposition of a matrix is given by [A] = [UΛsV†] where [U] and [V] contain
orthonormal columns and [Λs] is a diagonal matrix of singular values. The eigen-value decomposition of a
matrix is given by [A] = [XΛeX†] where the columns of [X] contain the eigen-vectors and [Λe] is a diagonal
matrix of eigen-values. When a matrix is Hermitian and symmetric, its singular values are related to its
eigen-values as [Λs] = abs([Λe]. Therefore, for the Beam matrix that is by construction positive semi-
definite, the eigen and singular-value decompositions are the same and [U] = [V] = [X] = [F] and [Λs] =
[Λe] = [WG]. The singular value decomposition (SVD) of a matrix can be used to compute its pseudo inverse
(an approximate inverse). The SVD is often used when the matrix to be inverted is rank-deficient. The
SVD of the matrix can also be written as a sum of rank one matrices and their associated singular values
A =

∑m
i=0 UiλiV

†
i . Its inverse is calulated by using only those singular values whose magnitude is larger than

ǫ. Therefore,A+ =
∑m

i=0
λi>ǫ

Vi
1
λi

U†i .
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4. The diagonal elements of [WG] are positive for spatial-frequency grid cells that con-
tain measurements, and zero for those that do not. Therefore, when the spatial-
frequency plane sampling is incomplete, the inverse of [WG] and [H] do not exist.

With this background, the next three sections will describevarious ways of solving these
normal equations to obtain an estimate of the sky brightnessdistribution.

3.2.1.6 Principal Solution

The principal solution (as defined inBracewell and Roberts[1954] and used in
Cornwell et al.[1999]) is a term specific to radio interferometry and represents the dirty
image normalized by the sum of weights. It is the image formedpurely from the measured
data, with no contribution from the invisible distributionof images (unmeasured spatial fre-
quencies). For isolated sources, the values measured at thepeaks of the principal solution
images are the true sky values as represented in the image model (in this case, a list of pixel
amplitudes10). The principal solution is an approximate solution of the normal equations
computedvia a diagonal approximation of the Beam matrix [B]. In general, each diagonal
element represents the sum of weights,wsum and is equal to the value given bymid{~I ps f}
which for the PSF is also the location of its peak.

The advantage of using a diagonal approximation is that image pixels can be
treated independently while computing the solution of the system. Further, for the Beam
matrix (when [H] = [B]), all diagonal elements are equal and given by the peak value of the
PSF. Therefore, the principal solution is computed by dividing all pixels in the dirty image
by the peak of the PSF (whose value ofwsum can be picked from any diagonal element of
[B]). To maintain consistency between definitions of the principal solution, and to introduce
the notation that will be used in the later chapters, we will write the following equation to
describe the operations that go into computing the principal solution one pixel at at time.

~I pix,psol
1×1 = [Hpeak

1×1

−1
]~I pix,dirty

1×1 (3.13)

where [Hpeak
1×1 ] is (in this simple case) a one-element matrix containing the peak of the PSF

(a diagonal element of [B] from some rowi), ~I pix,dirty
1×1 is the value of the corresponding (i th)

pixel from the dirty image, and~I pix,psol
1×1 is the value of the principal solution at thati th pixel.

Note that the element in [Hpeak] is the sum of weights for thei th pixel and is thei th element
of the weight image~Iwt.

Such a normalization by the Hessian diagonal is a combination of the DFT nor-
malization of 1

m and a scaling by the sum of weightswsum = trace(W) that creates a PSF

10 This definition of the principal solution can be naturally extended to situations in which the image model
is something other than a list of pixel amplitudes representing the intensity of the sky brightness distribution
in all directions. The principal solutions for multi-scaleand multi-frequency deconvolution are examples of
such situations and are explained in sections6.1.2.3and6.2.2.3.
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of unit peak. This means that a point source of flux 1.0 Jy will give a peak value of 1.0 in
the normalized dirty image. The values of the peaks in the normalized dirty image can now
be interpreted physically in true flux units of Jy/beam. For an instrument with complete
and uniform sampling where [S], [W] and [H] are scalar multiples of identity matrices,
~I ps f is aδ-function, the Hessian is purely diagonal, and this normalization gives the final
reconstructed image.

For standard imaging, the principal solution is trivial to compute as an image-
domain normalization by the sum of weights. However, as willbe shown in later chapters
for multi-scale and multi-frequency deconvolution, the principal solution can in general
involve more than just a normalization.

3.2.1.7 Linear Deconvolution

Consider a filled-aperture telescope where there is complete but non-uniform
sampling of theuv-plane. Let the distribution of samples follow a Gaussian function with
maximum sensitivity at the centre of theuv-plane. This causes a blurring effect in the
image. (A multiplication of the visibility function by a Gaussian in the spatial frequency
domain is a convolution of the image with another Gaussian, resulting in blurring.)

This system can be solvedvia a linear deconvolution. If all spatial frequencies
are measured at least once, [S] has full column rankm, and the diagonal matrix of gridded
weights [WG] = [S†WS] is positive definite, and therefore invertible. Let [W f ] be an esti-
mate for [WG−1] such that [W f WG] ≈ [~1] (anm× m identity matrix). The deconvolution
operator [F†W f F] can be applied to Eqn3.8to give [F†W f F][F†WGF]~I sky= m2~I sky which
can then be normalized to recoverI sky. Ideally, [W f ] = [WG−1] computed directly from
[WG] will exactly invert the Hessian. However in the presence ofnoise, a direct compu-
tation of [WG−1] will give artificially high weights to low signal-to-noisemeasurements,
and this can introduce artifacts into the estimate ofI sky. In practice, [W f ] is a Wiener filter
which, in addition to inverting [WG], attenuates measurements at different spatial frequen-
cies depending on their signal-to-noise ratios.

3.2.1.8 Non-Linear Deconvolution

A general interferometer samples the spatial frequency plane incompletely, with
the associated sampling matrixSn×m having a column rank< m. The m × m Hessian
therefore has rank< m, making it a singular matrix with no exact inverse. Therefore, even
though the convolution process described by the normal equations is linear, these equations
have multiple solutions, and cannot be solved by a linear deconvolution.

An intuitive explanation of this non-uniqueness is that thedata provide no con-
straints on what the unmeasured visibilities should be. Anychoice of values at the un-
measured spatial frequencies will be indistinguishable from any other. More formally, the
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dirty image on the RHS of Eqn.3.8 lies in the range space of the Hessian matrixH. A
rank-deficient Hessian implies that there is an entire rangeof images formed from spatial
frequencies that fall in the null space ofH, that if added to the sky model imageImodel,
will make no difference to the RHS of the normal equations. The solution to this system
of equations it therefore non-unique. The set of images formed from the null-space of [H]
(unmeasured spatial frequencies) is called the invisible distribution [Bracewell and Roberts
1954]. A common way of filling in these unmeasured spatial frequencies is to usea-priori
information about the typical structure of the sky to estimate the shape of the visibility
function in between the measured spatial frequencies. Thisa-priori information is applied
via a solution process that forces the model visibility function to agree with the data at all
measured spatial frequencies.

3.2.1.9 Iterative CLEAN Deconvolution

This section describes the general framework used in most image reconstruction
algorithms in radio interferometry. The steps given below follow the steepest-descent al-
gorithm forχ2-minimization (described for radio interferometric imaging in Schwab and
Cotton[1983]). All the algorithms in this dissertation are described within this framework.

In practice, the normal equations are solvedvia an iterativeχ2-minimization pro-
cess, not by explicitly evaluating the Hessian matrix and inverting it. This is because the
Hessian matrix for interferometric imaging is usually singular with no exactly computable
inverse, and is too large to handle numerically. Standard iterative deconvolution for in-
terferometric imaging is based on a Newton-Raphson approach, and the following steps
describe this process for radio interferometric image reconstruction. For an actual numeri-
cal implementation of these basic steps, several details need to be accounted for. Mainly, a
preconditioning scheme is used to weight the visibility data (Section3.2.3) while gridding
them onto a regular grid of spatial frequencies (Section3.2.2) and Fourier inverting to give
the dirty image. Deconvolution is then a combination of successively building up an image
of the sky by finding flux components and subtracting their effect from the dirty image
(Section3.2.4).

Pre-compute Hessian : Since the Hessian is a Toeplitz matrix (see footnote19 on
page24) with a shifted PSF in each row, it suffices to compute and store only one instance
of the PSFvia Eqn.3.21.

Initialization : Initialise the model image~Im
0 to zero or to a model that representsa-priori

information about the true sky.

Major and minor cycles : There are two types of iterations, one nested within the other.
The outer loop is called the major cycle and the inner loop is called the minor cycle. Steps
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2 to 4 represent the minor cycle of iterations which operate in theimage domain and search
for flux components to form a model of the sky brightness. Steps1 to 5 represent the major
cycle in which the data and models are converted between the visibility and image domains
so thatχ2 can be computed directly in the measurement domain.

1. Compute RHS: Compute an image from a set of visibilities. For the first iteration,
this is the dirty image formed from the measured visibilities ~Vcorr. For subsequent
iterations, it is called a residual image and is formed from the residual visibilities
computed as~Vres = ~Vcorr − ~Vmodelwhere~Vmodel is the current best estimate of the true
visibilities. In the first iteration,~Vmodel= ~0, ~Vres = ~Vcorr and~I res = ~Idirty. The residual
image is normalized by the sum of weights.

~I res = [F†S†W][ ~Vres] (3.14)

This step is called the reverse transform11.

2. Find a Flux Component : For iterationi, compute the update step by applying an
operatorT to the▽χ2 image.

~Imodel
(i) = T

(

~I res, ~I ps f
)

(3.15)

T represents a non-linear deconvolution of the PSF fromI res while filling-in un-
measured spatial frequencies (null space of the measurement matrix) to reconstruct
an image of the sky brightness. This estimate of the sky brightness is called the
model image~Imodel. Section3.2.4 describesT for several standard deconvolution
algorithms12.

3. Update model : Accumulate flux components from iterationi onto a model image.

~Imodel= ~Imodel+ g~Imodel
(i) (3.16)

g is called a loop-gain, takes on values between 0 and 1, and determines the step size
for each iteration in theχ2 minimization process.

4. Update RHS : The residual image is updated by subtracting out the contribution of
the flux components found in iterationi, damped by the loop-gain.

~I res = ~I res− g
(

~I ps f ⋆ ~Imodel
(i)

)

(3.17)

Repeat from Step2 until some termination criterion is satisfied (usually, when T
can no longer reliably extract any flux fromI res).

11 When combined with the forward transform defined in step5, this residual image is equivalent to com-
puting▽χ2 (see AppendixB for a derivation of an iterative Newton Raphson method).

12 Following the standard calculation for the update step in aχ2 minimization, T
(

~I res, ~I ps f
)

=

[F†S†WS F]−1~I res. However, in our case since the Hessian is singular, this form of T is never explicitly
computed.
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5. Predict : Visibilities that would be measured for the current sky model ~Imodel are
computed so that the model can be compared with the data~I corr and new residual
visibilities computed.

~Vmodel= [S F]~Imodel (3.18)

This is called the forward transform.

Repeat from Step1 until convergence is achieved (usually, when~Vres and~I res are
noise-like).

Restoration : The final Imodel is restored by first smoothing it to the maximum angular
resolution of the instrument. This is done by convolving thefinal model image by a restor-
ing beam~Ibeam (a Gaussian whose width is chosen as the width of the central lobe of the
PSF). This suppresses artifacts arising from unconstrained spatial frequencies beyond the
measured range. Then, the final residual imageI res is added to the smoothed model image
to account for any undeconvolved flux.

3.2.2 Gridding

The measured visibilities irregularly sample the continuous spatial frequency
plane (for example, along elliptical tracks), and need to bebinned onto a regular grid of
spatial frequencies so that the FFT algorithm can be used forFourier inversion. In section
2.2.2, a limiting spatial frequency grid was defined where theuv-pixel size is derived from
the time and frequency resolution of the correlations, suchthat the visibility measurements
naturally map to pixels on this grid. This spatial-frequency resolution corresponds to a very
wide image field of view that is often impractical (due to verylarge image sizes) or unnec-
essary (due to a compact brightness distribution, or attenuation by antenna power patterns).
To make an image over a more suitable (and smaller) field of view, the visibilities must
map touv-pixels on a coarser spatial-frequency grid.

Gridding can be described as an interpolation and resampling of the measure-
ments taken on the fine spatial frequency grid, onto a coarsergrid whose cell size is given
by the smaller field of view over which an image is to be made. The sampling theorem
states that if a function is band-limited, it can be completely represented by a set of sam-
ples spaced by the reciprocal of twice the bandwidth. In our case, the visibility function can
be assumed to be band-limited because of the finite field of view within which the source
of interest lies, and this defines a sampling interval on the spatial-frequency grid. LetmI

pixels on this coarse grid cover the same range of spatial frequencies asm did on the finer
grid (mI < m).
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3.2.2.1 Visibility-domain convolution

Gridding is done as a convolutional resampling13, and can be described by the
product of two operators. The first is [Gm×m], a convolution operator with a shifted ver-
sion of the gridding-convolution function in each row. The second is a resampling matrix
[RmI×m] with ones and zeros, whose columns define a Shah function that marks the grid onto
which the function is resampled. Both operate on the fine grid, and [R] reads off values at
the locations of the coarse-grid cell centres.

~Vgridded
mI×1 = [RmI×m][Gm×m][S†m×n][Wn×n]~V

obs
n×1 (3.19)

where [W] are visibility weights. [S†] places then visibility measurements onto the full-
resolution spatial-frequency grid of sizem. In practice, however, this full-resolution grid is
not computed, and the result is directly evaluated on the coarse grid. In other words, the
convolution and resampling are done as a single step for eachvisibility measurement.

A good choice for the gridding-convolution function is the prolate spheroidal
function ~Ps which has a small support-size (<10 grid cells) on the spatial-frequency plane
and whose Fourier transform drops off rapidly beyond a certain distance from the center of
the image (seeBriggs et al.[1999]).

A visibility-domain convolution operator can be constructed with ~Ps as the con-
volution kernel. This gridding-convolution operator in the spatial frequency domain is
given byGps = [FXF†] where [X] = diag([F†] ~Ps). This visibility-domain convolution
is equivalent to multiplying the image domain by~I ps = [F†] ~Ps. Since ~Ps has been intro-
duced only for the purpose of interpolation, its effect needs to be removed from the image
domain. To remove the multiplicative effect of the gridding-convolution function from the
final mI × 1 image, a grid correction is done in the image domain using a truncated version
of ~I ps, or by explicitly evaluating the Fourier transform of the prolate-spheroidal function
used while gridding.

In Chapter4, we will discuss the use of other convolution kernels that are used to
implement direction-dependent corrections. In all cases the gridding-convolution operators
are constructed as described above from the appropriate convolution kernels. The symbol
[G] is used for a generic convolution operator in the visibility domain.

13Convolutional resampling is a method that uses a convolution to interpolate between measurements to
estimate the value of the observable at a set of locations that may be different from the actual measurements.
For example, an interferometer measures the sky visibilityfunction at an irregular set of points on the spatial
frequency plane, but the use of the FFT algorithm for imagingrequires that measurements lie on a regular
grid. To achieve this, the measurements are first convolved with a smoothing kernel and the results are
sampled at the new locations (regular grid).
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3.2.2.2 Gridding and degridding

The following equations describe the reverse transform used in the deconvolution
major cycle. The normalized dirty image and PSF are computedas follows by gridding a
list of visibilities.

~Idirty
mI×1 = w−1

sum[I ps−1][F†RGpsS†W]~Vcorr
n×1 (3.20)

~I ps f
mI×1 = w−1

sum[I ps−1][F†RGpsS†W]~1n×1 (3.21)

where the [I ps−1] is called the grid-correction step, and the division bywsum = tr[W] is a
normalization that forces the peak of the PSF to represent one unit of flux. This normalized
dirty image is also the principal solution of the normal equations (see section3.2.1.6),
where the normalization bywsum represents the inversion of a diagonal approximation of
the Hessian.

The model image~Imodelobtained at the end of each minor cycle is used to predict
visibilities that the interferometer would have measured for ~Imodel. The following equa-
tion describes the forward transform used in the deconvolution major cycle The process
of computing a list of visibilities from [F]~Imodel is called degridding. Here too, since~Ps

is used only for interpolation on theuv-plane, its image-domain effect must be separately
accounted for.

~Vmodel
n×1 = [S GpsR†F][ I ps]−1~Imodel

m×1 (3.22)

where [R†] maps the model visibility function from the coarse grid to the fine grid, before
interpolating across the fine gridvia a convolution, to evaluate the model visibilities at the
sampled spatial frequencies.

The calculation of these transforms involves traversals ofthe entire set of vis-
ibility data and this is a computationally expensive operation. Therefore, deconvolution
algorithms usually tailor the frequency of major and minor cycles to perform trade-offs
between performance, accuracy and total number of iterations. Eqns.3.20, 3.21and3.22
represent practical implementations of Eqns.3.10, 3.11and3.18respectively to compute
the dirty image, point spread function and model visibilities. All references to~Idirty, ~I ps f

and~Vmodel that appear in later chapters can refer to either form.

3.2.3 Preconditioning

In the solution of large systems of equations, preconditioning is a step that is de-
signed to reduce the condition number14 of the system, making its solution more tractable

14 The condition number associated with a system of equations [A]~x = ~b gives a bound on how sensitive
the solution vector~x will be to approximations in the solution process. A well-conditioned system has a low
condition number, implying that the solution is equally sensitive to approximations involving any parameter.
The condition number is given by the ratio of the largest to smallest eigen-values of matrix [A]. For a set
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and stable. For the normal equations in Eqn.3.8, the condition number depends on the
distribution of gridded weights15, which controls the shape of the PSF. Traditionally, pre-
conditioning has been done by computing and using imaging weights to alter the shape of
the PSF according to whatever makes the normal equations easier to solve.

The imaging weights [Wim
n×n] are computed as the product of preconditioning

weights [Wpc
n×n] and the measurement-noise-based weights [Wn×n], and are used instead of

[W] during gridding.
[Wim] = [Wpc][W] (3.23)

The PSF that is formed using [W] = [Wim] in Eqns.3.11and3.21 and Figure3.1 is the
preconditioned PSF, and the Hessian (Beam matrix) becomes aconvolution operator with
this new PSF in each row. In practice, the preconditioning orweighting scheme is cho-
sen to optimize either the shape of the PSF or the sensitivityof the instrument or some
combination of both.

3.2.3.1 Types of Image Weighting

Several weighting schemes are described below (seeBriggs[1995] for a complete
and detailed description). For radio interferometric imaging, preconditioning weights are
usually computed in gridded form as anm×1 list of uv-plane weights, and then de-gridded
(or resampledvia [Sn×m]) to form ann× 1 list of visibility weights (~Wpc

n×1 = [Sn×m] ~Wpc,G
m×1 ).

Eqn.3.23 is then used with [Wpc
n×n] = diag( ~Wpc

n×1) to form imaging weights that are used
during gridding. Note that this method often requires two passes through the data, one to
construct the imaging weights, and one to apply them. Sometimes however, depending on
numerical stability, the preconditioning weights can alsobe applied in gridded form. This
method is advantageous in that it requires only one pass through the data.

Natural : The natural weighting scheme gives equal weight to all samples ([Wpc] = [~1],
ann× n identity matrix) and preserves the instrument’s peak sensitivity, making it ideal for
the detection of low signal-to-noise sources. However, since the gridded weights [WG] =
[S†WS] are often proportional to sample density on the spatial frequency plane, an irregular
sample density will give a high condition number and the PSF can have a wide main lobe
and high sidelobes.

Uniform : Uniform weighting gives equal weight to each measured spatial frequency irre-
spective of sample density, thus theoretically reducing the condition number to 1. It is com-

of normal equations, the eigen-values of the Hessian are inversely related to the variance or uncertainty of
each parameter in the system, and the condition number measures the maximum relative uncertainty between
parameters.

15 In interferometric imaging, the presence of unmeasured spatial frequencies, will make some eigen-
values exactly zero, giving a condition number of infinity. However, in practice, we can consider the condition
number computed only from non-zero eigen-values, as the ratio between the largest and smallest non-zero
gridded weights.
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puted as a weight, based on sample density for each spatial frequency grid cell, and is equiv-
alent to a pseudo-inverse of the gridded natural weights, computedvia its singular-value de-
composition (see footnote9 on page35). Them×1 list of gridded preconditioning weights
( ~Wpc,G) is constructed from the diagonal of [WG+]. The resulting PSF has a narrow main
lobe and suppressed sidelobes across the entire image and isbest suited for sources with
high signal-to-noise ratios to minimize sidelobe contamination between sources. However,
the peak sensitivity is much less than optimal, since data points in densely sampled regions
have been weighted down to make the weights uniform. Also, isolated measurements can
get artifically high relative weights and this may introducefurther artifacts into the PSF.
Note that in the case of complete sampling of the spatial frequency plane ([S] is of full
rank), uniform weighting implements a linear deconvolution (the uniformly-weighted PSF
will be aδ-function, and the Hessian will be a trivially invertible diagonal matrix).

Super-Uniform : Super-uniform weighting is uniform weighting performed bycounting
visibility samples that fall not only within a single spatial frequency grid cell, but in a
N × N block of cells around the grid cell of interest (N = 3, 5, 7, etc). This method tends
to give higher weights to sparsely sampled regions of theuv-grid, as compared to densely
sampled regions, and gives a PSF with inner sidelobes suppressed as in uniform weighting
but far-out sidelobes closer to that with natural weights. The peak sensitivity is also closer
to natural weighting.

uv-Taper : uv-tapering applies a multiplicative Gaussian taper~Tuv to the spatial frequency
grid, to weight down high spatial-frequency measurements relative to the rest. This sup-
presses artifacts arising from poorly sampled regions nearand beyond the maximum spatial
frequency. This is important for deconvolution because visibilities estimated for these re-
gions would have poor or no constraints from the data. Also, the natural PSF is smoothed
by [F†] ~Tuv and this tunes the sensitivity of the instrument to scale sizes larger than the
angular-resolution of the instrument by increasing the width of the main lobe.uv-tapering
is usually applied in combination with one of the above weighting methods and is applied
after gridding.

Briggs/Robust : Briggs or Robust weighting [Briggs 1995] creates a PSF that smoothly
varies between natural and uniform weighting based on the signal-to-noise ratio of the
measurements and a tunable parameter that defines a noise threshold. High signal-to-noise
samples are weighted by sample density to optimize for PSF shape, and low signal-to-
noise data are naturally weighted to optimize for sensitivity. The weights are derived by
minimizing theL2 norm over an image of a point source of fluxsas seen by the instrument.
The weights are computed for alluvgrid cells as

~Wpc,G =
const

s2 ~WG + ∆s2
(3.24)

where∆s2 is a noise threshold ands is a tunable parameter. A large value ofs makes
the weighting nearly uniform, and a value of zero makes it tend to natural weighting. The
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condition number of the system is reduced (compared to natural weighting), but higher than
1.0 because it weights low signal-to-noise measurements naturally.

Wiener Filter : Wiener filtering is a robust linear deconvolution that weights spatial fre-
quencies with high signal-to-noise data uniformly, and suppresses spatial frequencies with
low signal-to-noise ratios. The Wiener filter is constructed (pixel-by-pixel) as

~Wpc,G =
~WG
†

[

~WG
†
· ~WG + σ2

~Psignal

] (3.25)

whereσ2 is the variance of the measurement noise and~Psignal is the expected power spec-
trum of the signal (square of the visibility function of the expected sky brightness distribu-
tion). The ratioσ2/~Psignal = 1/S NRis the inverse signal-to-noise ratio of the instrument
across the visibility domain and can be a tunable parameter to bias the weighting towards
uniform or natural weighting. The result is a nearly uniformly-weighted PSF that correctly
represents the sensitivity of the instrument at various spatial frequencies16. A uv-taper can
be built into the Wiener filter by setting~Psignal = ~T2

uv ≡ ([F]~Ibeam)2 to be a taper function that
defines the angular scale to which the instruments sensitivity is tuned (~Ibeam is a Gaussian
of the chosen angular scale.). For a filled-aperture instrument, this form of preconditioning
is a robust linear deconvolution that directly delivers thesolution of the system.

3.2.4 Deconvolution

This section describes the minor cycle of iterative image reconstruction. For the
minor cycle,~Idirty is assumed to be a perfect convolution of the PSF with the truesky
brightness, where~Idirty, ~I ps f are given by Eqns.3.20and3.21. The operatorT in Eqn.3.15
constructs a model image~Imodel via a deconvolution.

The CLEAN algorithm forms the basis for most deconvolution algorithms used
in radio interferometry. The peak of the residual image gives the location and strength of
a potential point source. The effect of the PSF is removed by subtracting a scaled~I ps f

from ~I res at the location of each point source and updating~Imodel (Eqn.3.16). Many such
iterations of finding peaks and subtracting PSFs form the minor cycle. Algorithm1 lists
pseudo-code for the basic CLEAN deconvolution algorithm that models the sky in a pixel
basis. Basic CLEAN is best suited to isolated point sources whose amplitude is constant
across the observing bandwidth. Deconvolution algorithmsthat produce multi-scale and
multi-frequency source models are described in Chapter6.

16 The use of a Wiener filter for post-gridding preconditioningwas developed by T.J.Cornwell et al in
2008, for use with the ASKAP telescope. This work is unpublished.
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3.2.4.1 Variants of CLEAN

Högbom : In Högbom CLEAN [Högbom 1974], the minor cycle subtracts a scaled and
shifted version of the full PSF to update the residual image for each point source. After the
initial dirty image is computed, only minor cycle iterations are done, making this a purely
image-domain algorithm. It is computationally efficient but susceptible to errors due to
inappropriate preconditioning that will not be corrected during the major cycle.

Clark : Clark CLEAN [Clark 1980] does a set of Högbom minor cycle iterations using
a small patch of the PSF. This is an approximation that will introduce errors in the image
model, but the minor cycle iterations are stopped when the brightest peak in the residual
image is below the first sidelobe level of the brightest source in ~I res. The residual image is
then re-computed as~I res = [F†]([F]~Idirty − [F]~Im) to eliminate aliasing errors.

Cotton-Schwab : Cotton-Schwab CLEAN [Schwab and Cotton 1983] is similar to the
Clark algorithm, but computes the residualvia a full major cycle as~I res = [F†S†W](~Vcorr −
[S F]~Im). It is time consuming but relatively unaffected by preconditioning and gridding
errors because it computesχ2 directly in the measurement domain. It also allows highly
accurate prediction of visibilities without pixelation errors.

Steer-Dewdney-Ito : The Steer-Dewdney-Ito CLEAN [Steer et al. 1984] minor cycle
finds the locations of sources by setting an amplitude threshold to select pixels. The com-
bined set of pixels is then convolved with the PSF and subtracted outvia a Clark major
cycle. This algorithm is more suited to deconvolving extended emission.

Multi-Resolution : Multi-Resolution CLEAN [Wakker and Schwarz 1988] performs a
series of Högbom minor cycles on a smoothed version of the dirty image as well as on
a difference image, to reconstruct large-scale structure that isinadequately sampled at the
low spatial frequencies while retaining high resolution structure.

Multi-Scale : Cornwell-Holdaway Multi-Scale CLEAN (CH-MSCLEAN) [Cornwell
2008] is a scale-sensitive deconvolution algorithm designed for images with complicated
spatial structure. It parameterizes the image into a collection of inverted tapered paraboloids.
The minor cycle iterations use a matched-filtering technique to measure the location, am-
plitude and scale of the dominant flux component in each iteration, and take into account
the non-orthogonality of the scale basis functions while performing updates. Section6.1
contains a detailed description of a modified form of this algorithm (MS-CLEAN). A re-
lated method described inGreisen et al.[2009] usesuv-taper functions to create images
at different spatial resolutions, and uses heuristics to choose a spatial scale at which to
perform a set of Högbom minor cycle iterations.

Multi-Frequency : The Sault-Wieringa Multi-Frequency CLEAN (SW-MFCLEAN) [Sault
and Wieringa 1994] is a wide-band deconvolution algorithm that models the skybrightness
distribution as a collection of point sources with power-law spectra. The algorithm uses a
matched-filtering technique based on spectral PSFs that describe the instrument’s responses
to point sources with spectra given by the first two terms in a Taylor series expansion.
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Section6.2 contains a detailed description of a generalized form of this algorithm (MF-
CLEAN). Conway et al.[1990] and Likhachev[2005] describe similar multi-frequency
imaging techniques.

3.2.4.2 Constrained Optimization Solvers

Maximum Entropy : The Maximum Entropy method (MEM) [Cornwell and Evans 1985;
Narayan and Nityananda 1986], is a pixel-based deconvolution algorithm that performs a
rigorous constrained optimization in a basis of pixel amplitudes. MEM uses the Bayesian
formulation ofχ2 minimization, and applies a penalty function based on relative image
entropy−~Imln(~Im/~I prior). This choice of penalty function biases the estimate of thetrue
sky brightness towards a known prior image~I prior . If a flat image is chosen as the prior,
the solution is biased towards being smooth, and produces a more realistic reconstruction
of extended emission. A positivity constraint on the image pixels can be appliedvia a
penalty function given by ln(~Im), and an emptiness constraint can be appliedvia one given
by − ln[cosh(~Im − ~I prior )/σ] (σ is a noise threshold).

Non negative least-squares :The non-negative least-squares (NNLS) [Briggs 1995; Law-
son and Hanson 1974] algorithm is another pixel-based method that solves a least-squares
problem with linear-inequality range constraints for all its parameters. The main constraint
that is applied is the positivity of all pixels in the model. This algorithm was shown to be
well suited to moderately-resolved sources.

Adaptive Scale Pixel : The Adaptive Scale Pixel (ASP) [Bhatnagar and Cornwell 2004]
deconvolution algorithm parameterizes the sky brightnessdistribution into a collection of
Gaussians and does a formal, constrained optimization on their parameters. In the major
cycle, visibilities are predicted analytically with high accuracy. In the minor cycle, the
location of a flux component is chosen from the peak residual,and the parameters of the
largest Gaussian that fits the image at that location are found.

Other Methods : Other methods include the Richardson-Lucy algorithm that computes
a maximum-likelihood solution if the image noise follows Poisson statistics (appropriate
mainly for filled aperture instruments), the Gerchberg-Saxon-Papoulis algorithm that iter-
ates between the image and spatial frequency domains and applies support constraints in
both domains, and the Singular Value Decomposition method [Briggs 1995] that combines
a standard SVD inversion (uniform weighting) along with support constraints in the image
domain. Other multi-scale methods (also listed inCornwell [2008]) include Multi-Scale
Maximum Entropy which performs MEM simultaneously on a set of images at different
resolutions, and the use of Wavelets, Shapelets and Pixons to decompose the image in
a suitable basis. Smear-Fitting [Reid 2003] models the source with a set of basis func-
tions and then convolves each component with an elliptical Gaussian to account for the
uncertainty in its shape and location. There are several Monte-Carlo based image recon-
struction algorithms among which MC-FitRau and Cornwell[2005] models an image as
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a set of overlapping 2D Gaussians and uses a Monte-Carlo method to derive the optimal
set of flux components along with error bars for the best-fit parameters andSutton and
Wandelt[2006] uses customized sampling strategies to derive maximum-likelihood esti-
mates. Spatio-Spectral MEM [Bong et al. 2006] is an entropy based method for wide-
band imaging, where a smoothness constraint is applied across frequency. More recently,
Compressed-Sensing techniques [Wiaux et al. 2009] have begun to be used for image re-
construction in radio interferometry.

3.2.4.3 Full-Stokes Imaging

The Stokes vector for polarised sky brightness~IS tokes= {I ,Q,U,V} is related to
the coherence vector of images~ICorrs = {XX,XY,YX,YY} corresponding to all four correla-
tion pairs,via a linear transform (given by a 4× 4 operator per image pixel [Hamaker et al.
1996]).

~ICorrs
4m×1 = [S4m×4m]~IS tokes

4m×1 where [S4×4] =
1
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(3.26)

A full-Stokes deconvolution differs from standard methods in the computation of dirty
images and the minor cycle. The Stokes vector of dirty images~Idirty,S tokesis computed by
applying Eqn.3.26 to the set of dirty images in the correlation basis~Idirty,Corrs given by
Eqn.3.20. The different Stokes parameters are considered to be linearly independent and
deconvolution minor cycles are performed separately on each Stokes image. For compact
sources, position constraints are sometimes applied across Stokes parameters based on the
locations of peak residuals of the Stokes I image.Holdaway and Wardle[1990] describes
an algorithm that applies the constraint ofI2 ≥ Q2 + U2 + V2 during deconvolution.Sault
et al. [1999] describes another method where a steepest descentχ2 minimization leads to
the criteria of searching for peaks inI2 + Q2 + U2 + V2.
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Algorithm 1 : CLEAN with Cotton-Schwab major and minor cycles

Data: Calibrated visibilities :~Vcorr
n×1

Data: uv-sampling function :Sn×m

Data: Image noise threshold and loop gainσthr, gs

Result: Model Image :~Im
m×1

Compute the dirty image and the PSF :~Idirty, ~I ps f1

Measure the PSF peak sidelobes :fsidelobe= max{sidelobe(~I ps f)}2

Compute the restoring beam :~Ibm = Gaussian fit to the main lobe of~I ps f3

Initialize the model and residual images :~Im = 0; ~I res = ~Idirty4

repeat /* major cycle */5

Compute a flux limit :flimit = max{σthr, fsidelobe∗max{~I res}}6

repeat /* minor cycle */7

Find the location and amplitude of the peak :~Im
i = peak(~I res)8

Update the model image :~Im = ~Im + gs ~Im
i9

Update the residual image :~I res = ~I res− gs [~Im
i ⋆
~I ps f]10

until Peak residual max{~I res} < flimit11

Use current model image~Im to predict model visibilities~Vm12

Compute a new residual image~I res from ~Vcorr − ~Vm13

until Peak residual max{~I res} < σthr14

Restore the final model image :~I restored= ~Im⋆ ~Ibm+ ~I res15



CHAPTER 4

IMAGING WITH DIRECTION-DEPENDENT EFFECTS

This chapter introduces the concept of direction-dependent instrumental effects,
discusses how they affect the measurement and imaging process, and describes waysto
deal with them during image reconstruction. Direction dependent effects are those that
cannot be described by a single antenna-based complex number and calibrated outvia
standard methods. They have to be dealt with during the imaging process. When these
effects are included in the measurement equation, it results ina point spread function that
varies with position and time, making the imaging equation no longer a pure convolution.
Algorithms that correct for these effects usually usea-priori instrumental models, and it-
erate between an approximate minor cycle that assumes a position and time invariant point
spread function, and an accurate major cycle that calculates model visibilities by predicting
and applying antenna-based direction-dependent effects.

This chapter deals with the correction of direction-dependent effects during imag-
ing, assuming that they are knowna-priori (via measurements or models), and follows the
discussions inBhatnagar et al.[2008]; Cornwell et al.[2008]; Uson and Cotton[2008].
This chapter does not discuss the processes involved in measuring or solving for direction-
dependent antenna gains. Some methods that solve for these effects include the Peeling
technique of calibration and imaging [Nijboer and Noordam 2007], the use of eigen-beams,
an orthogonal set of basis functions to model the primary beam [Voronkov and Cornwell
2007], a self-calibration method for estimating and correctingantenna pointing offsets
[Bhatnagar et al. 2004], and solving for parameters of a phase screen model for propa-
gation effects [Intema et al. 2009; Yatawatta et al. 2008; Cotton and Uson 2006].

Section4.1briefly lists the different types of direction-dependent effects. Section
4.2.1uses a simple example of full primary beam imaging with an array of identical time-
invariant antennas, to introduce the theory of including direction-dependent effects in the
measurement equations and algorithms to solve it. Section4.2.2generalizes this theory
to include other direction-dependent instrumental effects, along with variability with time
and baseline. This entire chapter assumes that the bandwidth being used is narrow enough
that a single frequency analysis will suffice. Chapter7.2will later describe extensions that
apply to wide-band receivers and multi-frequency-synthesis imaging.

50
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4.1 Types of Direction Dependent effects

4.1.1 Antenna Primary Beam

Aperture Illumination Function : A commonly used array element for radio interfer-
ometery is a parabolic reflecting dish that collects the radiation incident on a large aperture
and focuses it onto a feed. The E-field incident at each point on this aperture is modified
by the radiation pattern of the feed as well as structures on the dish surface that make it
deviate from an ideal parabola. Jones matrices (see Eqn.2.15) describe this effect for each
point on the aperture. The collection of Jones matrices for all locations across the aperture
is called the aperture illumination function. Each antennameasures the integrated product
of the E-field incident on its aperture and the correspondingaperture illumination function.

Voltage Pattern : Consider the aperture illumination function of an antenna for only
one polarization component (say, only the first diagonal element of the Jones matrix). This
function is related to the concept of a complex antenna gain (gi) introduced in section3.1.1.
A single complex gain factor per antenna represents a constant multiplicative gain across
the entire image field of view. Since there is a Fourier relation between the image plane
and the aperture plane, such a constant image-domain gain maps to one aperture point.
However, a real antenna and reflecting dish will cover a wholerange of aperture points (a
finite-sized aperture), and the Fourier transform of this aperture illumination function gives
a direction-dependent complex gain per antenna, called a voltage pattern.

Primary Beam : Given a pair of finite antenna apertures, we can construct a set of baseline
vectors defined between all possible points on the two apertures (and not just the baseline
vector defined by the locations of the feeds). Each baseline of the interferometer is there-
fore sensitive to a range of spatial frequencies around the nominal value. The visibility
measured by each antenna pair can be described as the result of a convolution of the source
visibility function with a baseline aperture function evaluated at the nominal spatial fre-
quency (see Eqn.2.19). This baseline aperture function is the result of the convolution of
the aperture illumination functions of both antennas and its Fourier transform is called the
primary beam. A visibility-domain convolution with this aperture function is equivalent to
a multiplication of the sky brightness distribution by thisprimary beam.

Varying primary beams : Various related instrumental effects can be modeledvia the
aperture illumination functions. An antenna pointing offset can be modeled by a phase gra-
dient applied to the aperture illumination function of the antenna. For wide-field imaging
via mosaicing, a collection of pointings can be describedvia phase gradients across the
spatial frequency plane, and appliedvia the aperture illumination functions. If the antennas
are on azimuth-elevation mounts, as they track a celestial source, the primary beams rotate
on the sky and this effect can be modeled by a rotation of the aperture illuminationfunc-
tions. Aperture illumination functions are usually different for each set of feeds in the array
(either due to different imperfections in the antenna structures, or the location of feeds on
the focal-plane), and vary with time and frequency.
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4.1.2 Non-Instrumental Effects

Refraction through the atmosphere : The incident radiation can be corrupted in various
ways before it reaches the antennas and detectors. Refraction through various layers in
the Earth’s atmosphere can result in phase distortions thatcause direction-dependent shifts
and defocus in the image. This effect is usually describedvia a turbulent phase screen
that distorts the radiation wavefront before it reaches thearray elements. It can also be
described as a direction-dependent complex gain that can vary across the field of view of
each antenna. If these gains vary across the field of view, butare identical for all anten-
nas in the array, there will be no effect on the image. If these gains are constant across
the antenna fields of view, but different for each antenna, the image will be distorted but
standard direction-independent calibration methods willremove this effect. If these gains
vary across the field of view and are different for each antenna, it is a direction-dependent
effect that can be accounted for only during imaging by an appropriate choice of aperture
illumination function. These effects generally vary with time, frequency and polarisation.

The w-term : Thew-term (described in section2.1.1, Eqn.2.8) results in another direction-
dependent effect. The curvature of the sky causes the aperture plane of theinterferometer
to change with position on the sky, thus changing the effectiveuv-coverage and making the
PSF vary across the region of sky being imaged. The magnitudeof thew-term also varies
with time as the phase reference center is being tracked, resulting in an apparent shift in
the source position. If an image is created by approximatingthe curved sky with a single
tangent plane, a source located far away from the phase reference center will be smeared
out due to this time-dependent effect. In this situation, a single time and position invariant
PSF cannot be used to deconvolve the entire image.

4.2 Correction of direction-dependent effects

This section describes how various direction-dependent effects are modeled and
corrected during the imaging process. The measurement equations addressed here are sim-
plified forms of Eqns.2.22and2.23containing only direction-dependent effects and ignor-
ing [Kvis

n×n] (assuming all direction-independent effects have been calibrated out).

Section4.2.1discusses the solution of the system of equations shown in Eqn.2.23
where a single image-domain function can be used to describeall direction-dependent ef-
fects (all antennas are identical and time-invariant). In this case, a common primary beam
can be factored out of the deconvolved image and removed in a single image-domain cor-
rection step (from regions where it is above some amplitude threshold). Section4.2.2
discusses the more general case where direction-dependenteffects vary with time and are
baseline dependent. These effects are modeled as amplitude and phase effects in the visi-
bility domain and corrected using complex conjugates of these models. Some effects (e.g.
pointing-offsets) can be described by functions of unit amplitude and a non-zero phase,
and the use of the complex conjugate eliminates this effect completely. Other effects (e.g.
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aperture illumination function and primary beam) are modeled by complex functions with
non-unit amplitude and non-zero phase, and the use of the complex conjugate eliminates
only phase effects, but introduces a second factor of amplitude, which hasto be accounted
for in the image-domain (for reasons related to numerical stability). For primary beam ef-
fects, the dirty image produced by this method contains a factor of primary beam squared.
Section4.3 describes the recently developed AW-projection [Bhatnagar et al. 2008] al-
gorithm that solves the measurement equations shown in Eqn.2.22via a combination of
image and visibility-domain operations during iterative deconvolution. This approach is
illustrated using the example of primary beam correction inorder to compare this method
with the simple image-domain correction described in section4.2.1.

4.2.1 Image-domain corrections

This section describes the imaging equations and their solutions for the special
case where antenna primary beams are the only source of direction-dependent effects and
they can be assumed to be (1) the same for all antennas, baselines and frequency channels
and (2) constant in time (not rotating). In such a situation,the effect of a common antenna
primary beam can be factored out of the imaging equations anda simple adaptation of
standard imaging algorithms will suffice to solve the resulting system of equations. For the
more general case (section4.2.2) where aperture illumination functions are different for
each antenna and vary with time, a common primary beam cannotbe factored out of the
imaging equations. However, the approach described in thissection can always be used as
an approximation.

4.2.1.1 Image Model

When the primary beams of all antennas are identical (or are assumed to be so),
the brightness distribution measured by each antenna can bewritten as the product of the
true sky brightness distribution and the primary beam. Let~Pb be anm × 1 vector that
represents the antenna primary beam. The observed sky brightness distribution can be
modeled as follows.

~Imodel= [Pb]~I
sky (4.1)

4.2.1.2 Measurement Equations

The interferometer samples the product of the primary beam and the sky. The
measurement equations for this system are given below. These equations are obtained by
settingDsky= Pb in Eqn.2.23.

[S][F]
{

[Pb]~I
sky

}

= ~Vcorr (4.2)
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4.2.1.3 Normal Equations

The normal equations constructed for the above measurementequation are shown
below (similar to Eqn.3.8).

[F†S†WimS F][Pb]~I
sky = [F†S†Wim]~Vcorr (4.3)

or [B][Pb]~I
sky = ~Idirty,pb (4.4)

[B] is the Beam matrix consisting of shifted versions of~I ps f in each row and~Idirty,pb is the
result of the convolution of~Pb · ~I sky with ~I ps f (note that~Idirty,pb, ~I ps f are the dirty image and
point spread function computedvia Eqns.3.20and3.21and [Pb] = diag( ~Pb)). The diagonal
elements of [B][Pb] form the weight image~Iwt (introduced for the standard imaging case
at the end of section3.2.1.4). For the case of wide-field imaging using standard imaging
algorithms and identical primary beams the weight image is given by ~Iwt = wsum

~Pb and
represents the relative sensitivity of the instrument at each location on the sky.

Figure4.1 represents the normal equations given in Eqn.4.4, for a sky image
containing two point sources of equal amplitude. The matrixon the left of Figure4.1 is
the beam matrix [B]. The second matrix from the left represents the primary beam [Pb].
This system of equations can be viewed as the standard Beam matrix [ B] operating on the
product of the sky and the primary beam. The effect of such a measurement on the RHS is
that the off-center source and its response are attenuated by the value of the primary beam
at the location of the source. Note that this is not the same asmultiplying the dirty image
(shown in Fig.3.2) by the primary beam. A simple solution of these equations isto combine
the primary beam with the image model and use standard imaging methods along with a
post-deconvolution division of the model by the primary beam. Note however, that sources
that fall within the null of the primary beam cannot be recovered.

4.2.1.4 Post-deconvolution primary beam correction

Standard deconvolution algorithms (described in Chapter3) can be used to re-
construct a model image that represents the product of the sky and the primary beam
(~Imodel= [Pb]~I sky). A post-deconvolution division of the model image by the primary beam
(knowna-priori) will give an image of the reconstructed sky brightness distribution.

~Imodel,corrected= ~Imodel/ ~Pb (4.5)

Note, however, that the field of view over which this correction is possible is limited to
high signal-to-noise regions of the image. Such regions areusually determinedvia a cut-
off threshold at a level of few percent of the primary beam peak.

Note that even when antenna aperture illumination functions are not identical and
time-invariant, this approach can still be used as an approximation in the minor cycle and
section4.3discusses how this is done.
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Figure 4.1: Normal equations with an image-domain primary beam: This diagram represents
the imaging process of a radio interferometer when all antennas in the array have identical, time-
invariant primary beams (Eqn.4.4). In this diagram, [B] is the Beam matrix, and [Pb] represents a
diagonal matrix with a Gaussian primary beam filling its diagonal elements. This system of equa-
tions can be viewed as the PSF being convolved with the product of the primary beam and the sky
(here, with two point sources). The effect of the primary beam on the dirty image (RHS) is that the
off-center source and its response are attenuated by the value of the primary beam at the location of
the source (compare the peaks of~Idirty,pb with the RHS of Fig.3.2which uses the same Beam matrix
[B] and sky model~I skybut has no primary beam). To remove this effect during image reconstruction
(in non-zero regions of the primary beam), the primary beam can be combined with the sky model
during deconvolution and the sky brightness reconstructedvia a post-deconvolution division of the
model image by the primary beam (i.e. solving this system of equations from left to right).

4.2.2 Visibility-domain corrections

In general, direction-dependent effects vary with time and frequency and are dif-
ferent for each antenna and baseline. This section describes a technique to model and
correct these effects in the visibility domain where each measurement can be treated indi-
vidually, and to do this within the standard deconvolution framework. These algorithms are
described in detail inBhatnagar et al.[2008]; Cornwell et al.[2008].

4.2.2.1 Constructing a visibility-domain gridding-convolution function

The general idea of correcting direction-dependent effects in the visibility domain
is the following. When there are direction-dependent effects, a measured visibility can be
written as the result of convolving the true visibility function with another function~Kdd

i j
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centered at the spatial frequency defined by thei j baseline1. The effect of this convolution
can be undone by placing the measured visibility on the spatial frequency plane and then
convolving it with an estimate of~Kdd−1

i j before resampling it onto a coarseuv-grid2. This
calculation is similar to the convolutional resampling done for gridding (section3.2.2) and
the correction of direction-dependent effects can be combined with the gridding process
as a sequence of convolutions on the spatial-frequency plane done before resampling3.
A gridding-convolution function that corrects direction-dependent effects for baselinei j
during gridding is~Kdd−1

i j ⋆ ~Ps where ~Ps is the prolate spheroidal function. Several direction-
dependent effects can be combined to form a single gridding-convolution function.

The image formed using these gridding-convolution functions will be devoid of
all the direction-dependent effects that were included in the model (upto the accuracy al-
lowed by FFT-related numerical errors and approximations and truncations used to compute
these deconvolution kernel functions.).

Note that when the inverse of~Kdd
i j does not exist, its complex conjugate can be used to

calculate an approximate inverse (element-by-element).

~Kdd−1

i j ≈ ~Kdd∗
i j /(~K

dd∗
i j · ~Kdd

i j ) (4.6)

The following sections list various forms of~Kdd
i j .

4.2.2.2 Primary beam effects

Let ~Jm×1 represent a single-polarization aperture illumination function 4, dis-
cretized on the fine spatial frequency grid. Let~Vp = [F†] ~J be the corresponding antenna
voltage pattern across the entire field of view allowed by thetime and frequency resolutions
of the measurements. The primary beam~Pbi j affecting measurements from the baseline
formed by antennasi and j is given by

~Pbi j = ~Vpi · ~Vp
∗
j = ([F†] ~Ji) · ([F†] ~J∗j ) = [F†]( ~Ji ⋆ ~J

∗
j ) = [F†] ~Kpb

i j (4.7)

where⋆ represents convolution5. During measurement, the sky brightness measured by
baselinei, j is multiplied by this primary beam~Pbi j . This is equivalent to a convolution on

1 The elements of~Kpb
i j represent the convolution function for baselinei j , pixellated on a fine spatial

frequency grid. The term [Kdd
i j ] in Eqn.2.19represents the same quantity, again for one baselinei j , but is a

4× 4 matrix that describes the full-polarization response of the feeds, evaluated atoneaperture point.
2A convolution with a function~K can be undonevia a second convolution with 1/~K as the kernel.
3 A sequence of convolutions can be computedvia a single convolution using a kernel constructed as the

convolution of the individual kernels. This is possible because convolution is associative and commutative.
4J in Eqn.2.15represents a 2× 2 Jones matrix foroneaperture point.~J is a vector formed from one

element of the Jones matrix (the first diagonal element, one polarization), over a range of aperture points.
5 In Eqn.2.17, [Ki j ] = [Ji ] ⊗ [J j ] is a 4× 4 full-polarization matrix foroneaperture point, but here,

~Kpb
i j =

~Ji ⋆ ~J∗j is the convolution of two aperture illumination functions,for one polarization pair. These two
expressions become equal in the following situation. If theaperture illumination functions areδ-functions,
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the spatial frequency plane with~Kpb
i j , a vector containing the convolution of the illumination

patterns of antennasi and j.

For time-varying primary beams,~Kpb
i j =

~Ji ⋆ ~J∗j is different for each timestep.

When ~Ji is different for different antennas,~Kpb
i j also varies with baseline. The A-projection

algorithm [Bhatnagar et al. 2006; 2008] uses~Kpb∗

i j as a time-varying baseline-based convo-
lution function along with the prolate spheroidal functionfor gridding. Another approach
for correcting for~Kpb

i j (or Dsky
i j for the primary beam) is the direct evaluation of the integral

in Eqn. 2.18, separately for each baseline, during the forward and reverse transforms of
iterative image deconvolution [Uson and Cotton 2008].

The use of~Kpb∗

i j to correct primary beam effects is equal to using only the numer-

ator of Eqn.4.6. It cancels the phase of~Kpb
i j but squares its amplitude. The image formed by

such a gridding-convolution function will contain no phaseeffects, but will be multiplied
by an extra instance of the primary beam amplitude. To correct this, the image is divided by
an average weight image~Iwt,pb = [F†]

∑

i j
~Kpb∗

i j wi j ~K
pb
i j (wherewi j are the imaging weights).

However, when~Kpb
i j varies with time, frequency and baseline, an image-domain normaliza-

tion by the average weight image is an approximation of the denominator of Eqn.4.6and
does not correctly cancel out the primary beams for the individual baselines and timesteps.
The peak fluxes in the dirty image are therefore approximate,and the use of the correct
~Kpb

i j for each baseline and timestep during the prediction of model visibilities is a necessary
condition for the convergence of the image reconstruction process. Section4.3 describes
this process in detail.

4.2.2.3 Pointing Offsets

An antenna pointing offset can be described by a phase gradient across the aper-
ture illumination function~Ji of that antenna. Letl i,mi and l j,mj be direction cosines that
describe the pointing offsets of antennasi and j from the phase reference center (in the
image domain). For a primary beam modeled as a Gaussian [Bhatnagar et al. 2004],
the associated convolution operator for the baselinei j is Kpo

i j = e−[(li−l j )/σl ]2−[(mi−mj )/σm]2

ei[(u−ui j )(li+l j )+(v−vi j )(mi+mj )] whereσl , σm represent the width of the associated antenna pri-
mary beam. The phase term depends on the pointing offsets of the two antennas, and is
a phase gradient across a range of spatial frequencies around the central spatial frequency
(uv-track) measured by the baselinei j . For small offsets, [Kpo

i j ] is purely a phase-effect and

a convolution function constructed as~Kpo∗

i j will remove this offset.

then ~Kpb
i j is also aδ-function, can be represented completely for baselinei j by a single scalar and becomes

one element of the 4× 4 matrix [Ki j ]. This corresponds to a flat primary beam (Fourier transformof a
δ-function). In other words, when there is onlyoneaperture point, the voltage pattern is constant across
the field of view and corresponds to a direction-independantcomplex antenna gain (section3.1.1) that the
process of calibration solves for. For a detector with a finite aperture (more than one aperture point), the
antenna response (voltage pattern) is no longer a direction-independent effect.
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4.2.2.4 Thew-term

The effect of sky curvature across wide fields of view can be described as a
baseline-based convolution of the source visibility function with ~Kwp

i j = [F][ ~Wpro j
i j ], where

Wpro j
i j = e−2πiwi j (

√
l2+m2−1−1) (for eachl,m) is the Fresnel propagator (see Eqn.2.8) eval-

uated for every pixellated direction (l,m) in the image domain. Thew-projection algo-
rithm [Cornwell et al. 2003; 2008] uses~Kwp∗

i j with the prolate spheroidal function during

gridding-convolution. In this case, [Kwp] is exactly unitary, and~Kwp∗ cancels thew-term.
This operation is equivalent to converting visibilities tothat of a flat sky before making an
image.

Other methods exploit the fact that the effect of the w-term is small close to
the phase tracking center. Faceting algorithms divide the field of view into a number of
facets. Images are made by either projecting the facet images onto the local tangent plane
(image-plane faceting [Cornwell and Perley 1992]) and using the appropriate PSF for the
deconvolution of individual facet images, or by projectingthe (u, v) for each facet onto a
single tangent plane in the gridding step required for an FFT-based reverse transform [Sault
et al. 1999]. For very wide fields, a combination of faceting and w-projection is used.

4.2.2.5 Mosaicing

An image of a region of the sky much larger than the field of viewof each antenna
can be constructed from a mosaic of pointings [Cornwell 1988]. Mosaicing is an example
where a visibility-domain convolution operator is used to introduce a direction-dependent
effect and not correct it. The effect introduced is an intentional pointing offset. A mosaic
observation usually consists of a series of pointings wherethe phase tracking center for
each pointing coincides with its pointing center. Traditional instruments observe a series of
pointings one after another, and focal plane arrays observeseveral pointings in parallel.

One approach to make a mosaic image is to deconvolve each pointing separately
and then stitch together the final images, while accounting for any regions of overlap. This
method is simple, but prone to errors if there are bright sources beyond the main lobe in any
individual pointing, which is more than likely to be the casefor a mosaicing observation.

Another approach is to combine the data from all pointings during the gridding
stage, and create a single large image on which a single jointdeconvolution can be done in
the minor cycle. The gridding-convolution functions for each pointing need to have a phase
gradient that describes the offset between the center of the image and that of each pointing
center. The gridding-convolution operator is constructedfrom ~Kmos

i j = ei(ulp+vmp) where
lp,mp are direction cosines that describe the difference between the center of the mosaic
image and the center of pointingp. The weight image will now represent the direction-
dependent sensitivity across the entire field of view of the mosaic, due to differentwsum for
the different pointings. The prediction step needs to apply the inverse ofKmos to compute
model visibilities that can be compared with data from individual pointings.
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4.3 Wide-field Imaging with Generalized direction-dependent effects

Section4.3.1lists the measurement and normal equations for wide-field imag-
ing. Section4.3.2 describes the AW-projection algorithm [Bhatnagar et al. 2008] that
solves these equationsvia a combination of visibility-domain and image-domain opera-
tions. These equations and algorithms are listed in terms ofa generic direction-dependent
effect ~Kdd

i j . However, to provide an intuitive feel for these equations,we also show the spe-

cific form they take when~Kdd
i j =

~Kpb (antennas with identical and time-invariant primary
beams as discussed in section4.2.1). The purpose of this exercise is to clarify the difference
between the two methods (sections4.2.1and4.3.2) and to show how a practical iterative
algorithm combines approximate and exact calculations to converge to an appropriate so-
lution.

4.3.1 Imaging Equations

This section describes the process of image reconstructionwhile correcting for
direction-dependent effects within the iterative deconvolution framework introduced in
Chapter3.

4.3.1.1 Measurement equations

Eqn. 2.19 shows that the visibilities measured by baselinei j are the result of
a convolution of the true visibility function with a function ~Kdd

i j . Eqn. 2.22 shows the
corresponding measurement equation in matrix form (and is re-written here).

~Vcorr = [Sdd][F]~I sky (4.8)

~I sky represents the sky brightness over the complete field of viewallowed by the time and
frequency resolution of the measurements,~Vcorr are calibrated visibilities and [Sdd] is a
sampling matrix that includes a baseline-based convolution of the visibility function with
~Kdd

i j .

When ~Kdd
i j =

~Kpb (identical and time-invariant antennas), the primary beams

of all antennas are given by~Pb = [F†] ~Kpb and we can construct a single convolution
operator for all baselines (the entire spatial-frequency plane) as [Gpb

m×m] = [FPbF†] (see
section2.2.2.5for a derivation), and separate the steps of convolution andsampling. The
measurement equations become

~Vcorr = [S][Gpb][F]~I sky= [S][F][Pb]~I
sky (4.9)

where [Pb] = diag( ~Pb). This equation is the same as Eqn.4.2 and shows the connection
between an image-domain multiplication with the primary beam and a visibility-domain
convolution with~Kpb.
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4.3.1.2 Normal equations

The normal equations constructed from Eqn.4.8are given below.

[F†Sdd†WimSddF]I sky = [F†Sdd†Wim]Vcorr (4.10)

The RHS of Eqn.4.10shows that [Sdd†] convolves the measured visibility from each base-
line (i j ) with ~Kdd†

i j during gridding. The LHS shows that we now have two instancesof the

amplitude of [Sdd] (their phases cancel out due to the complex conjugate in [Sdd†], but their
amplitudes multiply).

The weight image~Iwt is constructed as follows and describes the direction-dependent
sensitivity of the imaging instrument (the direction-dependent equivalent of the weight im-
age~Iwt = wsum

~1 discussed in section3.2.1.5).

~Iwt = [F†]
∑

i j

~Kdd∗
i j wi j ~K

dd
i j or [~Iwt] = [F†][Sdd†WimSdd] (4.11)

If the elements of~Kdd
i j contain only phase terms, the use of a complex conjugate during

gridding will remove the direction-dependent effect completely. The resulting dirty image
(RHS of Eqn.4.10) will be devoid of direction-dependent effects and can be sent into a
deconvolution minor cycle that knows nothing about direction-dependent effects (as de-
scribed in section3.2.1.9). If the elements of~Kdd

i j contain amplitude and phase terms (e.g.
Kpb), the use of the complex conjugate will not correct it completely, and the dirty image
(RHS of Eqn.4.10) will not be free of direction-dependent effects. In this case, the weight
image (Eqn.4.11) is a measure of this multiplicative image-domain effect.

For example, when~Kdd
i j =

~Kpb, we can write [Sdd] = [S][Gpb] = [S][FPbF†]
and write the Hessian matrix as a product of two diagonal primary beam matrices and the
Beam matrix [B] = [F†S†WimS F].

[Pb
†][B][Pb]~I

sky = [Pb
†][F†S†Wim]~Vcorr (4.12)

or [Hpb2
]~I sky = ~Idirty,pb2

(4.13)

Note that the primary beam is a real function, and [Pb
†] = [Pb].

By analogy to Eqn.4.11, ~Iwt is computed by accumulating a weighted average of
~Kpb∗

i j
~Kpb

i j (computed from aperture illumination functions that vary with antenna and time)
onto the center of the spatial-frequency plane and then taking a Fourier inverse. This weight
image now represents an average of the square of the primary beam amplitude (phase effects
have been eliminated by this stage), and an average primary beam can be computed from it
as follows.

~Iwt = wsum~Pb
2

and ~Pb =

√

~Iwt/wsum (4.14)

Note that if both sides of Eqn.4.12are divided by~Pb, we get back the normal equations
shown in Eqn.4.4, which can be solved using standard deconvolution algorithms for the
minor cycle and interpreting the model image as a product of the sky and the primary beam.
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Figures4.2 and4.3 are pictorial representations of the normal equations shown
in Eqn.4.12. Fig. 4.2 shows the Hessian matrix ([Hpb2

] = [Pb][B][Pb]) being multiplied
with a sky brightness distribution containing two point sources. Note that [Hpb2

] is not a

convolution operator, and its diagonal represents the weight image~Iwt = wsum
~Pb

2. Figure
4.3 shows the same equation with the beam matrix and the primary beams separated out.
This factorization shows that this system of equations can solved (from left to right) by first
dividing the RHS by~Pb, followed by a minor cycle deconvolution (to eliminate the effect of
[B]) and finally a post-deconvolution division of the model image by the average primary
beam~Pb. Section4.3.2describes this process.

4.3.1.3 Principal Solution

As defined in section3.2.1.6, the principal solution is computed by dividing the
dirty image (RHS of Eqn.4.10) by the diagonal of the Hessian matrix (the weight image
~Iwt). The peaks in the resulting image will measure the sky brightness distribution in units

of Jy/beam. When~Kdd
i j =

~Kpb and~Iwt,pb = wsum~Pb
2
, the dirty image (RHS of Eqn.4.12)

contains two instances of the primary beam (one present in the data and one introduced by

the gridding process). A division by the weight image will remove this factor of~Pb
2

and
in the limit of complete spatial-frequency sampling, this principal solution will be the final
reconstructed image.

4.3.2 Iterative Deconvolution

This section describes how direction-dependent corrections are applied within an
iterative deconvolution framework. Direction-dependenteffects that affect only the phase
of the visibilities can be corrected during gridding, but isnot always possible to include
amplitude effects in the gridding-convolution functions and image-domain operations are
sometimes required. In the AW-Projection algorithm [Bhatnagar et al. 2008] discussed
below, a combination of visibility-domain and image-domain corrections are used.

Pre-compute Hessian : The ~I ps f is computedvia Eqn.3.21(i.e. using only the prolate
spheroidal~Ps as the gridding-convolution function and no direction-dependent effects).

The weight image~Iwt is computedvia Eqn.4.11. If all [ Kdd
i j ] are unitary, the use of the

complex conjugate will eliminate these effects and~Iwt = wsum
~1. Otherwise, the weight

image is a measure of the direction-dependent sensitivity of the instrument.

Pre-compute Primary Beam : When the antenna primary beam is the dominant direction-
dependent effect, an average primary beam is computedvia Eqn.4.14. In practice, primary
beams vary with baseline and time and this average primary beam is only an approximation.
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Figure 4.2: Normal Equations for General Primary-Beam correction : This diagram represents
the imaging process when the primary beam is the dominant direction-dependent effect and its
correction is donevia a visibility-domain convolution (Eqn.4.13). The Hessian matrix is no longer
a pure convolution operator, or in other words, the PSF is spatially variant (compare with [B] in
Figs.3.2and4.1). The diagonal of the Hessian (Eqn.4.14) represents the instrument’s sensitivity as
a function of direction. When this Hessian operates on the sky model, the peaks in the dirty image

are attenuated by~Pb
2

and the sidelobes are attenuated by~Pb (compare with the RHS of Fig.4.1
which uses the same sky model~I sky but has only the one~Pb already present in the data). This
system can also be written as shown in Fig.4.3.

Figure 4.3:Modified Normal Equations for General Primary-Beam correction : This diagram is
a factorized version of Fig.4.2 (Eqn. 4.12). The Hessian on the LHS is now written as a matrix
product of two diagonal matrices containing the primary beam [Pb] and a convolution operator (the
Beam matrix [B] from Fig. 3.2). This system can be solved from left to right by first multiplying
both sides of the equation by [Pb

−1] to convert the system into a pure convolution equation of the
type shown in Fig.4.1. The remaining primary beam is combined with the sky model for a set of
minor cycle deconvolution iterations, and divided out of the model image in a post-deconvolution
step (before the prediction step re-introduces the effect).
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Any image-domain operations that use it will not exactly correct the effect of time-variable
beams. For sources in the main lobe of the primary beam, theseerrors may be negligible
but for sources out in the sidelobes, beam asymmetries couldresult in 100% gain varia-
tions across the duration of the observation. However, the resulting errors are in the image
domain and affect only the minor cycle and several iterations with accurate major cycle
prediction are usually able to compensate for this.

Initialization : The model image~Imodel is initialized to zero or to ana-priori model.

Major and minor cycles : Steps1, 2, 6 and7 represent the major cycle of iterative
deconvolution, in which the data and models are converted between the visibility and image
domains while accounting for direction-dependent effects. Steps3 to 5 represent the minor
cycle, and are identical to those described in section3.2.1.9for deconvolution without any
direction-dependent corrections.

1. Compute RHS :The un-normalized residual image is computed with samplingma-
trix [Sdd] constructed from a baseline-based~Kdd−1

i j ⋆ ~Ps as described in section4.2.2.

~I res
mI×1 = [F†RSdd†Wim]~Vres

n×1 (4.15)

For the first iteration,~Vres = ~Vcorr and~I res = ~Idirty. All subsequent iterations use
~Vres = ~Vcorr − ~Vmodel.

2. Normalization : There are two ways of normalizing the residual image before be-
ginning minor cycle iterations. One approach is to calculate the principal solution
by dividing the RHS by~Iwt, and the other is to divide the RHS by an estimate of the
average~Pb and the sum-of-weights. Both approaches are valid, so it is important to
clarify the difference between the two.

(a) Flat-noise : Normalization by ~Pbwsum before deconvolution will result in a
model image described by~Imodel= ~I sky · ~Pb. (see Eqns.4.12and4.4). When the
primary beam is the dominant direction-dependent effect, this normalization is
consistent with the measurement process (i.e. the interferometer samples the
product of the sky and~Pb). The noise in the image is related directly to the
measurement noise due to the interferometer, and is the sameall across the im-
age. The minor cycle can give equal weight to all flux components that it finds,
but it needs to correct for this attenuation (assuming the form of attenuation is
known) to generate a true model of the~I sky. This form of normalization is use-
ful when the primary beam is the dominant direction-dependent effect because
the images going into the minor cycle satisfy a convolution equation. It is also
more appropriate for single-pointing fields of view.
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(b) Flat-sky : Normalization by the weight image~Iwt = ~Pb
2
wsumbefore deconvolu-

tion will give a dirty image whose peaks are consistent with~I sky and the model
image will be free of the primary beam. However, the image going into the
minor cycle will not satisfy a convolution equation and the noise in the dirty
image will be higher in regions where~Iwt

pb is small. The minor cycle needs to
account for this while searching for flux components (a signal-to-noise depen-
dent CLEAN). This form of normalization is useful for mosaicimaging where
the sky brightness can extend across many pointings. In thiscase a minor cy-
cle that solves directly for~I sky will incur fewer errors than one that solves for
~I sky~Pb. This is because mosaic observations are done for sources with spatial
scales larger than the field of view of each antenna, and therefore not present
in the data. Allowing the minor cycle to use flux components that span across
beams of adjacent pointings will provide a better constraint on the reconstruc-
tion of these unmeasured spatial frequencies. A flat-sky dirty image is more
likely to produce smoother large-scale emission.

3. Find a flux component : When the residual image is computed with a flat-noise nor-
malization, this step is identical to step2 for general iterative deconvolution (section
3.2.1.9). When the residual image has a flat-sky normalization, the process of finding
valid flux components must take into account the varying noise and sidelobe levels
across the field of view.

4. Update model image :Same as step3 for general iterative deconvolution (section
3.2.1.9).

5. Update RHS :Same as step4 for general iterative deconvolution (section3.2.1.9).

Repeat from step3 until the minor cycle flux limit is reached.

6. Correct for PB : Depending on the choice of normalization (step2) the model image
at the end of the minor cycle has to be further processed before model visibilities can
be predicted from it.

(a) Flat noise : This step is equivalent to the post-deconvolution primary beam
correction described in the previous section. A new model image is computed
as~Imodel/ ~Pb.

(b) Flat sky : No corrections are required because the flux model is alreadydevoid
of primary beam effects.

7. Predict : The prediction step of computing model visibilities from the current sky
model needs to re-introduce all the direction-dependent effects that are being cor-
rected for during gridding, before the model can be comparedwith the data forχ2

computation.
~Vmodel

n×1 = [SddR†F][ I ps]−1~Imodel
mI×1 (4.16)
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The reverse transform (steps1and2) is usually approximate because the dirty image
is normalized by a weight image computed as the average of allthe time and base-
line dependent effects, but this forward transform is accurate with model visibilities
being predicted by applying time and baseline dependent effects to the individual
visibilities.

Repeat from step1 until the final convergence criterion is satisfied.

Restoration : The final model image is restored by smoothing it with a restoring beam,
and adding back the residuals computedvia Eqn.4.15and normalized by~Iwt (the principal
solution).
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Algorithm 2 : CLEAN with Visibility-Domain Corrections for Direction-
Dependent Effects.

Data: Calibrated visibilities :~Vcorr
n×1

Data: Gridding convolution function :~Kdd
i j ⋆

~Ps

Data: uv-sampling function :Sn×m

Data: Image noise threshold and loop gainσthr, gs

Result: Model Image :~Imodel
mI×1

Compute the PSF :~I ps f1

Compute the weight image :~Iwt, using [Sdd] and [Sdd†]2

Compute the primary beam~Pb from ~Iwt3

Compute the dirty image :~Idirty using [Sdd†]4

Measure the peak PSF sidelobe :fsidelobe= max{sidelobe(~I ps f)}5

Initialize the model image and residual image :~Im = 0, ~I res = ~Idirty6

repeat /* major cycle */7

Normalize the residual image :~I res = [ ~Pb]−1~Idirty8

Compute a flux limit :flimit = max{σthr, fsidelobe∗max{~I res}}9

repeat /* minor cycle */10

Find the location and amplitude of the peak :δ~Im = peak(~I res)11

Update the model image :~Imodel= ~Imodel+ gs δ~Imodel12

Update the residual image :~I res = ~I res− gs [δ~Imodel⋆ ~I ps f]13

until max{~I res} < flimit14

Divide the model image by the primary beam :~Imodel= ~Imodel/ ~Pb15

Predict model visibilities~Vmodel from ~Imodel using [Sdd]16

Compute a new residual image~I res from ~Vres = ~Vcorr − ~Vm using [Sdd]17

until max{~I res} < σthr18

Restore the final model image19



CHAPTER 5

IMAGING WITH FREQUENCY-DEPENDENT EFFECTS

Broad-band receivers are being introduced into radio interferometry for two main
reasons. The first is to increase the sensitivity of the instrument and provide high-dynamic-
range continuum imaging capabilities superior to those of existing radio interferometers,
and the second is to use the wide bandwidths for detailed measurements of the spectral
structure of astrophysical sources. This chapter discusses the use of broad-band receivers in
radio interferometry, describes its effects on the imaging process, and summarizes existing
methods of multi-frequency image reconstruction.

The term multi-frequency synthesis (MFS) is commonly used to describe all
methods of multi-frequency image reconstruction. In general, MFS imaging is the pro-
cess of making a single continuum Stokes-I image by combining the measurements from
all frequencies within the band. For the purpose of this dissertation, MFS refers to the
process of creating an image by gridding all visibilities onto one singleuv-grid and using
standard deconvolution algorithms to construct an image ofthe continuum sky brightness.
The basic assumption with this technique is that the sky brightness has a flat spectrum.
Multi-frequency deconvolution refers to parameterizing the frequency dependence of the
sky brightness and solving for these parameters during deconvolution. One approach is to
calculate spectral PSFs that describe the instrument’s response to different spectral basis
functions (for example, Taylor series functions), and to then perform a joint deconvolution
to simultaneously extract images of the sky brightness as well as its spectral structure. The
Sault-Wieringa Multi-Frequency-CLEAN (SW-MFCLEAN) algorithm parameterizes each
pixel in the image with a constant across frequency and a slope across frequency (first two
Taylor functions). A more general description of this algorithm for an arbitrary number of
terms in the Taylor polynomial will be refered to as MF-CLEAN(MF-CLEAN).

Section5.1 first defines the problem of multi-frequency synthesis imaging by
describing the main effects of using broad-band receivers for Stokes I imaging using ra-
dio interferometers. Section5.2 compares several existing wide-band image reconstruc-
tion methods, explores their limits in the context of high-dynamic-range imaging with the
EVLA, and identifies areas where improvements are required (multi-scale deconvolution,
higher-order spectral model, and frequency-dependent primary-beam correction). Chapter
6 describes multi-scale and multi-frequency deconvolutionalgorithms in a common frame-
work to demonstrate that they are based on a similar idea. Chapter 7 then describes new
algorithms that build on the basic multi-scale and multi-frequency deconvolution methods
and includes wide-field imaging concepts described in chapter4.
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5.1 Wide-Band Radio Interferometry

The use of broad-band receivers in an interferometer can increase the signal-to-
noise ratio in the reconstructed continuum image by a factorequal to the square root of the
increase in bandwidth (according to the ideal radiometer equation1, the noise on a total-
power measurement is proportional toTsys/

√
∆ν · τ whereTsys is the instrumental system

temperature,∆ν is the receiver bandwidth, andτ is the integration time.). However, to
reconstruct a wide-band image of the sky and achieve the desired continuum sensitivities,
imaging algorithms need to be sensitive to the effects of combining measurements from a
large range of frequencies.

There are three main frequency-dependent effects that need to be accounted for
when using broad-band receivers for Stokes-I imaging2 using an interferometer. First, the
uv-coverage of an interferometer is frequency-dependent andthe related imaging properties
of the array will vary across the sampled frequency range. Second, the incident radiation is
usually neither exactly monochromatic nor constant acrossthe wide-band, and the spectrum
of the sky brightness also needs to be modeled and reconstructed. Finally, the size and
shape of the aperture illumination function of each antennadepends on frequency and the
antenna field of view and power response will vary across the band. Both these instrumental
effects can be computed (or measured) and applied (or corrected) during imaging. Sections
5.1.1and5.1.2describe these effects in detail, in the context of multi-frequency synthesis
imaging.

5.1.1 Multi-Frequency Measurements

Multi-frequency measurements of the visibility function of the sky brightness
distribution can improve the imaging properties of an interferometer. This section contains
a brief description of how multi-frequency measurements are used in synthesis imaging.

5.1.1.1 Multi-Frequency Spatial-Frequency Coverage

Figure5.1 shows an example of the multi-frequencyuv-coverage of the EVLA
telescope at three frequencies across L-Band. Each frequency channelν measures a dif-
ferent range of spatial frequencies (given byνc

~bmin to νc
~bmax where~bmin, ~bmax are measured

in meters) and the imaging properties of the telescope differ across the band. As the ob-
serving frequency increases, the width of the point-spreadfunction (given byθν = 1/umax

radians) and the sensitivity to large spatial scales (inversely proportional to the size of

1AppendixA lists the formula to calculate the image-domain noise levelfor a set of visibilities measured
with a radio interferometer.

2For full-Stokes imaging, the polarization properties of the sky brightness and the instrument vary with
frequency and need to be taken into account [Sault and Wieringa 1994]. However, all the discussions in this
dissertation focus on only Stokes-I imaging and ignore all broad-band polarization effects.
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Figure 5.1:This plot shows the multi-Frequencyuv-coverage of the EVLA at L-Band for a 4 hour
synthesis run. The axes are in units ofkλ and the three colours (Red,Green,Blue) correspond to the
uv-coverage at three frequencies 1.0, 1.5, 2.0 GHz. The angular resolution of the instrument for
continuum imaging is given by the maximum spatial frequency(measured at 2.0 GHz). In regions
of overlap between frequencies, redundant measurements increase the signal-to-noise ratio of the
measured visibility function (for a flat-spectrum source).The combineduv-coverage also has fewer
unmeasured spatial frequencies within the maximum range, and this increases the fidelity (accuracy)
of the reconstructed image.

the zero-spacing hole) decreases. The phase delay due to thew-term is also frequency-
dependent (in the sense thatw is measured in units of wavelength), which means that the
gridding convolution function used inw-projection must be chosen according to the ob-
serving frequency. For instruments like the EVLA that have adense spatial frequency
coverage at any given frequency, the main advantage of multi-frequency-synthesis is in-
creased sensitivity and the measurement of the spectrum across the band. For instruments
like the ATCA/e-MERLIN/VLBA with sparseuv-coverage, the main advantage of multi-
frequency-synthesis is to fill in the unmeasured regions of the spatial frequency plane.

5.1.1.2 Frequency Resolution/ Channel Width

The choice of frequency resolution (or channel width) at which visibilities must
be measured for synthesis imaging is influenced by the observing frequency and the desired
field of view. It is based on the concept of bandwidth smearing, a radial degradation in the
resolution and sensitivity of the array due to the mapping ofa wide range of spatial fre-
quency co-ordinates (measured across a wide-band) onto that corresponding to the central
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frequency of the band. A receiver with finite bandwidth that produces one single visibil-
ity per baseline and time measures the average of the visibility function over the range of
spatial frequencies spanned by the receiver bandwidth. If this range of spatial frequen-
cies spans more than oneuvgrid cell, there will be image-domain errors due to bandwidth
smearing. To eliminate these errors, the frequency resolution of the visibility measurements
is chosen such that the amount of smearing in the image domainis smaller than the angu-
lar resolution of the telescope within the antenna field of view3. This bandwidth-smearing
limit is derived below.

Bandwidth-Smearing limit : Let u0 represent the spatial frequency of the center of the
band anduν be that of another frequency in the band, such thatu0 =

ν0
ν
uν. When a wide

bandwidth receiver produces only one single visibility perbaseline and time, the whole
range of spatial frequencies it measures is mapped onto thatgiven by the central freqeuncy
of the band. The process of mappinguν ontou0 is equal to a scaling of theuv-co-ordinates
by ν0

ν
. According to the similarity theorem of Fourier transformsa scaling of the co-ordinate

system in one domain is equivalent to an inverse scaling in the other domain. Therefore,

F
[

Vν
(

ν0

ν
uν,
ν0

ν
vν

)]

=

(

ν

ν0

)2

Iν

(

ν

ν0
l,
ν

ν0
m

)

(5.1)

whereF[Vν(uν, vν)] = Iν(l,m). When a whole range of spatial frequencies are averaged
in this way, the image domain effect is a radial smearing where different frequencies are
shifted radially by different amounts4.

The following condition ensures that across a given field of view, the image-
domain bandwidth smearing is smaller than the angular resolution of the instrument. This
is of importance in deciding the frequency resolution (channel-width) with which to make
the observation.

∆ν

ν0
<

Resolution
FoV

=
λ/bmax

λ/D
=

D
bmax

⇒ ∆ν < ν0
D

bmax
(5.2)

The desired field of view of the image (that decides the spatial-frequency grid cell size)
is given by the HPBW of the antenna primary beam. Therefore, all visibilities measured
within this narrow frequency range will map to one singleuv-grid cell. For broad-band
receivers, this limit will change across the band, and the channel width should be chosen
as the limit computed forνmin.

3 Time-smearing is another effect similar to bandwidth smearing. It occurs when the integration timestep
is long enough that the spatial frequency measured by the baseline changes by more than the size of one
uv-pixel. A similar limit will give the coarsest time resolution with which the visibilities can be measured.

4Frequency-Augmentation is an algorithm (developed by T.J.Cornwell (private communication)) that cor-
rects the effect of bandwidth smearing in data where only a single visibility is measured across the entire
bandwidth. In the major cycle of deconvolution, the model visibility function is degridded using a spatial-
frequency-dependentconvolution function (box) that averages the visibility function from a range ofuvbefore
comparing it with the measurements forχ2 computation.
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Channel Averaging : New correlators are capable of generating visibility measurements
at very high frequency resolution (well beyond the bandwidth-smearing limit) and produc-
ing visibility measurements for tens of thousands of frequency channels. This results in
extremely high data rates. However, once the data have been calibrated, chunks of chan-
nels can be averaged together up to the bandwidth-smearing limit to reduce the data-rate for
the processing involved in continuum imaging. For example,the number of channels can
be reduced from 16000 to about 500 for EVLA L-band continuum imaging over a single
pointing field of view.

5.1.1.3 Multi-Frequency Synthesis Imaging

Standard multi-frequency synthesis (MFS) imaging involves just gridding to-
gether visibilities from multiple frequencies onto a single spatial-frequency grid, and as-
suming that all frequencies measure the same visibility function, just at different spatial
frequencies. The dirty image and PSF are given by a modified form of Eqns.3.20and3.21.

~Idirty = w−1
sum[Iwt−1][F†RGps]
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~I ps f = w−1
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As long as the sky brightness is constant across the total measured bandwidth and concen-
trated within a small field of view, standard imaging and deconvolution algorithms can be
used along with MFS to construct an accurate continuum image. For sources with spectral
structure, this approach will convert any spectral variations of the visibility function into
spurious spatial structure. Therefore, to reconstruct thebroad-band sky brightness distri-
bution correctly, a spectral model must be folded into the reconstruction process. Section
5.1.2describes this problem in detail.

5.1.2 Frequency Dependence of the Sky and Instrument

Multi-frequency synthesis imaging with standard deconvolution algorithms is
based on the assumption that the spectrum of the measured skybrightness distribution is
flat and that multi-frequency measurements only contributeto additional samples of a sin-
gle visibility function. In reality, however the sky brightness distribution and instrumental
effects are usually frequency-dependent, and this can result in artifacts in the reconstructed
image if they are not accounted for during the imaging process.
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5.1.2.1 Broad-Band Radio Continuum Spectra

The sky brightness distribution of astronomical sources usually varies with fre-
quency, either due to the spectral structure of the emitted radiation or if the spatial structure
of the radiating object varies with frequency. Broad-band continuum emission from astro-
physical sources is often best represented by a power-law. This power-law index can vary
with frequency, as seen in the case of spectral breaks, steepening and turnovers that are
visible across the wide frequency ranges that new receiversare now sensitive to. A power-
law with varying index can be used to describe such a spectrum. Iν0 is the sky brightness
distribution at a reference frequencyν0, α(ν) is a spectral index that varies with frequency,
andIν is the flux seen at the observing frequencyν.

Iν = Iν0

(

ν

ν0

)α(ν)

(5.5)

For example, for synchrotron emission from radio galaxies,typical values ofα range be-
tween 0.0 and−1.5. A spectral index of -1.0 corresponds to a 50% change in flux across a
bandwidth given byνmax : νmin = 2 : 1.

5.1.2.2 Frequency Dependent Instrumental Effects

The angular size of an antenna primary beam decreases as the observing fre-
quency increases. This changes the field of view at each frequency (defined as the FWHM
of the main lobe of the beam, given byλ/D whereD is the diameter of the reflecting dish).
As a result, a source located away from the pointing-center of these beams will be attenu-
ated by different amounts across the frequency band. This will give riseto artificial spectral
structure in the measurements which if uncorrected, will affect the imaging process in the
same way as sky emission with intrinsic spectral structure would. Note that for EVLA
antennas the feeds for both polarizations are offset from the antenna axis, leading to a po-
larization dependent pointing offset called beam squint, which is also frequency-dependent.
Such offsets can be described by phase-ramps in the nominal apertureillumination pattern
and are correctable during the imaging process.

Figure 5.2 shows the the shape of the primary beam of an EVLA antenna at
1.0, 1.5 and 2.0 GHz. Figure5.3 shows 1-dimensional cuts through these primary beams
(chosen to pass through a peak in the first sidelobe) along with a frequency-averaged profile.
From these plots, we can see that the primary beam introducessignificant spectral structure
into the measured brightness distribution even near the HPBW of the lowest frequency.
Sources at higher angular distances from the pointing center will be completely attenuated
(and not detected) at some range of frequencies within the band and this will result in a
reduced continuum imaging sensitivity. However, such an instrument will still be sensitive
to sources out to the full field of view of the lowest frequency(at the few % level) but the
spectral structure due to the primary-beam sidelobes will not be monotonic and this will
complicate the deconvolution of such sources from the continuum image.
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Figure 5.2:Simulated EVLA primary beams at 1.0, 1.5 and 2.0 GHz. These beams were computed
from frequency-dependent models of antenna aperture illumination functions [Brisken 2003] and
include the geometry of the various structural elements of an EVLA antenna (sub-reflector, feed
position, feed-legs, etc..). The FWHMs at these three frequencies areλ/D = 20, 27, 41 arcmin and
this defines the field of view at each frequency.

Figure 5.3:These plots show 1-dimensional cuts across the simulated EVLA primary beams shown
in Fig.5.2(chosen to pass through a sidelobe peak). The X axis is angular distance from the center of
the beam (represented in units of image pixels, where each pixel represents 3 arcmin in this example,
and the image center is at pixel 512), and the Y axis is the multiplicative gain associated with the
primary beam at each angular distance. The blue, green and red lines represent the beam profiles at
1.0, 1.5 and 2.0 GHz, and the cyan line is a frequency-averaged profile along the same cut. The plot
on the left covers the main lobe of the primary beams and showsthat the half-power-beam-width at
1.0 GHz is near the null at 2.0 GHz. This indicates that the artificial spectral structure introduced
by the primary beam can be very significant even before the HPBW at the lowest frequency in the
beam. The plot on the right covers the first null and sidelobe at these three frequencies and shows
that the first sidelobe at one frequency falls into the null atsome other frequency. The average
primary beam (shown in cyan) has an almost continuous sensitivity (at the few percent level) well
out to the first sidelobe of the lowest frequency beam. This makes the instrument’s sensitivity in the
regions outside the main lobe a complicated function of frequency that cannot be ignored because
the sensitivity in that region is high enough that artifactsfrom improperly deconvolved sources in
that region will be visible above the noise level.
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Figure 5.4: Spectral Index of the EVLA Primary Beam : This figure shows an overlay of the
average spectral index (colour) and reference primary beam(contours) within the main lobe (i.e. it
does not include sidelobes and therefore appears axisymmetric). The effective spectral index at the
half-power point of the reference beam is about -1.4.

Spectral Index of the Primary Beam : The frequency dependence of the main lobe of
the primary beam can be interpreted in terms of an instrumental spectral index. During
measurement, the incident sky brightness at each observingfrequency gets multiplied with
the primary beam at that frequency. The measured spectral index therefore corresponds to
the spectrum formed from the product of the sky and the primary beam. Figure5.4shows
the spectral index and curvature due to the primary beam for an EVLA antenna (section
7.2.1describes the relevant calculations). At the half-power point of the middle frequency,
the effective spectral index computed for frequency-dependent EVLA primary beams is
about -1.4.Sault and Wieringa[1994] analytically derive the same result by modeling the
primary beam as a Gaussian whose width scales with frequency. A 1.0 Jy source of intrinsic
spectral index of -1.0 will appear to have have a flux of∼0.5 Jy and a spectral index of -2.4.

5.2 Comparison of Existing Wide-Band Imaging Methods

This section consists of a comparison between some existingand hybrid wide-
band imaging methods applied to data simulated for the EVLA.The purpose of this study
is to assess whether existing methods would suffice for the high-dynamic-range imaging
requirements of the EVLA, and if not, to identify areas whereimprovements are required.
The data product being evaluated is the continuum Stokes-I image and this study focuses on
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dynamic-range limits due to errors in estimating spectral flux variations5. The techniques
being compared are stacking of narrow-band images, MFS imaging, SW-MFCLEAN de-
convolution and hybrids of single-channel and continuum imaging methods.

5.2.1 Existing and Hybrid Algorithms

5.2.1.1 Narrow-Band Imaging and Stacking (STACK)

A simple way to produce a continuum image is to construct a setof narrow-band
images by deconvolving each frequency channel separately,and to then compute the sum
of the single-channel images. This method does not depend onany spectral flux model and
there will be no deconvolution errors due to spectral flux variation. However, the imaging
fidelity and angular resolution of the image at each frequency is restricted to that given by
theuv-coverage at that frequency. Non-linear deconvolutions onindividual channel images
can result in imaging artifacts that are neither coherent across the band (and are therefore
not solvable) nor random (they do not average out), and this could introduce further artifacts
when added together. Further, the imaging sensitivity is limited by the single-channel noise
level (the continuum imaging sensitivity is related to the single-channel imaging sensitivity
asσcont = σchan/

√
Nchan). Sources that are fainter than the single-channel noise may not be

detected in the model images and will not be deconvolved fromthe final continuum image.
The spectral structure of the source can be measured from theset of single channel maps,
but the angular resolution of this computation is limited tothat at the lowest frequency in
the band because all images must be made at this lowest resolution before any spectral
estimates can be derived.

5.2.1.2 Multi-Frequency-Synthesis Imaging (MFS)

A single continuum image is made by gridding visibilities from all frequency
channels onto a singleuv-grid and performing one deconvolution. This form of imaging
benefits from the combineduv-coverage as well as the sensitivity gain of using data from
all channels together. However, this algorithm assumes that all sources in the image have
a flat spectrum across the frequency band. If the spectrum of asource is not flat, a direct
combination of visibilities will generate spurious spatial structure at a level proportional
to the magnitude of the spectral variation. However, if these errors are much lower than
the continuum sensitivity limit, an accurate continuum reconstruction is still possible. One
way to artificially improve this situation is to scale all channels according to an average
spectral index (over all sources) before combined deconvolution in order to reduce visible
deconvolution errors.

5 The contents of this section follow that in EVLA Memo 101[Urvashi R.V. et al. 2006].
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5.2.1.3 Sault-Wieringa Multi Frequency CLEAN (SW-MFCLEAN )

Conway et al.[1990] andSault and Wieringa[1994] describe a multi-frequency
deconvolution algorithm that models source spectra in terms of an amplitude and a slope,
and performs a double or joint deconvolution to obtain a continuum map as well as an
effective spectral index map. This algorithm is based on a matched-filtering idea and works
for power-law spectra with a fixed spectral index across the band. Visible deconvolution
errors result when the spectrum is not a pure power-law6.

5.2.1.4 Hybrids of Narrow-Band and Continuum Techniques

The basic idea of a hybrid wide-band method is to combine narrow-band channel
imaging with one or more of the continuum methods in a multi-stage approach. The goal is
to combine the advantages of single-channel imaging (simplicity and insensitivity to source
spectra) with those of continuum imaging (deconvolution with full continuum sensitivity).
However, if narrow-band single-channel imaging is one stepin the process, there are a
few restrictions that cannot be avoided. First, the angularresolution of the final images
and spectral information will be restricted to that given bythe lowest frequency. Also,
these techniques will be suitable only for synthesis arrayswith dense, single-channeluv-
coverage where the collection of spatial frequencies measured at each channel is sufficient
to reconstruct all the spatial structure there is at the angular resolution of that frequency.
The hybrid methods that will be evaluated here are as follows.

1. SW-MFCLEAN + STACK : Apply the Sault-Wieringa MFClean algorithm to sev-
eral successive subsets (chunks) of the full frequency range. The frequency or chan-
nel ranges to use for these subsets are based ona priori knowledge of the average
spectral index of the sources being imaged and are chosen such that the spectrum
within each chunk can be approximated by a linear spectrum.

2. STACK + MFS with flattening : Perform single-channel imaging to estimate the
spectrum of all bright sources. Record this per-pixel spectrum, divide it out of the
model image and predict flat-spectrum visibilities. Add in the residuals from the first
stage, and perform MFS imaging on the now flat-spectrum data.

3. STACK + MFS on residuals : Perform single-channel imaging to deconvolve all
bright sources stronger than the single-channel sensitivity limit. Remove the contri-
bution of bright (spectrally varying) sources by subtracting out visibilities predicted
from the model image cube. Perform MFS or SW-MFCLEAN on the continuum
residuals.

6Section6.2describes a generalized version of this algorithm that accounts for variations of the spectral
index across the band and lists differences with the Sault-Wieringa MF-CLEAN which works only with the
first two terms of a Taylor expansion inν.
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Array EVLA C array
Observing Band LBand (1420MHz)
Total Bandwidth 320MHz (spread over 1280MHz)
Deltaν 40MHz
Frequency Resolution 10MHz
Frequency range 785MHz to 1985MHz
Reference Frequency 1420MHz
Number of channels 32
Cell size 2 arcsec
Image size 1024x1024 pixels
Image field of view 34 arcmin
Integration timestep 300 s
Total integration time 8 hours
Number of timesteps 8*3600/300=96
Noise per visibility 1.0 mJy
Theoretical RMS noise in per channel 3.85× 10−6Jy
Theoretical RMS noise in MFS image 6.8× 10−7Jy
Expected Dynamic Range 0.1/6.8096× 10−7 = 1.468× 105

Table 5.1: Data Simulation Parameters for Wide-Band Imaging Tests

5.2.2 Simulations and Results

Two wide-band datasets were simulated for these tests. The first was for a field of
five point sources with amplitudes 100mJy, 10mJy, 1mJy, 100µJy and 10µJy. The single-
channel noise was comparable to the flux of the weakest source. The 10mJy source was
given a spectral index that varied between -0.5 and -1.5 between 1-2 GHz. The second
dataset was simulated with continuum flux and spectral characteristics of a typical core,jet
and hotspot. The brightest component (100mJy) had a flat spectrum, the 10mJy hotspot had
a spectral index of -0.7, and the diffuse ’jet’ had flux levels between 10µJy and 100µJy with
spectral index varying between -0.1 and -0.5. Parameters used in the first two simulations
are given in Table5.2.2. They correspond to aTsys(system temperature) of about 20K, and
antenna and system efficiency (ηa andηs) around 0.807. For these simulations, the single-
channel and continuum imaging sensitivities were calculated as described in AppendixA.
The expected peak error (see section6.2.4) due to a 10mJysource with spectral indexα
varying between -0.5 and -1.5 is∼ 20 − 80µJy if the spectral structure is ignored, and
∼ 3− 10µJy if the spectrum is modeled by a linear function.

7Only 32 channels were used because of data processing restrictions at the time of performing these tests.
Any conclusions based on the difference between the single-channel and continuum sensitivity levels will
still hold. Also, note that the target dynamic-range of> 105 has so far been achieved for a very small number
of observed fields.
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Figures5.5 to 5.7 show the reconstructed image and the corresponding residual
image for each algorithm, along with a set of measures to compare the relative accuracies
of the algorithms. Separate estimates for on-source and off-source regions were computed
using masks created by thresholding the known true image at a2σ level. Only the inner
quarter of each image was considered for CLEANing. The imagefidelity was assessed by
calculating the normalizedχ2 estimate between the known true image and the reconstruc-
tion. All results are based on automated runs of existing standard algorithms on simulated
data. Carefully tuned deconvolution could in some cases result in better reconstructions.

Listed along with the results of each sample run are the following quantities.

1. Off source RMS : The achieved noise level in regions away from thetrue source.
2. Peak residual : The magnitude of the peak of the residual image. It represents the

flux level of the minimum detectable/believable feature.
3. Dynamic Range (w.r.t. rms) : The ratio of the peak of the resonstructed image to the

off-source rms. It represents the maximum dynamic-range achieved in the image.
4. Dynamic Range (w.r.t. peak residual) : The ratio of the peak of the reconstructed

image to the peak residual. It represents the achieved dynamic-range w.r.t. believable
features.

5.2.2.1 Conclusions from these tests

Existing and hybrid multi frequency synthesis algorithms were tested on simu-
lated wide-band data, with the goal of determining how they perform against the require-
ment ofO(106) dynamic-range andO(1µJy) image sensitivity. Tests were performed on
data with point sources as well as extended flux components. The results were evalu-
ated based on achieved rms levels as compared to the theoretical expected thermal noise,
achieved dynamic-ranges as compared to those expected, theamount of large-scale decon-
volution error, and image fidelity in terms of normalizedχ2.

The main conclusions are :

1. Single-channel imaging and averaging is a simple algorithm that works independent
of the form of spectral structure in the measurements, but often results in inaccurate
reconstructions of extended emission, does not detect weaksources near the single-
channel sensitivity limit and does not give noise-like continuum residuals. Also, all
spectral information is limited to the angular resolution of the lowest frequency in
the band.

2. Pure multi-frequency synthesis assuming a flat spectrum for all sources takes advan-
tage of the combineduv-coverage and imaging sensitivity, but gives deconvolution
artifacts around sources with a non-flat spectrum (roughly at the 103 dynamic-range
for α = −1.0 and 1GHz at L-Band).
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3. The Sault-Wieringa Multi-Frequency CLEAN reaches target dynamic-ranges and
image RMS levels for point sources with pure power-law spectra. Point sources
with non-power-law spectra (α varies between -0.5 and -1.6 across 1GHz at L-Band)
result in errors that are 10 times larger than the RMS noise level (denoted as 10σ).
For extended sources with large-scale weak emission and non-power-law spectra,
large-scale deconvolution artifacts appear at the 10σ level.

4. A hybrid method that combines single-channel imaging with a deconvolution on
the continuum residuals is likely to produce accurate reconstructions and noise-like
continuum residuals for synthesis arrays with denseuv-coverage per channel and
well-behaved spectral noise characteristics. However, the second stage of combined
deconvolution requires that the continuum residuals afterspectral-line imaging, sat-
isfy the convolution equation. Wide-band calibration errors, or deconvolution errors
due to insufficientuv-coverage, can prevent the single-channel residuals from adding
coherently to make the continuum residuals satisfy the convolution equation. Fur-
ther, this method will not work for sparse synthesis arrays where the primary goal of
wideband imaging is the increaseduv-coverage. Also, the angular resolution of any
spectral estimates is still restricted to that of the lowestfrequency.

Therefore to improve these types of techniques, we need multi-scale methods that are able
to model both spatial and spectral structure simultaneously. These methods must also use
higher order terms in spectral series expansions to accountfor and accurately reconstruct
non-power-law spectra. The frequency-dependence of the primary beam was not explic-
itly included in any of these tests, but the performance of these algorithms (and resulting
dynamic-range limits) for wide-field imaging can be assessed by applying these results to
the case where the sky spectrum is equal to that introduced bythe instrument. Chapters
6 and7 describe a multi-scale, multi-frequency deconvolution algorithm that reconstructs
source spectral index and curvature in addition to total fluxand also accounts for a fre-
quency dependent primary beam.
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Figure 5.5: Standard Algorithms on Point Sources : This figure shows the restored images
(top row) and residual images (bottom row) obtained by running the STACK (left), MFS (middle),
SW-MFCLEAN (right) algorithms on a simulated dataset in which one point source has a spectral
index that varies between 0.5 and 1.5 over the observing band. The STACK restored image
shows relatively broadened components due to the varying spatial resolution for each channel.
The residuals show traces of all sources, implying that the amplitudes and shapes of all the flux
components have not been recovered well enough. There are nodiscernable deconvolution errors
due to inaccurately modeled spectra, but the accuracy of theon-source flux is limited by the
single-channel noise level. The MFS images show significantdeconvolution errors around the
source in question and a peak error of about 10µJy. The SW-MFCLEAN algorithm, which takes
into account the first order beam, shows peak residuals at∼ 8µJy, which are comparable to the
level expected for the unaccounted-for second order beam, but higher because of the varyingα
across the band. The table below shows the RMS levels and dynamic-ranges achieved in these runs.

Point sources with spectral index
varying between 0.5 and 1.6 for
one source

Off-source
RMS (Jy)

Peak resid-
ual (Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (STACK) 1.007e-06 2.164e-05 9.926e+04 4.621e+03
Bandwidth Synthesis (MFS) 1.849e-06 1.033e-05 5.408e+04 9.679e+03
Sault Algorithm (SW-MFCLEAN) 1.038e-06 9.607e-06 9.638e+04 1.041e+04
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Figure 5.6:Hybrid Algorithms on Point Sources : This figure shows the restored images (top
row) and residual images (bottom row) obtained by running three hybrid algorithms on the same
dataset as in Fig.5.5. SW-MFCLEAN + STACK (left) : SW-MFCLEAN on 8-channel chunks
followed by stacking resulted in high noise levels. STACK+ MFS with flattening (middle) :
Estimating spectrally varying flux from single-channel maps and flattening out the visibilities
before doing a MFS left the weakest source un-detected. STACK + MFS on continuum residuals
(right) : The top image shown here contains only the flux visible after the first stage of STACK
imaging and subtraction (continuum residual image). The residual image shown below it is
the result after the second step of MFS on the continuum SW-MFCLEAN was not required for
the second stage (MFS sufficed) because at the end of the first stage, the peak flux was at the
single-channel noise level of∼ 4µJy, leading to a peak first-order beam sidelobe at 0.14µJy. This
is lower than the theoretical continuum limit of 0.7µJy, and a flat-spectrum assumption would not
lead to visible errors.

Point sources with spectral index
varying between 0.5 and 1.6 for
one source

Off-source
RMS (Jy)

Peak resid-
ual (Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

SW-MFCLEAN+ STACK 1.705e-06 8.607e-06 5.865e+04 1.161e+04
STACK+ MFS with flattening 1.130e-06 5.733e-06 8.849e+04 1.744e+04
STACK+ MFS on residuals 1.128e-06 5.829e-06 8.865e+04 1.715e+04



82

Figure 5.7: Standard Algorithms on Extended emission : This figure shows the restored
images (top row) and residual images (bottom row) obtained by running the STACK (left), MFS
(middle), SW-MFCLEAN (right) algorithms on a simulated dataset with an extended source
whose spectrum varies across the source, for total frequency range of 640MHz. The STACK
image shows low-level large-scale deconvolution errors arising from the limiting single channel
sensitivity. The MFS algorithm produced more accurate on-source flux reconstruction with better
large-scale deconvolution results. It shows errors primarily due to the spectrally varying flux
in the hotspot. The SW-MFCLEAN algorithm was able to model a power-law component of
the spectrally varying source, and reach a lower residual rms, but low-level large-scale deconvo-
lution errors remain at the 10µJy level. None of the algorithms reached the theoretical thermal noise.

Extended Core-Jet type source
with spectral index between -0.1
and -0.7

Off-source
RMS (Jy)

Peak resid-
ual (Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (STACK) 1.445e-06 2.142e-05 6.920e+04 4.6683+03
Bandwidth Synthesis (MFS) 1.206e-06 6.041e-06 8.291e+04 1.655e+04
Sault Algorithm (SW-MFCLEAN) 1.233e-06 1.214e-05 8.110e+04 8.237e+03
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5.2.3 Continuum imaging with denseuv-coverage

This section describes the application of the STACK+MFS algorithm to a sim-
ulated EVLA data set in which the single-frequencyuv-coverage is sufficient to unam-
biguously reconstruct the spatial structure of the source.The goal of this test is to show
that when the target science does not require spectral information at high angular resolu-
tion, wide-band imaging with data from synthesis arrays like the EVLA with very dense
uv-coverage may require only a simple adaptation of existing and standard deconvolution
algorithms. This test used a simulated data set and contained no calibration errors.

Simulation : Data were simulated for the EVLA C-configuration with 40 frequency
channels spread between 1 and 4 GHz. The noise per visibilitywas 10 mJy, giving a
theoretical point-source single-channel sensitivity of 50µJy and continuum sensitivity of
8µJy. The wide-band sky brightness distribution in this simulation was obtained by linear
interpolation between 1.4 and 4.8 GHz maps of Cygnus-A [Carilli et al. 1991]. At each
frequency, the source brightness was further modified to amplify the dynamic-range. The
brightness at each pixel in the true-sky cubeI was replaced byI2.35 (i.e. the amplitude per
pixel was raised to the power of 2.35) to increase the dynamic-range of the sky brightness
distribution being simulated.

Imaging Results : These data were imaged using a hybrid method that combined single-
channel imaging (STACK) with standard MFS. MS-CLEAN was used to deconvolve each
channel separately down only to the single-channel sensitivity limit σchan. As a second step,
standard MFS and MS-CLEAN was applied to the continuum residual image and iterations
were terminated using a flux threshold given byσchan/

√
Nchan.

Figure5.8shows the imaging results. The image on the left shows that after only
narrow-band imaging on all channels, there is undeconvolved emission that is undetected
at the single-channel sensitivity level. The image on the right shows the final image after
the deconvolution on the combined residuals and the deconvolution errors are markedly
reduced. The achieved off-source noise levels were an order of magnitude higher than
theoretical. A maximum dynamic-range of 530,000 was achieved (peak/off-source-rms)
and the on-source dynamic-range was 40,000 (peak/on-source-rms).

When does this second stage work ?At the end of the first stage, the only undecon-
volved flux comes from flat-spectrum residuals of all sourcesbrighter thanσchan as well as
all sources weaker thanσchan. Weak sources whose flux values lie belowσchan but above
σcont = σchan/

√
Nchan are detected only in the combined deconvolution stage when MFS

imaging is performed. If these weak sources have spectral structure, the flat-spectrum as-
sumption of MFS imaging will lead to deconvolution errors a few orders of magnitude (e.g.
a factor of 103, see section6.2.4.2) smaller than the current peak flux (σchan). Such errors
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Figure 5.8:The hybrid of single-channel imaging (STACK) and MFS imaging on the continuum
residuals was applied to data simulated for Cygnus-A (EVLA,C-array, 1-4 GHz). The left panel
shows the result after the first stage (only spectral-line imaging) and shows that there is significant
undeconvolved emission that was undetected at the single-channel sensitivity level. The image
on the right shows the final image after the deconvolution on the combined residuals and shows
significantly reduced deconvolution errors. Therefore, with sufficient uv-coverage, if the single-
channel deconvolution is limited only by the single-channel sensitivity level, the residuals will add
coherently such that the continuum residual image will satisfy a convolution equation (a sky model
convolved with the PSF in Eqn.5.4), and the second stage will be able to reach continuum sensitivity
levels.

are likely to be belowσchan because
√

N will almost always be less than 103. This condi-
tion (Nchan < 106) can always be satisfied, because even though data may be observed at a
very high spectral resolution (largeNchan) it can always be averaged down to the bandwidth
smearing limit for the highest sampled frequency to reduce the number of channels during
imaging.

This method can be used only to construct an image of the continuum flux. Only
if there is sufficient single-channeluv-coverage to reconstruct an accurate model of the
source structure (for example, fields of isolated point sources), spectral information may
also be derived from such an approach. This idea has been tested on EVLA simulations
with dense single-frequencyuv-coverage as well as wide-band VLA data with relatively
sparseuv-coverage at each frequency (see section8.3.1), but it is yet to be verified on real
EVLA wide-band data with real calibration errors.



CHAPTER 6

DECONVOLUTION WITH IMAGES PARAMETERIZED AS A
SERIES EXPANSION

The general theme of this chapter is the description of the sky brightness distri-
bution as a linear combination of images and using this modelwithin an iterative CLEAN-
based deconvolution framework. Most of the imaging methodsdescribed in Chapters3
and4 parameterize the sky brightness distribution as a single list of pixel amplitudes and
assume that source structure and instrumental effects are constant across the entire band-
width of data being imaged. This chapter relaxes these assumptions and describes how the
added complexity and increased dimensionality of the parameter space can be folded into
the standard measurement and imaging equations. In particular, Section6.1derives a multi-
scale deconvolution method by describing an image as a linear combination of images at
different spatial scales. Section6.2derives a multi-frequency deconvolution method by de-
scribing the spectral shape of the brightness distributionby a Taylor polynomial (a partial
sum of a Taylor series). Pseudo-code listings of these algorithms (3 and4) are shown at
the end of each section. Chapter7 later describes a multi-scale, multi-frequency decon-
volution algorithm as a combination of the above ideas, and shows how a multi-frequency
parameterization of the antenna primary beam can be folded into the same framework.

The algorithms described in this chapter follow the format used in Section3.2.1.
First, each pixel of an image model is defined as a linear combination of parameters and
basis functions. Then, the imaging equations are derived byapplying the interferometric
measurement equation to each term in this linear series. Theresulting normal equations
are then described along with diagrams similar to Figure3.2to illustrate the image-domain
effect of the measurement and modeling process, and to give a qualitative view of what is
being solved (i.e. the form of the Hessian matrix to be inverted, and the vector to which
this inverse is applied). The solution process is then described in two stages, the principal
solution and iterative joint deconvolution. The principalsolution involves only diagonal
approximations of the matrices to be inverted and in the ideal case where the PSF is aδ-
function this diagonal approximation will deliver the solution of the full system. The joint
deconvolution is an iterative process similar to the CLEAN algorithm, but which simulta-
neously builds up solutions for all the coefficients in the linear series. Finally, these best-fit
estimates for the pixel-based coefficients are converted into quantities that can be inter-
preted physically. A block matrix notation is used throughout this chapter. For reference,
a generic description of weighted linear least-squares in block matrix form is described in
AppendixB.
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6.1 Multi-Scale Deconvolution

Images of astrophysical objects tend to show complex structure at different spa-
tial scales. An image parameterization that works with independent pixels is ideal for
the deconvolution of fields of isolated point-like sources that are smaller than the instru-
ment’s angular resolution, but tends to break extended emission into a collection of compact
sources. This often results in a physically inaccurate representation of the sky. However,
such a reconstruction may be indistinguishable from the real sky because of the non-empty
null space of the measurement matrix (unmeasured spatial frequencies) in which the model
is unconstrained by the data. It therefore becomes important to providea priori constraints
on what the sky emission should look like. One way to naturally acheive this for emission
with structure on multiple spatial scales is to parameterize the image in a scale-sensitive
basis that spans the full range of scale sizes measured by theinstrument. This forces pixel-
to-pixel correlations during the reconstruction and provides a strong constraint on the re-
construction of visibilities in the null space of the measurement matrix. Also, when the
peak amplitude of extended emission is close to the image noise level, spatial correlation
length fundamentally separates signal from noise and scale-sensitive deconvolution algo-
rithms generally give more noise-like residuals on large scales [Bhatnagar and Cornwell
2004].

Section6.1.1defines a multi-scale image model. Section6.1.2describes the nor-
mal equations that result from folding this model into the standard imaging equations and
then describes an algorithm that reconstructs the sky brightness distribution at a range of
spatial scales and combines the results to form the complete, multi-scale image. This dis-
cussion is a formal derivation of the CH-MSCLEAN (Cornwell-Holdaway MS-CLEAN)
technique described in [Cornwell 2008], but describes a modified version that improves
upon the existing algorithm. Section6.1.3lists the similarities and differences among this
algorithm, the CH-MSCLEAN algorithm implemented in CASA and ASKAPsoft, and a
matched filtering algorithm implemented in AIPS [Greisen et al. 2009]. Section6.1.4con-
tains an example of the multi-scale series coefficients derived during deconvolution, em-
phasizes sources of uncertainty in this calculation and lists the algorithmic steps required
to converge towards a stable solution.

6.1.1 Multi-Scale Image model

Let us represent the sky brightness distribution as a linearcombination of images
at different spatial scales. The image at each spatial scales is writen as a convolution
between a set ofδ-functions~I sky,δ

s and a scale function~I shp
s . The scale functions can be any

set of 2D functions that represent structure at varying spatial scales, andCornwell [2008]
choose a set of tapered, truncated parabolas of different widths (proportional tos). The
amplitude of eachδ-function in ~I sky,δ

s represents the integrated amplitude of an extended
flux component of scale sizes, centered at the location of theδ-function. Figure6.1shows
an example of this multi-scale representation.
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Figure 6.1:This figure shows the multi-scale representation of an imagecomposed of two distinct
spatial scales. The left column shows two scale basis functions~I shp

0 and~I shp
1 that represent sym-

metric flux components at two different spatial scales, normalized to unit area. The second column
from the left shows model images~I sky,δ

0 , ~I sky,δ
1 with δ-functions that mark the total-flux and locations

of flux components of corresponding spatial scale. The thirdcolumn shows the resulting image at
the two spatial scales, and the image on the right (~I sky) shows the multiscale image formed from the
sum of images at multiple spatial scales. The goal of a multi-scale deconvolution algorithm is to
use the pre-defined set of scale basis functions shown in the first column, to extract theδ-function
flux components shown in the second column, from visibilities measured for~I sky.

For a finite set ofNs spatial scales, the multi-scale image model is written as follows.

~Imodel=

Ns−1
∑

s=0

~I shp
s ⋆ ~I sky,δ

s (6.1)

where~I sky,δ
s are per pixel coefficients and~I shp

s are the basis functions of this linear series.
In order to always allow for the modeling of unresolved sources, we choose the first scale
function ~I shp

s=0 to be aδ-function. Successive basis functions then correspond to inverted
parabolas of larger widths (ass increases). Note that a choice ofNs = 1 reduces all the
equations in this section to those in Chapter3 where the image is parameterized using a set
of δ-functions.
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6.1.2 Imaging Equations and Block Deconvolution

This section contains a derivation of the normal equations for a multi-scale image
model, followed by a description of the principal solution and its use in an iterative decon-
volution process. The derivations in this section use a block-matrix notation (described in
AppendixB) to represent the measurement and normal equations.

6.1.2.1 Measurement equations

An interferometer samples the visibility function of~Imodel given by Eqn.6.1.
The measurement equation (similar to Eqn.3.7) for a multi-scale representation of the sky
brightness becomes

~Vcorr = [S F]~Imodel=

Ns−1
∑

s=0

[S F](~I shp
s ⋆ ~I sky,δ

s ) =
Ns−1
∑

s=0

[S F][F†TsF]~I sky,δ
s =

Ns−1
∑

s=0

[S TsF]~I sky,δ
s

(6.2)
where~Vcorr

n×1 is a list ofn calibrated visibilities, [Sn×m] is the sampling matrix, [Fm×m] is the
Fourier transform operator (image to spatial-frequency) and all images~Im×1 are lists ofm
pixel amplitudes.

Each scale function is denoted by the subscripts and [Ts] = diag(~Ts) is a diago-
nal matrix containing a spatial frequency taper function given by~Ts = [F]~I shp

s . This taper
[Ts] is similar to auv-taper described in Section3.2.3.1. It gives lower spatial frequencies
a higher weight compared to higher spatial frequencies and has the effect of tuning the
sensitivity of the instrument to peak for a scale larger thanthe angular resolution of the
telescope. The operator [F†TsF] is an image-domain convolution operator with~I shp

s as its
kernel (see footnote19 on page24 for the definition of a convolution operator).

When the sky brightness is written as the sum of images at multiple spatial scales,
the full measurement matrix ([A] in Eqn.2.20) can be written in block matrix form with a
horizontal stack ofNs blocks each of shapen×meach, and a vertical stack ofNs vectors of
image pixels each of lengthm. Thisn×mNs measurement matrix operates on themNs × 1
column vector of image pixels to producen visibilities.

An example forNs = 2 is shown below.

[

[S T0F] [S T1F]
]

















~I sky,δ
0

~I sky,δ
1

















= ~Vcorr (6.3)

The column vector containing the image model is the equivalent of the second column of
images (from the left) in Figure6.1. Theδ-functions in~I sky,δ

p represent the total flux and
location of flux components at the spatial scale denoted byp (see Eqn.6.1).



89

6.1.2.2 Normal equations

A least-squares solution of Eqn.6.2can be obtained by forming and solving the
following normal equations.

[Hms
mNs×mNs

]~I sky,δ
mNs×1 =

~Idirty,ms
mNs×1 (6.4)

The Hessian [Hms] can be written in block-matrix form withNs × Ns blocks of sizem×m
each, and the sky model~I sky,δ and dirty image~Idirty,ms as sets ofNs image vectors of size
m× 1 (AppendixB describes this block-matrix notation).

For example, the normal equations forNs = 2 can be written in block-matrix form as






















[Hs=0,p=0] [Hs=0,p=1]

[Hs=1,p=0] [Hs=1,p=1]









































~I sky,δ
p=0

~I sky,δ
p=1



















=

















~Idirty
s=0

~Idirty
s=1

















(6.5)

where the indicess,p vary from 0 toNs − 1 and will henceforth denote block row and
column indices for multi-scale equations.

Figures6.2and6.3are two pictorial representations of the normal equations for
a multi-scale sky brightness distribution. Figure6.2 shows the standard normal equations
(similar to Figure3.2), and Figure6.3depicts the normal equations shown in Eqn.6.5 (in
block matrix form), labeled as shown in Eqn.6.4.

These block-matrix equations can be written row-by-row as follows.

Ns−1
∑

p=0

[Hs,p]~I
sky,δ
p = ~Idirty

s ∀ s ∈ {0, ...,Ns− 1} (6.6)

where [Hs,p] = [F†TsF][B][F†TpF] (6.7)
~Idirty

s = [F†TsF]~Idirty (6.8)

[B] is the Beam matrix ([H] in Eqn.3.9) and~Idirty is the standard dirty image (Eqn.3.10).
[B] is a convolution operator with the PSF~I ps f (Eqn.3.11) as its kernel, and the operators
[F†TsF] and [F†TpF] implement image-domain convolutions with scale functions~I shp

s and
~I shp

p . Therefore, each Hessian block [Hs,p] is a new convolution operator1 whose kernel will
be denoted as~I ps f

s,p
2.

~I ps f
s,p =

~I shp
s ⋆ ~I

ps f ⋆ ~I shp
p (6.9)

1 Convolution is associative and commutative. A sequence of convolutions can be written as a single
convolution with a kernel given by the convolution of all theindividual kernel functions in the sequence.

21-D examples of the convolution kernels~I ps f
s,p are shown in Figure6.3 as the shifted rows in each Hes-

sian block. The convolution kernels from the top row of blocks of the Hessian matrix (given by~I ps f
s=0,p

∀ p ∈ {0, ...,Ns − 1}) represent the instrument’s responses to flux components ofunit integrated flux
and shape given by~I shp

p . TheseNs functions are called scale-PSFs [Cornwell 2008] and represent the image-
domain patterns being matched to the dirty image~Idirty.
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Similarly, each dirty image~Idirty
s (in Eqn.6.8) can be written as the result of convolving~Idirty

with the scale function~I shp
s (smoothing the standard dirty image to various spatial scales).

~Idirty
s = ~I shp

s ⋆ ~Idirty (6.10)

This is a matched-filtering3 operation that detects the best-matching spatial scales for every
location in the image. For sources with equal total flux but different spatial scales, peaks
in the smoothed dirty images correspond to the location of a source whose scale size best
matches the spatial scale that it was smoothed with (Figure6.3demonstrates this).

The normal equations in Eqn.6.6 can now be re-written in terms of the above
convolution kernels and image vectors (Eqns.6.9,6.10).

Ns−1
∑

p=0

~I ps f
s,p ⋆ ~I

sky,δ
p = ~I shp

s ⋆ ~Idirty ∀ s ∈ {0, ...,Ns− 1} (6.11)

The purpose of this step is to show that the multi-scale dirtyimages are results of sums
of convolutions, instead of one single convolution (Eqn.3.12). The process of solving
these normal equations is therefore referred to as a joint deconvolution that simultaneously
estimates model images at allNs spatial scales.

In order to compare this multi-scale representation with standard imaging as de-
scribed in Section3.2.1, Figure6.2shows a pictorial representation of the standard normal
equations (similar to Figure3.2) for a sky consisting of oneδ-function (point source) and
one Gaussian, both with equal total power but different spatial scales. The dirty image on
the RHS is the standard dirty image and it peaks at the location of the point source, but the
extended component is at the same level as the sidelobes and therefore hard to detect.

Figure6.3 is a pictorial representation of the multi-scale normal equations for
Ns = 2 (as written in Eqns.6.4 and6.5) for the same sky image used in Figure6.2. The
two scale basis functions used in this example are exactly matched to the point source and
Gaussian present in the sky brightness distribution. The two model images contain one
δ-function each, to mark the location and total flux for one point source and one Gaussian
component. The Hessian is composed of a set of convolution operators and the dirty images
on the RHS are smoothed versions of the~Idirty. The first scale basis functionI shp

0 is aδ-
function, and therefore the first RHS vector~Idirty

0 is identical to the standard dirty image
(RHS of Figure6.2) and has a peak at the location of the point source. The secondRHS

3Matched filtering is a technique used to detect the presence of a signal of some known form within a
measured signal of arbitrary form. This is done by convolving the measured signal with known templates,
and picking out the template that gives the highest value after convolution. This template is then said to
be best matched to the data. In signal and image processing this convolution is usually implemented as a
multiplication in the Fourier domain, or in other words, as afilter. In our case, matched-filtering with the
scale function~I shp

s in the image-domain is equivalent to using auv-taper function~Ts = [F]~I shp
s in the spatial-

frequency domain. This is equivalent to tuning the instrument’s sensitivity to peak for the spatial scales.
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Figure 6.2:Normal Equations for a Multi-Scale Sky Brightness Distribution : This diagram rep-
resents the standard process of image formation with an interferometer when the sky brightness
distribution has structure at multiple spatial scales. In this example, the true sky model consists
of two flux components of equal total power but different spatial scales (oneδ-function and one
Gaussian, each of unit integrated flux). This diagram represents Eqn.3.12and uses the same Beam
matrix [B] as in Figure3.2 (displayed using fewer rows). The dirty image vector (on theRHS)
shows the point source clearly, but the Gaussian component of equal total flux is almost masked by
the sidelobes of the point-spread-function.

vector~Idirty
1 is the standard dirty image smoothed byI shp

1 . The peak in this smoothed dirty
image is at the location of the flux component of matching scale (i.e. at the location of the
Gaussian flux component). This is a demonstration of matched-filtering.

Although these peaks mark the locations of flux components ofmatching scale,
the flux values measured from the smoothed dirty images do notyet represent the total flux
of the component (as would be desired to construct a set of model δ-functions~I sky,δ). The
next section (6.1.2.3) describes how an approximate inversion of the Hessian can be used
to calculate accurate total flux estimates for components ateach spatial scale.
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Figure 6.3:Normal Equations for Multi-Scale Deconvolution : This diagram is a pictorial repre-
sentation of the normal equations formed when the sky brightness is described as the sum of images
at multiple spatial scales (Eqns.6.4and6.5with Ns = 2). The sky model is a pair of image vectors
containingδ-functions whose amplitudes represent the total flux of components centered at their
locations (see Eqn.6.1). The sky brightness in this example is the same as that in Figure 6.2, and
consists of two flux components of equal total flux but different spatial scales. The basis functions
used to represent the components are~I shp

0 = δ-function and~I shp
1 =Gaussian whose scale matches the

broad flux component in~I sky (in Figure6.2). The Hessian is a 2× 2 block matrix, and each block
(of sizem× m) is a convolution operator whose kernel is constructed fromthese basis functions
(Eqn.6.9). The RHS vectors are computed by smoothing the dirty image to different spatial scales
(see Eqn.6.11and Fig.6.1). The top RHS vector is the dirty image~Idirty (unchanged by a convo-
lution with aδ-function, and also the same as the RHS of Figure6.2) and the bottom RHS vector
is ~Idirty ⋆ ~I shp

1 . For sources with equal total flux (note the same height of theδ-functions in~I sky,δ
p ),

peaks in these smoothed dirty images correspond to the source whose scale-size best matches the
spatial scale that it was smoothed with. This is a demonstration of matched filtering. Working in
block-matrix form, the multi-scale dirty images (RHS) can be written as the result of linear combi-
nations of convolutions. The multi-scale model images~I sky,δ can be reconstructedvia a combination
of deconvolution and a block-inversion of the Hessian matrix.
(A few points can be noted about the Hessian matrix. Note thatthe top-left Hessian block
[Hs=0,p=0] = [B] is the Beam matrix, and the bottom-right block [Hs=1,p=1] contains smoothed
versions of the [Hs=0,p=0] kernel. The off-diagonal blocks have smaller peaks than the diagonal
blocks indicating that although the scale basis functions are coupled (non-orthogonal), the matrix
of Hessian peaks [Hpeak] is well-conditioned.)
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6.1.2.3 Principal Solution

When the flux model is a linear combination of images and the normal equations
are written in block matrix form, we define the principal solution as the pseudo-inverse
solution obtained using diagonal approximations of each Hessian block. This definition is
a natural extension of the principal solution defined in Section 3.2.1.6for standard imaging
in which the principal solution is computed by inverting a diagonal approximation of the
Beam matrix and the values measured at the peaks of the principal solution images (for
isolated sources) are the true sky values as represented in the image model. For the system
shown in Figure6.2, the peaks represent the true sky brightness at each pixel. For the
system shown in Figure6.3, the peaks represent the total flux of a component of a certain
spatial scale, centered at each pixel, and not the sky brightness measured at each pixel.

When each Hessian block is approximated by a diagonal matrix, all pixels can
be treated independently and the principal solution can be computed one pixel at a time.
Since each block [Hs,p] is a convolution operator, all the diagonal elements per block are
identical and given bymid{~I ps f

s,p }. Therefore, one singleNs×Ns element matrix (denoted as
[Hpeak

Ns×Ns
]) can be used to approximate the Hessian for all pixels. TheNs dirty images (RHS

of Eqn.6.6) can be written one pixel at a time by extracting one pixel from each image
and forming a smaller vector (denoted byI pix,dirty

Ns×1 ). The principal solution is obtained as
follows, one pixel at a time (multi-scale equivalent of Eqn.3.13).

I pix,psol
Ns×1 = [Hpeak

Ns×Ns

−1
]I pix,dirty

Ns×1 for each pixel (6.12)

The values inI pix,psol
Ns×1 are then filled back into theNs model image vectors, also one pixel

at a time. For an imaging instrument whose PSF is aδ-function, the principal solution
gives the final image. When there is incomplete sampling, this inversion is valid only at
the peaks of sources, and can be used only to measure the totalflux of a flux component
to be subtracted out during an iterative deconvolution. Section 6.1.4and Figure6.4 show
the results of applying [Hpeak−1] to ~I pix,dirty for all pixels for a simulated example with three
spatial scales (Ns = 3), and suggest heuristics to pick out only valid solutions.

In practice, this principal solution is used as follows. Since we cannot directly
invert the Hessian to solve the normal equations, we separate this process into two steps.
First, the principal solution is computed to get an estimateof the total flux per component,
and then its contribution is subtracted out of all the RHS vectors.

6.1.2.4 Properties of[Hpeak]

Some properties of [Hpeak] for multi-scale imaging and their implications are given below.

1. Each element of [Hpeak] represents the sum ofuv-tapered gridded imaging weights
and is given as follows.

Hpeak
s,p = mid

{

~I ps f
s,p

}

= tr([Ts][S
†WS][Tp]) ∀ s, p ∈ {0...Ns − 1} (6.13)
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2. The elements on the diagonal of [Hpeak] correspond tos= p and are a measure of the
sensitivity of the instrument to a particular spatial scale. Note that the elementHpeak

0,0

is the same as the peak of the PSF in the standard Beam matrix (assuming thatI shp
0 is

a δ-function). With uniform weighting, the spatial PSFs on thediagonal blocks are
the autocorrelations of the regular PSFs at different spatial scales, and this measures
the area under the main beam of the PSF for each spatial scale4.

3. The off-diagonal elements given bys , p are a measure of the orthogonality5 of
the basis set, for the givenuv-coverage and weighting scheme. They measure the
amount of overlap between basis functions in the measurement domain. Smaller
values indicate a more orthogonal set of basis functions, and the instrument is better
able to distinguish between the chosen spatial scales. For our multi-scale basis set,
there will always be some overlap between the differentuv-taper functions and this
set will never be orthogonal. Therefore it becomes important to choose a suitable set
of spatial scales, such that [Hpeak] is reliably invertible. The condition number of this
per-pixel Hessian can be used as an estimate of how robust a solution will be, and
can be used as a metric to select a suitable basis set of scale functions.

4. By choosing a set of spatial scales within the range the instrument is sensitive to,
[Hpeak] will be a positive-definite symmetric matrix whose inversecan be easily com-
putedvia a Cholesky decomposition6. Also, the value ofNs is usually< 10, making
the inversion of [Hpeak] tractable.

6.1.2.5 Iterative Block Deconvolution (MSCLEAN algorithm)

This section describes the process of reconstructing a multi-scale image of the
sky brightness using a CLEAN-based deconvolution algorithm. This description follows
the same format as that of the CLEAN algorithm in Chapter3 where the principal solution
is used to produce solution estimates that then get refinedvia a steepest-descent optimiza-
tion. Algorithm3 lists the multi-scale deconvolution method described in this section.

4A diagonal approximation of [Hpeak] can be inverted and applied to the RHS dirty image vectors to
normalize them by the area under the main beam of the PSF at different spatial scales. This is related to the
scale-bias terms used in the multi-scale techniques described inCornwell [2008] andGreisen et al.[2009]
(see Section6.1.3).

5The following definition of orthogonality is used here. Two vectors are orthogonal if their inner product is
zero. The orthogonality of a pair of scale functions is measured by the integral of the product of theiruv-taper
functions. To account foruv-coverage, this integral is weighted by the sampling function (see Eqn.6.13).

6A Cholesky decomposition is a decomposition of a symmetric positive-definite matrix into the product
of a lower triangular matrix and its conjugate transpose. Itis used in the solution of system of equations
[A]~x = ~b where [A] is symmetric positive-definite. The normal equations of a linear least-squares problem
are usually in this form. In our case, this linear least-squares problem corresponds to the representation of the
sky brightness as a linear combination of basis functions [Press et al. 1988].
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Pre-compute Hessian : The first step is to compute~I ps f
s,p (Eqn.6.9) for all possible pairs

of scale basis functions. Since convolution is commutative, there will beNs+Ns(Ns− 1)/2
distinct~I ps f

s,p images (the diagonal and lower-diagonal terms of theNs×Ns block symmetric
Hessian matrix) to be computed and then stored.

~I ps f
s,p = [F†TsTpF]~I ps f (6.14)

where~I ps f is the PSF (Eqn.3.21), normalized to unit peak7. The matrix [Hpeak] is then
constructedvia Eqn.6.13and its inverse is computed and stored in [Hpeak−1].

Initialization : The model image~Imodel is initialized either to zero or to ana priori model.

Major and minor cycles : Iterations begin from step1 and proceed through the follow-
ing steps. Steps2 to 4 form the minor cycle. and steps1 and5 form the major cycle. In the
case of a non-empty initial model, the deconvolution process will begin from step5.

1. Compute RHS: Residual images for eachs ∈ {0, ...,Ns} are computed as

~I res
s = [F†TsF]~I res or ~I res

s =
~I shp

s ⋆ ~I
res (6.15)

where~I res is the current residual image (Eqn.3.14). For the first iteration~I res = ~Idirty.

2. Find a Flux Component : The peak value in the dirty images across all scales is
identified and the principal solution is computed at this location8. TheNs×1 solution
vector (obtainedviaEqn.6.12) contains the total flux required for components at each
spatial scale such that their combined contribution produces the measured flux value
at that location in~Idirty

0 . The largest number in this solution vector is chosen as the
total flux of a component at the scale to which this maximum corresponds9.

Let ~Imodel,δ
p,(i) represent the chosen flux component of scale sizep (at iterationi). This

model image contains aδ-function that marks the location of the center of this com-
ponent and whose amplitude holds the estimated total flux forthat component.

7 Note that the use of~I ps f with unit peak is equal to scaling both sides of the normal equations by a single
scale-factor given by the sum of imaging weights. This is equivalent to defining the weight image~Iwt as the
diagonal of the [H0,0] Hessian block, and normalizing all the RHS vectors by it.

8Note that a solution computedvia [Hpeak−1
] is valid only at the exact locations of the centers of each flux

component. If this inverse is applied to all pixels before searching for peaks, PSF sidelobes are amplified and
can mask weak sources even more than usual (see Section6.1.3).

9 When there are exactly overlapping flux components that share the same center, then contributions at
all scales are represented in theNs × 1 solution vector and can be simultaneously removed. However, it is
impossible to distinguish this situation from the case of offset but overlapping components in which case a
simultaneous solution will be inaccurate. Therefore it is safer to choose only one component at a time, the
one corresponding to the largest number in the solution vector.
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3. Update model images: A single multi-scale model image is accumulated with the
chosen component at thepth spatial scale as follows.

~Imodel= ~Imodel+ g
(

~Imodel,δ
p,(i) ⋆ ~I shp

p

)

(6.16)

whereg is a loop-gain that takes on values between 0 and 1 and determines the step
size for each iteration in theχ2 minimization process.

4. Update RHS: Each residual image vector is updated by subtracting the contribution
of the selected flux component at the spatial scalep (given by~Imodel,δ

p,(i) ). This step
is equivalent to evaluating the LHS of the normal equations (Eqn.6.6) with a series
of Ns model image vectors where only~Imodel,δ

p has non-zero elements, and then sub-
tracting this result from the RHS image vectors. This updatestep can be implemented
efficiently if the convolution kernels of each Hessian blockI ps f

s,t are pre-computed and
stored (convolutions withδ-functions are shifted and scaled versions ofI ps f

s,t ).

~I res
s =

~I res
s − g

(

~I ps f
s,p ⋆ ~I

model,δ
p,(i)

)

(6.17)

This step can also be written in a perhaps more intuitive (butcomputationally ex-
pensive) way to compare it with the update step of standard CLEAN deconvolution
(described in Section3.2.1.9). The standard residual image~I res (Eqn.3.14) is updated
by first convolving the model image~Imodel,δ

p,(i) with a scale PSF~I ps f
s=0,p and then subtract-

ing it out. The resulting residual image is then smoothed to different spatial scales to
form the new set of RHS residual images (Eqn.6.15).

~I res = ~I res− g
(

~I ps f
s=0,p ⋆

~Imodel,δ
p,(i)

)

and then ~I res
s =

~I shp
s ⋆ ~I

res (6.18)

This two-stage method (Eqn.6.18) is possible only because~I ps f
s,p = ~I

ps f
s=0,p ⋆

~I shp
s (ac-

cording to Eqn.6.9). Also, it is more computationally intensive than the first method
(Eqn.6.17) because of the extra convolutions that need to be done for every minor
cycle iteration. The first method requires only a shift, scaling and subtraction for
each flux component and makes use of pre-computed Hessian kernel functions.

Repeat from Step2 until a flux limit is reached. This flux limit is usually chosenas
the amplitude of the largest PSF sidelobe around the brightest source in~I res

0 .

5. Predict : Once the minor cycle flux limit is reached, the current best estimate of the
multi-scale model image is used to predict model visibilities~Vmodel(using Eqn.3.18).

Repeat from Step1 until the residuals satisfy a stopping criterion usually based on
an estimate of how noise-like they are.

Restoration : After convergence, the multi-scale model image is already in a form sim-
ilar to that in the standard imaging case, where the only steps left are to smooth it with a
restoring beam to suppress high spatial frequencies that fall beyond the range of the sam-
pling function and to add in the standard residual image.
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Algorithm 3 : Multi-Scale Deconvolution as described in Section6.1.2.5

Data: Calibrated visibilities :~Vcorr
n×1

Data: uv-sampling function :Sn×m

Data: Image noise threshold and loop gainσthr, gs

Data: Scale basis functions :~I shp
s ∀s ∈ {0,Ns}

Result: Model Image :~Imodel
m×1

Compute the dirty image~Idirty and psf~I ps f1

foreachscale s∈ {0,Ns}, p ∈ {s,Ns} do2

Compute I ps f
sp = I shp

s ⋆ I ps f ⋆ I shp
p3

end4

Construct [Hpeak] and [Hpeak−1] with Hpeak
s,p = mid(I ps f

sp )5

Measure the peak psf sidelobefsidelobe6

Initialize the model~Imodel and residual imagesI res7

repeat /* Major Cycle */8

foreach scale s∈ {0,Ns} do9

Calculate smoothed residual images :I res
s = I shp

s ⋆ I res10

Calculate a flux-limit for scales : flimit,s11

end12

repeat /* Minor Cycle */13

foreachscale s∈ {0,Ns} do14

Find the location and amplitude of the peak :ps = peak(I res
s )15

end16

Choose the location of the global peakmax(ps) for s ∈ {0,Ns}17

ConstructI pix,dirty, anNs × 1 vector fromI res over all s ∈ {0,Ns}18

Compute principal solutionI sol = [Hpeak−1]I pix,dirty19

Construct a modelIm,δ
p from the maximum amplitude entry inI sol20

Update the model image with a flux component of the chosen scale21

sizep, location and amplitude :Imodel= Imodel+ g δIm,δ
p ⋆ I shp

p

foreachscale s∈ {0,Ns} do22

Update the residual image :I res
s = I res

s − g [δIm,δ
p ⋆ I ps f

sp ]23

end24

until Peak residual at any scale< Flux Limit at that scale25

Compute model visibilitiesVmodel from the current model imageImodel26

Compute a new residual imageI res from residual visibilities27

Vcorr − Vmodel

until Peak residual at all scales< stopping threshold28

Restore the final model imageImodel29
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6.1.3 Differences with existing MS-CLEAN techniques
There are two main differences between the multi-scale deconvolution algorithms

described inCornwell [2008], Greisen et al.[2009] and Section6.1.2.5. These differences
are described below to emphasize the relation between thesemethods and show how the
two existing methods and their implementations are approximations of the generic method
described in this section (6.1.2.5).

1. Finding a flux component : In the first two methods, the amplitude and scale of a
flux component are chosen by searching for the peak in the listof dirty images after
having applied a scale bias, an empirical term that de-emphasises large spatial scales.
The scale biasbs = 1− 0.6 s/smax used inCornwell [2008] (wheresmax is the width
of the largest scale basis function) is a linear approximation of how the inverse of
the area under each scale function changes with scale size10. It is meant to be used
to normalize residual images that have been smoothed with scale functions that have
unit peak, before flux components are chosen. The algorithm described inGreisen
et al.[2009] usesbs ≈ 1.0/s2x wherex ∈ {0.2, 0.7}, to approximate a normalization
by the area under a Gaussian, for the case when images are smoothed by applying
a uv-taper that tends to unity for the zero spatial frequency. Inthe context of the
algorithm described in Section6.1.2.5, the diagonal elements of [Hpeak] are a measure
of the area under the main lobe of the PSF at each spatial scale, and both these
normalization schemes are roughly equivalent to using a diagonal approximation of
[Hpeak] and discarding all cross-terms when computing the principal solution before
picking out flux components.

Once we have this understanding, we can see that the full Hessian [Hpeak] (and not
just a diagonal approximation) can be inverted to get the normalization exactly right,
especially for sources that contain overlapping flux components of different spatial
scales. It can be shown that by applying the inverse of the full [Hpeak] to the RHS
vectors before picking out a suitable amplitude and scale ofa flux component, we
are able to get a more accurate estimate of the total-flux of the flux component than
by just reading off a peak from a series of dirty images biased by the MS-CLEAN
bs. This difference has been demonstrated on simulations (Section6.1.4) where the
inverse of [Hpeak] was applied to all pixels of a series of smoothed dirty-images, but
the relative performance of this approach (compared to the existing methods) is yet
to be analysed within the complete iterative deconvolutionframework. It is likely
that the technique described in Section6.1.2.5would get more accurate minor cycle
estimates and therefore converge in fewer iterations.

2. Minor cycle updates : The update steps inCornwell[2008] and Section6.1.2.5eval-
uate the full LHS of the normal equations (to account for the non-orthogonality of the

10 Whens/smax = 1.0 the bias term is 1.0− 0.6 = 0.4 which is approximately equal to the inverse of the
area under a Gaussian of unit peak and width, given by 1.0/

√
2π = 0.398.
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basis set) to update the smoothed residual images and subtract out flux components
within the image domain. This allows each minor cycle iteration to search for the op-
timal flux component across all scales without having to recompute smoothed resid-
ual images in the visibility domain after each iteration. Onthe other hand,Greisen
et al. [2009] ignores the cross-terms, performs a full set of minor cycleiterations
on one scale at a time, and recomputes smoothed residual imagesvia the visibility
domain after every full set of minor cycle iterations11.

A choice among these three methods (and other possible combinations) will depend on
trade-offs between the accuracy within each minor cycle (for measuredflux values as well
as the update process), minimizing the computational cost per step, and optimizing global
convergence patterns to control the total number of iterations. For an example of such a
trade-off, see Section7.1.2.3(principal solution of the multi-scale multi-frequency normal
equations).

6.1.4 Example of the Multi-Scale Principal Solution

This section contains an example of the principal solution computed by applying
[Hpeak−1

] to all pixels in a set of smoothed dirty images (using a set of2D Gaussians as
the scale functions). The purpose of this example is to illustrate how this process is able
to separate overlapping flux components of different spatial scales and give an accurate
estimate of the total flux contained in each component, and toshow when this gives a near
optimal solution and when it will not.

Figure6.4 shows a set of dirty images convolved with Gaussian scale functions
(top row) and the result of Eqn.6.12(bottom row) over all pixels, for a simulated example
of multi-scale imaging withNs = 3. The simulated sky brightness distribution consists of
flux components at two spatial scales given by Gaussians whose widths are 1 and 24 pixels.
Three sources are constructed using these components. The point source on the top right
has 0.1 Jy of flux. The source on the top left is a composite of a point source of flux 0.1 Jy
and an extended source of total flux 1.0 Jy, centered on the same pixel. The source on the
bottom is a similar composite in which the centers of the point and extended components
are offset from each other. The three scale basis functions used formulti-scale imaging
correspond to Gaussians of widths 1, 6 and 24 pixels. In this example, two basis functions
exactly match the scales present in the sky model, and one does not12.

11Recomputing smoothed residual images by transforming between the image and visibility domains is a
computationally expensive operation. Therefore, it is useful to either find a way to update them within the
image domain or to reduce the frequency with which they are recomputedvia transformations to and from
the visibility domain.

12Note that in practice, it is usually impossible to find perfectly matching scale sizes for all flux compo-
nents, and this principal solution will be an approximation. The example described here is only an illustration
of what the principal solution means for multi-scale imaging.
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Figure 6.4: Example of the Multi-Scale Principal Solution : These images show a set of three
dirty images (top row) and the corresponding principal solution images (bottom row). The purpose
of this example is to demonstrate (a) the effect of smoothing the dirty images by~I shp and what
happens to the peak flux, and (b) the fact that the flux values inthe principal solutions images are
the true total flux values of each component. This result can be used in the minor cycle to get a
good estimate of total flux in each flux component. The simulated sky in this example consists of a
combination of point sources of flux 0.1 Jy and large flux components of total flux 1.0 Jy. One source
is an isolated point source and two sources are composites ofone point source and one extended
source. Also, the scale basis functions~I shp

0 and~I shp
2 exactly match the point source and extended

component respectively, but~I shp
1 matches neither. The top row of images are smoothed versions

of the dirty image (Eqn.6.10, or ~I pix,dirty from Eqn.6.12with all pixels filled in). The image on
the top left is the dirty image smoothed with aδ-function and shows the point sources clearly but
the peak extended flux is relatively weak. The image on the topright is the dirty image convolved
with a scale function matching the large-scale flux component, and shows a good match at the
largest spatial scale, but the amplitude is wrong. These amplitudes can be corrected by computing
the principal solution. The images in the bottom row are~I psol (~I pix,psol for all pixels) the result of
calculating the principal solution (via Eqn.6.12) for all pixels. The values at the central locations
of the sources in~I sol

0 and~I sol
2 are the correct total flux values for a source at the matching scale.

The values at the locations of the sources in~I sol
1 are all zero, indicating that this spatial scale is not

matched by any flux component. Table6.1.4shows the peak values in the top and bottom rows of
images at the locations of the three sources.
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Source ~I true
0

~I true
1

~I true
2

~I
pix,
dirty

0
~I

pix,
dirty

1
~I

pix,
dirty

1
~I sol
0

~I sol
1

~I sol
1

Point (top right) 0.1 0.0 0.0 0.1 0.04 0.005 0.1 <0.01 <0.01
Extended (top left) 0.1 0.0 1.0 0.12 0.07 0.02 ∼0.1 <0.01 ∼0.9
Extended (bottom) 0.1 0.0 1.0 0.11 0.06 0.018 ∼0.1 <0.01 ∼0.95

Table 6.1: Multi-scale principal solution example

The top row of images shows the dirty images smoothed to thesethree spatial scales. The
isolated point source peaks only in~I pix,dirty

0 and is suppressed in the other two images. The
extended sources peak in~I pix,dirty

2 which is where their scale is best matched. However, the
peak flux values in these images are far from the total flux values that the imaging process
hopes to reconstruct. The bottom row of images show the principal solution images~I sol

for the three spatial scales. The peaks from~I sol at the location of these sources are almost
exactly equal to their total flux (as required for constructing the model image in the minor
cycle). Note that at the central locations of all three sources, the value in~I sol

1 is zero,
indicating that there is no flux component at that particularscale.

Table6.1.4shows the peak values measured for each source, in the smoothed
dirty images as well as in the principal solution images. These numbers show that as
desired, the peak values of the solution images give nearly correct total flux estimates for
spatial scales that exactly match those in the data.

A few points to note are :

1. This solution is valid only at the locations of the centersof the flux components
because it is derived from a diagonal approximation of each Hessian block. This
solution will be valid across the entire image only if the PSFis aδ-function. With
an interferometric PSF, the sidelobe structure is enhanced, and in some cases can
produce artificial peaks that are higher than the true valuesat the center. In the case
of overlapping components, the sidelobes of one component will cause errors in the
estimate of the others.

2. The total flux estimates derived from the principal solution will give an exact solu-
tion only if the scale basis functions exactly match the scales present in the image.
Otherwise it will still model it correctly, but may not be theoptimal set of scale basis
function and may use more flux components than required.

Therefore, the minor cycle of an iterative multi-scale deconvolution algorithm still needs
heuristics to decide how to pick flux components. The principal solution gives a more
accurate estimate than using a scale bias, but it is at the expense of higher sidelobe structure.
The algorithm described in Section6.1.2.5suggests choosing the location of a source from
the peak of~I pix,dirty

0 , calculating the principal solution only at that location,and subtracting
out only the dominant flux component at that location.



102

6.2 Multi-Frequency Synthesis Deconvolution

Theuv-coverage of a synthesis array can be greatly improved by using the fact
that visibilities measured at different receiver frequencies correspond to different spatial
frequencies. Multi-frequency synthesis (MFS) is the process of combining data from mul-
tiple spectral channels onto the same spatial-frequency grid during imaging to take advan-
tage of the increaseduv-coverage and imaging sensitivity. As long as the sky brightness
does not vary across the total measured bandwidth, standardimaging and deconvolution
algorithms can be used along with MFS. If the sky brightness varies across the observing
bandwidth, the monochromaticity requirement of aperture synthesis breaks down and the
2D Fourier relation in the van Cittert Zernike theorem (Eqn.2.9) does not hold. In other
words, when data from multiple frequencies are gridded together, there is no way to tell if
variations in the measurements across the spatial frequency plane are due to spatial struc-
ture, or spectral structure, or both. However, there is often enough information in the data
(via the known frequency dependence of the sampling pattern) to separate the two, and
both spatial and spectral structure can be derived simultaneously by choosing a physically
appropriate model for the sky brightness distribution as well as its frequency dependence.
If the spatial structure is known (a priori or via a physically appropriate flux model), any
remaining structure on the spatial frequency plane can be attributed to spectral structure
and separately modeled. Or, if the spectral structure is known, this information can be used
to constrain the spatial structure.

Section6.2.1defines a broad-band flux model that approximates a power law
with a polynomial in frequency. Section6.2.2describes a multi-frequency deconvolution
algorithm that models the spatial structure by a collectionof δ-functions, and the spectral
structure as a smoothNth order polynomial in frequency. The basic idea is to look at the
spectra for individual locations on the sky, perform anNth order polynomial fitvia a least-
squares approach, and produceN + 1 coefficient images, all within a deconvolution frame-
work that takes advantage of the combined multi-frequencyuv-coverage and optimizes the
broad-band sensitivityvia a weighting (preconditioning) scheme. This discussion is afor-
mal derivation of the technique described inSault and Wieringa[1994] andConway et al.
[1990] and describes a modified version of the Sault-Wieringa MF-CLEAN algorithm that
improves upon its imaging fidelity (Section6.2.3describes this difference and its implica-
tions). Section6.2.4.1contains a brief discussion of the errors incurred by approximating
a power-law with anNth order polynomial. Chapter7 later describes a similar algorithm
that combines this approach with the multi-scale image model described in section6.1.
This entire section ignores all direction dependent instrumental effects and their frequency
dependence. Section7.2deals with these effects by folding the antenna primary beams and
their frequency dependence into the multi-frequency imaging equations.
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6.2.1 Multi-Frequency Image Model

The sky brightness distribution of astronomical sources usually varies with fre-
quency, either due to the spectral structure of the emitted radiation or if the spatial structure
of the radiating object varies with frequency. In either case, an accurate reconstruction of
the wide-band sky brightness distribution will require a frequency-dependent flux model
to be folded into the measurement equation. Just as standardinterferometric image recon-
struction usesa-priori information about the spatial structure of the sky to estimate the vis-
ibility function in unmeasured regions of theuv-plane, multi-frequency imaging algorithms
need to usea-priori information about the spectral structure of the sky brightness during
reconstruction from data with incomplete spectral sampling. A wide-band flux model can
provide these constraints on the sky spectrum during non-linear deconvolution.

A simple spectral model for the Stokes I components of broad-band continuum
emission can be a polynomial in frequency. This functional form (a linear combination
of basis functions) is desirable because it makes the numerical optimization process more
tractable (can apply linear least-squares). However, broad-band continuum emission from
astrophysical sources is often best represented by a power-law. Across the wide frequency
ranges that new receivers are now sensitive to, spectral breaks, steepening and turnovers
also need to be included in these models, and the simplest wayto do so while ensuring
smoothness is with a varying power-law index (spectral curvature).

A power law with a varying index can be represented by a second-order polyno-
mial in log(I ) vs log

(

ν
ν0

)

space. The coefficients of the polynomial are the logarithm of the
flux at a reference frequency log(Iν0), the average spectral indexα and the curvatureβ.

log(Iν) = log(Iν0) + α log

(

ν

ν0

)

+ β log

(

ν

ν0

)2

(6.19)

⇒ Iν,α,β = Iν0

(

ν

ν0

)α+β log
(

ν
ν0

)

(6.20)

Although Eqn.6.19describes a model that is parameterized as a polynomial, it is impracti-
cal to work directly in log(I ) vs log(ν) space because this involves the numerically unstable
process of taking logarithms of image pixel amplitudes in the presence of noise. Two alter-
nate polynomial models based on Taylor series expansions are described below (I vs ν and
I vs log(ν)) followed by the definition of a wide-band flux model as a linear combination
of a finite number of spectral basis functions.

6.2.1.1 Series expansion ofIν,α,β about ν = ν0

Expanding Eqn.6.20 aboutν0 yields a polynomial inI vs
(

ν−ν0
ν0

)

space. The
physical parametersIν0, α andβ can be obtained from the first three terms. However, an
accurate fit to the power law may require more terms in the series, and the error in the fit

after annth order expansion isO
[

α
(

ν−ν0
ν0

)]n+1
.
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Iν,α,β = Iν0 +

[

∂Iν,α,β
∂ν

]

ν0

(ν − ν0) +
1
2

[

∂2Iν,α,β
∂ν2

]

ν0

(ν − ν0)2

+
1
6

[

∂3Iν,α,β
∂ν3

]

ν0

(ν − ν0)3 + ... (6.21)

Iν,α,β =
N

∑

t=0

It

(

ν − ν0
ν0

)t

where I0 = Iν0

I1 = Iν0 [α]

I2 = Iν0
[

α(α − 1)/2+ β
]

I3 = Iν0
[

α(α − 1)(α − 2)/6+ β(α − 1)
]

... and so on. (6.22)

6.2.1.2 Series expansion ofIν,α,β about α = 0, β = 0

Another power-series expansion can be obtainedvia partial derivatives with re-
spect toα andβ. This expansion yields a polynomial inI vs log

(

ν
ν0

)

space. The first few
power-series co-efficients derived from a third-order expansion aboutα = 0, β = 0 is given
below. Here too, only the first three terms are needed to calculate Iν0,α andβ, and the error

term after annth order expansion isO
[

α log
(

ν
ν0

)]n+1
.

Iν,α,β = Iν0 + α

[

∂Iν,α,β
∂α

]

0,0

+ β

[

∂Iν,α,β
∂β

]

0,0

+ αβ

[

∂2Iν,α,β
∂α∂β

]

0,0

+
α2

2

[

∂2Iν,α,β
∂α2

]

0,0

+
β2

2

[

∂2Iν,α,β
∂β2

]

0,0

+
α3

6

[

∂3Iν,α,β
∂α3

]

0,0

+
β3

6

[

∂3Iν,α,β
∂β3

]

0,0

+
α2β

2

[

∂3Iν,α,β
∂α2∂β

]

0,0

+
αβ2

2

[

∂3Iν,α,β
∂α∂β2

]

0,0

+ ... (6.23)

Iν,α,β =
N

∑

t=0

It

[

log

(

ν

ν0

)]t

where I0 = Iν0

I1 = Iν0 [α]

I2 = Iν0
[

α2/2+ β
]

I3 = Iν0
[

α3/6+ αβ
]

... and so on. (6.24)
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This expansion can be done about more realistic values ofα andβ (for example,α0 =

−0.7, β0 = 0.0). In this case the coefficients can be interpreted asI0 = Iν,α0,β0, I1 = Iν,α0,β0[α−
α0], I2 = Iν,α0,β0[(α − α0)2/2 + (β − β0)] and so on, but the functional form of the spectral
basis function will not change. To take advantage of a known average spectral index and

curvature over all sources in the image, the data can be scaled by
(

ν
ν0

)α0+β0

(

ν
ν0

)

prior to multi-
frequency imaging.Conway et al.[1990] suggest this approach to reduce the magnitude of
the higher-order terms in the series so that a solution with fewer terms in the Taylor series
expansion (or even standard MFS) may suffice for an accurate deconvolution.

6.2.1.3 Image model for multi-frequency deconvolution

A sky brightness distribution that varies smoothly with observing frequency can
be modeled as a linear combination of spectral basis functions and coefficient images (see
Eqns6.22and6.24for two possible series expansions). The flux modeled at eachfrequency
channel can be written as

~Imodel
ν =

Nt−1
∑

t=0

wt
ν
~I sky
t where wt

ν =

(

ν − ν0
ν0

)t

(6.25)

or wt
ν =

[

log

(

ν

ν0

)]t

(6.26)

whereNt is the total number of terms in the series and~I sky
t are the coefficient images (one

set of coefficients per pixel).ν is the observing frequency andν0 is a chosen reference
frequency andwt

ν is the evaluated result of thetth basis function for a given value ofν. wt
ν

is used as a weight during MFS gridding and will be called a Taylor-weight.

Eqns.6.25 and6.26 show two choices of spectral basis functions. In practice
it is a simple matter to switch between the two, depending on the type of spectrum of the
emission being imaged. The linear expansion (Eqn.6.25) was chosen for all the tests in this
dissertation because it can be applied to arbitrary but smooth spectra. For pure power-law
spectra associated with isolated point sources or extendedsources with a constant spectral
index (across the source), the logarithmic expansion is a better choice from the point of
view of series convergence [Conway et al. 1990]. However, in general, the sum of two
power-laws is not another power-law. Therefore, when the spectral index varies smoothly
across extended emission, and the wide-band spatial structure is modeled using a collection
of overlapping extended flux components with fixed spectral shapes (see Chapter7 for
a multi-scale multi-frequency deconvolution algorithm that uses this approach), a Taylor
expansion inI vs ν space is a more general choice of parameterization. Section6.2.4
discusses some of the errors associated with the use of such Taylor polynomials to fit pure
power law spectra.
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6.2.2 Imaging Equations and Block Deconvolution

This section contains a derivation of the normal equations for a multi-frequency
image model. This is followed by a description of the principal solution and its use in an
iterative joint deconvolution. Algorithm4 lists the multi-frequency deconvolution method
described in this section. The derivations in this section use a block-matrix notation (de-
scribed in AppendixB) to represent the measurement and normal equations.

6.2.2.1 Measurement equations

We begin with an example of how the sampling function of the interferometer
(and the PSF) changes with observing frequency. Figure.6.5 shows a set of 1-D grid-
ded sampling functions and corresponding PSFs for three different frequenciesν1, ν2 =
2ν1, ν3 = 3ν2 (Nc = 3). These plots show that each frequency measures a different range of
spatial-frequencies, and the angular resolution of the instrument increases with frequency.

The goal of multi-frequency-synthesis is to use the combined uv-coverage from
all measured frequencies and reconstruct the image at the angular resolution allowed by the
highest frequency in the band. One way to accomplish this is to write separate measurement
equations for each frequency, and then solve them simultaneously.

Let there beNc observing frequencies withn measurements taken at each fre-
quencyν. The visibility vector for each frequency (~Vcorr

ν ) has the shapen × 1, and the
sampling matrix [Sν] has the shapen×m (Figure.6.5shows an example of how the sam-
pling function and the corresponding PSFs change as a function of frequency). [Fm×m] is
the Fourier transform operator (image to spatial-frequency) and all images~I are lists ofm
pixel amplitudes. The measurement equations for one frequency are given as follows.

~Vcorr
ν = [Sν][F]~Imodel

ν =

Nt−1
∑

t=0

wt
ν[Sν][F]~I sky

t (6.27)

Note that the images~Imodel
t ∀ t ∈ {0,Nt − 1} form theNt coefficients of the series expansion.

The order of each term in this Taylor polynomial is denoted bythe subscriptt.

A multi-frequency measurement equation can be written by combining measure-
ments from all frequency channels. The full visibility vector ~Vcorr (note, no subscriptν)
now contains all frequencies and has the shapenNc × 1.

~Vcorr =

Nt−1
∑

t=0

[Wm f s
t ][S][F]~I sky

t (6.28)

The sampling operator [S] (of shapenNc ×m) is a vertical stack of [Sν] matrices (of shape
n × m each) over allNc frequency channels. [Wm f s

t ] is a block diagonal matrix of shape
nNc × nNc, constructed fromNc diagonal matrices (each of shapen × n, denoted byWim

ν ,
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Figure 6.5:Multi-frequency sampling weights and PSFs : The plots on theleft show 1-D gridded
sampling functions [S†νWSν] at three different frequencies (ν = 1, 2, 3 from top to bottom). The
plots on the right show the corresponding PSFs~I ps f

ν calculatedvia Eqn.3.11. The range of sampled
spatial frequencies scales linearly with frequency. This changes the shape of the PSF, and the width
of the main lobe (angular resolution) decreases at higher frequencies (θps f

ν=1= 5.7′ with umax= 0.6 kλ,

θ
ps f
ν=2= 2.8′ with umax = 1.2 kλ, θps f

ν=3= 1.9′ with umax = 1.8 kλ,). These 1D plots are the multi-
frequency equivalent of Figure3.1 (with different spatial-frequency sampling functions chosen to
illustrate the difference between frequencies).

and containing the weightswt
ν). [Fm×m] is the same Fourier transform operator used in the

single-frequency equations (Eqn.6.27). The full measurement matrix ([A] in Eqn. 2.20)
therefore has the shapenNc ×mNt where each of theNt block columns corresponds to one
series coefficient. ThisnNc × mNt measurement matrix operates on themNt × 1 column
vector of image pixels to producenNc visibilities.

An example forNt = 3 is shown below.
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= ~Vcorr (6.29)

Each model image vector~I sky
q is an image of theqth coefficient of the Taylor polynomial

used to represent the spectrum at each point on the sky (see Figure8.1for an example).
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6.2.2.2 Normal equations

The least-squares solution of Eqn.6.29is computed by solving the normal equa-
tions (as shown in block-matrix form in AppendixB). With Nt terms in the model descrip-
tion, the Hessian is made up ofNt ×Nt blocks, each of sizem×m. The sky model and dirty
images are a set ofNt image vectors each of sizem× 1. Let us label the normal equations
as follows.

[Hm f s
mNt×mNt

]~I sky,m f s
mNt×1 =

~Idirty,m f s
mNt×1 (6.30)

These normal equations can be written in block matrix form. As an example, consider the
case whereNt = 3.





























[Ht=0,q=0] [Ht=0,q=1] [Ht=0,q=2]

[Ht=1,q=0] [Ht=1,q=1] [Ht=1,q=2]

[Ht=2,q=0] [Ht=2,q=1] [Ht=2,q=2]































































~I sky
q=0

~I sky
q=1

~I sky
q=2



































=































~Idirty
t=0

~Idirty
t=1

~Idirty
t=2































(6.31)

Figure6.6 is a pictorial representation of these normal equations (Eqn. 6.31) for Nt = 3,
using the multi-frequency sampling functions shown in Fig.6.5 (and labeled as shown in
Eqn.6.30). In the figures, the full Hessian matrix on the LHS of Eqn.6.31is denoted as
[Hm f s

3m×3m] and the model and dirty image vectors are denoted as stacks of Nt = 3 vectors
each (~I sky,m f s, ~Idirty,m f s).

These matrix equations can be written row-by-row as follows. The indicest,q
vary from 0 toNt − 1 and will henceforth denote block row and column indices formulti-
frequency equations.

Nt−1
∑

q=0

[Ht,q]~I
sky
q = ~Idirty

t ∀ t ∈ {0...Nt − 1} (6.32)

There are two ways of writing and computing [Ht,q] and ~Idirty
t . The following pairs of

equations show that the Hessian blocks and RHS vectors can becomputed either by grid-
ding Taylor-weighted visibilities from all frequencies together (Eqns.6.33,6.34,

∑

ν in the
visibility domain), or by a Taylor-weighted sum of the Hessian and RHS vectors formed
separately from each frequency (Eqns.6.35,6.36,

∑

ν in the image domain).

1. Calculating the normal equations from the measurement equations as written in Eqn.6.31
gives the following forms for the Hessian blocks and RHS vectors. In these equa-
tions, summations over frequency are implicit in the dimensions of the matrices that
make up [Ht,q].

where [Ht,q] = [F†S†Wm f s
t

†
WimWm f s

q S F] (6.33)

~Idirty
t = [F†S†Wm f s

t

†
Wim]~Vcorr (6.34)
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[Wim] is a block diagonal matrix formed from a set ofNc single-frequency diagonal
weight matrices [Wim

ν ], and~Vcorr contains allnNc visibilities.

2. Eqns.6.33 and6.34can be re-written in a more intuitive form in terms of single-
frequency sampling functions, weights and PSFs and explicit summations over fre-
quency.

[Ht,q] =
∑

ν

wt+q
ν [F†S†νW

im
ν SνF] =

∑

ν

wt+q
ν [Bν] (6.35)

~Idirty
t =

∑

ν

wt
ν[F

†S†νW
im
ν ]~Vcorr

ν =
∑

ν

wt
ν
~Idirty
ν (6.36)

Here,
∑

ν indicates a sum acrossNc frequency channels, and [Bν] and ~Idirty
ν are the

Hessian (Beam matrix) and dirty image for frequencyν (given by Eqns.3.9 and
3.10).

Consider each Hessian block [Ht,q]. Each term in the summation in Eqn.6.35is a Beam
matrix (a convolution operator) and therefore each Hessianblock [Ht,q] is also a convolution
operator (matrix multiplication is distributive). The kernel of each [Ht,q] will be denoted as
~I ps f
t,q and is computed as a weighted sum of~I ps f (Eqn.3.11) computed at each frequencyν.

~I ps f
t,q =

∑

ν

wt+q
ν [F†S†νW

im
ν ]~1 =

∑

ν

wt+q
ν
~I ps f
ν (6.37)

1-D examples of these convolution kernels are shown in Fig.6.6 as the shifted rows in
each Hessian block. The kernels functions of the first row of Hessian blocks (~I ps f

t=0,q ∀ q ∈
{0,Nt − 1}) represent the instruments response functions to a point source whose spectrum
is given by theqth spectral basis function (Eqn.6.25) and are called spectral PSFs [Sault
and Wieringa 1994].

Fig. 6.6 represents the normal equations for a three-term series expansion (Nt =

3). The three segments ofI sky,m f s
3m×1 represent three coefficient images that make up a multi-

frequency model for two point sources on an empty sky. The amplitudes of theδ-functions
were chosen such that both point sources have unit total flux at the reference frequency,
one has a positive slope in frequency while the other has a negative slope, and both have
positive curvature. The Hessian matrix on the LHS is comprised of 3× 3 blocks each of
sizem×m. Each block is a convolution operator constructed from~I ps f

t,q . These equations
show that the dirty image vectors on the RHS can be written as alinear combination of
convolutions of spectral coefficient images with~I ps f

t,q . The Taylor-coefficient model images
I sky,m f s can be recoveredvia a combination of deconvolution and block inversion of the
Hessian matrix.
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Figure 6.6: Normal Equations for Multi-Frequency Deconvolution : Thisdiagram is pictorial
representation of the normal equations formed when the sky spectrum is described as a 2nd-order
Taylor polynomial in frequency (Eqns.6.30 and 6.31 with Nt = 3) and the spatial structure is
described by a point-source flux model (no multi-scale).I sky,m f s

3m×1 is a 1-D model of two point sources

on an empty sky. The three segments correspond to the Taylor-coefficient imagesI sky
q for q =

0, 1, 2 (see Eqn.6.25) and represent the case where both point sources have unit total flux at the
reference frequency (top vector,δ-function amplitudes are 1.0 and 1.0), the spectrum of one source
has a positive slope in frequency while the other has a negative slope (middle vector,δ-function
amplitudes are+0.5 and -1.0), and the spectra of both sources have positive curvature (bottom
vector, δ-function amplitudes are+0.5 and+0.5). The Hessian matrix (LHS) consists of 3× 3
blocks each of sizem× m, and each block is a convolution operator constructed from apair of
Taylor functions (Eqn.6.35). The RHS vectors are computed as Taylor-weighted sums of the single-
frequency dirty images (Eqn.6.36). These equations show how the dirty image vectors (RHS) can
be written as a linear combination of convolutions. The Taylor-coefficient model imagesI sky,m f s

can be recoveredvia a combination of deconvolution and block inversion of the Hessian matrix.
(A few points can be noted about the Hessian matrix. The top-left block [Ht=0,q=0] is the Beam
matrix [B] constructed from the sum of all the single-frequency PSFs (see Fig.6.5 for the single-
frequency PSFs used in this example). With only three frequencies, each row of the top middle
block [Ht=0,q=1] is the difference between the first and the last single-frequency PSF. The central
values of the off-diagonal blocks are non-zero but smaller than the peaks on the diagonal, making
[Hpeak] a well-conditioned matrix.)
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6.2.2.3 Principal Solution

The principal solution is obtained by approximating each Hessian block by its
diagonal and computing the solution independently for eachpixel (similar to the principal
solution for multi-scale imaging described in Section6.1.2.3). The peak values measured
from the resulting images are in true sky flux units, and theseimages contain no contribu-
tion from the invisible distribution of images.

The approximate Hessian is a set ofNt × Nt diagonal matrices. Since each block
is a convolution operator with identical numbers on the diagonal, the entire Hessian ap-
proximation can be written as one singleNt × Nt element matrix denoted as [Hpeak

Nt×Nt
]. The

dirty image vectors are also written one pixel at a time as aNt × 1 vector and a per-pixel
solution is obtained (similar to Eqn.6.12) as follows.

I pix,psol
Nt×1 = [Hpeak

Nt×Nt

−1
]I pix,dirty

Nt×1 for each pixel (6.38)

The values inI pix,psol
Nt×1 are then filled back into theNt model image vectors, also one pixel at

a time. For an imaging instrument whose PSF is aδ-function, the principal solution gives
the final reconstructed image. When there is incomplete sampling, this inversion is valid
only at the peaks of sources and can be used only to find flux components during the minor
cycle of deconvolution.

6.2.2.4 Properties of[Hpeak]

Some properties of [Hpeak] for multi-frequency imaging are given below.

1. Each element of [Hpeak] is given by

Hpeak
t,q = mid

{

~I ps f
tq

}

= tr















∑

ν

wt+q
ν [S†νW

im
ν Sν]















∀ t, q ∈ {0...Nt − 1} (6.39)

2. The elements on the diagonal of [Hpeak] correspond tot = q and are a measure of the
sensitivity of the instrument to a thetth spectral basis function. Note that the element
Hpeak

0,0 is the same as the peak of the PSF in the standard Beam matrix (see Eqn.3.11).

3. The off-diagonal elements (t , q) are a measure of the level of orthogonality of the
basis set (see footnote5on page94) for the givenuv-coverage and weighting scheme.
For example, in the special case of natural weighting and an equal and symmetric
distribution of frequencies on either side ofν0, the value ofmid

{

~I ps f
01

}

will be exactly
zero, reflecting the fact that the first two spectral basis functions are orthogonal13.

13Note that the series expansion of Eqn.6.22 corresponds to a set of functions given by 1, x, x2, x3, ...,
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4. [Hpeak] is a Vandermonde14 matrix whose inverse can be easily computedvia a
Cholesky decomposition. Also, the value ofNt is usually< 5, making this inver-
sion tractable.

6.2.2.5 Iterative Block Deconvolution

This section describes an iterative joint deconvolution process for multi-frequency
imaging, similar to that described for multi-scale deconvolution. The data products in this
case are a set of spectral coefficient images.

Pre-compute Hessian : ~I ps f
t,q (the kernels of each Hessian block) are first computed for all

possible pairs of spectral basis functions. Since the multiplication of diagonal matrices is
commutative, there will beNt+Nt(Nt−1)/2 distinct functions to be computedvia Eqn.6.37
in which the PSF for each frequencyν is computedvia Eqn.3.11.

The peak of the un-normalized~I ps f
00 is equal towsum = tr[S†WimS], and has no

contribution from the spectral basis functions (since the zeroth order function is a vector of
ones). All spectral PSFs are to be normalized bywsum to get the peak of~I ps f

00 to unity, but to
retain the relative weights between spectral PSFs. This is equivalent to defining the weight
image~Iwt as the diagonal of the [H0,0] Hessian block, and normalizing all the RHS vectors
by it. The matrix [Hpeak] is constructed (via Eqn.6.39) and its inverse is computed and
stored in [Hpeak−1].

Initialization : TheNt model images are first initialized to zero (or ana-priori model).

Major and minor cycles : The following steps describe the iterative deconvolution
process for multi-frequency synthesis imaging. Steps1 and5 form the major cycle and
steps2 to 4 form the minor cycle.

1. Compute RHS: The residual imagesI res
t , ∀ t ∈ [0,Nt−1] for each term in the series

are computed from the residual visibilities at each frequency (~Vres
ν ) via Eqn.6.34in

and a set formed from more than the first two basis functions functions, will not form an orthogonal basis.
The Legendre series gives a polynomial model in which the basis functions are orthogonal. However, this
orthogonality will manifest itself in the normal equationsonly in the case of natural weighting and symmetric
frequency sampling, and therefore in practice, the non-orthogonality of the basis set is not significant.

14 A Vandermonde matrix is one in which the rows and columns contain a geometric progression of some
kind. A useful property of such a matrix is that the diagonal elements contain even powers of the root
function, and this guarantees positive-definiteness and therefore invertiblity. A common situation in which
such matrices arise is in computing least-squares solutions for the coefficients of a series expansion in which
the basis functions form a geometric progression (say, 1, x, x2, x3, ...). With such a model, the rows and
columns of the Hessian matrix will be a Vandermonde system and will therefore be invertible.



113

which the dirty images for each frequencyν are computedvia Eqn.3.14. For the first
iteration,~Vres

ν =
~Vcorr
ν and~I res

t =
~Idirty
t .

2. Find a Flux Component : The principal solution (obtainedvia Eqn.6.38) is com-
puted for all pixels, one at a time. A solution set comprised of δ-functions for each
spectral coefficient image is constructed from the solutions at the location of the
largestq = 0 component.

Alternatively, the principal solution can be computed onlyat the location of the peak
of the 0th-order dirty image (as described in Section6.1.2.5for multi-scale deconvo-
lution). This may not be the most optimal flux component to be subtracted out at this
iteration, but since this direct solution is strictly validonly at the locations of source
peaks, this approach may be useful at low signal-to-noise levels. In practice, itera-
tions can switch back and forth between the two forms of finding flux components,
as a trade-off between convergence speed and stability.

Either way, the result of this step isImodel
q,(i) ∀ q ∈ {0,Nt − 1}, a set ofNt model images,

each containing aδ-function that marks the location of the source (the indexi is an
iteration counter). The amplitudes of theseδ-functions are the coefficients of the
Taylor polynomial that has been fitted to the source spectrumat that one location.

3. Update model images: Model images for each spectral coefficient are updated as

Imodel
q = Imodel

q + g Imodel
q,(i) ∀q ∈ [0,Nt − 1] (6.40)

g is a loop-gain that takes on values between 0 and 1 and controls the step size of
each iteration of theχ2 minimization process.

4. Update RHS : The residual images on the RHS are updated by evaluating andsub-
tracting out the entire LHS of the normal equations for the model image vectors
(Imodel

q,i , ∀q) obtained in iterationi.

I res
t = I res

t − g

















Nt−1
∑

q=0

I ps f
t,q ⋆ Imodel

q,(i)

















(6.41)

This update step can be implemented efficiently if the convolution kernels of each
Hessian blockI ps f

t,q are pre-computed and stored (convolutions withδ-functions are

shifted and scaled versions ofI ps f
t,q ).

There are two differences15 between this update step and that for multi-scale decon-

15 Note that the update step for multi-frequency deconvolution (Eqn.6.41) is derived using exactly the
same mathematical idea used for standard deconvolution (Eqn. 3.17in Section3.2.1.9) and multi-scale de-
convolution (Eqn.6.18in Section6.1.2.5). All these algorithms evaluate the LHS of the normal equations
using the model images for iteration (i), and subtract it out from the current RHS vectors. The differences
between these algorithms arise purely from the different flux models (standard CLEAN uses a single set of
δ-functions, multi-scale CLEAN associates a spatial scale with each set ofδ-functions and multi-frequency
CLEAN uses sets ofδ-functions for each coefficient of the Taylor polynomial).
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volution (Eqn.6.18). First, each dirty imageI res
t is updated by subtracting out the

contribution of allNt coefficients (and hence the summation in Eqn.6.41). Second,
this update step cannot be written in two stages as was done for multi-scale decon-
volution (Eqn.6.18) because the convolution kernels of each Hessian block (I ps f

t,q )
cannot be written as a sequence of convolutions (see Section6.2.3for a discussion
of what this implies).

Repeat from Step2 until a flux limit is reached. At any stage in the minor cycle,
additional constraints can be placed on the model image by calculating the spectral-
index and/or curvature images and discarding unrealistic values.

5. Predict : Once the minor cycle flux limit is reached, the current best estimates of the
spectral coefficient images are used to predict multi-frequency model visibilities.

Vmodel
ν =

Nt−1
∑

t=0

[Wm f s
t ][S GpcF][ I pc]−1Imodel

t (6.42)

Residual visibilities are computed for each frequency as~Vres
ν =

~Vcorr
ν − ~Vmodel

ν and
then processed as in Step 1 to construct the next residual image.

Repeat from Step2 until the residuals satisfy a statistically derived stopping crite-
rion.

Restoration : After convergence, the model spectral coefficient images can be interpreted
in different ways. If applicable, the final image products can then be smoothed with the
restoring beam and the residuals are added back in. Some forms applicable for radio as-
tronomy are described below as additional operations that need to be performed on the
model images.

1. The most obvious data products are the spectral-coefficient images themselves, which
can be directly smoothed by the restoring beam. The residualimages that are added
back in should be the principal solution computed from the final residuals, to ensure
that any undeconvolved flux has the right flux values.

2. For the study of broad-band radio emission, the spectral coefficients can be inter-
preted in terms of a power law in frequency with varying index(as described in
Section6.2.1). The data products are images of the reference-frequency flux ~I sky

ν0 , the
spectral-index~Iα and the spectral curvature~I β.

~I sky
ν0
= ~Imodel

0 (6.43)

~Iα =
~Imodel
1

~Imodel
0

(6.44)
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~I β =
~Imodel
2

~Imodel
0

−
~Iα(~Iα − 1)

2
(6.45)

Spectral index and curvature images can be calculated only in regions where the
values in~Imodel

0 are above a chosen threshold. In this case, it is appropriateto smooth
the final ~I sky

ν0 image with a restoring beam, but not the spectral index or curvature
images.

3. An image cube can be constructed by evaluating the spectral polynomialviaEqn.6.25
for each frequency. This form of data product is useful for sources whose emission
is not well modeled by a power law, but is a smooth polynomial in frequency. Band-
limited signals that taper off smoothly in frequency are one example.

4. An image of the continuum flux can be constructed by evaluating and summing up
the flux at all frequencies. Note that this continuum image isdifferent from the
reference-frequency image which represents the flux measured at only one frequency.
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Algorithm 4 : MF-CLEAN with Cotton-Schwab Major/Minor Cycles

Data: Calibrated visibilities :~Vcorr
ν ∀ν

Data: uv-sampling functions :Sν ∀ν
Data: Image noise threshold and loop gainσthr, gs

Result: Model Coefficient Images :~Imodel
q ∀q ∈ {0,Nt − 1}

foreach t ∈ {0,Nt − 1}, q ∈ {t,Nt − 1} do1

Compute the spectral PSF~I ps f
tq2

end3

Construct [Hpeak] and [Hpeak−1
] with Hpeak

t,q = mid(I ps f
t,q )4

Measure the peak~I ps f
00 sidelobefsidelobe5

Initialize the model~Imodel
t for all t ∈ {0,Nt − 1}6

repeat /* Major Cycle */7

foreach t ∈ {0,Nt} do8

Compute the residual image~I res
t9

end10

Calculate a Flux-Limit for from~I res
0 : flimit11

repeat /* Minor Cycle */12

if Peak of~I res
0 > 10σthr then13

foreach pixel do14

Construct~I pix,dirty, anNt ×1 vector from~I res
t ∀ t ∈ {0,Nt −1}15

Compute principal solution~I sol = [Hpeak−1]~I pix,dirty16

end17

Choose the solution vector at the location of the peak of~I sol
018

else19

Find the location of the peak of~I res
020

Construct~I pix,dirty from ~I res
t ∀ t ∈ {0,Nt − 1}, at this location21

Compute~I sol = [Hpeak−1
]~I pix,dirty at this location22

end23

foreach t ∈ {0,Nt − 1} do24

Update the model image :~Imodel
t = ~Imodel

t + gs ~I sol
t25

Update the residual image :~I res
t =

~I res
t − g

∑Nt−1
q=0 [~I ps f

tq ⋆ ~I
sol
t ]26

end27

until Peak residual in~I res
0 < flimit28

Compute model visibilities~Vmodel
ν from ~Imodel

t ∀t ∈ {0.Nt − 1}29

Compute a new residual image~I res from ~Vcorr
ν − ~Vmodel

ν30

until Peak residual in~I res
0 < σthr31

Calculate spectral index and curvature images from~Imodel
q , and restore them32
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6.2.3 Difference with the Sault-Wieringa (SW-MFCLEAN) algorithm

The SW-MFCLEAN algorithm described inSault and Wieringa[1994] follows
the theory in the previous section forNt = 2, but its implementation follows a matched-
filtering approach, using spectral PSFs~I ps f

t=0,q ∀ q ∈ {0,Nt − 1} as the template functions.
Formally, the matched filtering approach is exactly equal tothe calculations shown in
Eqns.6.32to 6.34only under the conditions that there is no overlap on the spatial frequency
plane between measurements from different observing frequencies, and all measurements
are weighted equally across the spatial-frequency plane (uniform weighting). In other cases
(when there is overlap between frequencies on theuv-plane), it can be shown to lead to er-
rors in estimating the spectral coefficients, especially when there is extended emission in
the image.

The following is a simple way to state the problem. Consider aspatial-frequency
grid cell onto which measurements from two different baselines and frequencies map. Let
V1,V2 be the measured visibilities at two frequencies 1, 2 and letw1,w2 be their Taylor-
weights. A matched-filtering approach calculates (w1 + w2)(V1 + V2), whereas Eqns.6.32
to 6.34require the computation of (w1V1) + (w2V2). The two are equivalent only for flat
spectrum sources whereV1 = V2 or when there is no such overlap between measurements
from different observing frequencies (V1 andV2 map to different spatial frequencies).

The SW-MFCLEAN algorithm was initially developed for the ATCA telescope,
an East-West array of antennas with circularuv-coverage patterns and minimal spatial-
frequency overlap across channels. This matched filtering approach therefore worked well.
However, when applied to data from the VLA (whereuv-tracks intersect each other and
there is considerable spatial-frequency overlap), numerical instabilities limited the fidelity
of the final image, especially with extended emission. Changing the computations to those
described for MFS deconvolution in Section6.2.2.5eliminated this instability (determined
using simulated VLA data).

6.2.3.1 Differences

In the SW-MFCLEAN algorithm, the Hessian block kernels and dirty images are
computedvia FFT-based convolutions in which gridded Taylor-weights are multiplied with
gridded visibilities : (w1 + w2)(V1 + V2).

~I ps f,sw
t,q = ~I ps f

t ⋆ ~I ps f
q where ~I ps f

x = [F†S†Wm f s
x Wim]~1 for x = t, q (6.46)

~Idirty,sw
t = ~I ps f

t ⋆ ~Idirty where ~Idirty = [F†S†Wim]~Vcorr (6.47)

According to Eqns.6.32 to 6.34 (MFCLEAN algorithm), the Hessian block kernels and
dirty images are to be computed by multiplying the visibility measurments with the Taylor-
weights before gridding the result : (w1V1) + (w2V2).

~I ps f
t,q = [F†S†Wm f s

t Wm f s
q Wim]~1 (6.48)
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~Idirty
t = [F†S†Wm f s

t Wim]~Vcorr (6.49)

6.2.3.2 Conditions for equality

The two methods listed above (Eqns.6.46,6.47and Eqns.6.48,6.49) are equivalent
only under certain conditions. Consider Eqn.6.33 for [Ht,q]. Iff [S†] = [S†S S†] and

[S] = [S S†S], then [S†] can be replaced by [S†S S†]. Further, [S S†] and [Wm f s
t

†
] are both

diagonal matrices of sizenNc × nNc and therefore commute. In this case, [Ht,q] becomes

[Ht,q] = [F†S†Wm f s
t

†
WimWm f s

p S F] (6.50)

= [F†S†Wm f s
t

†
S F][F†S†WimS F][F†S†Wm f s

p S F]

⇒ ~I ps f
tq = I ps f

t ⋆ I ps f ⋆ I ps f
q (6.51)

where I ps f = [F†S†Wim]~1 and I ps f
t = [F†S†Wm f s

t ]~1

This is still not the same as Eqn.6.46which has two instances of [Wim]. Therefore, only
when [Wim] is an identity matrix (equally weighted visibilities) will the kernel functions
from both methods be identical~I ps f

t,q =
~I ps f,sw
t,q . A similar argument holds for the dirty im-

ages. The restriction of [S†] = [S†S S†] and [S] = [S S†S] implies that each row and
column in [S] has only one 1, with the rest being 0. Since [S] has dimensionsnNc ×m, the
maximum number of non-zero elements must bem. Therefore, any of themdiscrete spatial
frequencies cannot be measured at more than one baseline or frequency channel. However,
consider them×mdiagonal matrix of gridded imaging weights [WG

ν ] = [S†νWim
ν Sν] per fre-

quency channel. A projection operator [Sν
G] of shape (m×m) can be constructed for each

frequency channel, with each diagonal element corresponding to one spatial frequency grid
cell. Measurements from multiple baselines that map onto the same spatial frequency grid
cell are treated as a single measurement in [Sν

G], with an increased weight in [WG
ν ]. The use

of uniform weighting will flatten out [WG
ν ] as required for equality with Eqn.6.46. Written

this way, with multiple frequencies, [Sν
G] has dimensionsmNc ×m, and the restriction of

[S†] = [S†S S†] and [S] = [S S†S] means that any spatial frequency must not be mea-
sured in more than one frequency channel. Therefore, a pure matched-filtering approach
is strictly valid only for uniform weighting and when all filled spatial frequency grid cells
contain measurements from only one frequency channel.
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6.2.4 Accuracy of multi-frequency deconvolution

This section illustrates some of the errors that arise when an Nt-term Taylor poly-
nomial is used to model a power-law spectrum during multi-frequency synthesis imaging.
The metrics used to evaluate these errors are the magnitude of the residuals (or remainder)
and the absolute errors on the values of physical quantitiesderived from the fitted coef-
ficients (intensity at a reference frequency, spectral index and curvature). Section6.2.4.1
compares the accuracy of the derived value ofαwhen different functional forms are used to
model a power-law spectrum. These errors were measured for afixed total bandwidth and
for different signal-to-noise ratios. Section6.2.4.2shows how the peak residuals and errors
on Iνo, α andβ vary with the order of the Taylor polynomial used with multi-frequency de-
convolution. These errors were measured for different total bandwidths and a fixed signal-
to-noise ratio.

These trends are meant to be used as guidelines when choosingparameters during
multi-frequency deconvolution. However, note that this section only shows measured errors
for a few simple examples and makes no attempt to estimate or predict these errors for a
generic data set or type of spectrum16.

6.2.4.1 Accuracy of power-law parameters derived from a polynomial

The errors on the polynomial coefficients and quantities derived from them will
depend on the number of measurements of the spectrum, the signal-to-noise ratio of the
measurements, and their distribution across a frequency range. They will also depend on
the order of the polynomial used in the approximation. Although the physical parameters
Iν0, α andβ can be obtained from the first three coefficients of a Taylor expansion of a
power-law with varying index (Eqns.6.22 and6.24), a higher order polynomial may be
required during the fitting process to improve the accuracy of the first three coefficients17.
In the case of very noisy spectra, errors can also arise from attempting to use too many
terms in the polynomial fit.

Figure6.7 illustrates the above trends for the value ofα derived from a polyno-
mial fit to a spectrum constructedvia Eqn.6.20(I true

0 = 10.0, αtrue = −1.5, βtrue = −0.5, ν0 =
2.4GHz) and evaluated between 1-4 GHz. Gaussian random noise was added to give mea-
surement signal-to-noise ratios of 100, 10 and 1 for three such spectra. These spectra were
fitted using a linear least-squares method on two series expansions (Eqns.6.22,6.24) for dif-
ferent numbers of terms in the seriesN = 2, 3, 4, 5, and also by a non-linear least-squares
method to fitα and β directly. The plots show the error on the derived spectral index
δα = α f itted − αtrue for each case.

16This dissertation does not contain a formal error analysis of the multi-frequency synthesis deconvolution
algorithm for different basis functions, bandwidths and signal-to-noise ratios. Such an analysis will ultimately
be required in order to prescribe a set of rules for a generic observation, and is work in progress.

17Conway et al.[1990] comment on a bias that occurs with a 2-term Taylor expansion, due to the use of a
polynomial of insufficient order to model an exponential.
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Noticeable trends (based onδα) are listed below.

1. For high SNR, higher order fits give better results. For lowSNR, higher order fits
give larger errors.

2. In most cases, a Taylor expansion of a power law aboutα = 0, β = 0 is a better choice
than a Taylor expansion aboutν = ν0.

3. For spectra between 1 and 4 GHz withα ≈ −1.5 ± 0.4, a 3rd or 4th order Taylor
expansion (either form) is most appropriate.

These trends can be used to choose the spectral basis function and number of termsNt to
be used in the multi-frequency deconvolution algorithm (Section6.2.2.5), based ona priori
knowledge of the average spectral index and the signal-to-noise ratio of the measurements.
When there are both high and low signal-to-noise sources, a multi-stage approach using
different values ofNt might be required. For example, deconvolution runs can begin with
Nt > 3 but once the peak residual reaches 10σ, a switch toNt = 2 might be beneficial (note
that this situation has not yet been tested).

6.2.4.2 Peak Residuals

This section shows an example of the errors obtained when theorder of the poly-
nomial chosen for imaging is not sufficient to model the power-law spectrum of the source.
EVLA datasets (8 hour synthesis) were simulated for 5 different frequency ranges around
2.0 GHz. The sky brightness distribution used for the simulation was one point source
whose flux is 1.0 Jy and spectral index is -1.0 with no spectralcurvature. The band-
width ratios18for these 5 datasets were 100%(3:1), 66%(2:1), 50%(1.67:1), 25%(1.28:1),
10%(1.1:1).

Figure.6.8 shows the measured peak residuals and absolute measured errors on
Iν0, α, β when these datasets were imaged using multi-frequency deconvolution withNt = 1
to Nt = 7 and a linear spectral basis (Eqn.6.25). All these datasets were imaged using
a maximum of 10 iterations, a loop-gain of 1.0, natural weighting and a flux threshold of
1.0µJy. No noise was added to these simulations (in order to isolateand measure numerical
errors due to the spectral fits). Peak residuals were measured over the entire 0th order
residual image, and errors onIν0, α, β were computed at the location of the point source by
taking differences with the ideal values ofIν0 = 1.0, α = −1.0, β = 0.0.

Noticeable trends from these plots are listed below.

18There are two definitions of bandwidth ratio that are used in radio interferometry. One is the ratio of the
highest to the lowest frequency in the band, and is denoted asνhigh : νlow. Another definition is the ratio of
the total bandwidth to the central frequency (νhigh − νlow)/νmid espressed as a percentage. For example, the
bandwidth ratio forνlow = 1.0 GHz,νhigh = 2.0 GHz is 2 : 1 and 66%.
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1. All errors appear to decrease exponentially (linearly inlog-space) as a function of
increasing order of the polynomial, and as a function of decreasing total bandwidth.
For very narrow bandwidths, the use of high-order polynomials increases the error.

2. The peak residuals are much smaller than the error incurred on the peak source flux
at the reference frequencyIν0 and the errors onα andβ.

3. As an example, for a 2:1 bandwidth ratio, a source with spectral index= -1.0, and
Nt = 4, the achievable dynamic range (measured as the ratio of thepeak flux to the
off-source peak residual) is about 105, the error on the peak flux at the reference
frequency is 1 part in 103, and the absolute errors onα anreβ are 10−2 and 10−1

respectively.

Note that these trends are based on one simple example, and further analysis is required
to understand the source of these errors and assess how they vary as a function ofα and
β. Conway et al.[1990] suggest that for an (Nt − 1)-order polynomial, the peak residuals
proportional to the product ofα and the peak sidelobe level of the next higher orderNth

t

spectral PSF. However, the results of the above tests do not follow this rule for all bandwidth
ratios. Further work is required to (a) understand these errors in terms of signal-to-noise
and in the presence of deconvolution errors and (b) be able topredict limiting dynamic
ranges and error-bars onα andβ.

Note that all the code implementations for this dissertation use the linear ex-
pansion given by Eqn.6.25(a polynomial inI vs (ν − ν0)/ν0 space) to model an arbitrary
spectrum. However, in the case of a power-law, a logarithmicexpansion given by Eqn.6.26
(a polynomial inI vs log(ν/ν0) space) might need fewer terms than the linear expansion to
model a power-law spectrum and yield better results.Conway et al.[1990] state that the
logarithmic expansion has better convergence properties than the linear expansion when
α << 1, but this is yet to be tested for arbitrary values ofα. Further, for given values
of α andβ, the radius of convergence of each series expansion defines amaximum band-
width that it can be used with. Further work is required to do aformal comparison between
these two sets of spectral basis functions and their convergence properties when applied to
arbitrary spectral shapes.
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Figure 6.7:These plots show the average error on the fitted spectral index (δα = α f itted − αtrue)
from 100 noisy measurements of a power-law spectrum defined by I true

0 = 10.0, αtrue = −1.5, βtrue =

−0.5. The rows represent different signal-to-noise ratios (Top : 100, Middle : 10, Bottom: 1). The
left column shows the averageδα with Nt = 2,3,4,5 terms in the series, for three different functional
forms (Red/Left : T(ν = ν0) : Taylor expansion ofIν aboutν0, Blue/Middle : T(α = 0, β = 0) :
Taylor expansion ofIν aboutα = 0, β = 0, Green/Right : Power Law with varying index). The right
column shows the corresponding spectra forNt = 3. Noticeable trends are (a) For high SNR, higher
order fits give better results. (b) For low SNR, higher order fits give larger errors. (c) In most cases,
a Taylor expansion aboutα = 0, β = 0 is a better choice than an expansion aboutν0. (d) For spectra
between 1 and 4 GHz withα ≈ −1.5± 0.4, a 3rd or 4th order Taylor expansion is most appropriate.
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Figure 6.8:Peak Residuals and Errors for MFS with different values ofNt : These plots show the
measured peak residuals (top left) and the errors onIν0(top right),α (bottom left), andβ (bottom
right) when a point-source of flux 1.0 Jy andα=-1.0 was imaged using Taylor polynomials of
different orders (Nt = 1− 7) and a linear spectral basis (Eqn.6.26). This simulation was done with
EVLA uv-coverages (for an 8 hour synthesis run) and 100%,66%,50%,25% and 10% fractional
bandwidths, with a reference frequency of 2.0 GHz. No noise was added to these simulations. All
runs used a loop-gain of 1.0, used natural weighting, and were terminated after either 10 iterations
or a flux threshold of 1µJy. The x-axis of all these plots show the value ofNt used for the simulation.
Plots forα andβ begin fromNt = 2 andNt = 3 respectively because at least that many terms are
required to calculate these derived quantities. Noticeable trends from these plots are (a) The peak
residuals decrease by about a factor of 8 with each increase of 1 more polynomial coefficient. (b)
The peak residuals are larger for larger fractional bandwidths. (c) The errors onIν0, α, β are larger
than the peak residuals, but they too decrease with increasing Nt. For very narrow bandwidths, the
use of a very high-order polynomial increases the error. Fora 2:1 bandwidth ratio, a spectral index
of -1.0 and very high signal-to-noise, a 5th or 6th order Taylor expansion is most appropriate (when
a linear spectral basis is used).



CHAPTER 7

MULTI-SCALE MULTI-FREQUENCY SYNTHESIS IMAGING

This chapter deals with the combination of the multi-scale,multi-frequency and
wide-field imaging algorithms described in chapters6 and4 to derive a method that forms
a multi-scale reconstruction of the broad-band sky brightness distribution while accounting
for the frequency-dependence of the antenna field-of-view.Section7.1 first motivates the
need of using a multi-scale image model along with multi-frequency synthesis, and then
describes a combined multi-scale multi-frequency deconvolution algorithm. Section7.2
describes an extension of this algorithm for wide-field imaging in which the frequency
dependence of the primary beam is included and corrected forduring image reconstruction.
Chapter8 later shows imaging results using these algorithms, contains a discussion about
error estimation and shows a set of examples that test the feasibility of multi-scale multi-
frequency image reconstruction for moderately resolved sources, very large spatial scales,
overlapping flux components with different spectra, and band-limited signals.

7.1 Multi-Scale Multi-Frequency Deconvolution

We begin with a discussion of how well we can reconstruct bothspatial and
spectral information from an incomplete set of visibility samples at multiple observing fre-
quencies and describe how our choice of a flux model influencesthe image reconstruction
process when each observing frequency measures a different set of spatial frequencies.

The spatial frequencies sampled at each observing frequency ν are betweenumin =
ν
cbmin andumax =

ν
cbmax, whereu is used here as a generic label for theuv-distance1 andb

represents the length of the baseline vector (in units of meters) projected onto the plane
perpendicular to the direction of the source. The range of spatial frequencies betweenumin

at νmax andumax at νmin represents the region that is sampled at all frequencies in the band.
Within this region, both spatial and spectral information is measured in comparable detail
and there is sufficient information to reconstruct them both. The spatial frequencies outside
this region are sampled only by a fraction of the band and the accuracy of a broad-band
reconstruction depends on how well the spectral and spatialstructure are constrained by an
appropriate choice of a flux model.

A few examples are used to illustrate the importance of an appropriate flux model.

1 Theuv-distance is defined as
√

u2 + v2 and is the radial distance of the spatial frequency measuredby
the baseline from the origin of theuv-plane, in units of wavelengthλ.
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1. A compact, unresolved source with spectral structure is measured as a point source
at all frequencies, andumax at νmax gives the maximum angular resolution at which
this source can be imaged. Since the visibility function of apoint source is flat across
the entire spatial frequency plane, its spectrum is adequately sampled by the multi-
frequency measurements. Using a flux model in which each source is aδ-function
with a smooth polynomial spectrum, it is possible to reconstruct the spectral structure
of the source at the maximum possible angular resolution.

2. For resolved sources with spectral structure, the accuracy of the reconstruction across
all spatial scales betweenumin at νmin and umax at νmax depends on an appropriate
choice of flux model, and the constraints that it provides. For example, a source
emitting broad-band synchrotron radiation can be described by a fixed brightness
distribution at one frequency with a power-law spectrum associated with each loca-
tion. Images can be made at the maximum angular resolution (given byumax at νmax)
with the assumption that different observing frequencies probe the same spatial struc-
ture but measure different amplitudes (usually a valid assumption). This constraint
is strong enough to correctly reconstruct even moderately resolved sources that are
completely unresolved at the low end of the band but resolvedat the higher end. On
the other hand, a source whose structure itself changes across the band would break
the above assumption. One example is with multi-frequency observations of solar
magnetic loops where the different frequencies probe different layers in the upper
chromosphere and can have very different structures. In this case, a complete re-
construction would be possible only in the region of overlapping spatial frequencies
(betweenumin atνmin andumax atνmax), unless the flux model includes constraints that
bias the solution towards one appropriate for such sources.

3. The lower end of the spatial frequency range presents a different problem. The size
of the central hole in theuv-coverage increases with frequency. Spectra are not mea-
sured adequately for emission whose visibility function isnon-zero only belowumin

at νmax and a flat-spectrum large-scale source can be indistinguishable from a rela-
tively smaller source with a steep spectrum. Additional constraints in the form of
total-flux values for each frequency may be required for an accurate reconstruction.

To summarize, just as standard interferometric image reconstruction usesa priori informa-
tion about the spatial structure of the sky to estimate the visibility function in unmeasured
regions of theuv-plane, multi-frequency image reconstruction algorithmsneed to usea
priori information about the spectral as well as spatial structureof the sky brightness. By
combining such models with the known frequency-dependenceof the spatial-frequency
coverage it is possible to reconstruct the broad-band sky brightness distribution from in-
complete spectral and spatial-frequency sampling.
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7.1.1 Multi-Scale Wide-Band Image model

The multi-frequency synthesis algorithm described in section 6.2models the sky
brightness distribution as a collection ofδ-functions with power-law spectra. This param-
eterization provides strong enough constraints on the image reconstruction process when
applied to fields of isolated point sources. However, when itis applied to fields containing
extended emission it leads to errors in the reconstruction,similar to the single-frequency
case where large scale emission is broken into a collection of compact flux components of
the size of the telescope angular resolution. With multi-frequency synthesis, these errors
are enhanced mainly due to error propagation during the calculation of derived quantities
such as spectral index and curvature as the ratios of two noisy images each containing
deconvolution errors. It therefore becomes important to use a flux model and image re-
construction algorithm that can ensure smoothness in the reconstruction and improve the
fidelity of the coefficient images used to calculate these derived quantities. One option is
to parameterize the sky brightness distribution in the multi-scale basis described in section
6.1and associate a polynomial spectrum with each flux component. A region of emission
in which the spectrum varies with position will be modeled asa sum of wide-band flux
components and the reconstruction algorithm would simultaneously reconstruct the spatial
and spectral structure of the source in terms of these parameters.

For multi-scale and multi-frequency deconvolution, the image flux model at each
frequency can be written as a linear sum of coefficient images at different spatial scales.
This is a combination of the multi-scale and multi-frequency image models described in
sections6.1.1and6.2.1.

~Imodel
ν =

Nt
∑

t=0

Ns
∑

s=0

wt
ν

[

~I shp
s ⋆ ~I sky

s
t

]

where wt
ν =

(

ν − ν0
ν0

)t

(7.1)

Here,Ns is the number of discrete spatial scales used to represent the image andNt is the
order of the series expansion of the spectrum.~I sky

s
t

represents a collection ofδ-functions
that describe the locations and integrated amplitudes of flux components of scales in the
image of thetth series coefficient.~I shp

s is a tapered truncated parabola whose width is given
by s (introduced in section6.1.2for multi-scale deconvolution).

7.1.2 Imaging Equations and Block Deconvolution

This section combines the multi-scale multi-frequency image model with the
standard measurement equations and then explores the structure of the normal equations.
This is followed by a description of the principal solution and an iterative block deconvo-
lution algorithm.
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7.1.2.1 Measurement Equations

Visibilities are measured at a set ofNc observing frequencies, and calibrated us-
ing a model derived from a source with known structure and spectrum. There aren visibil-
ities measured at each frequency. The single frequency and multi-frequency measurement
equations are given below.

~Vobs
ν =

Nt
∑

t=0

Ns
∑

s=0

wt
ν[Sν][Ts][F]~I sky

s
t

(7.2)

~Vobs =

Nt
∑

t=0

Ns
∑

s=0

[Wm f s
t ][S][Ts][F]~I sky

s
t

(7.3)

where [Wm f s
t ] is a diagonalnNc × nNc matrix of weights, comprised ofNc blocks each of

sizen×n for each frequency channel (ν). The multi-frequencyuv-coverage of the synthesis
array is represented by [SnNc×m]. The image-domain convolution with~I shp

s is written as a
spatial-frequency taper function [Ts]m×m = diag([F]~I shp

s ).

The full measurement matrix ([A] in Eqn. 2.20) therefore has the shapenNc ×
mNsNt, which when multiplied by the set ofNsNt model sky vectors each of shapem× 1,
producesnNc visibilities.

For Nt = 3,Ns = 2 the measurement equations can be written as follows, in block matrix
form. The subscriptp denotes thepth spatial scale and the subscriptq denotes theqth Taylor
coefficient of the spectrum polynomial.
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for p ∈ {0,Ns − 1} and q ∈ {0,Nt − 1}



















































































































~I sky
p=0
q=0

~I sky
p=0
q=1

~I sky
p=0
q=2

~I sky
p=1
q=0

~I sky
p=1
q=1

~I sky
p=1
q=2



















































































































= ~Vobs (7.4)



128

7.1.2.2 Normal equations

The normal equations in block matrix form for the same example (Nt = 3,Ns = 2) become
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(7.5)

When all scales and Taylor terms are combined, the full Hessian matrix containsNtNs ×
NtNs blocks each of sizem× m and containing information from all frequency channels,
andNt Taylor coefficient images each of sizem× 1, for all Ns spatial scales. The indices
s, p correspond to row and column indices for the multi-scale blocks, and the indicest, q
correspond to row and column indices for the multi-frequency blocks.

The ordering of the rows and columns in Eqn.7.5 was chosen such that the
Hessian consists ofNs × Ns = 2 × 2 = 4 blocks (the four quandrants of the matrix).
Each quadrant corresponds to one pair of spatial scaless, p. Within each quadrant, the
Nt ×Nt = 3× 3 = 9 matrices correspond to various pairs oft, q (Taylor coefficient indices).
This layout shows how the multi-scale and multi-frequency aspects of this imaging prob-
lem are combined and illustrates the dependencies between the spatial and spectral basis
functions. Note that the 3×3 block in the top left quadrant corresponds to the entire Hessian
matrix in Eqn.6.31(since~I shp

0 is aδ-function).

These equations can be written out row-by-row as follows.

Ns−1
∑

p=0

Nt−1
∑

q=0

[

H s,p
t,q

]

~I sky
p
q
= ~Idirty

s
t

∀ s ∈ {0...Ns − 1}, t ∈ {0...Nt − 1} (7.6)

[

H s,p
t,q

]

= [F†TsF][Ht,q][F
†TpF] (7.7)

~Idirty
s
t

= [F†TsF]~Idirty
t = I shp

s ⋆ ~I
dirty
t (7.8)

Here, [Ht,q] and~Idirty
t are the multi-frequency Hessian blocks and dirty images as defined in

Eqns.6.33and6.34(section6.2.2) for the multi-frequency normal equations,~I shp
s = [F†] ~Ts

are the scale basis functions as defined in section6.1.2 for multi-scale imaging, and all
convolutions shown here are implementedvia Fourier transforms.
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Each Hessian block
[

H s,p
t,q

]

is a convolution operator ([Ht,q] is a convolution op-

erator and convolution is associative and commutative). Its kernel~I ps f
s,p
t,q

is constructed by

convolving each multi-frequency convolution kernelsI ps f
t,q (Eqn.6.37) with a pair of scale

basis functions (similar to Eqn.6.9).

~I ps f
s,p
t,q
= I shp

s ⋆ I ps f
t,q ⋆ I shp

p (7.9)

These convolution kernels from the first row of Hessian blocks (s = 0, t = 0, p ∈ {0,Ns −
1}, q ∈ {0,Nt−1}) represent the instrument’s response functions to a flux component of unit
total flux whose shape is given by thepth scale basis function and whose spectrum is given
by theqth Taylor function.

7.1.2.3 Principal Solution

As described in the section6.1.2.3for multi-scale imaging and in section6.2.2.3
for multi-frequency imaging, the principal solution here too, is found by using a diagonal
approximation of each Hessian block to create [Hpeak] as anNtNs × NtNs element matrix,
inverting it and applying it to all pixels of the dirty images, one pixel at a time.

When the principal solution is to be used within an iterativejoint deconvolution, a
few simplifying assumptions may be needed to trim computational costs. For a source with
complicated spatial structure the number of distinct spatial scale basis functions is typically
Ns ≈ 10, and for power-law spectra with indices around -1.0,Nt = 4 or Nt = 5 terms in
the series are required to accurately model the power law with a polynomial (across a 2:1
bandwidth). Therefore typically,NsNt ≈ 50. Although the inversion of [Hpeak] may be
tractable, the computational cost of a 50× 50 matrix multiplication applied per pixel to a
set of 106 pixels over a large number of iterations may be prohibitive in comparison to the
numerical accuracy that this exact inversion provides. Several approximations can be made
about the structure of [Hpeak] to simplify its inversion, and it is important to understand the
numerical implications of these trade-offs.

One possible simplification is a block-diagonal approximation of the full Hessian
(i.e. using only those blocks of the Hessian in Eqn.7.5 for which s = p). This approx-
imation ignores the cross-terms between spatial scales andassumes that the scale basis
functions are orthogonal. Now, a multi-frequency principal solution (as described in sec-
tion 6.2.2.3) can be done separately on each remainingNt × Nt block, one spatial scale at a
time (∀ s ∈ {0,Ns− 1}). The MFS principal solution for each scales is given below (same
as Eqn.6.38for each spatial scales).

I pix,psol
s = [Hpeak

s
−1

]I pix,dirty
s for each pixel, and scales (7.10)

Here, [Hpeak
s ] is the sth block (of sizeNt × Nt on the diagonal of [Hpeak], and I pix,dirty

s is
the Nt × 1 vector constructed from~Idirty

s
t
∀ t ∈ {0,Nt-1}. Note that the process of solving
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the multi-frequency [Hpeak] for each scale automatically does a normalization across scales
that corresponds to a diagonal approximation of the multi-scaleHpeak (see sections6.1.2.5
and6.1.3for alternate ways of computing the multi-scale solution).

The main result of using such an approximation while computing solutions for
each pixel location and scale size is that the per-pixel matrix multiplications are much
smaller. However, this approximation is never accurate because a set of tapered truncated
paraboloids cannot form an orthogonal basis set. This inaccuracy is not a major problem
while finding flux components because in the context of an iterative optimization the main
penalty of taking slightly inaccurate steps is slower convergence and the resulting com-
putational cost is usually offset by the smaller per-pixel operations to make this a useful
trade-off. In other words, this approximation works not because the orthogonality assump-
tion is valid, but because an iterativeχ2-minimization process tolerates inaccurate steps
during each iteration. The update step of the iterative deconvolution still needs to evaluate
the full LHS of the normal equations while subtracting out a flux component.

7.1.2.4 Properties of[Hpeak]

Some properties of [Hpeak] for multi-scale multi-frequency imaging are given below.

1. Each element of [Hpeak] is given by

Hpeak
s,p
t,q

= mid
{

~I ps f
s,p
t,q

}

= tr















∑

ν

wt+q
ν [TsS

†
νW

im
ν SνTp]















(7.11)

∀ s, p ∈ {0...Ns − 1} , t, q ∈ {0...Nt − 1}

2. The elements on the diagonal of [Hpeak] are a measure of the instrument’s sensitivity
to a flux component of unit total flux whose shape and spectrum is given by each of
theNsNt possible pairs of spatial and spectral basis functions.

3. The off-diagonal elements measure the orthogonality between the various basis func-
tions, for the givenuv-coverage and weighting scheme (compare with footnote5 on
page94). For some choices ofuv-coverage, frequency coverage, and scale size, the
visibilities measured by the instrument for two different spatial scales can become
hard to distinguish. The element of [Hpeak] corresponding to this combination could
have a higher value, indicating that there is no informationin the data and sampling
pattern to distinguish between spatial or spectral structure while modeling the visibil-
ity function. The condition number of this matrix can be usedas a metric to choose
a suitable basis set.
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7.1.2.5 Iterative Block Deconvolution (MS-MFS algorithm)

This section describes an iterative joint deconvolution process that produces a set
of Nt Taylor coefficient images atNs different spatial scales. The algorithm presented here
(listed in two parts as Algorithm5 on page133and Algorithm6 on page134) follows a set
of steps similar to those for multi-scale and multi-frequency deconvolution (Chapter6).

Pre-compute Hessian : Convolution kernels for all distinct blocks in theNsNt × NsNt

Hessian are evaluatedvia Eqns.7.9and6.37. All kernels are normalized bywsumsuch that
the peak of~I ps f

0,0
0,0

is unity, and the relative weights between Hessian blocks ispreserved. This

is equivalent to defining the weight image~Iwt as the diagonal of the [H 00
00

] Hessian block,
and normalizing all the RHS vectors by it. A set ofNs matrices each of shapeNt × Nt and
denoted as [Hpeak

s ] are constructed from the diagonal blocks of the full Hessian (blocks for

which s= p in Eqn.7.5). Their inverses are computed and stored in [Hpeak
s

−1
].

Initialization : All NsNt model images are initialized to zero (or ana priori model).

Major and minor cycles : The normal equations are solved iteratively by repeating
steps1 to 5 until some termination criterion is reached. Steps1 and5 form one major
cycle, and repetitions of Steps2 to 4 form the minor cycle.

1. Compute RHS :The dirty images for the RHS of the normal equations are computed
via Eqn.7.8by first computing the multi-frequency dirty images and thensmoothing
them by the scale basis functions.

2. Find a Flux Component : The principal solution (as described in section7.1.2.3)
is computed for all pixels, one scale at a timevia Eqn.7.10. The principal solution
consists ofNs sets ofNt Taylor-coefficient images. For iterationi, the Nt element
solution set with the dominantq = 0 component across all scales and pixel locations
is chosen the current flux component. Let the scale size for this set bep.

The result of this step is a set ofNt model images, each containing oneδ-function that
marks the location of the center of a flux component of shape~I shp

p,(i). The amplitudes of
theseNt δ-functions are the Taylor coefficients that model the spectrum of the total

flux of this component. Let these model images be denoted as
{

~Imodel
p
q ,(i)

}

; q ∈ [0,Nt].

3. Update model images :A single multi-scale model image is accumulated for each
Taylor coefficient.

~Imodel
q = ~Imodel

q + g
(

~Imodel
p
q ,(i)
⋆ ~I shp

p,(i)

)

∀q ∈ [0,Nt] (7.12)
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whereg is a loop-gain that takes on values between 0 and 1 and controls the step size
for each iteration in theχ2-minimization process.

4. Update RHS : The RHS residual images are updated by evaluating and subtracting
out the entire LHS of the normal equations. Since the chosen flux component corre-
sponds to just one scale, the evaluation of the LHS is a summation over only Taylor
terms.

~I res
s
t
= ~I res

s
t
− g

















Nt−1
∑

qi=0

[

~I ps f
s,p
t,q
⋆ ~Imodel

p
q ,(i)

]

















(7.13)

Repeat from Step2 until the minor-cycle flux limit is reached.

5. Predict : Model visibilities are computed from each Taylor-coefficient image, in
the same way as in Eqn.6.42for multi-frequency imaging. Residual visibilities are
computed as~Vres

ν =
~Vcorr
ν − ~Vmodel

ν .

Repeat from Step1 until a global convergence criterion is satisfied.

Restoration : The final Taylor coefficient images are restored and interpreted in the same
way as described in standard multi-frequency restoration (described at the end of section
6.2.2.5).
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Algorithm 5 : MS-MFS CLEAN : Set-up and major/minor cycle iterations

Data: calibrated visibilities :~Vcorr
ν ∀ν

Data: uv-sampling function : [Sν]
Data: image noise threshold and loop gainσthr, gs

Data: scale basis functions :~I shp
s ∀s ∈ {0,Ns− 1}

Result: model coefficient images :~Im
q ∀q ∈ {0,Nt − 1}

Result: spectral index and curvature :~Im
α , ~I

m
β

for t ∈ {0,Nt − 1}, q ∈ {t,Nt − 1} do1

Compute the spectral PSF~I ps f
tq2

for s ∈ {0,Ns − 1}, p ∈ {s,Ns− 1} do3

Compute the scale-spectral PSF~I ps f
sp
tq
= ~I shp

s ⋆ ~I shp
p ⋆ ~I

ps f
tq4

end5

end6

for s ∈ {0,Ns− 1} do7

Construct [Hpeak
s ] from mid(I ps f

s,s
t,q

) and compute [Hpeak
s

−1
]8

end9

Initialize the model~Im
t for all t ∈ {0,Nt − 1} and computefsidelobe10

repeat /* Major Cycle */11

for t ∈ {0,Nt-1} do12

Compute the residual image~I res
t13

for s ∈ {0,Ns-1} do14

Compute~I res
s,t =

~I shp
s ⋆ ~I res

t15

end16

end17

Calculateflimit from ~I res
0,018

repeat /* Minor Cycle */19

ComputeIm
q ∀q ∈ {0.Nt − 1} and update~I res

s,t ∀s, t (Algorithm 6 on20

the following page)
until Peak residual in~I res

0,0 < flimit21

Compute model visibilitiesVm
ν from Im

t ∀t ∈ {0.Nt − 1}22

Compute a new residual imageI res from residual visibilitiesVcorr
ν − Vm

ν23

until Peak residual in~I res
0 < σthr24

Calculate~Im
ν0
, ~Iα, ~I β from Im

t ∀t ∈ {0.Nt − 1} and restore the results25
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Algorithm 6 : MF-MFS CLEAN : minor cycle steps

Data: residual images :~I res
s,t

Data: scale basis functions :~I shp
s

Data: scale-Spectral PSFs :~I ps f
sp
tq
∀ s ∈ {0,Ns− 1}, p ∈ {s,Ns− 1}

Data: Hessian for each scale : [Hpeak
s ] ∀ s ∈ {0,Ns− 1}

Result: model coefficient images :Im
q ∀q ∈ {0,Nt − 1}

Result: updated residual images :I res
s,t ∀s ∈ {0,Ns − 1}, t ∈ {0,Nt − 1}

for s ∈ {0,Ns-1} do1

if Peak of~I res
s,0 > 10σthr then2

foreachpixel do3

ConstructI rhs
s , anNt × 1 vector fromI res

s,t ∀ t ∈ {0,Nt-1}4

Compute principal solutionI sol
s = [Hpeak

s
−1

]I rhs
s5

end6

ChooseI sol = max{I sol
t=0, ∀ s ∈ {0,Ns-1}}7

else8

Find the location of the peak in~I res
s,0 , ∀ s ∈ {0,Ns-1}9

ConstructI rhs
s , from I res

s,t for the chosens, at this location10

ComputeI sol = [Hpeak
s

−1
]I rhs

s at this location11

end12

end13

for t ∈ {0,Nt − 1} do14

Update the model image :Im
t = Im

t + gs I shp
si ⋆ I sol

t15

for s ∈ {0,Ns-1} do16

Update the residual image :I res
s,t = I res

s,t − g
∑Ns−1

p=0

∑Nt−1
q=0 [I ps f

sp
tq
⋆ I sol

q ]17

end18

end19
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7.2 Correction of Frequency-Dependent Primary Beams

This section describes the combination of the multi-scale multi-frequency de-
convolution algorithm described in the previous section (7.1) with methods to correct for
direction-dependent instrumental effects (chapter4); in particular, the antenna primary
beam and its frequency dependence.

The angular size of the primary beam of the antenna decreaseswith an increase in
observing frequency (see Fig.5.2, section5.1.2). Sources away from the pointing center of
the beam are attenuated by different amounts across the frequency band and this introduces
artificial spectral structure into the measurements. To recover both spatial and spectral
structure of the sky brightness across a large field of view, the frequency dependence of the
primary beam must be modeled and removed during multi-frequency synthesis imaging.

Section7.2.1 describes the multi-frequency primary beam as a polynomialin
frequency (for each direction on the sky) and describes how the coefficients of this polyno-
mial are computed. Section7.2.2then describes how this model is used within the multi-
scale multi-frequency synthesis imaging and deconvolution framework. Algorithms7 on
page153and8 on page154describe the complete wide-field multi-scale multi-frequency
deconvolution algorithm. Chapter8 later shows wide-field imaging results derived from
applying this algorithm to simulated and real data.

7.2.1 Multi-Frequency Primary-Beam Model

Let us assume that the primary beam at each frequencyν (denoted as~Pbν) is
known either from a theoretical model orvia measurements. The spectrum of the multi-
frequency primary beam can be described by a polynomial for every direction on the sky.

~Pbν =

Nt−1
∑

q=0

wq
ν
~Pbq (7.14)

Here, ~Pbq is the qth coefficient of the polynomial representing the frequency dependent
primary beam andwq

ν are the corresponding basis functions (Taylor-weights). Given a set
of single-frequency primary beams the coefficients of this (Nt − 1)th order polynomial can
be computed as a least-squares solution by solving the following normal equations.

Nt−1
∑

q=0















∑

ν

wt+q
ν















~Pbq =
∑

ν

wt
ν
~Pbν ∀ t ∈ {0,Nt − 1} (7.15)

The unknowns in this system are~Pbq. The weights are known and the RHS can be computed
from the known single-frequency primary beams. A set of~Pbq can then be computed by
solving this system of equations for every direction on the sky.
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Figure 7.1:Multi-frequency primary beams : The plots on the left show a set of 1-D Gaussians that
represent primary beams at three different frequencies (Eqn.7.16with ν = {ν0/2, ν0, 3ν0/2} from top
to bottom). The plots on the right are the first three coefficients of the Taylor-polynomial required
to represent the frequency dependence of the primary beam. These coefficients were evaluated
numerically by solving Eqn.7.15(compare with the functions shown in Eqns.7.17to 7.19).

7.2.1.1 Coefficients of the primary beam polynomial

Figure7.1shows a 1-D example of a multi-frequency primary beam and thefirst
three Taylor polynomial coefficients that represent it. For simplicity, consider a Gaussian
primary beam whose width scales inversely with frequency (x represents the angular dis-
tance from the center of the primary beam).

Pb(x, ν) = e
− x2

2

(

ν
ν0

)2

(7.16)

The first three coefficients of a Taylor polynomial (Eqn.6.25) fitted to the spectrum of the
primary beam at each locationx are given as follows.

Pb0 = Pb(x, ν0) (7.17)

Pb1 = −x2Pb0 (7.18)

Pb2 = −x2(1− x2)Pb0 (7.19)

The plots on the right of Fig.7.1 show the numerical estimates ofPb0,Pb1,Pb2 computed
using the three primary beams shown in the left column of plots. In this simple exam-
ple with three widely-spaced frequencies, a 2nd-order Taylor-polynomial is insufficient to
model the primary beam spectrum very accurately and in practice, higher order polynomi-
als are used.
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7.2.1.2 Evaluating the Multi-Frequency Primary-Beam model

Eqn.7.15shows the system of equations to be solved to compute the coefficients
of the multi-frequency primary beam model. However in practice,wt

ν andwt+q
ν are not the

only weights that are used. In a real observation, in addition to the frequency-dependent
shape of the primary beam, the sensitivity of the instrumenttends to vary across frequency
due to different measurement and imaging weights, and across time due to the rotation of
azimuthally asymmetric beams. Therefore we need to computean average primary beam
by following the exact measurement process present in a particular dataset and modeling
the resulting average beam and its frequency dependence.

The following is a thought experiment to describe how such a calculation of
primary-beam coefficients fits into the MFS imaging framework. The purpose of such a
description is to illustrate how the effect of the average primary beam can be both mea-
sured and removed during MFS imaging. It uses the idea that when a flat sky (constant
unit amplitude) is imaged using an interferometer with complete uv-plane sampling (δ-
function PSF) and a direction-dependent gain (primary beam), the observed image will be
the primary beam2. The normal equations for such a system can be re-written to separate
the primary beam from the instrument, creating another system of equations that can be
easily solvedvia the MFS principal solution (section6.2.2.3). The result of this process
is a set of polynomial coefficients of the primary beam that include information about the
time-variability of the primary beam and the measurement and imaging weights.

Sky model : Let a flat sky model (with no frequency dependence) be denotedby ~Imodel
q ,

an interferometer with full sampling described with [Sν] = diag(~1) and a frequency-
dependent primary beam given by [Pbν] = diag( ~Pbν).

Measurement equations : The measurement equations for this system are given by

~Vobs
ν =

Nt−1
∑

q=0

wq
ν[F][Pbν]~I

f lat sky
q (7.20)

where ~I f lat sky
q=0 = ~1 and ~I f lat sky

q>0 = ~0 (7.21)

Our goal is to solve the normal equations for this system and evaluate the set of polynomial
coefficients ~Pbq (introduced in Eqn.7.14).

We will begin by writing expressions for the dirty images formed with this in-
strument and sky brightness, and then show how they fold intothe normal equations.

2 Note that this is only an alternate interpretation of the effect of the primary beam, and in practice, an
interferometer with fulluv-sampling or a flat sky are not required to compute the primarybeam coefficients.



138

Observed image : Thetth observed3(dirty) image can be written as follows.

~Iobs pb
t =

∑

ν

wt
ν[F

†Wν]~V
obs
ν (7.22)

=

Nt−1
∑

q=0















∑

ν

wt+q
ν [F†WνF][Pbν]















~Imodel
q using Eqn.7.20for ~Vobs

ν (7.23)

=
∑

ν

wt
ν[F

†WνF] ~Pbν using Eqn.7.21for ~Imodel
q (7.24)

=

Nt−1
∑

q=0















∑

ν

wt+q
ν [F†WνF]















~Pbq using Eqn.7.14for ~Pbν (7.25)

Eqns.7.22to 7.25show four different ways of expressing the same observed (dirty) image.
We can arrange these equations into LHS and RHS pairs to form systems of equations with
known quantities on the RHS and unknowns on the LHS. We can then solve the resulting
system of equations to calculate the unknowns. Here, the unknowns are the coefficients
of a Taylor polynomial that describes the primary beam, and the known quantities are the
single-frequency primary beams4.

Normal Equations : Let us denote the normal equations constructed from Eqn.7.20as

[Hm f s,δ,pb]~I f lat sky= ~Iobs pb (7.26)

where~I f lat skyand~Iobs pbare vertical stacks of~I f lat sky
q and~Iobs pb

t respectively (from Eqns.7.21
and7.22). The matrix [Hm f s,δ,pb] can be described by writing each block-row (of Eqn.7.26)
as a system of equations formed with Eqn.7.23as the LHS and Eqn.7.24as the RHS.

Nt−1
∑

q=0















∑

ν

wt+q
ν [F†WνF][Pbν]















~I f lat sky
q =

∑

ν

wt
ν[F

†WνF] ~Pbν (7.27)

Each block of [Hm f s,δ,pb] is given by the expression within curly braces on the LHS of
Eqn.7.27. This system represents the use of an interferometer with completeuv-sampling
and frequency-dependent primary beams to observe a flat-spectrum flat sky and produce
images given by Taylor-weighted sums of~Pbν. Figure7.2 is a pictorial representation of
Eqn.7.26computed using Eqn.7.27.

3In this example with completeuv-sampling, the dirty image will be called the observed image.
4Note that this process is numerically identical to fitting Taylor polynomials to the primary beam spectrum

one pixel at a time. It is described in this manner only to convey the connection between this process and
multi-frequency deconvolution, and show that primary beamcoefficients can be computed from the same
weight images that the MS-MFS algorithm already computes and uses.
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Now, our goal is to solve for the series coefficients of the primary beam (~Pbq). To
do this, we can re-write the LHS of Eqn.7.27using Eqn.7.25.

Nt−1
∑

q=0















∑

ν

wt+q
ν [F†WνF]















~Pbq =
∑

ν

wt
ν[F

†WνF] ~Pbν (7.28)

We can now write a new set of normal equations as follows.

[Hm f s,δ] ~Pb
m f s
= ~Iobs pb (7.29)

Here ~Pb
m f s

is a vertical stack of primary-beam coefficients ~Pbq as defined in Eqn.7.14,
[Hm f s,δ] is the MFS Hessian matrix computed with fulluv sampling and without any pri-
mary beams5. Fig.7.3 is a pictorial representation of Eqn.7.29computed using Eqn.7.28.

Therefore, given a set of single-frequency primary beams, the RHS of Eqn.7.29
can be easily evaluated and Taylor coefficients of the primary beam can be computed one
pixel at a timevia the the MFS principal solution (Eqn.6.38). This analysis can be taken
further to show how these primary beam coefficients can be separated from the true sky
brightness distribution.

7.2.1.3 Separating the primary beam from the sky

This section shows how the wide-band primary beam coefficients can be used for
image-domain primary beam corrections (basically, a division of two polynomials). Let
~I sky,pb
q ∀ q ∈ {0,Nt−1} be a set of Taylor polynomial coefficients that represent the product

of the sky~Imodel
q and the primary beam~Pbq. The first three terms of this polynomial product

can be written as follows.

~I sky,pb
0 = ~Pb0

~Imodel
0 (7.30)

~I sky,pb
1 = ~Pb1

~Imodel
0 + ~Pb0

~Imodel
1 (7.31)

~I sky,pb
2 = ~Pb2

~Imodel
0 + ~Pb1

~Imodel
1 + ~Pb0

~Imodel
2 (7.32)

This polynomial product can be written as the product of a block lower triangular matrix
(which we shall call [Pb

m f s,mult]) and a stack of image vectors (~Imodel).

If we re-write ~Pb
m f s

in Eqn.7.29as the product of the primary beam and a flat sky, we get
the following system of equations (depicted pictorially inFig.7.4).

[Hm f s,δ][Pb
m f s,mult]~I f lat sky= ~Iobs pb (7.33)

5Compare the expression within curly braces in Eqn.7.28, with the expression for a MFS Hessian block
given in Eqn.6.35and set [S] to an identity matrix to emulate fulluv sampling. Also, the magnitudes of the
diagonal elements of [Hm f s,δ] (shown asδ-functions in Fig.7.3) are equal to the elements of [Hpeak] for MFS
imaging (Eqn.6.39).
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Note that the RHS vectors in Figs.7.2, 7.3 and7.4 are identical. This suggests that al-
though the true measurement process requires that the primary beam be treated as part
if the instrument, we can separate the primary beam from the instrument to compute its
Taylor-coefficients and also separate it from the sky brightness distribution to correct the
reconstructed image.

Finally, this factorization can be used with a real interferometer (incompleteuv
sampling) to give the following normal equations (derived by analogy with Eqn.7.33).

[Hm f s][Pb
m f s,mult]~I sky,m f s= ~Idirty,m f s,pb (7.34)

Fig.7.5is a pictorial representation of these factorized normal equations6. This factorization
of ~Pbq out of both the MFS Hessian and the sky model allows the use of standard MFS
deconvolution techniques, followed by a post-deconvolution image-domain correction (via
polynomial division) to separate the primary beam from the sky brightness. Note that this
process is equivalent to solving this system of equations byinverting each matrix on the
LHS from left to right and applying these inverses in the sameorder to the RHS vectors
(see Fig.4.1for the single-frequency equivalent of Fig.7.5).

6If incomplete sampling is included in Eqns.7.22to 7.24, [F†WνF] becomes [F†S†νWνSνF] = [Bν] (the
Beam matrix for frequencyν). However, the factorization of~Pbq out of the frequency summation still holds.
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Figure 7.2:Evaluating the multi-frequency primary beam model - 1: Thisdiagram is a pictorial
representation of Eqn.7.26and describes an observation of a flat spectrum flat sky with a filled-
aperture interferometer (δ-function PSFs) and frequency-dependent primary beams. The sky model
~I f latsky is given by Eqn.7.21, the matrix on the LHS is the MFS Hessian matrix with fulluv-sampling
and primary beams. The symmetric taper across the diagonal of each block in the LHS matrix is
a Taylor-weighted primary beam. The RHS vectors are Taylor-weighted averages of the single-
frequency beams. The frequency-dependent primary beams used in this example are the same as
those shown in Fig.7.1.

Figure 7.3:Evaluating the multi-frequency primary beam model - 2 : Thisdiagram is a pictorial
representation of Eqn.7.29and is another way of obtaining the same RHS as Eqn.7.26(compare
with Fig.7.2). The coefficients of the primary-beam polynomial form the sky brightness distribution

(compare~Pb
m f s

with the right column of plots in Fig.7.1), and the LHS matrix is the MFS Hessian
matrix with full uv-sampling (similar to the Hessian in Fig.6.6but withδ-functions) but no primary
beams (all diagonal elements per block are equal). This is the system of equations to be solved to
compute polynomial coefficients for the primary beam spectrum from weighted averagesof single-
frequency primary beams, by using [Hpeak] constructed for the multi-frequency principal solution
(section6.2.2.3).
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Figure 7.4: Evaluating the multi-frequency primary beam model - 3 : Thisdiagram is another
representation of the imaging equations shown in Figs.7.2 and7.3. It shows how the effect of the
primary beam can be separated from the MFS Hessian as well as from the sky model, but still
give the same RHS. It follows Eqn.7.33 and shows the matrix-vector product of the frequency-
dependent primary beam and the flat sky. The block lower-triangular form of the primary beam
matrix implements a polynomial multiplication between theprimary beam and sky brightness, in
terms of their polynomial coefficients (Eqns.7.30to 7.32).

Figure 7.5:Multi-frequency normal equations with the primary beam factored out : This diagram
represents an observation of a field of two point sources withnon-flat spectral structure, using an
interferometer with incompleteuv-sampling and frequency-dependent primary beams. It follows
Eqn. 7.34 in which the Hessian matrix (on the left) and the sky model~I sky,m f s are the same as
shown in Fig.6.6 (for multi-frequency imaging with no primary beams). The multiplicative effect
of the average primary beam is shownvia the matrix [Pb

m f s,mult] (similar to Fig.7.4). This system
can be solved from left to right. MFS deconvolution applied directly to the RHS vectors produces
a set of coefficients that represent the product of the primary beam and thesky brightness. The
sky brightness and its spectrum can be recovered in a second step by computing and applying the
inverse of the lower-triangular polynomial-multiplier matrix [ Pb

m f s,mult]. (see Fig.4.1for the single-
frequency version of this system).
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Figure 7.6:Average Primary Beam, Spectral Index and Curvature : These images show the fre-
quency dependence of the primary beam and its variation withdirection on the sky. They are the
result of computing primary beam coefficients (section7.2.1.2) from the set of single-frequency
primary beams shown in Fig.5.2 and calculating the effective spectral index and curvature from
these coefficients (via Eqn.6.43to 6.45). The average primary beam (also first Taylor coefficient)
(top), its spectral index (left) and curvature (right) are shown over a field of view extending past
the second sidelobe at the reference frequency. Note that the reference primary beam~Pbν0 has a
smooth extended sidelobe at the few % level, but~Pbα and ~Pbβ are smooth functions only within the
main lobe where the frequency variation is monotonic. The spectral index of the main lobe of the
primary beam (i.e. no sidelobes) is shown in more detail in Fig.5.4.

7.2.1.4 Spectral index and curvature of the Primary Beam

This section briefly discusses a power-law interpretation of the frequency depen-
dence of the primary beam in order to illustrate its effect on the MFS imaging process. The
spectral index and curvature due to the primary beam can be computed from the first three
primary-beam polynomial coefficients (as shown in Eqn.6.43to 6.45).

Figure7.6shows images of the reference-frequency primary beam and the spec-
tral index and curvature associated with the average beams for an EVLA antenna. These
beams were computed from the single-frequency primary beams shown in Fig.5.2.



144

Figure 7.7:Spectral Index and Curvature of the EVLA Primary Beam : The top plot shows 1D cuts
through the EVLA primary beam at three L-band frequencies 1.0, 1.5 and 2.0 GHz. The cut was
chosen to pass through a peak in the first sidelobe, and shows only one half of the beam (the X-axes
is in units of image pixels with the pointing center at 512). The bottom plot shows the corresponding
average beam, spectral index and curvature (from Fig.7.6), also as a function of angular distance
from the pointing center in units of image pixels. Note that at the locations of the nulls of the
reference frequency (1.5 GHz, green line)α andβ diverge, but have stable values within the main
lobe as well as in a significant part of the first sidelobe.

The ~Pb
α

and ~Pb
β

images, show that outside the main lobe of the reference beam,
the spectral index and curvature taken on high values and vary rapidly. This indicates that
a power law model with varying index is valid only in regions where the primary beam
spectrum is monotonic (regions in or near the null are blanked out and appear with value
zero). Figure7.7 further illustrates this point. The top plot shows a one-dimensional cut
through the multi-frequency primary beams shown in Fig.5.2 (the cut was chosen to pass
through a sidelobe peak in the individual beams).The bottomplot shows the values of

spectral index~Pb
α

and curvature~Pb
β

as a function of angular distance form the pointing

center. Note that at the null of the reference-frequency primary beam,~Pb
α

and ~Pb
β

are
unstable, but again take on stable values in the first side-lobe. This behaviour decides
the regions of the image for which the frequency-dependent primary beam can or cannot
be corrected for using a spectral index/curvature representation (in the general case, the
polynomial coefficients can be used directly for the image-domain corrections.).
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7.2.2 Imaging Equations and Block Deconvolution

This section describes an algorithm for multi-scale multi-frequency synthesis
imaging with the correction of direction-dependent effects that vary with antenna, baseline,
time and frequency. It uses the multi-frequency primary beam model derived in section
7.2.1and folds it into the iterative deconvolution process described in section7.1for multi-
scale multi-frequency imaging. The correction of direction-dependent effects is donevia
the methods described in chapter4, in particular the primary-beam correction algorithm de-
scribed in section4.3.2to remove the effect of the antenna primary beamvia a combination
of visibility-domain and image domain operations7.

For visibility-domain operations, the frequency-dependence of the primary beam
can be naturally accounted for by scaling the size of the aperture illumination function
and using it to construct a gridding convolution function for each observing frequency8.
For image-domain operations, the frequency-dependence ofthe primary beam has to be
absorbed into the image model by describing the observed skyas the product of the true
source spectrum and a frequency dependent primary beam (Eqn. 7.35). By independently
measuring and modeling the spectral behaviour of the antenna primary beam, we can sep-
arate the two and recover the true sky brightness and spectrum.

7.2.2.1 Wide-Band Image Model with the Primary Beam

For image-domain operations, we will define a flux model for the observed bright-
ness distribution as the product between the true sky brightness and the primary beam, both
represented as power-laws with varying spectral indices (see sections6.2.1and7.2.1.4).

Iobs
ν = Iν0Pbν0

(

ν

ν0

)[α+αPB]+[β+βPB]log
(

ν
ν0

)

(7.35)

The image model used in the measurement equations is a multi-scale multi-frequency rep-
resentation (defined in Eqn.7.1) of this observed sky brightness~Iobs

ν . The model image~Im
t,s

for each spatial scales and termt in the series now represents a collection ofδ-functions
that describe the location and total flux of flux components that describe the product of the
sky brightness and the primary beam (and not just the sky brightness, as was the case in
section7.1.1, Eqn.7.1).

7Note also that the flat-skyvsflat-noise discussion in step2 of the algorithm described in section4.3.2for
single-frequency primary-beam correction applies to multi-frequency primary-beam correction as well.

8 This is sufficient for direction-dependent effects such as thew-term and beam squint which are also
frequency-dependent. For a given baseline, the value ofw changes with frequency and the appropriatew-
projection kernel must be chosen to construct the gridding convolution function for each frequency (see
section4.2.2.4). The beam squint (a polarization-dependent pointing offset for reflecting dishes with off-
axis feeds) is a fixed fraction of the primary-beam width and therefore varies with frequency and requires
a frequency-dependent phase to be applied to the aperture illumination function used to construct gridding
convolution functions.
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7.2.2.2 Measurement and Normal Equations

This section describes the MFS normal equations formed whenthe image model
shown in Eqn.7.35is used with methods for correcting direction-dependent effects. Let us
combine the normal equations for MFS imaging (shown in Eqns.6.35and6.36) with those
for single-frequency primary-beam correction (shown in Eqn. 4.12 for the measurement
equation shown in Eqn.4.9). Let the resulting normal equations be denoted as follows.

[

Hm f s,pb2
]

~I sky,m f s = ~Idirty,m f s,pb2
(7.36)

Each block row of this system is written as follows.

Nt−1
∑

q=0















∑

ν

wt+q
ν [Pb

†
ν][Bν][Pbν]















~I sky
q =

∑

ν

wt
ν[Pbν]~I

dirty
ν (7.37)

Here,~Idirty
ν is the dirty image computed for frequencyν via Eqn.3.10and [Bν] is the Hessian

(Beam) matrix constructed from Eqn.3.12for eachν. Note that there are no multi-scale
terms in this equation. This is because we are analysing image-domain effect of the primary
beam on the full multi-scale image (the result of a linear combination of basis functions
(Eqn.6.1)) and not the multi-scale model image which consists of a setof δ-functions.

By analogy with Eqns.7.22 to 7.24 and Eqn.7.34 for MFS normal equations
with primary beams, we factor the primary beams out of the summation overν and re-cast
Eqn.7.36 in terms of a pre-multiplication and a post-multiplicationof the MFS Hessian
with the primary beam.

[

Pb
m f s,multT

] [

Hm f s
] [

Pb
m f s,mult

]

~I sky,m f s = ~Idirty,m f s,pb2
(7.38)

Note that the factorization of the wide-band primary beam onthe left of the MFS Hessian
is an approximation, and is shown here only in analogy with Eqn. 4.12 for the single-
frequency case.

Fig.7.9shows this factorization (Eqn.7.38) for an example in whichNt = 3,Ns =

1 and the sky is composed of two point sources with different spectral characteristics (the
same sky brightness distribution, and MFS Hessian as shown in Fig.6.6).

This factorization shows that when gridding convolution functions are constructed
from aperture illumination functions and used during gridding, the system of normal equa-
tions contains two instances of the primary beam and its frequency dependence9. This set
of equations is solved from left to right as a pre-deconvolution normalization by the pri-
mary beam, MFS deconvolution, and a post-deconvolution correction of the primary beam
to separate it from the sky brightness distribution.

9The presence of two instances of the primary beam in the normal equations when aperture-illumination-
based gridding convolution functions are used is similar tosingle-frequency case described in section4.3.
Also, when standard gridding is used (similar to section4.2.1for the single frequency case), there will be
only one instance of the primary beam and its frequency dependence.



147

Figure 7.8:Normal Equations for MFS with Primary-Beam Correction : This diagram represents
the normal equations shown in Eqn.7.36in which the antenna primary beams are included in the
measurement equation, and the dirty images on the RHS are formed by applying visibility-domain
corrections for direction-dependent effectsvia gridding convolution functions. The multi-frequency
PSFs used for this example are shown in Fig.6.5, the primary beams are shown in Fig.7.1and the
sky model is the same as in Fig.6.6. Note that the diagonals of all Hessian blocks are scaled by
~Iwt ∝ ~Pb

2
(compare with Fig.4.2 for the single-frequency case).

Figure 7.9:Normal Equations for MFS and Primary-Beam Correction : Thisdiagram represents
the same system as shown in Fig.7.8 but with the wide-band primary beam factored out of the
MFS Hessian (Eqn.7.38). This matrix product is similar to that shown in Fig.4.3 for the single-
frequency case, but here, the factorization of the left-most primary beam matrix out of the Hessian
is an approximation (and the RHS vectors are not identical tothose in Fig.7.8). Note that the
matrix in the middle is the MFS Hessian that contains no direction-dependent effects. The solution
of this system of equations proceeds from left to right. The primary beam matrix on the left of the
MFS Hessian is eliminated first by dividing the RHS by the multi-frequency polynomial. The MFS
Hessian is then eliminatedvia a multi-frequency deconvolution. The second polynomial multiplier
matrix is eliminated as a post-deconvolution step. All these steps are done with the minor cycle of an
iterative image reconstruction process (when MS-MFS is combined with primary-beam correction).
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7.2.2.3 Iterative Block Deconvolution with Primary-Beam correction

Each step of an iterative block deconvolution will now be described in detail. This is a
multi-scale multi-frequency deconvolution algorithm that follows the methods described
in section4.3.2for the correction of direction-dependent effects (algorithm7 on page153
lists the relevant steps).

Pre-compute Hessian : All NsNt×NsNt terms in the MS-MFS Hessian (t, q ∈ [0,Nt]; s, p ∈
[0,Ns]) are evaluated by computing all unique multi-scale multi-frequency convolutional
kernels~I ps f

s,p
t,q

(Eqn.7.9). This step is the same as that described in section6.2.2.5for MS-

MFS deconvolution.

~I ps f
s,p
t,q
= ~I shp

s ⋆















∑

ν

wt+q
ν
~I ps f
ν















⋆ ~I shp
q (7.39)

where~I ps f
ν is the PSF computedvia Eqn.3.11. All the convolution kernels are normalized

by wsum such that the peak of the zeroth order function is unity, and the relative weights
between all~I ps f

s,p
t,q

are preserved. A set ofNs [Hpeak] matrices is constructed for each spatial

scales. Each is a matrix of sizeNt × Nt, representing a block diagonal approximation of
the MS-MFS Hessian (shown in Eqn.7.5).

Pre-compute Weight Images : A set of weight images~Iwt
t are constructed from weighted

sums of the aperture illumination functions used to form thedirty image vectors.

[~Iwt
t ] =

∑

ν

wt
ν[F

†][Sν
dd†Wim

ν Sν
dd] ≈

∑

ν

wt
ν(tr[W

im
ν ])[ ~Pb

2

ν] (7.40)

where [~Iwt] = diag(~Iwt) and [~Pb
2

ν] = diag( ~Pb
2

ν). [Sdd
ν] ≈ [Sν][Gν] = [Sν][FPbνF

†] is a
convolution operator on the spatial frequency plane when all primary beams are assumed
to be identical. In practice this implies the use of an approximate average primary beam
for image-domain corrections, but it is understood that allvisibility-domain corrections are
still done using baseline and time-dependent functions. If[Gν] is unitary, then [G†νGν] is the
Identity matrix, and the weight image will contain only the sum of the measurement and
imaging weights. For the primary beam, [Gν] is non-unitary and the process of gridding
does not correct it completely and the weight image will showevidence of this (compare
with Eqn.4.14for the single-frequency case).

Pre-compute Primary Beam : Polynomial coefficients for the average primary beam
are obtained by applying the inverse of [Hpeak

s=0 ] to the above set of weight images~Iwt
t . This is

similar to the process described in section7.2.1to calculate the primary beam polynomial.
Compare the expression for the weight image in Eqn.7.40 with the RHS of the system
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of equations used to compute the primary beam coefficients (Eqn.7.24). The form of the

RHS vector is the same, but it is now a weighted sum of~Pb
2

ν (and not a weighted sum of
~Pbν). The principal solution computed for each pixel now represents the coefficients of a
polynomial formed from the square of the primary beam. The series coefficients of the
primary beam (~Pbq) are extracted from these coefficients by calculating the square root of
the resulting polynomial in terms of its coefficients (again, compare with Eqn.4.14for the
single-frequency case).

A polynomial square root is equivalent to a division by two inlog-space. For
Nt = 3, the calculation of the polynomial square root is numerically identical to converting
these coefficients into power-law parameters10 (using Eqns.6.43 to 6.45), computing a
reference-frequency image, a spectral index image and a spectral curvature image, and
then taking the square-root of the reference-frequency beam, dividing the spectral index
and curvature images by two, and recomputing Taylor-coefficients ~Pbq for a polynomial
representation of this new power law (using Eqn.6.25). Let us denote the parameters of
this new power law as~Pbν0 for the primary beam at the reference frequency,~Pbα as the
spectral index due to the primary beam and~Pbβ for spectral curvature (see Figs.7.6 and
5.4 for 2D images). These primary beam parameters represent thefrequency dependence
of the weighted average of the individual primary beams.

Initialization : Iterations begin by initializing the set of model images foreach Taylor-
term~Imodel

q ∀ q ∈ {0,Nt − 1} to zero or to ana priori model.

Major and minor cycles : The normal equations for MS-MFS imaging (shown in
Eqn.7.5) are solved iteratively by repeating steps1 to 7 until some termination criterion
is reached. Steps1,2 and7 form the major cycle, and steps3, 4 and6 form the minor
cycle. Direction dependent effects are corrected during the major cycle and the effect of
these corrections on the minor cycle depends on the type of normalization chosen for the
residual images.

1. Compute RHS :Residual images for all pairs of spatial scales (s ∈ [0,Ns] and Taylor
terms (t ∈ [0,Nt]) are computed as follows.

~I res
s
t
= ~I shp

s ⋆ ~I res
t (7.41)

where ~I res
t =

∑

ν

wt
ν[F

†RSν
ddWim

ν ]~Vres
ν ≈

∑

ν

wt
ν[Pbν]~I

res
ν (7.42)

10 Note however, thatNt = 3 may not be sufficient to accurately model the primary beam spectrum in
regions outside the main lobe. In this case, an explicitNt order polynomial square root needs to be computed.
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Since we intend to use the MS-MFS deconvolution algorithm for the minor cycle,
all direction dependent effects need to be removed by the time the RHS vectors are
computedvia Eqn.7.41. If not, the minor cycle has to be interpreted differently.

These dirty images need to be normalized before beginning the minor cycle. Based
on the form of the normal equations when visibility-domain corrections for direction-
dependent effects are done, there are several types of normalizations. They are de-
scribed below as parts of steps2 and6.

2. Normalization : There are two ways in which the RHS dirty images can be pre-
processed before beginning the minor cycle iterations (seesection2 for the single-
frequency version of this discussion).

(a) Flat noise : The first approach is to divide the RHS vectors by one instanceof
the multi-frequency primary beam. This is equivalent to eliminating the upper-
triangular block matrix on the left of [Hm f s] in Fig.7.9and can also be done by
computing the dirty image separately for each frequency anddividing it by ~Pbν.

We are left with one instance of the primary beam, and the system of equations
being solved are equivalent to those shown in Fig.7.5(the case where standard
gridding is used to compute the dirty images and no visibility-domain correc-
tions of direction-dependent effects are applied). The noise in the image is the
same across the entire field of view, but the flux is modulated by the instrument
primary beams. The primary beam on the right of [Hm f s] is treated as part of
the sky model and taken out of the final result of each minor cycle.

(An alternate approach is to divide all the RHS images by~Pb0 (i.e. not a poly-
nomial division). This corrects for one instance of an average primary beam
and creates flat-noise RHS images, but leaves in the frequency-dependence of
the beam. The minor cycle model image will contain one factorof ~Pbν0 and two
factors of ~Pbα and ~Pbβ.)

(b) Flat sky : The second approach is to divide the RHS image by the weight
images~Iwt

t or to apply a polynomial division with the coefficients of the square
of the primary beam (see section7.2.2.3). This is equivalent to dividing the dirty
image at each frequency by the square of the primary beam at that frequency
~Pb

2

ν.

These operations produce RHS images that represent the peaksky brightness
not modulated by the primary beams, but the noise is not uniform across the
images and this has to be accounted for while searching for flux components.
Further, the normal equations in Eqn.7.37and Fig.7.9 show the two primary
beams on either side of the MFS Hessian, and any operation that uses a single-
step image-domain correction by the square of the primary beam will be an
approximation.
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(An alternate approach is to divide the RHS images by~Pb
2

ν0
. This will give a

flat-sky intensity image, but the minor cycle model image will still pick up and
two factors of~Pbα and ~Pbβ.)

It is important to note that both types of normalization mustbe done to~Idirty
t in

Eqn.7.41beforesmoothing it to different spatial scalesviaEqn.7.41. This is because
the image model is a multi-scale representation of the sky multiplied by the primary
beam

(

∑

s
~I shp

s ⋆ ~Im
s =
~Pb~I sky

)

and multiplication and convolution do not commute.

3. Find a Flux Component : A flux component is chosen in the same as as described
in step2 of the MS-MFS deconvolution algorithm and principal solution (described
in sections7.1.2.5and7.1.2.3) The principal solution is computed for all pixels, one
scale at a timevia Eqn.7.10. TheNt element solution set of Taylor coefficients with
the dominantq = 0 component across all scales and pixel locations, is chosenthe
current flux component. Let the scale size for this set bepi. The chosen solution set
for iterationi is given by{~Imodel

p
q ,(i)
}; qi ∈ [0,Nt].

4. Update model images : Multi-scale model images are accumulated for each Taylor
coefficient (same as Eqn.7.12).

~Imodel
p = ~Imodel

p + g
(

~Imodel
p
q ,(i)
⋆ I shp

pi

)

∀q ∈ {0,Nt − 1} (7.43)

whereg is a loop-gain that takes on values between 0 and 1 and controls the step size
for each iteration in theχ2-minimization process.

5. Update RHS : The RHS residual images for each Taylor term are updated as follows
(same as Eqn.7.13).

I res
s
t
= I res

s
t
− g
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









(7.44)

Repeat from Step3 until a pre-computed flux-limit is reached.

6. Correct for PB : Depending on the choice of normalization (step2), the multi-
frequency model at the end of the minor cycle needs to be corrected for the primary
beam and its frequency dependence.

(a) Flat noise : This step is equivalent to a polynomial division that eliminates the
primary-beam matrix on the right of the MFS Hessian in Fig.7.9. In the case of
flat-noise normalization, the model image contains one instance of the primary
beam and its frequency dependence. The model images for eachTaylor coef-
ficient are corrected using their power-law interpretation11. First the reference-

11Note that the numerical steps involved in primary-beam correctionvia a power-law model are exactly
equivalent to a polynomial division (when the sky and the primary beam are both modeled by polynomials
in frequency). ForNt = 3, the choice of a power-law instead of a polynomial to represent the frequency-
dependence of the primary beam is irrelevant from the point of view of an image-domain correction.
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frequency image (~Imodel,ν0) spectral index and curvature images (~Imodel,α, ~Imodel,β)
are calculated from the model coefficientsvia Eqns.6.43to 6.45and then the
primary beam is removed as~Imodel,ν0/ ~Pbν0, ~I

model,α − ~Pbα, ~Imodel,β − ~Pbβ. Polyno-
mial coefficients for this new power law are then recomputedvia Eqn.6.22and
filled into ~Imodel

t ∀ t ∈ {0,Nt − 1} (to be used during prediction).

(b) Flat Sky : No corrections are required because the flux model is alreadydevoid
of primary-beam effects (in regions away from the nulls).

In both the above cases, the alternate forms of normalization described in step2
require different multiples of~Pbν0,

~Pbα and ~Pbβ to be removed from the model image.

The advantage of using the power-law model to separate the primary beam from
the sky brightness is that fidelity constraints can be applied on the resultingα and
β images before converting them back to Taylor-coefficients. The disadvantage of
using this power-law model is that it will be accurate only for parts of the primary
beam that are well represented by a power law andNt = 3 suffices to model it (within
the main lobe). Out in the sidelobes,Nt > 3 terms are usually required to describe
the primary-beam polynomial and is more accurate to do the above correctionvia an
explicit polynomial division in terms of its coefficients.

7. Predict : Model visibilities are computed from each Taylor-coefficient image in the
same way as in Eqn.6.42for multi-frequency imaging.

~Vmodel
ν =

Nt−1
∑

t=0

[Wm f s
t ][Sdd†GpcR†F][~I ps]−1~Imodel

t (7.45)

The use of [Sdd†] during de-gridding re-introduces all the direction dependent effects
so that the model visibilities can be compared with the data forχ2 computation (com-
pare with Eqn.4.16for the single-frequency case). Since these direction-dependent
effects are re-introduced in the visibility domain, it is done separately for each base-
line, timestep and frequency, and takes into account any variability. Therefore, even
if the minor cycle uses approximate average primary beams, the prediction step and
the major cycle are always computed accurately and this is necessary for the itera-
tions to eventually converge.

Residual visibilities are computed as~Vres
ν =

~Vcorr
ν − ~Vmodel

ν .

Repeat from Step1 until a convergence criterion is reached.

Restoration : The final Taylor coefficient images are restored and interpreted in the same
way as described in standard multi-frequency restoration (section6.2.2.5).
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Algorithm 7 : MF-MFS CLEAN with MF-PB correction : Major/minor
cycles

Data: calibrated visibilities :~Vcorr
ν ∀ν

Data: primary beams :~Pbν ∀ν
Data: uv-sampling function : [Sν]
Data: image noise threshold and loop gainσthr, gs

Data: scale basis functions :~I shp
s ∀s ∈ {0,Ns− 1}

Result: model coefficient images :~Imodel
q ∀q ∈ {0,Nt − 1}

Result: spectral index and curvature :~Imodel
α , ~Imodel

β

Use Algorithm8 on the following page to pre-compute1

~I ps f
sp
tq
, [Hpeak

s ], ~Pbν0,
~Pbα, ~Pbβ

Initialize the model~Imodel
t for all t ∈ {0,Nt − 1} and computefsidelobe2

repeat /* Major Cycle */3

for t ∈ {0,Nt-1} do4

Compute the residual image~I res
t5

Normalize~I res
t by ~Pbν06

for s ∈ {0,Ns-1} do7

Compute~I res
s,t =

~I shp
s ⋆ ~I res

t8

end9

end10

Calculateflimit from ~I res
0,011

repeat /* Minor Cycle */12

ComputeImodel
q ∀q ∈ {0.Nt − 1} and update~I res

s,t ∀s, t (Algorithm 613

on page134)
until Peak residual in~I res

0,0 < flimit14

Calculate power-law parameters :~Im
ν0
, ~Im
α , ~I

m
β from Imodel

q ∀q15

Remove primary beam :16

~Inew
ν0
= ~Im
ν0
/ ~Pbν0,

~Inew
α = ~Im

α − 2 ~Pbα, ~I
new
β = ~Im

β − 2 ~Pbβ

Re-compute Taylor coefficients~Inew
q ∀q from ~Inew

ν0
, ~Inew
α , ~I

new
β17

Compute model visibilitiesVmodel
ν from Inew

q ∀q ∈ {0.Nt − 1}18

Compute a new residual imageI res from residual visibilities19

Vcorr
ν − Vmodel

ν

until Peak residual in~I res
0 < σthr20

Calculate spectral index and curvature images, and restorethe results21
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Algorithm 8 : MS-MFS with MF-PB correction : Pre-Deconvolution Setup

Data: primary beams :~Pbν ∀ν
Data: uv-sampling function : [Sν]
Data: scale basis functions :~I shp

s ∀s ∈ {0,Ns− 1}
Result: scale-spectral PSFs :~I ps f

sp
tq
, [Hpeak

s ]

Result: primary beam model :~Pbν0,
~Pbα, ~Pbβ

for t ∈ {0,Nt − 1}, q ∈ {t,Nt − 1} do1

Compute the spectral PSF~I ps f
tq2

for s ∈ {0,Ns − 1}, p ∈ {s,Ns− 1} do3

Compute the scale-spectral PSF~I ps f
sp
tq
= ~I shp

s ⋆ ~I shp
p ⋆ ~I

ps f
tq4

end5

end6

for s ∈ {0,Ns− 1} do7

Construct [Hpeak
s ] from mid(I ps f

s,s
t,q

) and compute [Hpeak
s

−1
]8

end9

for t ∈ {0,Nt − 1} do10

Compute the weight image~Iwt
t =

∑

νw
t
ν(tr[W

im
ν ])[ ~Pb

2

ν]11

end12

foreachpixel do13

ConstructI rhs, from Iwt
t at this location14

Compute the primary beam Taylor coefficients ~Pb
sol
= [Hpeak

0

−1
]~I rhs15

end16

Compute power-law parameters~Pb
sol

ν0
, ~Pb

sol

α , ~Pb
sol

β from ~Pb
sol

t ∀ t ∈ {0,Nt − 1}17

Compute primary-beam parameters~Pbν0 =

√

~Pb
sol

ν0
, ~Pbα =

~Pb
sol
α

2 ,
~Pbβ =

~Pb
sol
β
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CHAPTER 8

WIDE-BAND IMAGING RESULTS

This chapter presents a set of wide-band imaging results to illustrate the capabil-
ities of the multi-scale, multi-frequency deconvolution algorithms described in chapter7.
The examples presented here focus on the EVLA at L-band (1 to 2GHz) but the results are
generic enough to be transferred to other arrays and frequencies. The description of each
example emphasizes the accuracy with which spatial and spectral structure can be recov-
ered for a particular type of source and signal-to-noise ratio, and discusses how the choice
of image model and algorithm affected the imaging process. Error estimates, dynamic-
ranges and performance metrics are presented and discussedwherever relevant in order to
convey an idea of what to expect when one uses these methods for spatio-spectral image
reconstruction.

Section8.1describes imaging results based on simulated EVLA data to demon-
strate the capabilities of the MS-MFS algorithm for narrow and wide-field wide-band imag-
ing. Section8.2demonstrates the applicability of this algorithm to situations with incom-
plete spectral sampling wherea priori information in the form of an image model is used
to bias the solution towards a physically appropriate description of the sky brightness. Sec-
tion 8.3shows the imaging results from a set of wide-band VLA observations of Cygnus A,
M87 and the 3C286 field. Section8.4 summarizes several practical aspects of wide-band
imaging and lists the main factors to keep in mind while usingthe MS-MFS algorithm for
spatio-spectral imaging.

The MS-MFS algorithms described in the chapter7 were implemented using the
CASA libraries (version 2.4), validated using data simulated for the EVLA and applied to
wide-band VLA observations taken as a series of snapshots atmultiple frequencies. The
multi-scale, wide-band flux model used for all the imaging runs in this chapter is given by
Eqn.7.1. Spatial structure is modeled with a collection of multi-scale flux components, and
the position-dependent spectrum of the sky brightness distribution is written as a Taylor
polynomial in frequency (i.e. a polynomial inI vs ν space, and not in log(I ) vs log(ν)
space). The simulations used for these tests represented an8 hour synthesis run with the
EVLA in D configuration at L-band with an instantaneous bandwidth of 1 GHz. Wide-band
data were obtained from the VLAvia a series of short observations that cycled through a
list of frequencies between 1 and 2 GHz. The end result of suchan observation was a
series of 10 to 20 VLA snapshots at 10 to 16 discrete frequencies within the range of the
new EVLA receivers at L-band for those antennas that had themand within the range of
the VLA receivers for the rest.
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Telescope EVLA (D configuration)
Observing Band Lband (1-2 GHz)
Phase reference center 19:59:28.5+40.44.01.5 J2000
Angular resolution 60, 40, 30 arcsec at 1.0,1.5,2.0 GHz
Cell size 8 arcsec
Image size 1024×1024 pixels (34 arcmin)
Number of channels 20
Channel Width 10 MHz
Spacing between channels 50 MHz
Instantaneous bandwidth 200 MHz (spread across 1 GHz)
Reference Frequency 1.5 GHz
Total integration time 8 hours
Integration time per visibility 200 s
System temperatureTsys 35K
Noise per visibility 7.2 mJy
Single-channel point-source sensitivity 22.8µJy (theoretical)
Continuum point-source sensitivity 5.1µJy (theoretical)
Expected dynamic range 8000
Achieved continuum RMS (off source) 8 µJy/beam
Achieved dynamic range 4000
Number of spectral series coefficients Nt = 5
Set of spatial scales 0,6,10 pixels

Table 8.1:Parameters for Wide-Band EVLA Simulations : These simulations were designed to
minimize the size of the simulated dataset and consist of a set of 20 frequency channels spread
across the full 1 GHz instantaneous bandwidth with visibility samples being measured once every
3.3 minutes. A very low noise level was used in order to test and validate the algorithm.

8.1 Algorithm validation via simulated EVLA data

The multi-scale multi-frequency deconvolution algorithms described in chapter7
were validated using datasets simulated for the EVLA. Section 8.1.1presents narrow-field
imaging results and section8.1.2 illustrates the effect of a frequency-dependent primary
beam and shows imaging results with and without primary-beam correction.

The simulations used wide-band flux components constructedas 2D Gaussians
whose amplitudes follow a power-law with frequency. Extended emission was modeled
by a sum of these flux components. Overlapping flux componentswith different power-
law spectra we used to construct sources whose spectra were not pure power laws and
also varied smoothly across the source. For wide-field imaging tests, antenna primary
beams were included in the simulations by using visibility domain convolution functions
that were constructed from frequency-dependent aperture illumination functions that rotate
with time and have phase variations that model the EVLA beam squint. The parameters
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of the simulated EVLA observation are listed in Table8.1. The data products that were
evaluated were the sky brightness distribution at a reference frequency along with maps of
spectral index and spectral curvature.

8.1.1 Narrow-field imaging of compact and extended emission

Objective : The goals of this test are to assess the ability of the MS-MFS algorithm to
reconstruct both spatial and spectral information about a source in terms of a linear combi-
nation of compact and extended flux components with polynomial spectra (flux model de-
scribed in section7.1.1) as well as to test how appropriate this flux model is when the true
sky brightness is a complex extended source whose spectral characteristics vary smoothly
across its surface.

Sky brightness : Wide-band EVLA observations were simulated for a sky brightness
distribution consisting of one point source with spectral index of−2.0 and two overlapping
Gaussians with spectral indices of−1.0 and+1.0. Fig.8.1 shows the reference frequency
image of this simulated source, plots of the spectrum at different locations on the source,
and the resulting spectral index and curvature maps. The spectral index across the resulting
extended source varies smoothly between−1.0 and+1.0, with a spectral turnover in the
central region corresponding to a spectral curvature of approximately 0.5. Fig.8.2 shows
the first three Taylor coefficient maps that describe this source.

MS-MFS Imaging : Two wide-band imaging runs were done using the MS-MFS algo-
rithm and the results compared. The first used a multi-scale flux model (section7.1.1) in
which Nt = 3 andNs = 4 with scale sizes defined by widths of 0, 6, 18, 24 pixels and the
second used a point-source flux model in whichNt = 3 andNs = 1 with one scale function
given by theδ-function (to emulate the MF-CLEAN algorithm described in section6.2.1).
A 5σ flux threshold of about 20µJy was used as the termination criterion.

Results : The results from these imaging runs are shown in Fig.8.3 (three Taylor co-
efficients), Figure8.4 shows residual images over a larger region of the sky, and Fig. 8.5
shows the intensity at the reference frequency, spectral index and spectral curvature. All
figures show the results with both MS-MFS and MF-CLEAN.
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Figure 8.1:Simulated wide-band sky brightness distribution : These images represent the wide-
band sky brightness distribution that was used to simulate EVLA data to test the MS-MFS algorithm.
The image on the top left shows the total intensity image of the source at the reference frequency~Iν0.
The plots on the bottom left show spectra (and their power lawparameters) at 4 different locations.
The spectral index varies smoothly between about+1 and−1 across the extended source and is−2.5
for the point source. The spectral curvature has significantvalues only in the central region of the
extended source where the spectrum turns over within the sampled range. The images on the right
show these trends in the form of spectral index (top) and spectral curvature (bottom) maps.

Figure 8.2:True Taylor coefficient images : These images show the first three Taylor coefficients
for the polynomial expansion of the wide-band flux distribution shown in Fig.8.1. These images
are the (left) intensity at the reference frequencyI0 = Iν0, (middle) first-order Taylor-coefficient
I1 = αIν0 and (right) second-order Taylor-coefficient I2 = (α(α − 1)/2+ β) Iν0 (see Eqn.6.22). All
images are displayed at the same flux scale.
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Figure 8.3:Reconstructed Taylor coefficient images : These images show the first three Taylor
coefficients (similar to Fig.8.2) obtained using two different wide-band flux models. The top row
shows the results of using a multi-scale wide-band flux model(MS-MFS) and the bottom row shows
the results of using a point-source wide-band flux model (MF-CLEAN, or MS-MFS with only one
spatial scale given by aδ-function). All images are displayed at the same flux scale.

Figure 8.4:Residual images : This figure shows the residual images obtained after applying MS-
MFS to wide-band EVLA data simulated for the sky brightness distribution shown in Fig.8.5. The
residual image on the left is obtained when a multi-scale fluxmodel was used (MS-MFS). The RMS
noise on source is about 20µJy and off source is 5µJy. Compare this with the residual image on the
right from a point-source deconvolution (MF-CLEAN) where the on source RMS is about 0.2 mJy
and off source is 50µJy. (Note that the displayed data ranges are different for these two images.
The flux scale for the image on the left is±0.3× 10−4 and for the right is±0.3× 10−3.) This clearly
demonstrates the advantage of using a multi-scale flux model.
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Figure 8.5:MS-MFS final imaging data products : These images show the results of applying MS-
MFS to wide-band EVLA data simulated for the sky brightness distribution described in Fig.8.1.
The left column shows the results of using a multi-scale wide-band flux model (MS-MFS) and
the right column shows the results of using a point-source wide-band flux model (MF-CLEAN, or
MS-MFS with only one spatial scale given by aδ-function). The top, middle and bottom rows
correspond to the intensity image at the reference frequency Iν0, the spectral indexα and spectral
curvatureβ maps respectively. The flux scale for each left/right pair of images is the same, and the
sharp source boundaries in the spectral index and curvaturemaps are because of a flux threshold
used to compute them. With a multi-scale flux model (MS-MFS, left), the reconstructions ofα and
β are accurate to within 0.1 in high signal-to-noise regions.With a point-source flux model (MF-
CLEAN, right), deconvolution errors break extended emission into flux components of the size of
the resolution element and these errors transfer non-linearly to the spectral index and curvature
maps. Table8.2compares the true and reconstructed values ofIν0, α, β for three regions of this sky
brightness distribution.



161

The main points to note from these images are listed below.

1. With a multi-scale multi-frequency flux model (MS-MFS) the spectral index across
the extended source was reconstructed to an accuracy ofδα < 0.05 with the max-
imum error being in the central region where the spectral index goes to zero and
Nt = 3 is too high for an accurate fit (section6.2.4describes how the choice ofNt

affects the solution process). The spectral curvature across the extended source was
estimated to an accuracy ofδβ < 0.1 in the central region with the maximum error
of δβ ≈ 0.2 in the regions where the curvature signal goes to zero and the source
surface brightness is also minimum (the outer edges of the source).

2. With a multi-frequency point-source model (MF-CLEAN) the accuracy of the spec-
tral index and curvature maps was limited toδα ≈ 0.1, δβ ≈ 0.5. This is because
the use of a point source model will break any extended emission into components
the size of the resolution element and this leads to deconvolution errors well above
the off-source noise level (note the difference between the intensity imagesI (ν0) pro-
duced with MS-MFSvsMF-CLEAN). Error propagation during the computation of
spectral index and curvature as ratios of these noisy reconstructed images leads to
high error levels in the result.

3. The imaging run that used a multi-scale image model was terminated at a 5σ noise
threshold. The peak residual is about 20µJy and the off-source RMS is 5µJy (close
to the theoretical RMS of 3µJy as listed in Table8.1). The imaging run that used a
point-source model was terminated after at least four successive major cycles failed
to reduce the peak residual below 200µJy despite an apparant decrease in the resid-
uals during the minor cycle iterations. The off source RMS in the result is about 50
µJy.

Error Estimates : The errors on the reconstructed intensity map at the reference fre-
quency, spectral index and curvature were estimated based on a comparison with smoothed
versions of the corresponding true images. Table8.2shows these numbers for three regions
on the simulated sky brightness distribution (labelled as 1,2 and 3). One general point
to note from these results is that MS-MFS tends to give more accurate results than MF-
CLEAN because the errors on the reconstructedα andβ depend strongly on the magnitude
of the deconvolution error in the coefficient images. MF-CLEAN has larger deconvolu-
tion errors in the coefficient images, and since it is unlikely that these errors preserve the
ratios between the coefficient images, the errors in the spectral index and curvaturemaps
increase. With sufficient signal to noise (SNR≈ O(10)1for spectral index and SNR≈ O(100)
for spectral curvature), it is possible to reconstruct the spectral index and curvature across
the source to accuracies of within 0.1.

1The expression O(n) represents ’of the order of n’.
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Observed Errors with MS-MFS Region 1 Region 2 Region 3
Peak brightnessI0 (Jy/beam) 0.0292 0.0128 0.0032
On-source residualI res

on 1× 10−05 1× 10−05 2× 10−05

Off-source residualI res
o f f 3× 10−06 3× 10−06 3× 10−06

δI = |I0 − I true| 1× 10−05 4× 10−05 1× 10−04

S NR= I0/max(I res
on , δI ) 1800 320 32

Measuredα ± δα 0.99± 0.005 -0.13± 0.11 -2.45
Measuredβ ± δβ 0.016± 0.01 0.61± 0.05 -1.12

Observed Errors with MF-
CLEAN

Region 1 Region 2 Region 3

Peak brightnessI0 (Jy/beam) 0.0309 0.0129 0.0031
On-source residualI res

on 2× 10−04 4× 10−04 2× 10−04

Off-source residualI res
o f f 1.2× 10−05 1.2× 10−05 1.2× 10−05

δI = |I0 − I true| 1× 10−04 1× 10−04 1× 10−04

S NR= I0/max(I res
on , δI ) 190 43 31

Measuredα ± δα 0.7± 0.17 -0.17± 0.26 -2.58
Measuredβ ± δβ -0.5± 0.3 -0.5± 0.35 -1.19

Table 8.2: Measured errors with MS-MFS on Simulated Data : These tablescompare the true
and measured values of the peak flux, spectral index and spectral curvature for three regions of the
simulated sky brightness distribution (labelled as 1,2 and3 in Fig.8.1) and two algorithms (top) MS-
MFS and (bottom) MF-CLEAN (see Fig.8.5 for the corresponding images). The purpose of this
comparison is to (a) show that when there is sufficient SNR, MS-MFS is more accurate than MF-
CLEAN and (b) give examples of how the error bars onα andβ vary as a function of SNR. In region
1, the spectrum is close to a pure power law with no curvature (α = 0.99, β = 0.0). In region 2, there
is a strong spectral turnover but the average spectral indexis very small (α = 0.031, β = 0.535).
Region 3 is the point source located at the edge of the extended emission (α = −2.5, β = −1.0). The
measured errorsδα, δβ were obtained by constructing error images from the difference between
the true and reconstructed spectral index and curvature images, and then calculating the standard-
deviation of all points within a finite region of these difference maps (they are approximate). Region
3 contains no error-bars onα, β because the above calculation cannot be done with one pixel.
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8.1.2 Wide-field imaging with Primary-Beam correction

Objective : The goal of this simulation is to test the MS-MFS algorithm with primary
beam correction to reconstruct both compact and extended emission whose spectral struc-
ture is modified by the frequency dependence of the primary beam. The primary beams
are simulated with time-variability arising from their rotation with time as well as beam
squint. This is to test for any difference in performance and imaging fidelity when direction-
dependent corrections are applied as a single post-deconvolution image-domain correction
versus a combination of visibility-domain and image-domain operations.

Sky brightness and primary beams : Wide-field wide-band EVLA observations were
simulated for a sky brightness distribution consisting of one large 2D Gaussian (about 10
arcmin in diameter) with a constant spectral index of -1.0 across its entire surface and two
point sources with spectral indices of 0.5 and 0.0. The Gaussian is centered at the 80%
point of the reference frequency primary beam and the spectral index due to the primary
beam ranges between 0 and -0.5 across its surface. The two point sources are located near
the 70% point of the reference-frequency primary beam wherethe spectral index of the
beam is about -0.5. EVLA primary beams were simulated from numerically derived aper-
ture illumination functions [Brisken 2003] and appliedvia time-varying visibility-domain
convolution functions during the simulation (as shown in Eqn. 4.8).

MS-MFS Imaging with Primary-beam correction : The MS-MFS algorithm was run
with Nt = 5, andNs = 3 with the scale-widths in pixels are [0,6,20]. A 5σ convergence
threshold was used as the termination criterion. Wide-bandprimary-beam correction was
done in two different ways and their results compared. The first method used asingle
post-deconvolution image-domain correction that dividedout a polynomial model of the
time-averaged primary beam (as described in the caption of Fig.7.5). The second method
used a combination of visibility-domain and image domain corrections that accounted for
the time-variability of the antennas (rotation with time) and the effect of beam squint (a
polarization dependent pointing offset arising from the location of the feeds on EVLA
antennas).

Results : Figure8.6 shows the results of these simulations. The image on the top left
shows the reference frequency intensity image after correction for the primary beam. The
image on the top right shows the spectral index map without primary beam correction
and the bottom row of images are the corrected spectral indexmaps obtainedvia the two
methods described above.
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The main points to note from these results are as follows.

1. From the un-corrected spectral index image we can see thatthe spectral indices of
the point sources are the sum of that of the source and of the primary beam at that
location. The spectral index of the extended source is tilted with the numbers ranging
between−1.0 and−1.5 from one edge of the source to the other. Both point sources
have taken on an additional spectral index of -0.5.

2. From the bottom two images we can see that both methods willgive the same qual-
itative reconstruction of the true spectral index of the source, but the second method
(right) has much better noise properties. This is only because it accounts for the vari-
ability of the primary beam and is not restricted to the use ofa time-averaged primary
beam.

3. The accuracy to which the spectral indices of the point sources were reconstructed
was aboutδα = 0.01. For the extended source, the errors are dominated by the
residual multi-scale deconvolution errors that prevent a smooth reconstruction even
in the (top right) image of the uncorrected spectral index (wide-band versions of the
MEM and ASP-CLEAN algorithms might be required to reduce these errors). The
accuracy with which the spectral index was computed across the extended source
was aboutδα ≈ 0.2.

These results show that for a field of view within the HPBW of the primary beam
at the reference frequency, it is possible to model the frequency dependence of the beam
by a power law with varying index, and use this model to do image-domain corrections
of the beam. The largest field-of-view over which this model has been shown to work is
down to the few-percent point of the beam at the highest frequency (near the first null at the
highest frequency and close to the HPBW at the lowest frequency; see Fig.5.3). Beyond
this field-of-view, the power-law model breaks down, and explicit polynomial division will
be required to correct for the primary beam.
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Figure 8.6: MS-MFS with wide-band primary beam correction on simulatedEVLA data : The
image on the top left is the intensity image at the reference frequency and shows two point sources
(spectral index of+1.0 (top) and 0.0(bottom)) and one extended source with a constant spectral
index of−1.0. The image on the top right shows the spectral index map constructed by using MS-
MFS without any primary beam correction. The apparant spectral indices of the point sources are
+0.5 (top) and−0.5 (bottom) and range from−1.0 to−1.5 for the extended source (left to right).
The second row of images shows the spectral index maps after primary-beam correctionvia a single
post-deconvolution image-domain correction with an average primary beam and its spectrum (left,
section4.2.1) and a combination of visibility and image domain corrections that takes into account
the time-variability or rotation of the beam and the effect of beam squint (right, section4.2.2).
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8.2 Feasibility Study of MFS in various situations

This section consists of a set of imaging examples that illustrate the feasibility
of wide-band synthesis imaging mainly when theuv sampling is insufficient to directly
measure all the spatial and spectral structure within the full range of spatial frequencies
allowed by the broad-band receivers. These examples were chosen to emphasize the role
of an appropriate flux model in an image reconstruction algorithm and how it can often
provide physically realistica priori information to the solution process (see the first two
pages of chapter7 for an introductory discussion about the choice of an appropriate flux
model).

Section8.2.1describes the reconstruction of source spectra at spatial scales that
are unresolved at the low-frequency end of the band but resolved at the high-frequency end.
This example shows that for broad-band synchrotron emission it is possible to reconstruct
the source spectrum at the angular resolution allowed by thehighest frequency in the band.
Section8.2.2describes the reconstruction of spectra at very large spatial scales for which
the visibility function falls within the central hole in theuv-coverage for the upper half of
the frequency range. This example illustrates an ambiguitybetween spatial and spectral
structure that can arise from such measurements and shows that the use ofa priori total-
flux constraints can solve this problem. Section8.2.3shows how the multi-scale wide-
band flux model used in the MS-MFS algorithm naturally separates the contributions from
overlapping sources that differ in spatial and spectral structure. Section8.2.4demonstrates
how the MS-MFS algorithm performs when the spectrum of the radio emission is not a
smooth low-order polynomial. This example tests the applicability of the wide-band model
to band-limited emission which can be represented with a 4th or higher order polynomial
(and not just power-law spectra).

8.2.1 Moderately Resolved Sources

Objective : Traditionally, spectral structure has been measured from wide-band inter-
ferometry data only after making a set of narrow-band imagesand smoothing them to the
angular resolution of the lowest frequency in the band. For the 2:1 frequency ranges now
becoming available, the angular resolution changes by a factor of two across the band, and
smoothing the images to the lowest resolution results in a considerable loss of information.
The goal of this test is to demonstrate how a flux model that accurately describes the type
of emission being observed can influence the wide-band imaging process to reconstruct the
spectral structure of the incoming radio emission at the angular resolution of the highest
frequency in the sampled range, even though the lower frequency data measure the sky
brightness at lower angular resolutions.
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Figure 8.7:Moderately Resolved Sources – Single-Channel Images : These figures show the 6
single-channel images generated from simulated EVLA data between 1 and 4 GHz in the EVLA
D-configuration. The angular resolution at 1 GHz is 60 arcsec, and at 4 GHz is 15 arcsec and the
white circles in the lower left corner shows the resolution element decreaseing in size as frequency
increases. The sky brightness consists of two point sources, each of flux 1.0 Jy at a reference
frequency of 2.5 GHz and separated by 18 arcsec. The pixel size used in these images is 4.0 arcsec.
From these single-channel images we can see that the sourcesbegin to be resolved only at the higher
end of this frequency range, and at the lower end of the band isbarely distinguishable from a single
point source centered on the bottom point source. The top point source has a spectral index of+1.0
and the bottom one has a spectral index of−1.0.

EVLA Simulation : Wide-band EVLA data were simulated for the D-configuration
across a frequency range of 3.0 GHz with 6 frequency channelsbetween 1 and 4 GHz (600
MHz apart). This wide frequency range was chosen to emphasize the difference in angular
resolution at the two ends of the band (60 arcsec at 1 GHz, and 15 arcsec at 4.0 GHz). The
sky brightness chosen for this test consists of a pair of point sources separated by a distance
of 18 arcsec (about one resolution element at the highest frequency), making this a moder-
ately resolved source. These point sources were given different spectral indices (+1.0 for
the top source and−1.0 for the bottom one). Figure8.7shows the 6 single-channel images
of this source. At the low frequency end, the source is almostindistinguishable from a
single flux component centered at the location of the bottom source whose flux peaks at
the low-frequency end. The source structure becomes apparant only in the higher frequen-
cies where the top source (with a positive spectral index) isbrighter. Figure8.8shows the
multi-frequencyuv-coverage and the sampled visibilities in this simulated dataset. These
plots show that the double-source structure becomes apparant only beyond the first few fre-
quencies in the range, making this a suitable dataset to use to test the MS-MFS algorithm
on sources that are unresolved at one end of the band and resolved at the other.
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Figure 8.8: Moderately Resolved Sources -uv-overage and Visibility-Plot : These plots show
the multi-frequencyuv-coverage (left) and the sampled visibilities (right). Thecolours indicate
frequency, going from red to violet as frequency increases.The visibility plot shows that at the
lowest frequency, the interferometer sees the sky as a single point source whose flux is the sum of
both point sources (∼ 2.9 Jy) at 1 GHz. As the frequency increases, the double-source structure
becomes apparant in the form of visibility-domain fringes.

MS-MFS Imaging Results :

1. These data were imaged using the MS-MFS algorithm withNt = 3 andNs = 1 with
only one spatial scale (aδ-function). Figure8.9shows the results of this imaging run.
The intensity distribution, spectral index and curvature of this source were recovered
at the angular resolution allowed by the 3.6 GHz samples (18 arcsec). These results
show that for a source that can be modeled as a set of flux components (in this case
point-sources) with polynomial spectra, even partial spectral measurements at the
highest angular resolution are sufficient to reconstruct the full spectral structure.

2. A second imaging run was performed using only the first and last channels (1.0 GHz
and 4.0 GHz). The source is almost completely unresolved at 1GHz (point sources
separated by 18 arcsec within a 60 arcsec resolution element), and just resolved at
4 GHz (with an 15 arcsec resolution element). The goal of thisexercise was to test
the limits of this algorithm and the ability of the flux model to constrain the solution
when the data provide insufficient constraints. The MS-MFS algorithm was run with
Nt = 2 andNs = 1 and used the same number of iterations as the previous example.
Fig.8.10contains the resulting intensity image and spectral index map and shows that
it is still possible to resolve the source and measure its spectral index at the resolution
of the highest frequency. However, the deconvolution errors are considerably higher.
The obtained peak residual of 5 mJy is not much larger than the3 mJy level obtained
when all 6 channels were used while imaging, indicating thatthis reconstruction is
not well constrained by the data and the model plays a very significant role.
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Figure 8.9:Moderately Resolved Sources – MSMFS Images : These images show the results of
running MS-MFS on EVLA data that was simulated to test the algorithm on moderately resolved
sources. The test sky brightness distribution consists of two point sources with spectral indices+1.0
(North) and−1.0 (South) separated by one resolution element at the highest frequency. The four
images shown here are the intensity at 2.5 GHz (top left), theresidual image with a peak residual
of 3 mJy (top right), the spectral index showing a gradient between−1 and+1 (bottom left) and the
spectral curvature which peaks between the two sources and falls off on either side (bottom right).
These results demonstrate that an appropriate flux model will constrain the solution to a physically
realistic one even when the spectral measurements are incomplete at the highest resolution.

Figure 8.10:Moderately Resolved Sources – MSMFS Images using first and last channels : These
images show the result of MS-MFS on two channels of data with very different angular resolutions
(60 arcsec at 1 GHz, and 15 arcsec at 4 GHz). The intensity image (left) and the spectral index image
(right) show that the intensity and spectrum have been reconstructed at the 15 arcsec resolution.
However although the peak residual (middle) of about 5 mJy isnot much higher than in Fig.8.9,
there are visible deconvolution errors that lead to errors in peak intensity and spectral index.
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8.2.2 Emission at very Large Spatial Scales

Objective : This section demonstrates an ambiguity between spatial andspectral struc-
ture that can arise when multi-frequency measurements are made of very large-scale emis-
sion. The goal of this exercise is to show the effect of this ambiguity in the images and
spectra of very large scale emission that are reconstructedby the MS-MFS algorithm and
to suggest a possible remedy.

Consider a very large (extended) flat-spectrum source whosevisibility function
falls mainly within the central hole in theuv-coverage at the highest observing frequency.
With multi-frequency measurements, the size of the centralhole in theuv-coverage in-
creases with observing frequency, and for this source the minimum spatial frequency sam-
pled per channel will measure a decreasing peak flux level as frequency increases. Since
the reconstruction below the minimum spatial frequency involves an extrapolation of the
measurements and is un-constrained by the data, these decreasing peak visibility levels can
be mistakenly interpreted as the result of a source whose amplitude itself is decreasing
with frequency (a less-extended source with a steep spectrum). Usually, a physically re-
alistic flux model is used to apply constraints in these unsampled regions of theuv-plane
and MS-MFS models the sky brightness with polynomial spectra associated with a set of
extended 2D symmetric flux components. However, with this model a large flat-spectrum
source and a smaller steep-spectrum source are both allowedand considered equally prob-
able. This creates an ambiguity between the reconstructed scale and spectrum that cannot
always be resolved directly from the data, and requires additional information (perhaps a
low-frequency narrow-band image to constrain the spatial structure, low-resolution spectral
information, or total-flux constraints).

EVLA Simulation : Wide-band EVLA data were simulated for the D-configuration
across a frequency range of 3.0 GHz centred at 2.5 GHz. (6 frequency channels located
600 MHz apart between 1.0 and 4.0 GHz). The size of the centralhole in theuv-coverage
was increased by flagging all baselines shorter than 100 m andthe wide frequency range
was chosen to emphasize the difference between the largest spatial scale measured at each
frequency. (0.3 kλ or 10.3 arcmin at 1.0 GHz, and 1.3 kλ or 2.5 arcmin at 4.0 GHz).

The sky brightness chosen for this test consists of one largeflat-spectrum 2D
Gaussian whose FWHM is 2.0 arcmin (corresponding to 1.6 kλ at the reference frequency
of 2.5 GHz), and one steep spectrum point-source (α=-1.0) located on top of this extended
source at 30 arcsec away from its peak.

MS-MFS Imaging Results : These data were imaged using the MS-MFS algorithm
with Nt = 3 andNs = 3 with scale sizes given by [0,10,30] pixels. Two imaging runs were
performed with these parameters and both were terminated after 100 iterations in order to
be able to compare their performance in terms of the peak residuals.
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Fig. 8.11 shows the visibility amplitudes present in the simulated data (left column) as
well as in the reconstructed model (right column) at each of the 6 frequencies for these
two imaging runs (top,bottom). Fig.8.12shows images of the intensity, spectral index and
residuals for these runs and compares them to the true sky brightness reconstructed when
all frequencies sample at least 95% of the total flux of the source.

1. The first imaging run applied the MS-MFS algorithm to the simulated data after flag-
ging all baselines below 200m. No additional constraints were used on the recon-
struction. The visibility plots and imaging results show that from these data it is not
possible to distinguish large flat-spectrum source from a slightly less-extended steep
spectrum source. This occurs because the visibility function is unconstrained by the
data within the centraluvhole and given the MS-MFS flux model, both source struc-
tures are equally probable. Note that the spectrum of the point-source was correctly
estimated as−1.0. This run was repeated a few times with slightly different input
scale sizes, and the results changed between a flat-spectrumsource and a source with
a steep spectrum. If a scale size corresponding to the exact size of the source was
present in the set, the algorithm was able to reconstruct thecorrect flux and spectrum.

2. A second imaging run was performed on the same dataset, butthis time with addi-
tional information in the form of total-flux constraints at each observing frequency.
These constraints were added in by retaining a small number of very short-baseline
measurements at each frequency in order to approximate the presence of total-flux
(or integrated flux) estimates (only baselines between 25 m and 100 m were flagged
from the original EVLA D-configuration simulated data). In practice, these con-
straints could be provided by single-dish measurements or estimates from existing
low-resolution information about the structure and spectrum of the source. The vis-
ibility plots and imaging results with this dataset show that the short-spacing flux
estimates were sufficient to bias the solution towards the correct solution in which
the large extended source has a flat spectrum and the point source has a spectral in-
dex of−1.0. Note that the residuals are at the same level as in the previous run. This
demonstrates that without the additional information about total-flux per frequency,
both flux models are equally poorly constrained by the data themselves.

These results show that in the central unsampled region of the uv-plane where there are
no constraints from the data, the MS-MFS flux model can produce ambiguous results and
additional information about the flux at low spatial-frequencies is required (perhaps in the
form of total-flux constraints per frequency). For complex spatial structure on these very
large scales, the additional constraints may need to come from existing low-resolution im-
ages of this field and the associated spectra. One way to avoidthis problem altogether (but
lose some information) is to flag all spatial-frequencies smaller thanumin at νmax and not
attempt to reconstruct any spatial scales larger than whatνmax allows.
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Figure 8.11:Very Large Spatial Scales - Visibility plots : These plots show the observed (left) and
reconstructed (right) visibility functions for a simulation in which a large extended flat-spectrum
source is observed with an interferometer with a large central hole in itsuv-coverage. The different
colours/shades in these plot represent 6 frequency channels spread between 1 and 4 GHz. These
data were imaged in two runs. The first imaging run (top row) used only baselinesb >100 m to
emphasize the changing size of the central hole in theuv-coverage across the broad frequency range.
The plot on the top left shows how the different frequencies measure very different fractions of the
integrated flux of the large flat-spectrum source. The plot onthe right shows that these data can
be mistakenly fit using a less-extended source with a steep spectrum (instead of the large single
source with a flat spectrum). This is possible because withinthe centraluv hole the spectrum is
un-constrained by the data and given the MS-MFS flux model, both source structures are equally
probable. The second imaging run (bottom row) used baselines b <25m in addition tob >100m to
approximate the addition of nearly total-flux measurementsto the first dataset to attempt to constrain
the solution. The plot on the bottom right shows that this additional information in the form of
short-spacing constraints (or very low-spatial frequencymeasurements) is sufficient to be able to
reconstruct the correct sky brightness distribution. Figure 8.12shows the images that resulted from
these tests.
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Figure 8.12:Very Large Spatial Scales - Intensity, Spectral Index, Residuals : These images show
the intensity distribution (left), spectral index (middle) and the residuals (right) for three different
imaging runs that applied the MS-MFS algorithm to the simulated EVLA D-configuration data de-
scribed in this section (note that the flux scale used for the residual images in the right column is
3 orders of magnitude smaller than the scale used for the intensity image in the left column). The
true sky flux consists of one large flat-spectrum symmetric flux component and one steep-spectrum
(α = −1.0) point source.
Top Row : When all baselines are used for imaging, each frequency samples more than 95% of the
integrated flux. This is sufficient to reconstruct the true brightness distribution and spectrum.
Middle Row : When the centraluv-hole is increased in size by using only baselineb > 100m, the
reconstructed model is a slightly smaller flux component (compare the left column of images) with
a steep spectrum (compare the middle column of images).
Bottom Row : When very short spacing (approximately total-flux) estimates are included during
imaging (using spacingsb < 25m andb > 100m), the true sky brightness distribution is again re-
covered. Note that the large-scale residuals in all three runs are at the same level (2 mJy). These
results show that the spectra are unconstrained by the data for very large spatial scales whose vis-
ibility functions fall within the centraluv-hole at the highest frequency in the band, and additional
information is required.
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8.2.3 Foreground/Background Sources with Different Spectra

Objective : This section contains a simple example of wide-band imagingwith back-
ground subtraction for the case where a compact foreground source of emission lies on top
of a more extended source with a different spectrum. When there are overlapping sources
with different spectral structure, the result of wide-band imaging represents the combined
flux and spectrum. Similar to standard imaging, if the flux andspectrum of the background
are available, the flux and the spectrum of the foreground source can be separated from the
backgroundvia a simple polynomial subtraction (using the polynomial-coefficients).

The use of a multi-scale flux model has an additional advantage when it comes
to background subtraction. When the spatial scales of the foreground and background
flux are very different, the MS-MFS algorithm naturally separates the two andmodels the
integrated flux as a sum of compact and extended flux components with different spectra.
Note that this is true for any multi-scale image flux model, irrespective of spectrum. In
the ASP-CLEAN algorithm where the final data product is constructed from a list of flux
components, this separation is done naturally and components can be picked out from the
results.

EVLA Simulation : Data were simulated for the EVLA D-configuration with 6 fre-
quency channels spread between 1 and 2 GHz. The sky brightness consists of one large 2D
Gaussian of integrated flux of 100 Jy over a 4 arcmin radius ( peak flux of about 1 Jy/beam
at 30 arcsec resolution (EVLA-D at 2.0 GHz)) andα=1.0, two 1 Jy point sources on top
of this extended source with spectral indices given byα=+0.5, -0.5, and one isolated 1 Jy
point source withα=-0.5.

MS-MFS Imaging Results : The MS-MFS algorithm was applied to this dataset using
Nt = 5 andNs = 3 with the set of scales sizes given by [0, 10, 30] pixels. Iterations were
terminated using a 1 mJy threshold. Figure8.13 shows the resulting images of the first
two polynomial coefficients and the spectral index. Background subtraction is done as a
polynomial subtraction. The first two polynomial coefficients are given as follows.

I total
0 = Iback

0 + I f ront
0 (8.1)

I total
1 = Iback

0 αback+ I f ront
0 α f ront = I total

0 αtotal (8.2)

The values ofI total
0 , I total

0 , Iback
0 andαback are measured from the images. The background

flux and spectrum are estimated from a region near the foreground source. The measured
and corrected flux and spectral indices of the two foregroundsources are listed in Table
8.3. These results show how background subtraction can be performed using the polyno-
mial coefficient images before constructing the spectral index maps. Alternatively, if only
intensity and spectral maps exist, polynomial coefficients can be constructedvia Eqns.8.1
and8.2before subtracting them.
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Figure 8.13:Intensity and Spectral Index : These images show the resultsof applying the MS-MFS
algorithm to a simulated dataset in which the sky flux has a pair of foreground point sources on top of
an extended background. The top two images show the first two polynomial coefficients (0th-order
coefficient or intensityI total

0 : top left, 1st-order coefficient I total
1 : top right) and the bottom image

is the spectral index map computed as the ratio of the coefficient images. The flux and spectral
index of the extended source and isolated point soure are reconvered correctly, but the two point
sources located within the extended source have the wrong values. Table8.3 shows how the flux
and spectral index of the two foreground sources can be recoveredvia a polynomial subtraction.

Foreground
Source

I total
0 I total

1 αtotal Iback
0 Iback

1 αback I f ront
0 I f ront

1 α f ront

top 1.172 0.321 +0.27 0.185 −0.196 −1.05 0.987 0.517 +0.52
bottom 1.434 −0.979 −0.68 0.429 −0.466 −1.08 1.005 −0.513 −0.51

Table 8.3:True, measured and corrected intensity and spectra for foreground sources : This table
lists the first two polynomial coefficients and the spectral index for the two foreground point sources
on the extended background (’top’ refers to the topmost source, and ’bottom’ refers to the point
source in the middle of the image). The true flux values areI0=1 Jy/beam,α=+0.5 for the top point
source andI0=1 Jy/beam,α=−0.5 for the bottom point source. These two sources are on top of a
background source withα = −1.0. The corrected intensity is given byI f ront

0 = I total
0 − Iback

0 , and the
corrected spectral index is given byα f ront = (I total

1 − Iback
1 )/(I total

0 − Iback
0 ).
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8.2.4 Band-limited signals

Objective : The goal of this test is to evaluate how well the MS-MFS algorithm is
able to reconstruct the wide-band structure of a source whenthe emission is detected in
only part of the sampled frequency range; in other words a band-limited signal. Since the
MS-MFS algorithm uses a polynomial to model the spectrum of the source (and is not
restricted to a power-law spectrum) it should be able to reconstruct such structure as long
as it varies smoothly. It should however be noted that for a band-limited signal, the angular
resolution at which the structure can be mapped will be limited to the resolution of the
highest frequency at which the signal is detected (and not the highest resolution allowed by
the measurements).

One type of band-limited radiation is synchrotron emissionfrom solar promi-
nences where different frequencies probe different depths in the solar atmosphere. The
structures are generally arch-like with lower frequenciessampling the top of the loop and
higher frequencies sampling the legs. So far, multi-frequency observations of such sources
have been made by a set of simultaneous narrow-band measurements. It may be advanta-
geous to use the combineduv-coverage offered by multi-frequency synthesis during imag-
ing, especially since solar prominences are highly time-variable and long synthesis runs to
accumulate single-frequencyuv-coverage are not possible.

EVLA Simulation : Data were simulated for the EVLA D-configuration with 20 chan-
nels spread between 1 and 3 GHz (each channel is 100 MHz apart). The wide-band sky
was constructed to follow a loop structure as seen from vertically above it. The lower fre-
quencies show the structure of the connected part of the loopand the higher frequencies
(that represent deeper layers) show the two legs of the loop.A point source was also added
to one of the legs to test the angular resolution to which the reconstruction was possible.

MS-MFS Imaging Results: The MS-MFS algorithm was run on these simulated data,
usingNt = 5 to fit a 4th-order polynomial to the source spectrum (to accomodate itsnearly
band-limited nature) andNs = 3 with scales given by [0, 10, 30] pixels. Iterations were
terminated after 200 iterations. Figs.8.14 and8.15 show a comparison of the true and
reconstructed structure at 5 different frequencies between 1 and 3 GHz. These images show
that except at the ends of the frequency range where the sky brightness is at its minimum,
the reconstruction is quite close to the true sky flux. A second run was performed using
only one timestep of data to simulate a snapshot observation. The results were similar
between 1.2 and 2.2 GHz but were worse at the ends of the sampled range. Tests with
more realistic wide-band sky brightness distributions arerequired. These results show that
it is possible to reconstruct the structure of band-limitedstructure as long as the flux varies
smoothly with frequency andNt is chosen appropriately.
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Figure 8.14:Band-limited Signals - Multi-frequency images : These images show a comparison
between the true sky brightness (left column) and the brightness reconstructed using the MS-MFS
algorithm (right column) at a set of five frequencies (1.0, 1.4, 1.8, 2.2 and 2.6 GHz on rows 1
through 5). All images are at the angular resolution allowedby the highest frequency in the band.
This structure represents the arch-like structure of a solar prominence viewed from above, with
higher frequencies probing deeper into the solar atmosphere. The images on the right show that
most of this structure is recovered with the largest errors being in the central region where the signal
spans the shortest bandwidth. Also, the point source on the right was reconstructed at an angular
resolution slightly larger than that of the highest sampledfrequency and corresponds to the highest
frequency at which this spot is brighter than the backgroundemission.
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Figure 8.15:Band-Limited Signals - Spectra across the source : These plots show the true (left
column) and reconstructed (right column) spectra at different locations for the example discussed in
this section (shown in Fig.8.14). The spectra in the top row correspond to the left end of the loop at
the location of the leg and shows smooth structure stretching almost all across the band. The spectra
in the middle row correspond to the middle of the source wherethe only structure in the line-of-
sight is the upper part of the loop. At this location, there isemission only within a small fraction
of the band. The bottom row shows spectra for a point on the right end of the loop at the location
of the point source. Here, there is broad-band emission (dueto the leg) with relatively narrow-band
emission on top of it. From these plots we can see that except for the ends of the frequency range,
the reconstruction is close to the true sky brightness.
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8.3 Wide-band imaging results with (E)VLA data

This section describes imaging results using wide-band VLAdata to test the MS-
MFS algorithm along with wide-band calibration techniques. At the time these tests were
performed, 11 VLA antennas had been fitted with interim EVLA receivers (1–2 GHz, new
wide-band L-band feeds but with VLA polarizers), and the remaining antennas had the old
VLA L-band feeds and receivers (1.2 to 1.8 GHz). The VLA correlator had a maximum
instantaneous bandwidth of 50 MHz and wide-band data had to be taken as a series of
narrow-band snapshot observations that cycled through a set of discrete frequencies span-
ning the full frequency range allowed by the receivers. Similar snapshot observations of
the VLA primary calibrator source 3C286 were interlaced with these frequency cycles in
order to derive the flux scale for all the observations. Tables8.4and8.5list the observation
parameters that were used to acquire data for the Cygnus A andM87 fields, and Fig.8.16
shows an example of the single-frequency and multi-frequency uv-coverage that resulted
from these observations.

Section8.3.1describes how these data were used to test the ability of the MS-
MFS algorithm to reconstruct spatial and spectral structure for a complex extended source
from a set of incomplete single-frequency measurements. Similar observations were made
for M87 to test the algorithm on a source with very extended low signal-to-noise spatial
structure and a total angular size extending out to the 75% point of the primary beam (sec-
tion 8.3.2). The resulting spectral index map was then used to study thebroad-band spectra
of features across the M87 halo (described in detail in chapter 9). The flux calibrator for
both these observations was 3C286, a field containing several bright (50 mJy) background
point sources spread out to the 70% point of the primary beam at 1.4 GHz. These calibra-
tor data were used independant of Cygnus A and M87 to test the MS-MFS algorithm with
wide-band primary beam correction (section8.3.3).

Note that all the wide-band data used for the tests in this section came from an
interferometer that produced only narrow-band output (< 50MHz). Wide-band data were
taken by cycling through frequencies during the observation and there were no simultane-
ous full-bandwidth measurements. These were the only type of wide-band data available
at the time the MS-MFS algorithm was being developed and implemented.

8.3.1 Wide-band imaging of Cygnus A

Objective : Wide-band VLA observations of the bright radio galaxy Cygnus A were
used to test the MS-MFS algorithm on real data as well as to test standard calibration
methods on wide-band data. Most of the images so far made of Cygnus A and its spec-
tral structure have been from large amounts of multi-configuration narrow-band VLA data
[Carilli et al. 1991] designed so as to measure the spatial structure as completely as possi-
ble at two widely separated frequencies. The goal of this test was to use multi-frequency
snapshot observations of Cygnus A to evaluate how well the MS-MFS algorithm is able to
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Telescope VLA (B configuration)
Observing Band 800 MHz at Lband (1.3 - 2.1 GHz)
Target Source Cygnus A (19:59:28.3560+40.44.02.0750)
Calibrator Source 3C286 (13:31:08.314,+30.30.31.156)
Angular resolution 4.1, 3.2, 2.6 arcsec at 1.3,1.7,2.1 GHz
Cell size 0.7 arcsec
Image size 1024×1024 pixels (11.9 arcmin)
VLA correlator mode2 (4 IF) RR/LL (6.25 MHz= 32× 0.195 MHz)
Number of spectral windows (SPWs) 9 (out of 18)
Number of channels per SPW 19 (out of 32)
Channel width 0.195 MHz
Instantaneous bandwidth 3.7 MHz (out of 6.25 MHz)
Reference Frequency 1.7 GHz
Total integration time per SPW 30 min
Integration time per visibility 3.0 sec
Total time on source ∼ 5 hours
System temperatureTsys ∼ 250 K for Cygnus A
Noise per visibility 3.0 Jy theoretical
Single-SPW point-source sensitivity 1.1 mJy
Continuum point-source sensitivity 0.3 mJy
Expected dynamic range 240000

Table 8.4:Wide-band VLA observation parameters for Cygnus A : Wide-band data were taken
using the VLA by cycling through a set of 9 frequency tunings and taking narrow-band snapshot
observations at each tuning. This cycle was repeated 20 times to give a total of about 30 minutes
per frequency tuning. Figure8.16 shows the single and multi-frequencyuv-coverage for these
observations.

simultaneously reconstruct its spatial and spectral structure from measurements in which
the single-frequencyuv-coverage was insufficient to accurately reconstruct all the spatial
structure at that frequency.

Cygnus A Cygnus A an extremely bright (1000 Jy) radio galaxy with a pair of bright
compact hotspots about 1 arcmin away from each other on either side of a very compact
core, and extended radio lobes associated with the hotspotsthat have broad-band syn-
chrotron emission at multiple spatial scales. From many existing measurements [Carilli
and Barthel 1996], this radio source is known to have a spatially varying spectral index
ranging from near zero at the core, -0.5 at the bright hotspots and up to -1.0 or more in the
radio lobes.

2IF represents intermediate frequency, a label used at the VLA to denote frequency ranges that are sent
into the correlator simultaneously. Another label for these frequency ranges is spectral window (SPW).
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Figure 8.16: VLA multi-frequency uv-coverage : This figure shows the multi-frequencyuv-
coverage of VLA observations of Cygnus A, taken as a series ofnarrow-band snapshot observations.
The plots on the left show theuv-coverage from one frequency channel (20 snapshots at 1.7 GHz).
By zooming into the central region (bottom left) and comparing the spacing between the measure-
ments to the size of theuv grid cells being used for imaging we can show that the single-frequency
measurements are incomplete. The plot on the right shows themulti-frequencyuv-coverage using
nine frequency tunings. A zoom-in of the same central region(bottom right) shows that for the
chosenuv grid cell size (or image field of view over which the image is tobe reconstructed) the
combined sampling leaves no unmeasured grid cells. The imaging results from these observations
will test our ability to reconstruct both spatial and spectral information from incomplete spatial
frequency samples at a discrete set of frequencies.

Observations : Wide-band data were taken as described in Table8.4using the VLA 4-
IF mode which allowed four simultaneous data streams containing RR and LL correlations
at two independent frequency tunings. A set of 18 frequencies were chosen such that
they spanned the entire frequency range allowed by the new EVLA receivers (1–2 GHz).
Visibilities that used antennas with the older receivers were flagged for regions of the band
not covered by the receivers (below 1.2 GHz and above 1.8 GHz). Theuv-coverage for this
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dataset for the RR correlations is shown in Fig.8.16. The data were inspected visually and
visibilities that were affected by strong radio frequency interference were flagged (masked).

Calibration : Standard techniques were used to calibrate these data. Fluxcalibration at
each frequency was donevia observations of 3C286. Phase calibration was done using an
existing narrow-band image of Cygnus A at 1.4 GHz [Carilli et al. 1991] as a model.

At the time of these observations, the VLA correlator was getting inputs from
a combination of VLA and EVLA antennas. A gain control systemthat was temporarily
put in place to accomodate the use of new EVLA antennas with the VLA correlator treated
the two independent frequency tunings in the 4-IF mode differently3. This caused errors
in the correlator input for very strong sources (Cygnus A) that increased the input power
level beyond the linear power range of the VLA correlator. Observations of the calibrator
source 3C286 were not affected by this problem. We were therefore able to calibrate all the
frequency tunings for Cygnus A and use the resulting wide-band spectrum along with the
known integrated flux and spectral index of Cygnus A to idenfity which of the frequency
tunings of Cygnus A were affected. It was found that every alternate frequency (the second
of each pair of simultaneous frequency tunings (B/D) in the VLA 4-IF mode) was affected.
Therefore to safely eliminate the effect of this problem for our tests, one of the two simul-
taneous frequency tunings were flagged from the recorded visibilities reducing the number
of spectral windows from 18 to 9. The final dataset used for imaging consisted of nine
spectral windows each of a width of about 4 MHz and separated by about 100 MHz.

Imaging : These data were imaged using two methods, the MS-MFS algorithm and a
hybrid method consisting of STACK+MFS on residuals (see section5.2.1.4for a descrip-
tion of this method). Their results were compared to evaluate the merits of the MS-MFS
algorithm over the much simpler hybrid method that used a combination of existing stan-
dard methods. The data products evaluated were the total-intensity image, the continuum
residual image and the spectral index map. The effect of the primary beam was ignored in
these imaging runs because the angular size of Cygnus A is about 2 arcmin, which at L-
band is within a few percent of the HPBW of the primary beam, a region where the antenna
primary beam and its spectral effects can be ignored.

3 To allow the use to new EVLA antennas with the old VLA correlator, an automatic gain control had
to be used at each EVLA antenna to mimic the old VLA antennas and ensure that the input power levels to
the VLA correlator were within the range over which it has a linear response. The type of gain control was
being done differently for the two simultaneous frequency tunings in the VLA 4-IF mode. The A/C IF stream
used an automatic gain controller based on power levels measured in 1 second and the B/D IF stream used a
static look-up table to decide attenuation levels. This resulted in a difference in power levels for the A/C and
B/D data streams for all baselines that involved EVLA antennaswhen the source being observed was bright
enough to contribute to increasing the overall system temperature.
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1. MS-MFS : The MS-MFS algorithm was run with a 2nd-order polynomial to model
the source spectrum and a set of 10 scale basis functions of different spatial scales
to model the spatial structure (Nt = 3,Ns = 10). Iterations were terminated using
a 30 mJy stopping threshold. A theoretical continuum point-source sensitivity of
0.38 mJy was calculated for this dataset using an increased system temperature of
Tsys= 250 (due to the high total power of Cygnus A).

2. Hybrid : The second approach was a hybrid algorithm in which the MS-CLEAN
algorithm was run separately on the data from each spectral window and then a single
MS-CLEAN run was performed on the continuum residuals (the STACK + MFS
on residuals hybrid algorithm described in5.2.1.4). The total intensity image was
constructed as an average of the single channel image plus the result of the second
stage on the continuum residuals. This method is the same as that used in section
5.2.3to test the hybrid algorithm for the case of dense single-frequencyuv-coverage.
Note however that the observations being described in this section do not have dense
single-frequencyuv-coverage, and the purpose of applying this hybrid method isto
emphasize the errors that can occur if this method is used inappropriately.

Results : Figure8.17shows the reconstructed total-intensity images (top row) and the
residual images (bottom row) obtained from these two methods. Figure8.18 shows the
spectral maps constructedvia the two methods described above as well as from existing
images at 1.4 and 4.8 GHz.

1. Intensity and Residuals :Both methods gave a peak brightness of 77 Jy/beam at the
hotspots and a peak brightness of about 400 mJy/beam for the fainter extended parts
of the halo. The residual images for both methods showed correlated residuals due to
the use of a multi-scale flux model composed of a discrete set of scales (small-scale
correlated structure within the area covered by the source,but no visible large-scale
deconvolution errors due to missing large-scale flux).

The off-source noise level achieved in the continuum image with MS-MFS was about
25 mJy, giving a maximum dynamic range of about 3000. The peakon-source resid-
uals were at the level of 30 mJy. Further iterations did not reduce these residuals, and
the use of a higher-order polynomialNt > 3 introduced more errors in the spectral
index map (see section6.2.4.1for a discussion about errors on the spectral index as
a function ofNt and the SNR of the measurements). The off source RMS reached
by the hybrid method was about 30 mJy, with the peak residualsin the region of the
source of 50 mJy. Deeper imaging in either stage did not reduce these residuals.

Note also that both methods were almost two orders of magnitude above the theoret-
ical point-source sensitivity shown in Table8.4 (calculated for an equivalent wide-
band observation). However, the achieved RMS levels were consistent with the best
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RMS levels previously achieved with the VLA at 1.4 GHz for this particular source
at L-band (∼20 mJy, [Perley, R. (private communication)]).

2. Spectral Index : The image on the top left is the result of the MS-MFS algorithm
and shows spectral structure at multiple scales across the source. For comparison, the
image at the bottom is a spectral-index map constructed fromexisting narrow-band
images at 1.4 and 4.8 GHz, each constructed from a combination of VLA A, B, C
and D configuration data [Carilli et al. 1991]. These two images (top-left and bottom)
show a very similar spatial distribution of spectral structure. This shows that despite
having a comparatively small amount of data (20 VLA snapshots at 9 frequencies)
the use of an algorithm that models the sky brightness distribution appropriately is
able to extract the same information from the data as standard methods applied to
large amounts of data. The estimated errors on the spectral index map are< 0.1 for
the brighter regions of the source (near the hotspots) and≥ 0.2 for the fainter parts
of the lobes and the core.

The image on the top right shows the spectral index map constructed from a spectral
cube (a set of 9 single-channel images) containing the results of running the MS-
CLEAN algorithm separately on each frequency and then smoothing the results down
to the angular resolution at the lowest frequency in the range. Note that the single-
frequency observations consisted of 20 snapshots of CygnusA. This uv-coverage
is too sparse to have measured all the spatial structure present in the source, and
the non-uniqueness of the single-frequency reconstructions caused the images at the
different frequencies to differ from each other enough to adversely affect the spectra
derived from these images.

3. Spectral Curvature : Note that although Cygnus A itself has more than sufficient
signal-to-noise to measure any spectral curvature, very low level deconvolution errors
(3 orders of magnitude below the bright 77 Jy/beam hotspot) dominate the region
around the very bright hotspots and this is sufficient to destroy the spectral curvature
images. That is, the signal-to-error ratio of the higher-order coefficient images is too
low to measure a physically plausible curvature term (corresponding to a change in
α of < 0.2 across 700 MHz at 1.4 GHz).

Wide-band Self Calibration : A few tests were done to test whether a self-calibration
process that used wide-band flux models would yield any improvement on the gain solu-
tions or imaging results.

Two sets of calibration solutions were computed and compared. For the first
set of solutions, several rounds of amplitude and phase self-calibration were run, begin-
ning with a point-source model and using the MS-MFS algorithm to iteratively build up a
wide-band flux model. Self-calibration was terminated after new gain solutions were indis-
tinguishable from that of the previous run. The second set ofsolutions was found by using
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a single 1.4 GHz model for amplitude and phase self-calibration (with gain amplitudes nor-
malized to unity to preserve the source spectrum). No significant difference was found and
the second set of solutions were chosen for imaging.

As an additional test, the final wide-band flux model generated via the MS-MFS
algorithm was used to predict model visibilities for a wide-band self-calibration step (am-
plitude and phase) to test if this process yielded any different gain solutions. Again, on
these data, there was no noticeable improvement in the continuum residuals or on the sta-
bility of the spectral-index solution in low signal-to-noise regions.

This suggests that either the use of a common 1.4 GHz model image for all indi-
vidual frequencies did not introduce much error, or that theresidual errors are dominated
by the effects of multi-scale wide-band deconvolution and the flux model assumed by the
MS-MFS algorithm. Further tests are required with much simpler sky brightness distribu-
tions and real wide-band data, in order to clearly ascertainwhen wide-band self-calibration
will be required for high-dynamic range imaging.
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Figure 8.17:Cygnus A : Intensity and residual images : These images show the total intensity (top
row) and residual images (bottom row) obtained by applying two wide-band imaging methods to
Cygnus A data taken as described in Table8.4. The images on the left are the result of the MS-MFS
algorithm and those on the right are with the STACK+MFS hybrid in which MS-CLEAN was used
for all the deconvolutions (single-channel deconvolutions followed by second deconvolution on the
continuum residuals. The total intensity images show no significant differences. Both residual
images show correlated residuals of the type expected for the MS-CLEAN algorithm that uses a
discrete set of scale sizes (the error pattern obtained by choosing a nearby but not exact spatial scale
for a flux component will be a ridge running along the edge of each flux component). The peak
and off source residuals for the MS-MFS algorithm are 30 mJy and 25 mJy and with the hybrid
algorithm are 50 mJy and 30 mJy respectively, showing a very mild improvement in continuum
sensitivity with the MS-MFS algorithm.
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Figure 8.18: Cygnus A : Spectral Index image : These images show spectral index maps of
Cygnus A constructedvia the MS-MFS algorithm (top left) and the hybrid algorithm (top right) ap-
plied to the data described in Table8.4. The image at the bottom is a spectral index map constructed
from two narrow-band images at 1.4 and 4.8 GHz obtained from VLA A,B,C and D configuration
data at these two frequencies [Carilli et al. 1991]. The spatial structure seen in the MS-MFS spectral
index image is very similar to that seen in the bottom image. For comparison, the spectral index map
on the top-right clearly shows errors arising due to non-unique solutions at each separate frequency
as well as smoothing to the angular resolution at the lowest frequency.
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Telescope VLA (C)
Observing Band 800 MHz at L-band (1.1 – 1.8 GHz)
Target Source M87 (12:30:49.600+12.23.19.078)
Calibrator Source 3C286 (13:31:08.314,+30.30.31.156)
Angular resolution (C) 16.5, 12.5, 10.11 arcsec at 1.1, 1.45, 1.8 GHz
Cell size 3.0 arcsec
Image size 1024×1024 pixels (51.2 arcmin)
Correlator mode (2 IF) RR/LL (12.5 MHz= 16× 0.781 MHz)
Number of spectral windows (IFs) 16 (out of 20, due to RFI)
Number of channels per SPW (IF) 10 (out of 16, eliminating end channels)
Channel width 0.781 MHz
Instantaneous bandwidth 7.8 MHz (out of 12.5 MHz)
Reference Frequency 1.45 GHz
Total integration time per SPW 20 min
Integration time per visibility 5.0 s
Total time on source ∼ 5.5 hours
System temperatureTsys ∼ 50 K
Noise per visibility 0.2 Jy theoretical
Single-SPW point-source sensitivity 0.6 mJy
Continuum point-source sensitivity 0.05 mJy
Expected dynamic range 300000

Table 8.5:Wide-band VLA observation parameters for M87: Wide-band observations of M87 were
done using the VLA in C and B configurations and cycling through a set of 16 frequency tunings
with narrow-band snapshots at each frequency. All frequencies were cycled through 10 times, to
generate about 20 minutes of data per frequency tuning. Thistable shows the parameters for the
C-configuration observation. Two similar observations were carried out in the B-configuration and
the data later combined.

8.3.2 Wide-band imaging of M87

Objective : Wide-band VLA observations of the M87 cluster-center radiogalaxy were
taken in order to make a high angular resolution image of the spectral index along various
features within its radio halo. The goal of this project was to combine the spectral index
information obtained from these data with existing spectral index information below L-
band in order to study spectral evolution models for different parts of the M87 halo. This
study is presented in detail in chapter9. Also, this source consists of a bright compact
region of emission on top of a relatively faint diffuse background. This structure is useful
to test the dynamic range capabilities of the MS-MFS algorithm and the effect of low-level
deconvolution errors on the reconstructed spectral index (even when the signal-to-noise
ratio on the background emission is sufficient to be able to measureα).
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M87 : M87 is a bright (200 Jy) radio galaxy located at the center of the Virgo cluster.
The spatial distribution of broad-band synchrotron emission from this source consists of a
bright central region (spanning a few arcmin) containing a flat-spectrum core, a jet (with
known spectral index of−0.55) and two radio lobes with steeper spectra (−0.5> α > −0.8)
[Rottmann et al. 1996a; Owen et al. 2000]. This central region is surrounded by a large
diffuse radio halo (7 to 14 arcmin) with many bright narrow filaments (≈ 10′′×3′). Further,
the bright central region is roughly two orders of magnitudebrighter than the brightest
filaments in the surrounding extended halo.

Observations : Wide-band VLA observations of M87 were carried out in both C and B
configurations (10 hours in C and 20 hours in B). The observation parameters for the C-
configuration are shown in Table8.5. The observations consisted of a series of snapshots at
16 different frequencies within the sensitivity range of the EVLA L-band receivers. Note
that the minimum spatial frequency required to detect the largest spatial-scale (about 7 ar-
cmin) present in the M87 emission is 0.102kλ. At 1.4 GHz, the minimum spatial frequency
measured in the C-configuration is 0.175kλ and in the B-configuration is 1.05kλ. There-
fore, the B-configuration data could measure only the relatively compact emission (bright
central region and filaments in the halo) and was included to increase the angular resolution
of those measurements. Data affected by radio frequency interference were flagged after
visual inspection.

Calibration : Standard calibration techniques were used to calibrate these data. Flux cal-
ibration at each frequency was donevia observations of 3C286 and phase calibration was
done using an existing narrow-band image of M87 at 1.4 GHz [Owen, F. (private commu-
nication)] as a model. This calibration was done separatelyfor the C and B configuration
data which were then combined for imaging.

Imaging :

1. MS-MFS : The MS-MFS algorithm was applied to these data to make imagesof the
reference-frequency intensity and the spectral index. Theparameters used for this
run wereNt = 3, Ns = 11 with a set of spatial scales given by scale basis functions
of widths 0, 3, 9, 12, 16, 20, 25, 30, 60, 80, 140 pixels. Iterations were terminated at
a threshold of 10 mJy because the spectral solutions began toget unstable below this
threshold (see section6.2.4.1for a discussion on how the errors on the spectral index
vary with Nt and the SNR of the data). This threshold was an order of magnitude
above the theoretical point-source sensitivity.

2. Primary-beam correction : The 7′ × 14′ radio halo extends out to the 85% level
of the EVLA primary beam at 1.4 GHz where the intensity is attenuated by 15%.
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The effective spectral index at this angular distance from the pointing center is about
−0.3, but for most of the halo and regions of bright filaments this spectral index
is < −0.05. Primary beam correction was donevia a post-deconvolution image-
domain correction by dividing the intensity image by an image of the main lobe
of the primary beam at the reference frequency and subtracting the image of the
primary-beam spectral index from the uncorrected M87 spectral index map (step6
on page151in section7.2.2.3describes this image-domain correction).

3. Single spectral-window imaging : To verify the MS-MFS reconstruction of the
wide-band spectrum, data from the 16 individual spectral windows were also imaged
independently and the spectrum of the integrated flux withinthe bright compact cen-
tral region was compared between the two methods. This comparison was possible
only for the bright compact central region for which the single-frequency snapshot
uv-coverage sufficed.

Results : Fig.8.19shows the resulting intensity (top left) and spectral indexmaps for
M87 at an angular resolution of 12 arcsec (C-configuration).Fig.8.20shows the on-source
and off-source residuals. Fig.8.21shows the intensity, spectral index and spectral curvature
maps of the bright central region at an angular resolution of3 arcsec (C+B-configuration).
Fig.8.22shows a plot of the spectrum formed from the integrated flux inthe central bright
region.

1. Intensity and Residuals :

The peak brightness at the center of the final restored intensity image was 15 Jy
with an off-source RMS of 1.8 mJy and an on-source RMS of about between 3 and
10 mJy. The residual images show low-level correlated residuals at the location of
the source but deconvolution errors are almost absent from the rest of the image,
indicating that the best off-source RMS noise level for these data has almost been
reached. The maximum dynamic range (ratio of peak brightness to off-source RMS)
is about 8000, with the on-source dynamic range (ratio of peak brightness to on-
source RMS) of about 1000. The peak brightness in the bright filaments is about 50
to 70 mJy (on-source SNR of about 10), and the peak brightnessin the faint diffuse
halo is 10 to 20 mJy (on-source SNR of a few).

2. Spectral Index : The spectral index map4 of the bright central region (at 3 arcsec
resolution) shows a near flat-spectrum core withαLL = −0.25, a jet withαLL = −0.5

4The spectral index between two frequency bandsA and B will be denoted asαAB. For example, the
symbolαPL corresponds to the frequency range between P-band (327 MHz)and L-band (1.4 GHz), andαLL

corresponds to two frequencies within L-band (here, 1.1 and1.8 GHz). A similar convention will be used for
spectral curvatureβ.
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and lobes with−0.6 > αLL > −0.7. The bright halo filaments show a steeper spectral
index ofαLL ≈ −0.8± 0.1 and the diffuse halo emission showsαLL ≈ −1.1± 0.1.

The signal-to-noise ratios at various parts of the source can be used to compute er-
ror bars on the spectral index and curvature (presented in Table8.6). These numbers
show that in the bright central region and in the halo there issufficient signal-to-noise
to measure the spectral index but any realistic spectral curvature (for broad-band syn-
chrotron emission) is detectable only within the central bright region. Further, the
region immediately surrounding the central region is affected by very low level de-
convolution errors that are much stronger than the on-source residuals. The effective
signal-to-error ratio in this region is about 5.0 which corresponds to an error of>0.3
on a spectral index of−1.0. The errors on the spectral index map are a very strong
function of deconvolution errors (as can be seen from artifacts around the bright
central region) which as demonstrated by this example is a significant problem for
high-dynamic-range imaging of extended emission.

3. Spectral Curvature :

This bright central region had sufficient (>100) signal-to-noise to be able to detect
spectral curvature. The third panel in Fig.8.21shows the spectral curvature measured
within this region. Note that the error bars on the spectral curvature are at the same
level as the measurement itself. Therefore, a reliable estimate can only be obtained
as an average over this entire bright region. The average curvature is measured to be
βLL = −0.5 which corresponds to a change inα across L-band by△α = β△ν

ν0
≈ −0.2.

These numbers were compared with two-point spectral indices computed between
327 MHz (P-band), 1.4 GHz (L-band), and 4.8 GHz (C-band) fromexisting images
[Owen et al. 2000],[Owen, F. (private communication)]. Across the bright central
region,−0.36> αPL > −0.45 and−0.5 > αLC > −0.7. The measured values (−0.5 >
αLL > −0.7 and△α ≈ 0.2) are consistent with these independent calculations.

4. Comparison with single-frequency maps :The points in Fig.8.22shows the inte-
grated flux over the central bright region of M87 (shown in log(I ) vs log(ν/ν0) space)
from the 16 single-spectral-window images. The curved linepassing through these
points is the average spectrum that the MS-MFS algorithm automatically fit for this
region. It corresponds toα ≈ −0.52 and△α ≈ 0.2 across the source. The straight
dashed lines correspond to constant spectral indices of−0.42 and−0.62 and show
that the change inα across the band is approximately 0.2 (as also calculated from
βLL = −0.5 that the MS-MFS algorithm produced). Note that the scatterseen on the
points in the plot is at the 1% level of the values of the points(signal-to-noise of 100).
Also evident from the plot is the fact that the curvature signal is at a signal-to-noise
ratio of 1. These results show that a signal-to-noise of> 100 is required to measure
a change in spectral index of 0.2 across 700 MHz at 1.4 GHz.
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Figure 8.19:M87 halo : Intensity and Spectral Index : These images show the results of applying
the MS-MFS algorithm to wide-band VLA data taken as described in Table8.5. The images are
at 12 arcsec resolution, and show the intensity distribution for M87 at 1.5 GHz (top ), and the
corresponding spectral index (bottom) and Figure8.21shows the bright central region at a higher
angular resolution and Table8.6 lists flux values, spectral indices and error-bars for different parts
of the source.
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Figure 8.20:M87 halo : Residual Images : These images show the residual image at two different
fields-of-view. On-source residuals are shown on the top andoff-source residuals at the bottom.
Thes residuals are displayed using an flux scale 10 times smaller than that used in the intensity
image in Fig.8.19. The peak on-source residial is at the level of 10 mJy, but theoff-source residuals
show no clearly visible trace of large-scale deconvolutionerrors.
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Figure 8.21:M87 core/jet/lobe : Intensity, Spectral index, Curvature : These images show 3-arcsec
resolution maps of the central bright region of M87 (core+jet and inner lobes), where the signal-to-
noise was sufficient for the MS-MFS algorithm to detect spectral curvature. The quantities displayed
are the intensity at 1.5 GHz (top left), the residual image (top right), the spectral index (bottom left)
and the spectral curvature (bottom right). The spectral index is near zero at the core, varies between
−0.36 and−0.6 along the jet and out into the lobes. The spectral curvature is on average 0.5 which
translates to△α = 0.2 across L-band. The peak of the source is 4.6 Jy, the on-source RMS is 40
mJy/beam and this gives an on-source signal-to-error ratio of about 100. Note that the flux scale on
the residual image (top right) is about 2 orders of magnitudelower than the total-intensity image
(top left).

core jet lobes filaments diffuse halo
I0 (Jy/beam) 4.5 4.6 1.7 0.09 0.03
ResidualI res

on 0.04 0.04 0.04 0.015 0.01
SNR=I0/I res

on 112 115 42 6 3
α ± δα 0.005± 0.05 −0.36± 0.02 −0.63± 0.06 −0.95± 0.1 −1.5± 0.3
β ± δβ −0.8± 0.3 −0.9± 0.7 −0.2± 0.2 — —

Table 8.6:Measured errors forIν0, α andβ in M87 : This table shows the signal-to-noise ratio for
different features of M87, and the observed values forα andβ for those features. The fluxes are in
units of Jy/beam and the errorsδα andδβ are estimates based on the measured variations across
different pixels within each feature.
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Figure 8.22:M87 core/jet/lobe : L-band spectrum : This plot shows the spectrum formed from
the integrated flux within the central bright region between1.1 and 1.8 GHz. The points are the
integrated flux measured from single-spectral-window model images, the curved line is the average
spectrum that the MS-MFS algorithm automatically fit to these data in this region. This spectrum
corresponds to an averageαLL = −0.52 and a change of△α ≈ 0.2 across the band (1.1 to 1.8
GHz). The straight dashed lines represent pure power-law spectra with indices−0.42 and−0.62
and are another way of showing that the change inα across the band is about 0.2. These numbers
are consistent with two-point spectral indices computed between 327 MHz (P-band), 1.4 GHz (L-
band), and 4.8 GHz (C-band) (−0.36> αPL > −0.45 and−0.5 > αLC > −0.7) from existing images
[Owen et al. 2000],[Owen, F. (private communication)].
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8.3.3 Wide-field wide band imaging of the 3C286 field
Objective : The goal of this observation is to verify the accuracy of wide-band primary
beam correction in combination with MS-MFS using a simple field of widely separated
point sources. The corrected spectral indices of sources away from the pointing center
are then verified by direct measurements (by pointing directly at one of these background
sources). The accuracy of the primary-beam model being usedin the correction is also
verifiedvia measurements of the primary beam at multiple frequencies.

3C286 : The 3C286 field consists of a bright 14 Jy compact synchrotronradio source
surrounded by an almost perfect grid of about six compact background objects ranging in
brightness from 20 mJy to 300 mJy. These background sources are located about 8 to 12
arcmin away from 3C286. The EVLA antenna primary beam at L-band (1.4 GHz) is 28
arcmin across and these background sources are roughly at the 60% to 70% level of the
primary beam where the spectral index due to the primary beamis between−0.5 and−0.7.

Observations : Both the observations described in the previous sections (Cygnus A and
M87) used 3C286 as a flux calibrator so no new observations were required to obtain wide-
band data for this field. To verify the corrected spectral indices of the background sources,
two additional test observations were done. The first was a set of holography5runs at two
frequencies (1.185 and 1.285 GHz) from which the amplitude of the antenna primary beam
was measured and a two-point spectral index computed as a function of angular distance. At
the half-power point, the measured spectral index was about−1.4, which matches the values
obtained from the theoretical models used in the imaging algorithms. The second test was
to make a direct measurement of the spectral index of one of the background sources 8
arcmin away from 3C286 by pointing directly at it and eliminating any spectral effects due
to the primary beam. This observation also places 3C286 at a distance of 8 arcmin from the
pointing center, giving another independent pair of measurements of source spectral index
(one direct and one indirect) to test the accuracy of the indirect measurmeent.

Calibration : Since 3C286 was the calibrator chosen for observations of Cygnus A and
M87, gain solutions were found by using ana priori model for its spectrum, a pure power
law with spectral index of−0.476 [Perley and Taylor 2003] across L-band. The data with a
background source at the pointing center were calibrated using scans taken during the same
observation run with 3C286 at the pointing center.

5One meaning of the term ‘holography’ is the process of measuring the primary beam and the aperture
illumination pattern of a reflecting dish and antenna system. Holography observations were used for this test
to measure the actual primary beam and its frequency dependence in order to compare them with the model
primary beams that are used in the image reconstruction process. The purpose of this test was to ensure that
the true instrumental primary beam and the models used in theimage reconstruction software to correct their
effect are nearly identical to each other.
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MS-MFS Imaging : The 3C286 calibrator data (taken in the VLA C-configuration dur-
ing observations of M87) were imaged using the MS-MFS algorithm with Nt = 3 and
Ns = 1, first without any primary-beam correction and then with wide-band primary-beam
correction taking into account the time-variability and beam squint.

The later test observations were taken when the VLA was in theB-configuration.
At this higher angular resolution, 3C286 is slightly resolved, and at 8 arcmin away from
the phase center the effect of thew-term becomes significant enough for its effects to be
visible in the image. At the time of these observations, the MS-MFS algorithm could
work either with primary-beam correction or with multi-frequencyw-projection (section
4.2.2.4and Cornwell et al.[2008]), but not both together6. Therefore, these data were
imaged in two runs and the results compared. The first run usedprimary-beam correction
methods that use a combination of visibility-domain and image-domain operations to derive
corrected intensities and spectral indices (section4.3.2describes the algorithm used here).
The second run used onlyw-projection in the visibility domain and implemented primary-
beam correction as a post-deconvolution image-domain correction (section4.2.1). The
corrected spectral indices obtained by these two methods were then compared to the values
measured by direct measurement (with the source at the pointing center).

Imaging Results : Figure8.23shows the imaging results (intensity and spectral index)
for the C-configuration data and Fig.8.24shows the intensity images for the test observa-
tion taken in the B-configuration. Fig.8.25shows 3C286 imaged without and with multi-
frequencyw-projection7.

1. Intensity and Residuals : The peak fluxes measured from the intensity image from
the C-configuration data were verified with flux values from the corresponding field
within the NVSS catalog [Condon et al. 1998]. The peak of 3C286 was 14 Jy/beam,
and the background sources range between 20 mJy/beam and 400 mJy/beam. The
off-source RMS was measured as 0.5 mJy, close to the theoreticalpoint-source con-
tinuum sensitivity for the calibrator data.

2. Spectral Index of the sky : The spectral index of 3C286 (at the pointing center) was
measured as−0.476 (the spectral index for which the data were calibrated). When
the primary beam was ignored, the background sources show spectral indices ranging
between−1.1 and−1.4. With primary beam correction, they reduce to roughly−0.5

6Note that the algorithm described in section4.3 to correct for direction-dependent effects can include
a combination of direction-dependent effects and is not restricted to correcting only one of them at a time.
However, the software implementation of the primary-beam correction algorithm in CASA at the time these
data were analysed did not include thew-term and therefore it had to be done separately.

7Multi-frequencyw-projection refers to the use ofw-projection during multi-frequency synthesis imaging
(i.e. the gridding convolution functions are different for each frequency because the value ofw changes across
frequency).
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Figure 8.23: MFS with wide-band primary-beam correction : 3C286 field (C-configuration) :
These images show the results of applying MS-MFS with primary-beam correction on the C-
configuration calibrator data (3C286 field) taken during observations of M87. Shown here are the
intensity map (top) and two spectral index maps; one withoutany primary beam correction (bot-
tom left) and with wide-band primary-beam correction (bottom right). The large circle represents
the FWHM of the reference primary beam (1.5 GHz). In the un-corrected spectral index map, the
off-center sources show spectral indices between -1.1 and -1.4which become -0.5 to -0.7 in the
corrected map.

to −0.7. The measured and corrected spectral indices of 3C286 and one of the back-
ground sources (due East of 3C286) are shown in Table8.7. These numbers show
that for a field of isolated point sources, it is possible to correct for the frequency
dependence of the primary beam to an accuracy of< 0.1 at least within the FWHM
at the reference frequency.

3. Spectral index of the primary beam : A pair of 1-D primary beam profiles were
obtained from a holography scan that measured the beam in 11 directions within the
main lobe. The measured beams and two-point spectral indices computed from them
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Source 3C286 3C286 Background Background
Location Center West of Center East of Center Center
Peak brightnessI0 14 Jy 14 Jy 200 mJy 200 mJy
Off-source RMSI res 1 mJy 10 mJy 1 mJy 10 mJy
SNR= I0/I res 14000 1400 200 20
αMFS+PB −0.476 — −0.602 —
αMFS+WP −0.476 −0.994 −0.976 −0.577
αMFS+WP+PB −0.476 −0.442 −0.475 −0.577

Table 8.7:Spectral Index of 3C286 field with and without primary-beam correction : This table
shows the spectral index of 3C286 and one background source measured directly as well as with
primary-beam correction andw-projection. The first and third columns represent the observation in
which 3C286 was at the pointing center (all calibrator observations for M87 in the B-configuration).
The second and fourth columns represent the short test observation (and hence high RMS) in which
the background source due East of 3C286 was placed at the pointing center (w-projection was
required for this imaging run to eliminate errors around 3C286). These numbers show the difference
between the values ofα measured directly with the source at the pointing center andindirectly via
an explicit primary-beam correction. For 3C286 (first two columns), this difference is 0.034. For
the background source (last two columns) this difference is about 0.1. These numbers suggest that
with a SNR of at least 20, and a field of isolated point sources,it is possible to remove the effect of
the primary beam on the sky spectral index to an accuracy of equal to or better than 0.1 onα (within
the FWHM at the reference frequency).

match those obtained from the theoretical model used in the imaging algorithms. For
the locations of interest in this test, the primary-beam profiles from the holography
data showed a spectral index of≈ −0.6 (at the 70% point of the beam).

4. Multi-frequency w-projection : The images of 3C286 produced from VLA B-
configuration data in which the phase center is 8 arcmin away from the source show
expected differences when MS-MFS is used without and with multi-frequency w-
projection. The peak off-source residuals reduce from 260 mJy to 110 mJy with the
use ofw-projection. Note that multi-frequencyw-projection is automatically accom-
plished by the regularw-projection algorithm that chooses the gridding convolution
kernel based on the value ofw for each baseline and frequency channel.
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Figure 8.24:MFS with PB correction : 3C286 field (B-configuration) : Theseimages show the
intensity maps for the test observation of the 3C286 field (VLA B-configuration). The circle repre-
sents the HPBW of the reference-frequency primary beam. Theimage on the left shows 3C286 at
the pointing center. It was made using all the calibrator data from the B-configuration observations
of M87 and the RMS achieved was 1 mJy. The image on the right shows one background source at
the pointing center and 3C286 located 8 arcmin away. It was made using test observation data (at
five frequencies across L-band) and reached an RMS of 10 mJy. The spectral indices measured for
these sources are listed in Table8.7.

Figure 8.25:MFS with w-projection : 3C286 field (B-configuration) : These images show the
region around 3C286 made from VLA B-configuration data in which 3C286 was located 8 arcmin
away from the phase and pointing center. The image on the leftis the result of MFS without
w-projection and the peak off-source residual is 260 mJy. The image on the right is with multi-
frequencyw-projection and has a peak off-source residual of 110 mJy. The off-source RMS (away
from 3C286) for both runs was about 10 mJy. No primary-beam correction was done in these runs
and the measured spectral indices included the frequency dependence of the primary beam. The
time-variability of the primary beam (due to rotation and squint) was not accounted for, and might
explain the high peak residual compared to the off-source RMS.
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8.4 Points to remember while doing wide-band imaging

This section briefly summarizes several practical aspects of wide-band imaging.
The goals of this section are (a) to list out the key points that are needed to make effective
use of the MS-MFS wide-band imaging algorithm, (b) to understand sources of error as
well as the implications of various choices of parameters for a given type of broad-band
sky brightness distribution, and (c) to recognize when the use of such methods will provide
a significant advantage over much simpler single-channel methods and when they will not.
Note that all the wide-band data used for the tests in this dissertation were either simulated,
or came from interferometers with narrow-band receivers with which wide-band data were
taken by cycling through frequencies (i.e. no simultaneous full-bandwidth measurements).
Therefore, in addition to the current results, several tests with real wide-band data will be
required in order to establish a robust data analysis path for wide-band imaging.

Section8.4.1discusses the MS-MFS algorithm and explains the meaning of four
main parameters that control it. Section8.4.2discusses dynamic-range limits when var-
ious spectral effects are ignored, lists various sources of error that affect the accuracy of
the spectral reconstructions, and summarizes the ability of the MS-MFS algorithm to re-
construct an accurate wide-band model of the sky brightnessdistribution when additional
information about the source is required. Section8.4.3compares single-channel methods
of wide-band imaging with those that use multi-frequency synthesis, and discusses the im-
age fidelity, dynamic range and computational complexity associated with both types of
methods. Section8.4.4lists topics for related future work (additional tests and algorithmic
improvements).

8.4.1 Using the MS-MFS algorithm

Algorithm : The MS-MFS algorithm models the spatial sky brightness distribution as a
sum of 2D Gaussian-like functions (with equal major and minor axes). The spectrum is
modeled by allowing the amplitude of each flux component to follow an Nth-order polyno-
mial in frequency. Extended emission with spectral structure that varies across the source is
modeled by the sum of multiple flux components with different spectra. The MS-MFS al-
gorithm combines multi-scale deconvolution with multi-frequency-synthesis and performs
a linear least-squares optimization to solve for the polynomial coefficients for each chosen
flux component.

Data Products : The basic products of the MS-MFS algorithm are a set ofN + 1 multi-
scale coefficient images that describe the spectrum of the sky brightness at each pixel (co-
efficients of anNth-order polynomial). The 0th-order coefficient image is the Stokes I inten-
sity image at the reference frequency (not the continuum image defined as the integrated
flux across the full sampled bandwidth). To create the continuum image, the polynomial
has to be evaluated and summed over all frequency channels. Derived quantities such as
the spectral index and spectral curvature are computed fromthe coefficient images (see
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Eqns.6.43to 6.45).

User-controlled parameters : There are four main parameters that control the operation
of the MS-MFS algorithm.

1. Reference Frequencyν0 : A reference frequency is chosen near the middle of the
sampled frequency range. It is the frequency about which a Taylor-expansion of the
power-law spectrum is done while forming the polynomial coefficients.

2. Number of polynomial coefficients Nt : The user must specify the appropriate
number of polynomial coefficients to use to describe the source spectrum. In general,
we are using a truncated Taylor series to model a power-law and the number of terms
to use will depend on the (expected) spectral index of the skybrightness (note that
the only power-laws that can be exactly fitted with a finite Taylor series are those
whose indices are positive integers).

(a) If the source spectrum can be represented by a straight line in I vs ν space,
or if MS-MFS is being done using only two sets of narrow-band data, choose
Nt = 2. In this case the only data products are mape of the reference-frequency
intensity and the spectral index8.

(b) Sources with negative spectral indices of about−0.5 across a 2:1 bandwidth will
requireNt = 3. This is an empirically derived estimate based on the imaging
runs described in this chapter and section6.2.4.2. Note that although images of
intensity, spectral index and curvature can be computed from the first three co-
efficient images, it is often necessary to useNt > 3 for spectral indices stronger
than−1.0 in order to fit the spectrum better and hence improve the accuracy of
the estimates of the first three coefficients. Some prior knowledge of the source
spectrum and the signal-to-noise ratio of the measurementsis required in order
to make an appropriate choice ofNt.

(c) For extended emission, deconvolution errors will contribute to the error in the
spectral index and curvature maps. This is because it cannotbe guaranteed
that deconvolution artifacts will preserve the ratios between coefficient images.
Nt = 3 to Nt = 5 have given the best results so far for the types of observations
and simulations described in this chapter.

(d) The signal-to-noise ratio of the data should also be taken into account to avoid
trying to fit a high-order polynomial to a very noisy spectrum. Section6.2.4.1
gives empirically derived suggestions forNt for different signal-to-noise ratios.

8Note that a straight line inI vsν space does not represent a power-law. However, since the spectral index
of a power law can be obtained from the first two coefficients of the Taylor expansion of a power-law (see
Eqn.6.22), a straight-line fit to the spectrum inI vs ν space can be used to estimate the spectral index of the
power law.
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3. Set of spatial scalesNs : The user must specify a set of scales sizes (in units of
pixels) to use for the multi-scale representation of the image [Cornwell 2008]. For a
field of isolated point sources a scale vector of [0] (Ns = 1) will run a point-source
version of MS-MFS. For an extended source with structure on multiple spatial scales,
this scale vector must be chosen such that the most obvious scale sizes present in the
image are represented. This choice is therefore highly dependent on the structure in
the image itself. If the source structure is partially known(from previous imaging
runs) then the vector of scale sizes can be chosen by countingpixels across various
features in the image (e.g.[0, 6, 20] for an imaging run in which extended features in
the image are roughly 6 and 20 pixels across). Overall, thereis no well-established
method of choosing an appropriate set of spatial scales.

4. Stopping threshold : A user-specified flux threshold is used on the 0th-order resid-
ual image to control when iterations are terminated. For fields with isolated point
sources, this threshold can be chosen to be comparable to thetheoretical continuum
noise level. However, for complex extended emission, a verydeep deconvolution can
increase the on-source errors in the higher-order coefficient images (by adding flux
that is not well-constrained by the data and is therefore incoherent across the differ-
ent coefficient images). These errors then propagate non-linearly into the spectral
index maps. Therefore, for complex extended sources, it is recommended that the
iterations be terminated once off-source residuals become noise-like, irrespective of
there being on-source residuals at or slightly above the off-source noise level9.

Wide-band self-calibration : The broad-band flux model generated by the MS-MFS
algorithm can be used within a self-calibration loop in exactly the same manner as standard
self-calibration. The purpose of such a self-calibration would be to improve the accuracy
of the calibration.

Software Implementation : The MS-MFS algorithm described in section7.1has been
implemented and releasedvia the CASA10 software package (version 2.4 onwards). Wide-
band primary-beam correction (section7.2) has been implemented and tested within the
CASA system, but is yet to be formally released. These algorithms were implemented in
C++ within the existing major/minor cycle code framework of CASAPY and can be ac-
cessedvia theclean task and theimager tool. The minor cycle of the MS-MFS algorithm
was implemented as part of the CASACore set of libraries11. Wide-band self-calibration

9Note that this description applies only to the MS-MFS algorithm which does not yet have built-in con-
straints based on a astrophysically-plausible range of values that all the higher-order spectral coefficients are
allowed to take on.

10Common Astronomy Software Applicationsis used by theNational Radio Astronomy Observatory
11CASACore is a set of libraries that implement basic functionalities required for radio interferometric

data analysis and is currently being shared by the NRAO for the EVLA and ALMA, the ATNF for ASKAP,

http://casa.nrao.edu
http://www.nrao.edu
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and the STACK+MFS hybrid method were implementedvia CASAPY (python) scripts us-
ing the tool interface, and these scripts are not part of any formal release. The MS-MFS
algorithm was also implemented in the ASKAPsoft12 software package for use with the
ASKAP telescope and was tested within the ASKAPsoft parallelization framework.

8.4.2 MS-MFS error estimation and feasibility

Section8.4.2.1describes various sources of error that can arise when the MS-
MFS algorithm is used for wide-band imaging. Section8.4.2.2then describes how the al-
gorithm is expected to perform in situations where additional information about the source
is usually required.

8.4.2.1 Error Estimation

Dynamic-range limits when source spectra are ignored : If continuum imaging is done
with only MFS gridding and source spectra are ignored, spectral structure will masquerade
as spurious spatial structure. These errors will affect regions of the image both on-source
and off-source and their magnitudes depend on the availableuv-coverage, the frequency
range being covered, the choice of reference frequency, andthe intensity and spectral index
of the source. A rough rule of thumb for an EVLA-typeuv-coverages (see section6.2.4.2)
is that for a point source of with spectral indexα = −1.0 measured between 1 and 2 GHz,
the peak error obtained if the spectrum is ignored is at a dynamic range of< 103. Note
that when all sources in the observed region of the sky have similar spectral indices, these
errors can be reduced by dividing out an average spectral index (one single number over
the entire sky) from the visibilities before imaging them13.

Factors affecting the accuracy of the measured spectral index : Deconvolution errors
contribute to the on-source error in the Taylor coefficient images, and these errors propagate
to the spectral index map which is computed as a ratio of two coefficient images. Table8.2
lists the estimated and observed errors in spectral index and curvature for a simulated ex-
ample and shows that the deconvolution errors that result when a point-source flux model is
used to deconvolve extended emission, can increase the error bars on the spectral index and

and ASTRON for the LOFAR telescope.
12Australian SKA Pathfinder softwareis being developed at theAustralia Telescope National Facility
13Note that such a division will reduce the signal-to-noise ratio of the higher-order terms of the series (for

the remaining spectral structure). Therefore, although the removal of an average spectral index could reduce
the level of imaging artifacts obtained when source spectraare ignored, the lower signal-to-noise ratio of the
spectral signature could increase the error on the derived spectral index when MS-MFS is used. Note also
that this point is not specific to the MS-MFS algorithm, but isa general statement about how the accuracy of
a fit depends on the SNR of the signal being fitted.

http://www.atnf.csiro.au/projects/askap/computing.html
http://www.atnf.csiro.au/
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curvature by an order of magnitude. The accuracy to whichα andβ can be determined also
depends on the noise per spectral data point, the number of sampled frequencies, the total
frequency range of the samples, and the number of spectral parametersNt in the fit. Sec-
tion 6.2.4.1discusses empirically derived error bars for the spectral index based on these
factors.

Effect of the frequency-dependence of the Primary beam : When wide-band imaging
is done across wide fields-of-view, sources away from the pointing center will be attenuated
by the value of the primary beam at each frequency. Wide-bandimaging results from such
data ignoring the primary beam will contain spurious spectral structure. For the EVLA
primary beams between 1 and 2 GHz, this extra spectral index at the half-power point
is about -1.4 and about -0.6 at the 70% point (see Figs.5.4 and 7.7). Note that even if
the source has a flat spectrum, this artificial spectral indexcan cause errors at the levels
described for ignoring source spectra in the restored intensity image.

Accuracy to which the primary beam spectrum can be removed : Tests on simu-
lated and real data show that up to the 70% point of the primarybeam (at the reference
frequency), the spectral index can be corrected to within 0.05 for point sources with signal-
to-noise ratios of greater than 100, and to within 0.1 for point sources with signal-to-noise
ratios of about 10. For extended emission, the errors are dominated by the effects of multi-
scale deconvolution errors and not primary-beam correction. On high signal-to-noise sim-
ulations (SNR>100) with extended sources located at the 60% point of the primary beam
at the reference frequency, the spectral index was recovered to within an error of 0.2.

8.4.2.2 Feasibility of wide-band imaging

Unresolved and Moderately resolved sources :Consider a source with broad-band con-
tinuum emission and spatial structure that is either unresolved at all sampled frequencies
or unresolved at the low-frequency end of the band and resolved at the high-frequency end.
The intensity distribution as well as the spectral index of such emission can be imaged at
the angular resolution allowed by the highest frequency in the band. This is because com-
pact emission has a signature all across the spatial frequency plane and its spectrum is well
sampled by the measurements. The highest frequencies constrain the spatial structure and
the flux model (in which a spectrum is associated with each fluxcomponent) naturally fits a
spectrum at the angular resolution at which the spatial structure is modeled. Note that such
a reconstruction is model-dependent and may require extra information in order to distin-
guish between sources whose observed spectra are due to genuine changes in the shape
of the source with frequency and those with broad-band (power-law) emission emanating
from each location on the source.

Very large sources :At the lower end of the sampled spatial-frequency range, thesize of
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the centraluv-hole increases with observing frequency. For very large spatial scales whose
visibility functions are adequately sampled (more than 80%of the integrated flux) only at
the lower end of the frequency range, an ambiguity between spatial scale and spectrum
can arise during the reconstruction. This is because the spectrum of this source is not well-
sampled by the measurements. A flat-spectrum extended source can be mistaken for a steep
spectrum less extended source, andvice-versa. This problem can be avoided by providing
short-spacing flux constraints (from single-dish observations) to bias the solution, or by
flagging all spatial frequencies belowumin at νmax (the smallest spatial frequency sampled
by the highest observed frequency) to filter out these large spatial scales.

Overlapping sources : When overlapping sources have different spectral structure, the
result of wide-band imaging is the combined intensity and per-pixel spectrum. However,
when the foreground and background structure has emission at very different spatial scales,
a flux model that associates a spectrum with each flux component naturally separates the
overlapping sources and represents the source as a sum of overlapping sources with dif-
ferent spectra. The intensity and spectrum of foreground sources can be recovered from
the final output coefficient images by performing a polynomial subtraction (totalspectrum
- background spectrum), before computing the spectral index and curvature of foreground.
Note that this is a simple extension of standard background subtraction.

Sources with band-limited emission : The observed spectrum of a source whose structure
itself changes with frequency cannot be described using a power-law spectral model, but
it can sometimes be described by a high-order polynomial (Nt > 4). The MS-MFS model
with a high-order polynomial (Nt > 4) can be used to model these ’spectra’ as long as
the emission varies smoothly across frequency. In this case, images of spectral index and
curvature have no meaning, and the final reconstructed images must be interpreted in terms
of polynomial coefficients or by evaluating a spectral cube from these coefficients. Note
however, that the highest angular resolution at which structure can be imaged is controlled
by the highest observing frequency at which the emission is detected.

8.4.3 Multi-frequency synthesisvssingle-channel imaging :

Image Fidelity and Dynamic Range : The main advantage of multi-frequency synthesis
over single-channel imaging (for continuum imaging) is theincreased image fidelity and
dynamic range allowed by the use of the combineduv-coverage and broad-band sensitivity
during image reconstruction.

Spatial resolution : The angular resolution of the continuum emission is at the resolution
allowed by the highest frequency in the band. Further, MFS with a suitable flux model can
reconstruct the spectral structure of the source also at theangular resolution allowed by
the higher end of the sampled frequency range. Note that withsingle-channel imaging, the
spectral structure can be recovered only at the angular resolution of the lowest frequency
in the band.
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Spectral Structure : The signal-to-noise ratio required to measure spectral structure is
the same for both single-channel and MFS methods. Spectra can be measured accurately
only for sources that are several times (∼ 10) brighter than the single-channel noise level.
The smallest spectral index that can be measured corresponds to a flux variation across the
band that is comparable to the single-channel noise level. Note that these single-channel
noise levels include errors in wide-band calibration.

Channel Averaging : Even if data are measured with a very high frequency resolution
(Nchan > 10000) the process of imaging almost never requires it. Given a desired image
field-of-view, one can calculate the bandwidth-smearing limit and average multi-channel
data up to that limit. This will reduce the computational overhead for gridding and de-
gridding. Note also that this is possible only for imaging. Calibration (and self-calibration
loops) will still require the full frequency resolution.

Computation Cost : In general, MFS imaging is less expensive than single-channel imag-
ing methods. However, single-channel methods are embarrassingly parallel14and therefore
very easy to distribute over a set of compute-nodes. The minor cycle of deconvolution MS-
MFS imaging is hard to parallelize but the major cycle is easyto parallelize and significant
speed-ups are still possible (this has been demonstratedvia the ASKAPsoft implementation
of MS-MFS).

Hybrid Methods : When wide-band measurements have very denseuv-coverage per
frequency, wide-band calibration errors are minimal, and the target science does not require
a very high angular resolution for spectral reconstructions, then a simple hybrid of single-
channel imaging followed by a second stage of MFS imaging on the continuum residuals
might suffice for high-fidelity and high dynamic-range continuum imaging. Also, if all
sources of emission in the field of view have similar spectralindices, a common average
spectral index can be removed from the calibrated data before continuum MFS imaging, to
reduce the level at which errors due to unaccounted for spectral variations occur.

8.4.4 Future Work

Tests with real wide-band data : The imaging results presented in this chapter used either
simulated wide-band EVLA data or multi-frequency data formed from a set of narrow-band
VLA observations. This is because real wide-band EVLA data were not available at the
time these algorithms were being developed (i.e. during the transition between the VLA
and EVLA telescopes and before the EVLA wide-band correlator became available).

1. Data from the multi-frequency VLA observations demonstrated the ability of the
MS-MFS algorithm to reconstruct spatial and spectral structure over wide-fields of

14Using parallel computing terminology, embarrassingly parallel problems are those that can be easily
split into several smaller problems that can be operated upon independently and require minimal amounts of
communication between compute nodes.
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view, but did not test its high-dynamic-range capabilities. The MS-MFS imaging
algorithm as well as the STACK+MFS hybrid need to be tested on real wide-band
EVLA data to ascertain their high dynamic range imaging capabilities.

2. The effects of removing an average spectral index from a wide-band dataset before
imaging need to be evaluated in terms of high-dynamic-rangecapability as well as
the accuracy of the reconstructed spectrum.

3. Wide-band self-calibration needs to be tested to evaluate whether existing methods
will suffice for high dynamic-range imaging.

4. Also, MS-MFS has been used only on extremely bright and extended objects (Cygnus A
and M87) and a field of point sources (3C286) and tests on more typical sources are
required before the conclusions described in this section can be applied generically.

Algorithm Improvements : There are several aspects of the MS-MFS algorithm for
which improvements are possible.

1. One aspect of the MS-MFS algorithm that needs more work is how to determine
appropriate values forNt andNs and to select a set of spatial scales. These parameters
depend on the wide-band spatial structure of the sky brightness, the multi-frequency
uv-coverage of the interferometer, the weighting scheme used, and the signal-to-noise
of both spatial and spectral structure.

2. The MS-MFS algorithm uses a polynomial inI vs ν space to model the sky spec-
trum, even though broad-band radio emission usually follows power-laws. This is
because the chosen flux model describes the wide-band sky brightness as a sum of
overlapping extended flux components with fixed spectra, anda power-law sky spec-
trum cannot always be written as a sum of more power-laws. However, for sources
with pure power-law spectra (i.e. isolated point sources, or extended emission with
a constant spectral index across the source) a polynomial inlog I vs logν space may
be more appropriate in terms of the accuracy of the reconstructed values ofα andβ.
This point needs to be tested, preferably on a field of compactsources.

3. The stability of the MS-MFS algorithm in the low signal-to-noise regime is yet to
be understood. Non-linear constrained optimization techniques might have to be
used instead of the simple linear least-squares methods described in the previous
chapters in order to constrain solutions to astrophysically plausible values when the
constraints from the data itself are insufficient.

Additional methods : All the algorithms described in this dissertation ignore source
polarization and the ability to do full-polarization imaging using wide-band data is required
for high sensitivity polarization measurements. This involves the use of an appropriate flux
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model that accounts for the polarization signature of the source as a function of frequency
during MFS imaging, and this is still a subject of research.

Another important application of wide-band imaging is the construction of a
broad-band model of the continuum flux for the purpose of continuum subtraction. The
standard practice has been to image the continuum emission using only those channels
with no known spectral lines in them, and then subtract it outof the entire dataset. The
same approach can in principle be used along with the MS-MFS algorithm to model and
remove the broad-band continuum, as long as channels with spectral lines in them can be
identified (or markedvia a-priori information) before wide-band imaging. This needs to
be tested with real wide-band data. As of now, continuum subtraction in the presence of a
large number of unknown spectral lines remains a research problem.



CHAPTER 9

A HIGH-ANGULAR-RESOLUTION STUDY OF THE
BROAD-BAND SPECTRUM OF M87

Cores of the densest galaxy clusters are expected to have cooling flows that trace
radiative losses from the intra-cluster medium (ICM) and have cooling times shorter than a
Hubble time. However, the hot cores of many clusters show no evidence of cooling below
a temperature of roughly a third of the measured temperaturein the inner regions of the
cluster. One way of reconciling this cooling-flow problem isheatingvia accretion powered
outflows from an active galactic nucleus (AGN) at its core. Observations of cluster-center
radio galaxies (CCRGs) that host these AGN have suggested a feedback model that might
be responsible for balancing the cooling flow. One aspect of this process that is not well
understood is the mechanism by which energy from AGN outflowscould be transported out
into the thermal ICM and the timescales on which this happens. So far, most calculations
of the lifetimes of features seen within the radio haloes (ofsources like M87) have been
based on source expansion models. Synchrotron spectra provide another way of studying
the energetics and lifetimes of features in the halo. Observed wide-band spectra can be
compared to those predicted by various evolution models to explain how they formed.

In this project, wide-band spectra of several regions of theM87 radio halo were
constructed from existing high angular-resolution imagesat 74 MHz (4-band), 327 MHz
(P-band), and 1.4 GHz (L-band) and a spectral index map between 1.1 and 1.8 GHz (con-
structed from wide-band VLA L-band observations). These spectra were compared with
model spectra derived from two spectral evolution models (initial-injection and ongoing-
injection). Preliminary results suggest that spectra in the inner few kpc (the inner radio
lobes) are consistent with an ongoing injection of particles with the energy distribution as
seen in the jet. For features in the halo, timescales consistent with expansion and buoyancy
timescales can be obtainedvia the initial-injection model, but the data constrain the power-
law index of the initial electron energy distribution to be steeper than that observed at the
jet. These features can also be modeledvia the ongoing-injection model for a wide range of
initial energy distribution indices and give timescales that range from twice the expansion
timescales for steep injected spectra to a few times smallerthan the expected cooling time
when the energy injection index is the same as that observed in the jet. Note, that the large
error-bars on the current L-band spectral index estimates render all the wide-band spectra
used in this analysis consistent with pure power laws and this introduces a high degree
of uncertainty on any conclusions derived from estimates ofbreak frequencies beyond the
measured range.

210
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Section9.1briefly describes the cooling-flow problem and the idea of AGNfeed-
back and summarizes the relevant existing information about M87. Section9.2contains the
basics of synchrotron spectra and their evolutionvia two different models and lists the cal-
culations used for estimating B-fields and source lifetimes. Section9.3shows the results of
spectral fits to these theoretical models for M87. Section9.4 interprets the results in terms
of plausible evolution models, ages and injected electron energy distributions.

9.1 The M87 cluster-center radio galaxy

M87 is a large elliptical radio galaxy located at the center of the Virgo cluster.
Galaxy clusters usually show evidence of hot cores with strong X-ray thermal emission
from the ICM near the center of the cluster. The total energy content of the hot ICM is
given by its temperature asE = 3

2nxkBT, radiative loss rates are proportional to density
squared (L ∝ n2

x), and a cooling time can be computed as their ratio. This cooling time is
inversely proportional to the densitytcool ∝ 1

nx
or in other words, high-density regions cool

faster. This means that the center of the cluster cools first,followed by outer regions, and
this is called a cooling flow.

The expected cooling time can be calculated by measuring thedensity and tem-
perature of the thermal ICM (from X-ray measurements of the bremsstrahlung spectrum).
For M87, the cooling time estimated from X-ray measurementsis tcool ≈ 1Gyr. and the
cooling radius is not much larger than the observed size of the radio halo. The first prob-
lem one encounters is thattcool is often much less than the Hubble time, suggesting that
the cluster cores ought to have cooled by now and not still show high temperatures. The
second problem is the lack of X-ray emission lines from the cooling gas below a third of the
measured temperature of the cluster core. The frequency andamplitude of X-ray emission
lines from the ICM gas (on top of bremstrahlung emission spectrum) can be predicted for
different temperatures. The observed lines can be matched to these predictions for a range
of temperatures that it passes through as it cools, with the maximum being the background
temperature. For sources like M87, these predicted lines are present down to a temperature
of 3.5× 107K [Peterson et al. 2003]. This means that the gas is losing energy, but also not
cooling below this point. These observations and calculations suggest there must be some
internal source of energy, possibly correlated with the observed radio halo, that balances
the cooling below that temperature, and keeps the cluster core hot.

One possible source of energy input capable of balancing thecooling flow is an
accretion powered outflow from an AGN containing a super-massive black hole (SMBH)
at the center of the cluster. The M87 galaxy hosts an AGN with an observed jet outflow,
making it an ideal candidate for the study of AGN feedback as apossible explanation of the
cooling-flow problem. Calculations of the jet power in M87 have been shown to roughly
balance the energy loss due to thermal radiation in the ICM [Owen et al. 2000]. The
mechanism of this energy transfer is thought to be a feedbackloop in which the cooling
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Figure 9.1: Radio/X-ray/Optical images of M87 : The image on the left is a composite of op-
tical, radio and X-ray images of the elliptical galaxy M87 (Credits:X-ray: NASA/CXC/CfA/W.
Forman et al.; Radio: NRAO/AUI /NSF/W. Cotton; Optical: NASA/ESA/Hubble Heritage Team
(STScI/AURA), and R. Gendler). The image on the right is a composite of radio and X-ray images
that shows the structures in the M87 halo and a strong correlation between X-ray and radio emission
(Credits: Radio : NRAO/AUI /NSF/F.N.Owen; X-ray: NASA/CXC/Cfa/W.Forman et al.).

ICM gas sinks to the bottom of the gravitational potential well of the cluster and feeds the
AGN via accretion so that the AGN pumps out a corresponding amount ofenergy through
jet outflows. This energy is then transported out to the ICM toheat it up again.

The least-understood step in this loop is the mechanism by which the jet power is
transfered across very large distances to heat up the ICM in all directions. In some galaxy
clusters, there is evidence of bubbles rising buoyantly andin some cases, these bubbles are
seen to displace the thermal ICM plasma and form cavities in the X-ray loud thermal ICM
(evident as bounded regions of low X-ray luminosity compared to the surrounding, and
often coincident with regions of high radio synchrotron emission). The inner lobes of the
M87 radio emission coincide with one such X-ray cavity, but structures outside this region
in the M87 halo do not (no observed X-ray cavity on large scales). Instead, the radio halo
shows evidence of buoyant bubbles of plasma rising up from the AGN, and features seen in
X-ray emission correlate roughly with some features in the radio halo, suggesting possible
mixing of the radio plasma and the ICM. Another way of transporting energy to the ICM is
through sound-waves and observations of the Perseus and Virgo clusters show ripples that
look like propagating sound waves. Figure9.1 shows two images of M87 to illustrate the
relation between its observed optical, X-ray and radio emission.
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9.1.1 Studying M87 evolution

The next step towards explaining the cooling flow problem forM87 via AGN
feedback is to study the evolution of various structures seen in the radio and X-ray images
and to understand the energetic processes present within them. Feedback processes and the
timescales at which they may be occuring for the Virgo cluster can be studied by modeling
the formation and evolution of various features in the M87 radio halo. One way of studying
this is to use direct dynamics to model the source as a buoyantor driven and expanding bub-
ble that physically transports energy between the AGN and the thermal ICM. Synchrotron
spectra are another way of studying how various features in the M87 halo evolve spectrally
as they carry energy away from the AGN. Synchrotron ages are independent of direct dy-
namics (bubble rise/expansion timescales, sound speed, etc), but are highly dependent on
B-field estimates and the chosen model for the evolution of the energy distribution of the
ensemble of radiating particles. Some dynamical age estimates derived from bubble ex-
pansion and buoyancy timescales are listed below, along with existing information about
B-fields in the halo and information derived from low-resolution synchrotron spectra.

Fig. 9.2 shows an image of M87 at 327 MHz in which various features are la-
beled. Radio emission from M87 shows an energetic 2kpc jet and a pair of bright∼5kpc
inner radio lobes. Outside this bright central region is a pair of ∼20kpc East-West struc-
tures that appear to be connected to the bright central region and are labeled as the ear-lobe
(East) and ear-canal (West). To the North and the South of theinner lobes are a pair of
large∼40kpc diffuse structures (labeled as halos) with well-defined outer boundaries. All
structures outside the inner radio lobes are comprised of narrow-extended bright features
(labeled as filaments) with low-brightness diffuse emission in between (labeled as back-
ground).

Magnetic fields : If the M87 halo is an expanding lobe modeled by a fluid flow in
pressure equilibrium with the ICM outside the bubble, the ambient pressurePamb of the
surrounding ICM can be used to calculate an upper limit on theaverage internal B-fieldBdyn

(via the expressionPamb= B2/8π). From X-ray measurements of the ICM temperature, we
get Pamb = nxkBT = 1.2 ∼ 4 × 10−11dyn/cm2 whereT = 9 ∼ 28× 106K andn = 0.01
[Owen et al. 2000; Shibata et al. 2001; Molendi 2002]. The B-field calculated fromPamb is
Bdyn = 17∼ 31µG.

Bdyn is an upper limit only on the average internal B-field (over the entire halo),
and turbulent flows and shock compressions on much smaller scales can enhance the B-
fields in localised regions in the halo. The total energy density is given byρv2 + Pamb =

B2/8π wherev is the local turbulent flow velocity andρ is the density. The amount by
which the B-field is enhanced due to turbulence will depend onv and its relation to the
sound speed in the ICM (cs =

√
kT/m). For example, in the case of a supersonic turbulent

flow (ρv2 > Pamb), the additional magnetic energy density scales as the square of the Mach
number (M = v/cs).
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Figure 9.2:Labeled image of M87 : This is a 327 MHz image of the M87 radio galaxy, made
using the VLA [Owen et al. 2000]. It shows a bright central region with a 2kpc radio jet and 5kpc
inner radio lobes, a pair of∼20kpc structures to the East (ear-lobe) and West (ear-canal) of the bright
central region, and two∼40kpc halos to the North and South. Narrow extended filamentary structure
is seen throughout the ear lobe/canal structures and the halo, with low-level diffuse background
emission in between.
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Faraday-rotation measurements [Owen et al. 1990] estimate the B-fields around each inner
radio lobe to be between 20 and 40µG. Owen et al.[2000] show that the B-field consistent
with the minimum pressure in various parts of the outer halo lie between 7 and 10µG.

Dynamical Age (driven bubble) : For an expanding lobe powered by a constant energy
source at the center and overpressured with respect to its surroundings, the age of the source
can be estimated as the time taken for the outer edge of the lobe to expand to a certain size
(volume). The volume of the lobeV(t) is related to the input power, external number-
density and lifetime as follows.

V(t) = cv
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)
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wherecv is an order unity constant [Eilek 1996]. Using this expression withnx = 0.01,
volumeV(kpc3) = 4

3π403 we get tdyn ≈ 120Myr for Ė ≈ 1044erg/sec(nx ≈ 0.01 and
Ė ≈ 1044erg/secwere obtained fromOwen et al.[2000]).

Dynamical Age (passive buoyant bubble) : For a buoyant bubble rising up through an
atmosphere of hot plasma, models suggesttbuoyant≈ 40∼ 60Myr for a distance of about 40
kpc [Churazov et al. 2001]. An upper limit on the speed of such a bubble is given by the
sound speedcs =

√

kT/mp. For example, forT = 2× 107K, ⇒ cs = 4.0× 107cm/sec
and the sound travel time for a distance of 20 kpc is 50 Myr (and100 Myr for 40 kpc).

Synchrotron spectra (jet) High angular-resolution studies of the M87 jet have shown
that its spectral index at radio wavelengths isα jet ≈ −0.5 (Owen, private commn.) and
Bicknell and Begelman[1996] reconstruct this resultvia models of the jet outflow.Perlman
and Wilson[2005] also show that the broad-band spectrum of the jet between radio and X-
rays is consistent with a continuous injection of energeticparticles (α jet ≈ −0.6), or in other
words, an active jet.

Synchrotron spectra (lobes and halo) Low-resolution synchrotron spectra [Rottmann
et al. 1996a] show that the P-L spectral index (between 327 MHz and 1.4 GHz) in the halo
is αPL = -0.7∼-1.3 and the C-X spectral index (between 5 GHz and 10 GHz) isαCX =-
2.0∼-2.8. Rottmann et al.[1996b] analyse images at 333 MHz, 1.4 GHz and 10.55 GHz
and suggest a spectral break between 5 and 11 GHz and timescales of 30∼40 Myr for the
ear lobe/canal regions (but they do not quote B-fields). These ages areroughly consistent
with the timescales calculated from direct dynamics [Churazov et al. 2001] with B=6.5µG.
However, the angular resolution in these images is insufficient to study the spectral vari-
ations across different features of M87 (lobes, bubbles, halo filaments and background).
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High resolution images of the 40 kpc-scale structure in the M87 halo [Owen et al. 2000]
have so far been made only at frequencies of 1.4 GHz and below,and probe only the edge
of the expected region of spectral turnover (1 to 10 GHz). Across this range (75 MHz to
1.4 GHz), there is no clear sign of a spectral break or cut-off.

Goal of this project (test evolution models for M87) : In order to study the broad-
band spectra of various isolated features in the M87 halo, model their spectral evolution
as a function of distance from the jet, and constrain their synchrotron ages, we need high
angular-resolution observations that directly measure the spectrum between 1 and 10 GHz.
The project described in this chapter is the first step and involved a wide-band observa-
tion of M87 between 1.1 and 1.8 GHz and the use of the wide-bandimaging algorithms
described in chapter7 to construct a spectral-index map across L-band. This 1.1 to1.8
GHz spectral index map was used along with existing images at74 MHz, 327 MHz and
1.4 GHz to constrain the slope of the spectrum at the high-frequency end of the measured
range (spectral slope at 1.4 GHz). Two types of synchrotron evolution models were tested
by fitting these wide-band spectra to numerical models of spectra that were evolved over
the approximate lifetime of the source, starting with different electron energy distributions.

9.2 Synchrotron spectra and their evolution

Section9.2.1summarizes the basics of synchrotron spectra [Pacholczyk 1970].
Section9.2.2describes the concept of spectral ageing, two models of synchrotron ageing
based on an initial or a continuous injection of particles with a power-law energy distri-
bution and shows the difference between the observed spectrum for these two cases. Cal-
culations of the minimum-energy B-fields used in the synchrotron age estimates are also
described here. Section9.3 later describes the spectra obtained from multi-frequencyim-
ages of M87, the process of fitting models to the data to obtainbest-fit estimates of the
critical frequency, and using them to calculate the ages of various features in the M87 halo.

9.2.1 Synchrotron radiation - basic facts

A charged particle moving in a magnetic field gyrates around magnetic lines of
force, feels an acceleration towards the axis of its helicalorbit, and radiates with a dipole
power pattern around the direction of acceleration. When the charged particle moves at
relativistic speeds, this is called synchrotron radiation.

For relativistic particles, the radiation pattern for eachparticle is no longer a
symmetric dipole pattern and the power is boosted along the direction of motion of the
particle (synchrotron beaming). To a distant observer, this radiation appears pulsed because
as each particle moves around its orbit, its radiation beam intersects the observers line of
sight only for a small fraction of its total orbit. The observed duration of these beamed
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synchrotron pulses gives rise to a characteristic frequency νsyn of the observed radiation.

νsyn=
3

4π
e

mc
B γ2 sinθ (9.2)

whereγ denotes particle energyγ = E/mc2 andθ is the pitch angle. The shape of the
synchrotron spectrum from a particle of energyγ is given by a modified Bessel function.

Psyn(ν, γ) =

√
3e3B sinθ

mc2

(

ν

νsyn

) ∫ ∞

ν/νsyn

K 5
3
(η)dη (9.3)

The low-frequency end of this spectrum follows a power law ofthe form ν
1
3 , the high-

frequency end shows an exponential decaye−ν/νmax and the spectrum peaks at 0.29νsyn. The
total radiated power averaged over an ensemble of particleswith energy given byγ and an
isotropic distribution of pitch angles is given by

〈Psyn〉 =
4
9

e4

m2c3
B2γ2 =

cσT

6π
γ2B2 (9.4)

Here,σT is the Thomson scattering cross section. Astrophysical sources contain charged
particles with a wide range of energies. From the observed power spectrum of cosmic rays,
we choose a power-law distribution of particle energiesN(γ) = N0γ

−s (s is the spectral
index of the power law for an energy rangeγmin < γ < γmax whereγmax>> γmin). The total
synchrotron spectrum is given by a convolution of the single-energy spectrum andN(γ).

jsyn(ν) =
∫

N(γ)Psyn(ν, γ)dγ ∝ B
s+1
2

(

ν

c1

)α

where α = −s− 1
2

(9.5)

wherec1 = 6.3× 1018Hz. The result (in the above energy range) is another power law with
a spectral indexα. The spectral shape at the low and high frequency ends of thisspectrum
follow that of the single electron energy spectrum.

9.2.2 Ageing of synchrotron spectra

Section9.2.2.1describes the computation of synchtron age from a measured
break frequency, and section9.2.2.2describes two evolution models that produce differ-
ent spectral shapes on either side of the observed break.

9.2.2.1 Break frequency and synchrotron age

For an ensemble of particles with the same initial energyγ, there is a characteris-
tic timescale associated with the lifetime of these radiating particles. This is known as the
synchrotron age, and is estimated from the ratio of the totalenergy (E = γmc2) to the rate
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of energy loss due to synchrotron radiation (Ė ∝ −γ2B2). Therefore,tγ = E/Ė ∝ 1/B2γ

and particles with higher energies (or located in regions ofhigher B-field) radiate faster and
have a shorter lifetime.

In an ensemble of particles spanning a wide range of initial energies, the higher-
energy particles radiate and deplete faster. After a timet, all particles at energies high
enough such thattγ < t would no longer be radiating. This creates a break in the electron
energy distribution atγc such thattγc = t. WhenN(γ) ∝ γ−s, a break in the energy distribu-
tion atγc causes a break in the power-law of the observed synchrotron spectrum at a critical
frequencyνc (related toγc via Eqn.9.2). The shape of the spectrum on either side of the
observed break will depend on the initial value ofs and the time dependence ofN(γ). As
time progresses, this break will move to lower frequencies but the shape of the spectrum
on either side of the break will not change.

If the B-field is known, the age of a population of relativistic particles can be
estimated from measurements of the critical or break frequency νc. Let B denote the local
B-field with which the observed synchrotron emission is associated. LetBrad =

√
8πUrad

(whereUrad ∝ T4 and T=2.7 K) denote the equivalent B-field due to inverse-Compton
losses (the mininumBrad = 3µG and corresponds to energy lost when CMB (cosmic mi-
crowave background) photons scatter off the relativistic particles and gain energy). The
energy loss rate due to synchrotron radiation (Eqn.9.4) is given by

dγ
dt
= −kγ2(B2 + B2

rad) where k =
σT

6πmc
(9.6)

Eqn.9.6can be solved to obtain an expression for a critical energyγc. This critical energy
represents the maximum particle energy present in the ensemble after a timetsyn =

∫

dt
(tsyn is called the synchrotron lifetime).

γc =
1

k
∫

[B2(t) + B2
rad]dt

(9.7)

B(t) represents a time-varying B-field as encountered by the particle. The critical energyγc

can be relatedvia Eqn.9.2 to a critical frequencyνc. This critical frequency is a measured
quantity, and is the observed break frequency of the synchrotron spectrum. Givenνc, a
synchrotron agetsyn can be computed from Eqns.9.7 and9.2 for two different situations,
as follows (note that alltsyn calculations in this chapter use electron massesm= me).

Homogeneous B-field : If the particles have seen a constant B-field over their entire
lifetime, either by moving through a homogeneous B-field or by not moving very far in
an inhomogeneous B-field (B(t) = B), we can calculate the synchrotron lifetimetsyn as
follows.

tsyn=

[

27πemc
σT

2

]
1
2
[

B

[B2 + B2
rad]

2

]
1
2

νc
− 1

2 (9.8)

Here, tsyn is in seconds,νc is in Hz andB is in Gauss. Eqn.9.8 can be written astsyn =

1.6× 109B−
3
2ν
− 1

2
c years, whereB is in µG, ν is in GHz andBrad is neglected.
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Inhomogeneous B-field : If the particles have encountered varying B-fields during their
lifetimes, a modified calculation oftsyn is required. A particular measured critical frequency
νc ∝ Bγ2

c can be obtained either from particles at a high energy and lowB-field, or by lower-
energy particles in a higher B-field. Therefore, if the particles have spent a large fraction of
their lifetime in a low field region before moving to a high-field region from where they are
currently radiating, a synchrotron lifetime calculated from the observedνc via Eqn.9.8will
give ages that are shorter than the true lifetime of the particles (Eqn.9.8 assumes that the
particle has spent its entire lifetime in the (higher) B-field that it is currently encountering).

To account for this discrepancy, we can re-write Eqn.9.8 in terms of past and
present B-fields. LetBnow represent the B-field from which the particles are currentlyradi-
ating. LetB(t) = 〈B〉 represent an average B-field that the particle has encountered through
most of its lifetime. We can calculate a synchrotron agetsyn as follows.

tsyn=

[

27πemc
σT

2

]
1
2
[

Bnow

[〈B〉2 + B2
rad]

2

]
1
2

νc
− 1

2 (9.9)

If a particle spends most of its lifetime in a low B-field region but is currently radiating from
a high B-field region, usingBnow > 〈B〉 will give a larger and perhaps more accuratetsyn.
This calculation can be used to interpret the observed synchrotron spectra in regions that
appear to have localized high B-fields compared to their surroundings (for example, narrow
magnetically confined filaments located within a large region of diffuse radio emission).
This model may be useful in situations where Eqn.9.8gives lifetimes that are much shorter
than any physically plausible dynamical model of particle transport across large distances
(i.e. from the source of energetic particles to the locations where they are currently radiating
from), especially if there is additional evidence to suggest localized high B-field regions or
sites of local particle re-acceleration.

9.2.2.2 Ageing models and spectral shapes

The age of an ensemble of radiating particles is related to the observed break
frequencyνc, but the shape of the observed spectrum on either side of thisbreak depends
on the initial particle energy distribution and how this energy distribution evolves with time.
As the source ages,νc decreases, but the shape of the spectrum below and aboveνc does
not change.

Let N(γ, t) describe the electron energy distribution function in terms of energy
γ and timet. As particles age and lose energy the change in the shape ofN(γ, t) can be
written in terms of a continuity equation for the number density of radiating particles in a
one-dimensional energy space (see section 6.3 ofPacholczyk[1970]).

∂N(γ, t)
∂t

+
∂

∂γ

[

N(γ, t)
dγ
dt

]

= Q(γ, t) (9.10)
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whereN(γ, t)dγ
dt is the flux of electrons with energies passing through the valueγ in one unit

of time as the result of losses and gains of energy by the electrons. The source function
Q(γ, t) gives the number of electrons at each energy that are injected into the radiating
region at unit time and per unit energy interval.

1. Initial Injection model : An initial power law distribution of particles is allowed to
age without further replenishment. This is modeled usingQ(γ, t) = δ(t − t0)γ−s. As
the particles age, a critical energyγc forms, beyond which all particles have stopped
radiating and this gives a spectral break atνc (related toγc via Eqn.9.2).

Within the energy range over which this initial synchrotronspectrul power-law holds
(γmin < γ < γmax), the spectral index on the low-frequency side of this breakis
α = − s−1

2 where s is the power-law index of the initial energy distribution, and
the spectrum on the high-frequency side shows exponential decay (from the single-
energy power-spectrum at the highest surviving energy).

2. Ongoing Injection model : A set of particles with a power-law distribution of en-
ergies is continually injected into the system. Particles at all energies are therefore
aging as well as being replenished. However, since the high energy particles age
faster, there will still be a break in the spectrum atνc, but this break is not as sharp as
for the initial-injection model.

This form of ageing is modeled by choosingQ(γ, t) = γ−s to represent a constant
input of particles with the same energy distribution, and setting ∂N(γ,t)

∂t = 0 to calculate
a steady-state solution above the break frequency. This solution is given byN(γ) ∝
γ−(s+1). With this N(γ) in Eqn. 9.5, the resulting spectrum has a spectral index of
α-0.5 whereα = − s−1

2 . Therefore, the observed spectrum belowνc is a power law
derived from the initial power law distribution of electronenergies and it steepens by
∆α =-0.5 across the break frequency.

Spectral models representing the two above cases can be obtained by numerically solving
Eqn.9.10. For M87, a set of spectra were generated using electron energy distributions
whose power-law indicess range from 1.8 to 2.8 in steps of 0.1 and evolving them over
60 Myr. These solutions were obtained for the initial injection as well as ongoing injection
models described above1 and the only difference between the two models is the form of the
source termQ(γ, t). The resulting spectra are given in terms ofν/νc whereνc represents
a critical frequency at which a spectral break occurs. Figure 9.3 shows an example of the
predicted wide-band spectra forN(γ) ∝ γ−2.0 resulting from no ageing (initial conditions),
and ageingvia the initial and ongoing injection models.

1These numerical solutions were computed by J.A.Eilek and all the spectral fits described in this chapter
used the resulting model spectra.
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Figure 9.3:Spectral Ageing models : This plot shows examples of the predicted wide-band spectra
resulting from no ageing (initial conditiona), and ageingvia the initial and ongoing injection models.
These spectra are plotted as functions ofν/νc to show the steady-state solutions. A particle energy
distribution of N(γ) ∝ γ−2.0 was chosen, giving rise to an initial power-law spectrum with α =
−0.5. Ageingvia the initial injection model shows an exponential decay beyond νc. Ageingvia the
ongoing injection model shows a steepening of the spectral index by 0.5 across the break.

Other models : There are several other theoretical models for the evolution of syn-
chrotron spectra that are based on non-uniform or time-variable B-fields and turbulence.
Eilek et al.[2003] discuss how local MHD turbulence could energize particlesthroughout
the halo, replenish the high-energy particles, and preventthe observed spectrum from steep-
ening.In-situparticle acceleration can also occur in regions with varying B-field strengths
due to particles scattering off turbulent Alfven waves [Eilek et al. 1997]. However, there
are no established methods of predicting the electron synchrotron spectra resulting from
this form of in situ acceleration [Eilek et al. 2003]. Power-law synchrotron spectra with
spectral breaks can also result from power-law distributions of B-field strengths [Eilek and
Arendt 1996].

9.2.2.3 Computing Equipartition B-fields

Calculations of the synchrotron age of a sourcevia Eqn.9.9 require that the B-
field be known. In the absence of measurements that directly probe the B-field strength,
equipartition provides a commonly used estimate.

The observed synchrotron luminosityLsyn depends on the magnetic fieldB, as
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well as the total electron energyUel, both of which are unknown. The total energy of a
synchrotron source is the sum of the energy in the magnetic fields and from relativistic
particlesUtot = UB + Uel. Minimizing the total energyUtot with respect toB results in a
relation of approximate equality betweenUel andUB (equipartition).

UB =
3
4

(1+ k)Uel ⇒ Utot(min) =
7
4

(1+ k)Uel =
7
3

UB (9.11)

wherekUel = Upr is the energy contribution from protons.Utot(min) is then considered
as the minimum total energy required to make a synchrotron source, and can be related
directly to Lsyn and the volume of the source. The total minimum energy density umin

and the minimum-energy B-fieldBeq (often refered to as the equipartition B-field2) can be
computed as follows.

umin =
Utot(min)
ΦV
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whereLsyn is the source luminosity,V is the source volume,Φ is a fraction of the source
volume occupied by the magnetic field, andc13 is a constant that depends on the spectral
index and frequency range over which this calculation is being performed (tabulated in
Pacholczyk[1970]). The minimum-energy B-field can then be computed as follows.

Beq =

[

24π
7

umin

]
1
2

(9.13)

Govoni and Feretti[2004] rewrite Eqn.9.12in terms of measured quantities (I0 [mJy/asec2]
at a frequencyν0 [MHz], spectral indexα between two frequenciesν1, ν2 and source depth
D [kpc]). umin can be written in units of [ergs/cm3] as

umin = ζ(α, ν1, ν2)(1+ k)
4
7ν0

4α
7 (1+ z)

12+4α
7 I0

4
7 D−

4
7 (9.14)

wherez is the source redshift, andζ(α, ν1, ν2) =
(

2α−2
2α−1

)

ν
(1−2α)/2
1 −ν(1−2α)/2

2

ν
(1−α)
1 −ν(1−α)

2

. Tabulated values of

ζ are presented forν1 = 10MHz, ν2 = 10GHz, for α between 0.0 and 2.0 in increments of
0.1. Note that these values contain the assumption thatα changes by less than 0.1 between
10 MHz and 10 GHz. When spectral curvature (δα > 0.1) is measured, a piecewise linear
approximation of the log spectrum may be more appropriate. However, for the calculations
in this chapter, we usedk=1, and the listed values ofζ(α, 10MHz, 10GHz), specifically
ζ = 6.77× 10−13 for α = 0.9.

For a constant homogeneous B-field filling the entire volume of the source, the
source depthD is estimated from the spatial extent of the observed emission. A bright

2The minimum-energy B-field is derived by minimizingUtot = Uel + UB, the minimum-pressure B-field
is derived by minimizingPtot = Pel + PB, and the equipartition B-field is derived from settingUel = UB. All
three methods give similar B-fields, and are often used interchangeably.
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filament atop an extended background may be considered as a region of high B-field, com-
pared to the background. Therefore B-fields can be computed separately for foreground
and background features, with a source depth correspondingto the diameter of a filament
for the foreground calculation.

9.3 Data, Spectral Fits and Synchrotron Ages

Section9.3.1describes the multi-frequency images of M87 that were used for this
project and shows the measured spectra and calculated equipartition B-fields for different
regions of the source. Section9.3.2 describes the spectral-fitting process used and the
results obtained (best-fit critical frequencies for different electron energy distributions, for
two evolution models). Section9.3.3lists the synchrotron ages calculated using the best-fit
critical frequencies.

9.3.1 M87 Spectral data

Intensity Images : The intensity images used for this analysis were existing VLA images
of M87 at 4, P, and L bands for the halo (see Fig.9.4) and 4, P, L and C bands for the
inner bright region (core, jet and inner lobes)3. Images at each of these frequencies were
smoothed to 25 arcsec resolution to match the angular resolution of the 74 MHz image (the
measured flux values are in units ofJy/beam= Jy/(25arcsec)2).

1.1 to 1.8 GHz spectral Index map : A spectral index map across L-band (1.1 to 1.8
GHz) was obtainedvia the wide-band observations discussed in section8.3.2. This spec-
tral index map was used along with the existing 1.4 GHz intensity map to estimate the
total intensity at 1.1 and 1.8 GHz. The L-band intensity and spectral index maps were cor-
rected for the VLA primary beam and its frequency dependencevia a post-deconvolution
correction.

Error-bars : The data used for spectral fits were at 74 MHz, 327 MHz, 1.1 GHz,1.4
GHz and 1.8 GHz (including 4.8 GHz for the bright central region). Error-bars for the data

points were computed as
√

σ2
f luxscale+ σ

2
rms, whereσ f luxscale is a 3% error due to absolute

amplitude calibration.σrms is an image-based rms error, derived from the off-source rms
and averaged by the number of pixels in the flux calculation (σ√

N
). For the 1.1 and 1.8 GHz

points, errors were computedvia error-propagation using the errors on the 1.4 GHz image
and the L-band spectral-index map.

3The VLA images of M87 at all four bands were obtained from F.N.Owen and then regridded and
smoothed to match their angular resolutions.
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Figure 9.4:M87 : Stokes I images at 74 MHz (top left), 327 MHz (top right) and 1.4 GHz (bottom
left), and the spectral-index map between 1.1 and 1.8 GHz (bottom right). All images at 25 arcsec
resolution and the total-intensity images are displayed with the same flux-scale. The spectral index
map was constructed from smoothed versions of the first two coefficient images produced by the
MS-MFS algorithm.

Average spectral index across the source : Figure9.5shows spectra derived from these
data for 11 regions across M87, along with the result of fitting a pure power law (single
spectral index across the entire frequency range) to them. The regions were chosen as
follows. L and M are measured in the core/jet and inner lobes, A, B and C are in filamentary
regions in the bright ’ear-lobe’ and ’ear-canal’ regions, D,E and F are in fainter filamentary
structure in the outer halo and G,H and I are meant to represent the diffuse halo background.

1. The first point to note from the fitted spectral indices is that the central bright region
shows an average spectral index consistent with that measured from high angular
resolution images of the M87 jet and inner lobes.
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2. Second, the fitted values ofα outside the bright central region show a slight gradient
in the spectral index (a steepening of about 0.1) between the’ear’ structures and the
rest of the outer halo. However, the uncertainty on the fittedvalue ofα is itself about
0.05 (estimated from the spectral variations within each box), making the results
consistent with no spectral gradient.

3. Finally, all the spectra for regions outside the central bright region show only a slight
hint of steepening at 1.4 GHz. Using the current VLA L-band spectral index map
the single-pixel error bars are large enough that this steepening is consistent with no
steepening, but when the image RMS is averaged over the regions marked by the
boxes, the error bars become comparable or less than the amount of steepening.

Overall, these wide-band spectra are consistent with pure power-laws. There are hints of
spectral steepening across L-band, which is consistent with existing low-resolution mea-
surements that show a significant steepening somewhere between 1 GHz and 10 GHz.
However, additional measurements are required to confirm this. In particular, since the cur-
rent L-band spectral index map was constructed from 10 VLA snapshots at 16 frequencies
between 1.1 and 1.8 GHz, a real wide-band EVLA D-configuration observation at L-Band
is expected to improve the deconvolution results and therefore reduce the error-bars on the
L-band data points (a D-configuration observation will alsobetter constrain the spectrum
of the low-level extended halo emission). Further, high angular-resolution observations be-
tween 2 GHz and 10 GHz are also required to confirm if this steepening suggested by the
L-band spectral index maps is real or not and to assess if there are significant differences
between different parts of the halo. Note that at these higher frequencies with the EVLA,
wide-band mosaicing observations will be required.

Section9.3.2describes a series of spectral fits that were done with the existing
data and the L-band steepening it suggests, to estimate synchrotron ages for the initial
injection and ongoing injection models of spectral evolution.
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Figure 9.5:Spectral index - all over the source : This figure shows the measured intensities at 74
MHz, 327 MHz, 1.1 GHz, 1.4GHz, 1.8 GHz (and 4.8 GHz for the central region) for 11 regions
across M87, along with the result of fitting a pure power law (single spectral index across the entire
frequency range) to them. A few trends to note from these plots are (a)α in the central bright region
is consistent with the knownα of the M87 jet. (b) there is a slight gradient (∆α . 0.1) between
inner and outer regions of the halo (A,B,Cvs G,H,I), but this variation within the error bar of the
fit (δα ≈ 0.05) and (c) most regions show a slight steepening of the spectrum at 1.4 GHz, but this
steepening is significant with respect to the error-bars only when averaged over several image pixels.
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Region D [kpc] I0 [mJy/asec2] α Beq [µG]
L 5 (10) 54.251 -0.50 33.2 (27.2)
M 5 (10) 43.196 -0.53 32.9 (27.0)
A 20 (40) 0.845 -0.89 10.0 (8.2)
B 20 (40) 0.764 -0.84 8.6 (7.03)
C 20 (40) 0.950 -0.93 9.8 (8.07)
D 40 0.437 -0.92 6.2
E 40 0.573 -0.96 7.4
F 40 0.359 -1.02 6.7
G 40 0.302 -0.93 5.8
H 40 0.132 -0.94 4.6
I 40 0.120 -1.01 4.7

Table 9.1: Minimum-energy B-fields in M87 : This table shows minimum-energy/equipartition
B-fields computed for several regions across M87. The intensities I0 were picked from the 1.4
GHz image (at 25arcsec resolution and scaled to computeI0 in units of mJy/asec2), and spectral
indicesα were from single power-law fits, for the regions labeled in Fig. 9.5. Eqn.9.14was used
to compute the B-fields, for the listed values of distancesD. These B-field values were used in
Eqn.9.9to compute the synchrotron ages listed in Table9.3using the assumption ofBnow= 〈B〉.

9.3.1.1 Calculating B-fields

Minimum energy B-fields were computed for several regions ofM87 (as labeled
in Figure9.5). The values ofI0 were taken from the L-band (ν0 =1.4 GHz) image, andα
is the best-fit singleα across the full sampled frequency range. Minimum energy B-fields
were computedvia Eqn.9.14with z = 0.02 andk = 1. The following tables list the min-
imum energy B-field computed for each region along with the chosen source depth, the
observed intensity and average spectral index. Table9.1shows the B-fields computed us-
ing the observed intensities. Table9.2 shows B-fields computed by treating the observed
filaments as foreground sources on a diffuse background. Filament intensities and spectral
indices were computed by subtracting the average flux measured in two regions and recom-
puting the spectral index. The source depth used for the foreground B-field calculation was
estimated from the observed width of the filaments (≈ 1 kpc).

The B-fields listed in Table9.1 for regions D through I roughly agree with
minimum-pressure estimates listed inOwen et al.[2000] as well asOwen et al.[1990]
which derive B-fields from Faraday-rotation measurements around the inner radio lobes
(regions L and M). The numbers also show that B-fields in regions A,B and C are stronger
than elsewhere in the halo (even when the same source depth of40 kpc is used for all re-
gions). The central bright region shows a significantly higher B-field (with a source depth
of 5 to 10 kpc), as do the filament B-fields computed with sourcedepths of 1 kpc. For com-
parison, the maximum average B-field computed using pressure-balance arguments from
the energy density of the external ICM thermal gas (measuredvia its temperature) ranges
betweenBdyn = 18∼ 31µG for the observed range of temperatures.
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Filament I f il [mJy/asec2] α f il Beq [µG]
A - I 0.724 -0.87 21.5
A - H 0.711 -0.89 22.2
B - I 0.643 -0.78 19.6
B - H 0.629 -0.81 18.0
C - I 0.846 -0.91 21.3
C - H 0.828 -0.93 22.1
D - I 0.317 -0.86 16.5
D - H 0.300 -0.91 15.7
E - I 0.459 -0.94 19.1
E - H 0.441 -0.96 19.4

Table 9.2: Minimum-energy B-fields for M87 filaments : This table shows minimum-
energy/equipartition B-fields computed for several filamentary regions across M87. These regions
are spatially compact but long and are treated as being separate from the diffuse background. The
filament intensities and spectral indices were computed using the difference between the intensities
measured on a filament and the diffuse background. A source size ofD = 1.0 kpc was used for all
these calculations, to represent the filament thickness as seen from high resolution images. These
filament B-fields are later be used to compute synchrotron lifetimes (listed in Table9.4) via Eqn.9.9
whereBnow = Beq for the filaments, and〈B〉 asBeq for the background (from Table9.1).

9.3.2 Spectral Fitting

This section describes the process used to fit the measured wide-band spectra
to the initial injection and ongoing injection spectral evolution models, and the results
obtained for different parts of the source. Model spectra were obtained as described in
section9.2.2.2for 11 values ofs ranging from 1.8 to 2.8 (N(γ) ∝ γ−s) and evaluated
for 30 frequencies ranging from 10 MHz to 10 GHz. The data consist of 5 (or 6) flux
measurements between 75 MHz and 1.8 GHz (or 4.8 GHz).

Goal : For each value ofs, find aνc that gives the best fit of the data to the model. Obtain
best-fit solutions for both the initial injection and ongoing injection models.

Method : The two variable parameters areνc and an amplitude scaling factor. The model
spectra are described in terms ofν/νc. Therefore, for the process of fitting,νc is a free
parameter that decides how the data points shift along the x-axis (defined byν/νc). The
amplitudes of the models are arbitrarily scaled. To comparethem with the data, they need
to be scaled to match the data at one frequency. (The choice here was 74 MHz.) For each
model,χ2 was computed4 for a range of possible values forνc, and value corresponding to
the minimumχ2 was chosen as the best-fitνc.

4Reducedχ2 values were computed using these 5 data points, 3 degrees of freedom (sinceνc is the
only parameter being fit for eachs), and an estimate of the data variance obtained as a few percent of the
flux at L-band. However, such an estimate made from 5 irregularly spaced data points with non-Gaussian
errors is not a robust measure of the goodness of fit that can becompared to the ideal value of 1.0. Theχ2
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Figure 9.6:Spectral Fits :χ2 as a function ofsandν for region I : (Left): Initial, (Right) Ongoing.
Darker regions correspond to lower values ofχ2. These plots show that for the initial-injection
model, better fits are obtained for higher values ofsand giveνc values greater than 3.0 GHz. For the
ongoing-injection model, all values ofsbetween 1.8 and 2.8 give good fits withνc ranging between
10 MHz and 4 GHz. Note that belows = 2.1 and aboves = 2.5 there is a higher uncertainty onνc
(the widths of the darker regions increase for these values of s). This is because we are fitting the
asymptotes by a spectrum consistent with a single power-law, andνc is almost unconstrained there.

Output : The results of these spectral fits is a value ofνc for each value ofs, for dif-
ferent features across the source. This is the critical frequency to be used to calculate the
synchrotron age. Values ofνc vs swere computed for the two ageing models described in
section9.2.2.2.

Error bars : The uncertainty on the best-fit value ofνc was estimatedvia a Gaussian fit
to the 1Dχ2 function (evaluated for severalνc) in the neighbourhood of the minimum. For
these data points and models, the average uncertainty on thebest-fitνc was±30%.

Results : Figure9.6 shows theχ2 surface as a function of two variabless andνc for a
subset of the region labeled as I in Fig.9.5and Figures9.7and9.8show the corresponding
model spectra and data points.

1. Initial Injection model : The left panel of Fig.9.6 showsχ2 for the initial injection
model and Fig.9.7shows the corresponding spectra plotted using the best-fit values
of νc for (s=2.0, 2.2, 2.4 and 2.6). Both these figures show that lower values of
χ2 (< 10) are obtained only fors > 2.3 and giveνc values between 1 and 8 GHz.
This is because the five sampled frequencies do not show steepening consistent with

distribution for 3 degrees of freedom shows that there is a 50% probability of the reducedχ2 being less than
0.8, a 10% probability of it being less than 0.2 and a 1% chanceof it being greater than 3. Further, the true
number of degrees of freedom for this problem lies between 1 and 3 since the three L-band data points are
not independent (the 1.1 GHz and 1.8 GHz data points are derived from the 1.4 GHz values and the L-band
spectral index). Therefore, theseχ2 values were used only to measure how the goodness of fit varieswith s
andνc. These trends were verified by doing a Kolmogorov-Smirnov test designed for a small sample set and
this showed the same trends asχ2.
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an exponential drop-off and therefore must all be below or nearνc. Therefore it is
not unexpected that better fits are obtained only whenνc > 2GHzand all data points
fall in the single-power-law region of the synchrotron spectrum where the average
spectral index of -0.9 constrains the value ofs to be about 2.8. Note however, that
whenνc does not lie within the sampled frequency range, anyνc fits are based on
extrapolated spectra and are more uncertain.

2. Ongoing Injection model : The right panel of Fig.9.6 shows theχ2 surface for the
ongoing injection model and Fig.9.8 shows the corresponding spectra plotted with
best-fitνc values for s=2.0, 2.2, 2.4 and 2.6. In this case, low values ofχ2 are obtained
for all sampled values ofs, suggesting that the spectral steepening is too gradual for
these data points to constrain the model. However note that these fits show a basic
trend of particles with a steeper particle energy distribution having higher best-fitνc
values and hence shorter lifetimes (the particles require ashorter amount of time to
steepen to the currently observed spectrum).

Figures9.9 and 9.10 showχ2 plots similar to Fig.9.6 for 11 regions of the M87 halo.
They show that for each value ofs, steeper average spectra give lower best-fitνc values and
the darker regions of these plots moves towards the top-left. Also, brighter regions have
sharperχ2 minima indicating slightly smaller error-bars on the best-fit values ofνc. All
plots show that steeper electron energy distributions takeshorter amounts of time (higher
best-fitνc) to reach the observed steepened spectra.
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Figure 9.7: Spectral Fits - Initial Injection model : This plots shows the 5 data points (cicles)
overlaid on four model spectra (solid lines) derived for four different values ofs= 2.0, 2.2, 2.4, 2.6.
The slanting dashed lines passing through the data points represent a single spectral-index fitted to
all 5 data points (α = −0.93). The vertical dashed line indicates the critical frequency νc, and all
spectra have been shifted such thatνc for all the fits are aligned. These data points were obtained
from a subset of the region marked I in Figs.9.5and9.9. Values ofχ2 for these fits are shown in the
left image in Figure.9.6and show that higher values ofshave better fits. This is because these data
points are consistent with a power-law (single-α) and can only correspond to the below-νc regions
of the synchrotron spectrum. The slight steepening seen in the three L-band points provides a strong
constraint onνc (which also makes anyνc fits highly dependent on the error in the measured L-band
spectral index).



232

Figure 9.8: Spectral Fits - Ongoing Injection model : This plots shows the 5 data points (ci-
cles) overlaid on several model spectra (solid lines) derived for four different values ofs =
2.0, 2.2, 2.4, 2.6. The dashed lines passing through each set of data points represent a single spectral-
index fitted to all 5 data points (α = −0.93). The vertical dashed line indicates the critical frequency
νc, and all spectra have been shifted such thatνc for all the fits are aligned. These data points were
obtained from a subset of the region marked I in Figs.9.5 and9.10. Values ofχ2 for these fits are
shown in the right image in Figure.9.6. These fits show that these data do not constrain the value
of νc or s for the ongoing injection model. This is because the models show a very slow steepening
of the spectrum aroundνc and the data points are also consistent with a power-law (single-α) and
show only a slight steepening across L-band.
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Figure 9.9:Initial Injection model - all over the source : These plots show the values ofχ2 as a
function of s andνc. Darker regions correspond to lowerχ2 values. The central bright region does
not fit the initial-injection model for anys between 1.8 and 2.8. For the rest of the halo, these data
appear to rule out the initial-injection model fors < 2.4. These plots show that the initial injection
model gives relatively good fits only for values ofs > 2.3, and the corresponding best-fit critical
frequencies lie above 2 GHz (consistent with low-resolution measurements that suggest steepening
between 1 and 10 GHz). Regions with steeper spectra show a slight shift of theχ2 minima towards
higherνc values and steeper initial particle energy power laws.
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Figure 9.10:Ongoing Injection model - all over the source These plots show the values ofχ2 as
a function ofs andνc. Darker regions correspond to lowerχ2 values. The central bright region
shows relatively good fits fors = 2.0, 2.1 andνc > 2GHz, a result consistent with the idea of radio
lobes being continiously fed by a jet with an injection indexof 2.1 (and measured spectral index
of -0.55). In the rest of the halo, all values ofs between 1.8 and 2.8 give best-fitνc values with
comparable absoluteχ2 values. This shows that with the current data, the ongoing injection model
cannot be ruled out. Regions with steeper observed spectra show a slight shift of theχ2 minima
towards lowerνc values (more ageing) and steeper injected spectra. However, the steepening across
the spectral break as well as the measured spectrum are too gradual to be able to constrain boths
andνc simultaneously.
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9.3.3 Calculating Synchrotron lifetimes

Synchrotron ages of different features across the source were calculated using
best-fit values ofνc for spectral models withs= 2.0 ands= 2.5 for ongoing-injection and
s= 2.5 for initial-injection.s= 2.0 was chosen because high angular-resolution wide-band
observations of the M87 jet have shown a constant spectral index of -0.5 (corresponding
to an injection index ofs = 2.0). s = 2.5 was chosen for the the rest of the calculations,
as it gave best-fit solutions for most regions in the halo for the initial-injection model (no
good fits were obtained fors < 2.4 with initial-injection). The ongoing injection model
gave valid fits for all tested values ofs. Here,s= 2.0 ands= 2.5 are representative of the
best-fit values in regions of the spectrum where we are fittingasymptotes, and they bracket
the range of best-fitνc values allowed by this model.

Synchrotron ages were computed using both equipartition B-fields shown in Ta-
bles.9.1 and9.2 and the maximum average B-field (Bdyn = 27µG) given by the ambient
pressure. Table9.3 lists the synchrotron ages calculated using Eqn.9.9with Bnow = 〈B〉 =
Beq to represent a homogeneous B-field seen by the particle throughout its lifetime. Ta-
ble 9.4 lists synchrotron ages of filamentary structures treated separately from the diffuse
background. Two sets of calculations were done using〈B〉 = Beq from Table9.1as back-
ground B-fields. The first usedBnow = Beq from Table9.2for filament B-fields and and the
second usedBnow = Bdyn.

The main trends shown by these numbers are

1. The inner radio lobes (regions L,M) givetsyn= 3 ∼ 5 Myr for ongoing injection with
s= 2.0 (with bothBeq andBdyn).

2. With equipartition B-fields, the ear lobe/canal (regions A,B,C) givetsyn ≈ 20 Myr
for initial injection ands = 2.5, andtsyn = 30 ∼ 200 Myr for ongoing injection
(2.0 ≤ s≤ 2.5). With Bdyn = 27µG these ages are∼5 times smaller.

3. With equipartition B-fields, the halo (regions D through I) give tsyn = 40 ∼ 70 Myr
for initial injection ands = 2.5, andtsyn = 90 ∼ 800 Myr for ongoing injection
(2.0 ≤ s≤ 2.5). With Bdyn = 27µG these ages are∼8 times smaller.

4. For the filaments, we gettsyn ≈ 100 Myr for initial injection ands = 2.5 andtsyn =

100∼ 1000 Myr for ongoing injection.

For comparison, timescales obtained from direct dynamics (for 40 kpc) includetbuoyant≈ 60
Myr from a buoyant bubble model [Churazov et al. 2001], tdriven = 50 ∼ 120 Myr from a
driven expanding bubble model witḣE = 1044 ∼ 1045 erg/sec andnx = 0.01 [Owen et al.
2000] and tsound≈ 100 Myr from the local sound speed. Timescales from low-resolution
wide-band spectra [Rottmann et al. 1996b] are 30 to 40 Myr for the ear lobe/canal regions
(regions A,B,C, 20 kpc scale).
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D νc[MHz] t
Beq
syn t

Bdyn
syn νc[MHz] t

Beq
syn t

Bdyn
syn νc[MHz] t

Beq
syn t

Bdyn
syn

[kpc] Ongoing [Myr] [Myr] Ongoing [Myr] [Myr] Initial [Myr] [Myr]
s=2.0 s=2.5 s=2.5

L 5 (10) 7100 3.2 (4.3) 4.3
M 5 (10) 5000 3.9 (5.2) 5.1
A 20 (40) 100 150 (190) 35 1300 42 (54) 10 6200 19 (25) 4.6
B 20 (40) 190 140 (175) 26 2900 35 (44) 7 7100 22 (28) 4.3
C 20 (40) 66 190 (250) 44 820 54 (70) 13 4400 23 (30) 5.5
D 40 81 300 40 940 90 11 4700 40 5.3
E 40 57 300 48 710 85 13 3600 37 6.1
F 40 17 600 87 310 140 20 2300 52 7.5
G 40 70 360 43 820 100 12 4100 46 5.7
H 40 66 460 44 820 130 12 4100 58 5.7
I 40 21 800 78 440 180 17 2700 71 7.0

Table 9.3:Synchrotron lifetimes : This table lists the synchrotron lifetimes calculated using the
best-fit critical frequencies for s=2.0 and s=2.5 for the ongoing-injection model and for s=2.5 for
the initial-injection model. The uncertainty on the fittedνc values is about±30% which gives an
uncertainty of±15% on the synchrotron lifetime.

νc[MHz] t
Beq
syn t

Bdyn
syn νc[MHz] t

Beq
syn t

Bdyn
syn νc[MHz] t

Beq
syn t

Bdyn
syn

Ongoing [Myr] [Myr] Ongoing [Myr] [Myr] Initial [Myr] [Myr]
s=2.0 s=2.5 s=2.5

A-I 140 630 700 1800 180 200 7200 88 100
A-H 110 760 850 1400 210 240 6300 100 110
B-I 280 420 500 7200 84 99 7200 88 99
B-H 230 480 600 4700 100 130 7200 87 100
C-I 87 790 900 1000 230 260 5000 100 120
C-H 66 1000 1100 820 290 320 4400 120 140
D-I 130 570 730 1800 160 200 7200 78 100
D-H 87 740 970 1000 210 280 4700 100 130
E-I 75 800 970 820 250 290 4400 100 139
E-H 61 970 1200 760 280 330 3800 120 150

Table 9.4:Synchrotron lifetimes for filaments : This table lists the synchrotron lifetimes calculated
using the best-fit critical frequencies for s=2.0 and s=2.5 for the ongoing-injection model and for
s=2.5 for the initial-injection model. The spectral data usedfor these fits were computed as the
difference between the filament and background intensities. Twosets of calculations were done
using the the equipartition field calculated for the background (regions I and H) as〈B〉 in Eqn.9.9.
The first used filament B-fields from Table9.2 and the second usedBdyn as the filament B-field.
Here too, the uncertainty on the fittedνc values is about±30% which gives an uncertainty of±15%
on the synchrotron lifetime.
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9.4 Interpretation

This section discusses whether or not any of the synchrotronageing models fit
the data, whether or not the synchrotron ages are consistentwith other age estimates, and
what these results (and better measurements) could tell us about the synchrotron processes
at play within the M87 radio halo.

9.4.1 Do these ageing models fit ?

9.4.1.1 Core/ Jet / Inner lobes

For the bright central region (labeled as L and M) consistingof the core, the 2
kpc jet and inner radio lobes<5 kpc from the core, the ongoing-injection model fits well
for s ≈ 2.0, giving a best-fitνc > 5GHz and an age of< 5 Myr for the inner-lobes. No
valid fits were obtained for the initial injection model withsbetween 1.8 and 2.8, or for the
ongoing injection model withs > 2.2. Note that a synchrotron age of≈ 5 Myr is smaller
than the timescale of 17 Myr derived from the sound-speed across 5 kpc (using T=107K,
derived fromP = 14.5× 10−11dyn/cm2 at a distance of∼ 5kpc from the core [Owen et al.
2000]), but is consistent with a 2∼ 4 Myr dynamic expansion time calculated for a driven
bubble (Eqn.9.1) over a distance of 5 kpc witḣE ≈ 1044ergs/sec. Also, within this region,
the equipartition B-fields are similar to the equivalent B-field that balances the external
pressure and gives similar timescales.

An injection index ofs = 2.0 for the M87 jet is consistent withα jet ≈ −0.5 as
known from high resolution observations of the M87 jet (Owen, private commn.). Also,
Perlman and Wilson[2005] show that the broad-band spectrum of the M87 jet (radio to X-
rays) is consistent with a continuous injection index ofs = 2.2, and the critical frequency
estimated from measurements of the jet spectrum between radio, optical and X-ray bands
is at about 100 THz (infrared).

9.4.1.2 Halo : Initial Injection model

The simplest spectral evolution model for regions outside the bright central re-
gion is the initial-injection model in which energetic particles are produced in the jet and
the travel outwards in the form of buoyant or expanding bubbles and agevia synchrotron
radiation with no additional sources of energy.

Outside the central bright region, the data and spectral fitsrule out all values
of s < 2.4 for the initial-injection model. The model spectra predicted for s ≤ 2.4 have
below-νc spectral indices of -0.7 (and less) that are flatter than the average spectral index
of -0.9 measured between 75 MHz and 1.8 GHz. Also, the initial-injection model predicts
significant curvature even in the sampled frequency range (75 MHz to 1.8 GHz), and the
lack of such curvature is a strong indicator even without measurements between 1 and 10
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GHz. This means that if s=2.0 is the only possible source, something is preventing the
higher-energy electrons from cooling and steepening the spectrum and this system cannot
follow the initial-injection model.

Better spectral fits were obtained fors = 2.5 and above, leading to aνc of be-
tween 1 and 10 GHz. These numbers are consistent with low-resolution measurements
from Rottmann et al.[1996a] that show significant steepening between 1 and 10 GHz, and
numerical models fromChurazov et al.[2001] that predict an average spectral index of -1.0
below 1 GHz and a drop off beyond 5 GHz.

These critical frequencies give synchrotron ages or 20 to 30Myr for regions
A,B,C and about 35 to 70 Myr for regions in the outer halo. These ages are computed from
equipartition B-fields (timescales of 5 to 7 Myr are obtainedusing the maximum B-field
derived from arguments of pressure balance with the ICM). For comparison, sound speed
calculations (from T∼ 107K, [Shibata et al. 2001]) give timescales of 70 Myr and 140 Myr
for 20 kpc and 40 kpc respectively. Also, expansion timescales for a driven bubble are 16
Myr and 53 Myr for 20 kpc and 40 kpc respectively, withĖ ∼ 1044ergs/sec andnx = 0.01.
The buoyant bubble simulations ofChurazov et al.[2001] suggest that a distance of 40 kpc
can be reached in 67 Myr.

These timescales match within their uncertainties, but thebiggest discrepency in
these results is that the jet has an observed injection indexof -0.5, corresponding tos= 2.0,
but outside the central bright region it is clearly not possible to fit the data withs= 2.0 and
the initial injection model. However, if we consider the ’ear-lobe/canal’ and structures in
the outer halo to have formed from a previous cycle of AGN activity, there is no reason for
the previous injection spectrum to have beens = 2.0. If it had a steeper injected spectrum
and a low B-field (∼ 7µG, similar to the computed equipartion fields), the initial-injection
model gives plausible ages. Further, an age difference of∼ 100 Myr between the inner
radio lobes and the outer halo could further suggest a 100 Myrduty cycle of AGN activity.

Finally, note that the observed spectra are nearly consistent with a pure power-law
and only the L-band spectrum shows slight steepening (comparable to the size of the per-
pixel error-bars). Therefore, all these spectral fits are constrained largely by the current L-
band spectral index map (which contains the effect of deconvolution errors and low signal-
to-noise of the halo emission). Also, these fits workonly for νc greater than any observed
frequency. Therefore one can only obtain a lower limit onνc, and therefore, a upper-limit
on the associated synchrotron lifetimes.

However, these data do suggest aνc of a few GHz, and further observations at C-
band (4.8 GHz) and higher are required to see whether the observed power law continues,
or a turn-over followed by an exponential drop-off is observed.
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9.4.1.3 Halo : Ongoing Injection model

The ongoing-injection model applies only to regions that are continuously fed by
an energy source, or to regions where there is some local formof particle injection. Out
in the halo, a continuous particle injection is an unlikely scenario, but particles may be
locally re-energised by scattering off turbulent Alfven waves in an inhomogeneous B-field
(for example).

Outside the bright central region, all values ofs = 1.8 ∼ 2.8 give good fits
with the ongoing-injection model withνc ranging all the way from 30 MHz to 6 GHz and
give synchrotron lifetimes ranging from 90 Myr to 800 Myr. These timescales range from
bubble expansion and buoyancy timescales, to values comparable with the expected cooling
time tcool ≈ 1 Gyr.

One interpretation of having such a wide range of valid solutions is that the syn-
chrotron evolution model does not follow a continuous particle injection model with a fixed
injection index, and other processes such as B-field inhomogenieties may be at play. How-
ever, the most likely reason for these multiple solutions isthat all the spectra are consistent
with pure power-laws and these fits have a high degree of uncertainty. Values ofs <2.1
and>2.3 give better fits because the below-νc and above-νc power-laws match the observed
power-law spectra (α ≈ −0.9 matches the spectrum fors = 2.8 belowνc and fors = 1.8
aboveνc). Also, since in these regions we are fitting asymptotes,νc is not well constrained,
and only upper and lower limits can be obtained. Further, thepredicted curvature across
the break is very gradual, and spectra that are consistent with a pure power-law (within
error-bars) give reasonable spectral fits even across the region of curvature although these
fits have higherχ2 values than fits to the asymptotes. However, note that in general, the
absoluteχ2 values obtained with the ongoing-injection model were consistently lower than
those obtained with the initial-injection model (most likely the result of large error-bars).

9.4.1.4 Filaments

The apparent correlation between structures seen in the radio and X-ray in the
’ear-lobe’ and ’ear-canal’ regions suggests some form of local activity that might con-
tribute to the transfer of energy between the radio plasma and the surrounding thermal
ICM. Also, the compact filamentary structure seen throughout the halo suggests regions of
high B-fields and possible sites of local particle re-energizing. To check if either of these
models apply, we need to isolate the filaments from the diffuse background and analyse
them separately.

Ages derived using Eqn.9.9for ongoing-injection in filaments give timescales of
0.5 to 1.0 Gyr fors= 2.0 (again, comparable totcool ≈ 1 Gyr) and 0.1 to 0.3 Gyr fors= 2.5.
The timescales calculated for the filaments are consistently larger than those computed
with the total observed intensity, an effect expected for particles moving from lower B-field
regions to higher B-fields regions from where they are currently radiating (Eqn.9.9 for
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inhomogeneous B-fields). This model and the obtained timescales may imply the presence
of structures (with high B-fields) that are perhaps persistant across cycles of AGN activity
and produce high frequency synchrotron radiation when particles move into them. Instead
of (or in addition to) increased B-fields, these regions could also be sites ofin-situparticle
re-acceleration where the fraction of high-energy particles is increased (note that in this
case, the spectral shape is likely to differ from the ongoing injection model). Alternatively,
these largetsyn values could be the result of over-estimating the B-fields inthe filaments
or under-estimating the average background B-field (i.e. if equipartition does not hold).
Therefore, these data do not rule out the possibility of these filaments being isolated sites
of activity (possibly with high B-fields) other than simple ageing of particles with an initial
energy spectrum. Also, timescales obtained with the initial-injection model ands= 2.5 are
∼ 100 Myr, which is still comparable to the dynamic age of the outer halo. This suggests
that these filaments are also consistent with spatially compact regions with high B-fields
compared to the surrounding, passively moving through the halo as it expands.

To probe these ideas further and ascertain whether there is any significant differ-
ence between the filaments and their surroundings, we need toisolate filament and back-
ground spectra more accurately, especially in the frequency range of 1 to 10 GHz where
there should be a measureable difference if these filaments do represents local sites of par-
ticle re-energising. If a significant difference in the spectral shape is measured between
structures in the halo and regions in the ear lobe/canal where increased X-ray emission is
present, it may give evidence for the ear lobe/canal regions to be sites of local energetic
activity and energy transfer between the radio plasma and the ICM.

9.4.2 Conclusions and Future Work

Spectra in the inner few kpc (the lobes immediately around the jet) are consistent
with an ongoing injection of particles with the energy distribution as seen in the jets≈ 2.0,
and a synchrotron age of≈ 5 Myr which is also consistent with dynamical estimates. For
features in the halo (filaments, background and large-area averages), ages consistent with
expansion and buoyancy timescales (∼ 20 Myr for regions A,B and C, and 40∼ 70 Myr
for the halo) can be obtained with the initial injection model of synchrotron ageing with
s ≈ 2.5. These data appear to reject all initial-injection fits fors < 2.4, suggesting that
if this model were to apply, the radiating particles need to have originated from perhaps a
previous cycle of AGN activity in which the injected energy distribution had a steeperN(γ).
There is also a slight hint of spectral steepening from the inner regions to the outer halo, but
these variations are within the calculated uncertainties and need better measurements and
imaging (across L-band) to confirm. Outside the inner radio lobes, the ongoing injection
model gives plausible solutions for a wide range ofs (1.8 to 2.8), showing that the spectral
data used for these fits are unable to constrain the model. However, this model cannot be
ruled out, and more sensitive observations are required in order to ascertain whether the
predicted shallow steepening is present or not.
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The above results can be combined to suggest that the inner radio lobes and the 40
kpc halo may have originated from two different cycles of AGN activity (one withs = 2.5
and one withs = 2.0) and possibly separated by∼ 100 Myr. The inner radio lobes are
continuously being fed by particles from the jet, whereas the much larger structures are
the result of passively ageing particles. The only parts of the halo where something other
than passive synchrotron aging may be happening are the bright filaments. Timescales
of 100 ∼ 200 Myr are obtained with the ongoing-injection model (s = 2.5) for bright
filaments in regions A,B and C (where the X-ray emission appears to be correlated with
the radio). These timescales are up to a factor of 2 larger than dynamical estimates, and
correspond to particles radiating from high B-field regions. These B-fields are comparable
to the maximum possible field derived from pressure-balancewith the surrounding ICM,
and could signal regions with inhomogeneous B-fields and local energetic activity that may
contribute to the transfer of energy between the radio halo and the ICM.

9.4.2.1 Future observations

To take the ideas discussed above to their logical conclusions, further observa-
tions are required to (a) probe the high-angular-resolution structure of the halo at frequen-
cies above 2 GHz and (b) produce high dynamic-range spectralinformation to treat fila-
ments separately from the diffuse background.

With real EVLA data at L-Band it is expected that spatio-spectral deconvolution
errors will reduce, making the L-band spectral index map more reliable. The EVLA D-
configurationuv-coverage is required for sensitivity to large spatial scales (diffuse halo),
and C and B configurations will provide the required angular resolution to isolate filaments
from the background.

Measurements at 4.8 GHz and higher are required to test whether the slight steep-
ening suggested by the current L-band data is real or not, andif it is, whether there is a sharp
drop-off in flux between 1 and 10 GHz at small spatial scales (similar tothat observed from
low-resolution images), or whether the entire halo or partsof it show flatter spectra. Such
observations with the EVLA C-band (in D-configuration) willrequire a mosaic observation
with wide-band primary-beam correction, and perhaps single-dish observations to fill in the
short spacing flux.



CHAPTER 10

CONCLUSION

In accordance with the goals of this dissertation outlined in chapter1, a general
purpose multi-scale multi-frequency deconvolution algorithm (MS-MFS) was developed
for use in broad-band radio interferometry, and then applied to multi-frequency VLA ob-
servations of the M87 radio galaxy to study the observed broad-band spectra of various
features in its radio halo. Section10.1summarizes the work done to develop the MS-MFS
algorithm with its current capabilities, points out the requirement for tests using real wide-
band data, and lists a few topics of future research in wide-band image reconstruction.
Section10.2summarizes the results obtained from a high angular resolution study of the
broad-band spectrum of the M87 radio halo and suggests future observations required to
take the next step.

10.1 Wide-band image reconstruction
Summary : The first step of this project was to evaluate the applicability of existing
wide-band image reconstruction methods to data from broad-band interferometers and
identify areas that required algorithmic improvements. Tests on simulated EVLA data
showed that the existing multi-frequency synthesis methods are adequate for narrow-field
imaging of isolated point sources with pure power-law spectra, but inadequate for sources
with extended emission or spectra that are not pure power-laws. These tests also showed
that when the single-frequencyuv-coverage of the interferometer is sufficient to unam-
biguously reconstruct the spatial structure of the source,a simple hybrid of single-channel
imaging and multi-frequency synthesis could potentially deliver required image dynamic
ranges on the continuum image. However, spectral information would still be a by-product
and available only at the angular resolution of the lowest frequency in the band.

Based on the results from the above tests, the next step was todevelop a new
multi-frequency synthesis algorithm that combined multi-scale deconvolution techniques
along with a spectral model capable of representing arbitrary but smooth spectral shapes.
For wide-field imaging, methods to model the frequency dependence of the primary beam
and correct for it during multi-frequency synthesis and deconvolution were also developed.

In order to understand the details involved in formulating and implementing such
algorithms, it became necessary to work out and describe thebasic numerical optimization
framework used in most established calibration and imagingalgorithms in radio interfer-
ometry. Recently developed algorithms that correct for direction-dependent instrumental
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effects, perform multi-scale deconvolution and multi-frequency synthesis imaging were
also described in this framework in order to clarify the connections between all these meth-
ods and show how they could be extended individually and alsocombined into a practical
implementation. An analysis of the existing multi-scale and multi-frequency deconvolu-
tion algorithms in this framework led to ideas for demonstrable improvements in both the
algorithms.

The resulting MS-MFS algorithm parameterizes the 2-D sky brightness distribu-
tion using a multi-scale basis and describes the spectrum per pixel as a polynomial. The
data products are a set of coefficient images describing this polynomial for each pixel, and
images of the continuum emission, spectral index and spectral curvature can be derived
from them. The MS-MFS algorithm improves upon existing wide-band imaging meth-
ods in the following ways (a) a multi-scale parameterization suited to both compact and
extended emission, (b) a flexible spectral model to allow arbitrary spectral shapes includ-
ing partially band-limited signals (c) the use ofa-priori information about synchrotron
spectra to reconstruct spectral structure at the angular resolution allowed by the highest
frequency in the band, and (d) a method to model the frequency-dependence of the antenna
primary beam and to evaluate and use this model within the image-reconstruction process.
The MS-MFS algorithm was implemented within the CASA and ASKAPsoft data analysis
packages.

Since the MS-MFS algorithm was developed and implemented before real wide-
band data from the EVLA was available, all algorithm validation tests were performed
either on simulated wide-band EVLA data or data from multi-frequency VLA observa-
tions between 1 and 2 GHz (taken as a series of narrow-band snapshot observations).
The algorithm was tested on sources with spectral structureon multiple spatial scales,
moderately-resolved sources with power-law spectra, overlapping sources with different
spectra, sources with band-limited emission and sources with broad-band emission over
wide fields-of-view. These tests have shown satisfactory results in terms of dynamic range
and accuracy. Further tests of both the MS-MFS and the simpler hybrid algorithm using
real wide-band EVLA data would help in order to quantify errors and establish a general-
use data analysis path.

Future work : This new generation of broad-band interferometers has opened up a wide
range of astrophysical opportunities that will require further algorithm research and devel-
opment. For example, the use of wide-band data for full-polarization high dynamic-range
imaging will have to take into account the effects of frequency-dependent source and in-
strumental polarization, and it is not clear whether the spatial and spectral flux models used
in the MS-MFS algorithm are appropriate for wide-band Stokes Q,U and V imaging. Then,
the possibility of combining recently developed rotation-measure synthesis with wide-band
imaging is also worth exploring from the point of view of simultaneously obtaining accu-
rate spatial and spectral reconstructions and therefore increasing the fidelity of the results.
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Even for Stokes I imaging, other algorithms must be exploredto address areas
where the MS-MFS formalism may not be the best choice. High dynamic-range wide-
band imaging simulations have shown that the algorithm is currently limited by its choice
of multi-scale image parameterization. Therefore, wide-band extensions of algorithms like
ASP-CLEAN are worth exploring in combination with more advanced numerical optimiza-
tion techniques. An initial investigation into such an approach has shown very promising
results (not included as part of this dissertation) and mustbe taken to its logical conclusion.
Wide-band primary-beam correction with the MS-MFS algorithm has shown good results
only within the main lobe of the primary beam at the highest frequency (about the HPBW
at the lower end of a 2:1 bandwidth). A careful evaluation of the involved errors must be
carried out for fields-of-view beyond this limit, at least inthe context of accurate model
prediction for wide-band mosaicing applications.

Finally, the benefits of using broad-band receivers are the greatest when the
narrow-band spatial-frequency coverage of the imaging interferometer is too sparse to be
useful on its own, or if the source of emission is time-variable and synthesis observations
cannot be spread out in time. VLBI imaging is one such area where a wide-band imaging
algorithm that reconstructs both spatial and spectral structure simultaneously from incom-
plete measurements could yield significant improvements over conventional techniques.
Wide-band image reconstruction applied to sources whose time-varying spatial and spec-
tral structure is of astrophysical interest is another areawhich could benefit from such
algorithms.

10.2 The spectral evolution of M87

Summary : The MS-MFS algorithm developed in the first part of this dissertation
project was applied to data from multi-frequency VLA observations of the M87 cluster-
center radio galaxy between 1.1 and 1.8 GHz in order to complement existing low-frequency
measurements of the broad-band spectrum of various features in its 40 kpc halo. The result-
ing spectra were compared with a set of model spectra derivedfrom two different spectral
evolution models. Best-fit break frequencies were estimated and synchrotron ages were cal-
culated and interpreted in the context of dynamical evolution models and their timescales
for various features observed in the M87 radio halo.

A spectral index map constructed from multi-frequency L-band observations of
the M87 radio halo was combined with existing images at 75 MHz, 327 MHz and 1.4 GHz
in order to constrain the slope of the broad-band spectrum atthe upper end of the sampled
range. These wide-band spectra were then compared with spectra obtained from two differ-
ent synchrotron evolution models, one representing the passive ageing of a set of energetic
particles with an initial power-law distribution of energies, and the other representing a
continuous injection of energy either by a continuous flow orsome reheating mechanism.
A series of spectral fits were performed to estimate break frequencies and synchrotron ages
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for both spectral models and various features across the radio halo.

The main results of this study are as follows. Spectra in the central bright region
corresponding to the active 2 kpc jet and inner radio lobes (<5kpc from the core) are con-
sistent with a continuous ongoing injection of particles with an energy power-law index of
s ≈ 2.0 and give ages of< 5MYr, all of which are consistent with existing high angular
resolution measurements of the jet spectrum. Elsewhere in the halo, the data fit the ini-
tial injection model only fors ≥ 2.4 and give synchrotron ages consistent with dynamic
estimates. These results suggest that the inner lobes are currently being powered by a jet
outflow with an injection index ofs ≈ 2.0, and the outer halo is the remnant of a previous
cycle of AGN activity in which the injection index of the particles wass≥ 2.4 and not the
currently observeds = 2.0. The spectra of a few bright filamentary structures were then
analysed separately from the diffuse background, as being regions of either high B-fields
or local energetic activity in which the particles have spent only a small fraction of their
lifetime. This analysis yielded filament B-fields stronger than the surroundings, and syn-
chrotron ages longer than dynamical estimates of the halo age, suggesting that these high
B-field regions are either sites of local energetic activity(other than ongoing-injection) or
high B-field regions persistant across cycles of AGN activity. Finally, outside the inner ra-
dio lobes, all spectra yield acceptable fits for the ongoing-injection model for 1.8 < s< 2.8,
suggesting that this model also works but these data are unable to adequately constrain it.

Future Work : Further observations are required to confirm these results because most
of the spectral fits gave break frequencies above 2GHz where there were no data points.
Also, the spectral fits were strongly influenced by the measured slope at L-band, which
given the error bars were also consistent with no steepening. A true EVLA wide-band
observation of the M87 radio halo at L-band (1-2 GHz) is expected to reduce deconvolution
errors and therefore improve the quality of the slope constraints.

Also, high angular-resolution observations at C-band (4-8GHz, D-configuration)
are required in order to confirm whether or not the halo shows an exponential drop-off be-
tween 2 and 10 GHz as suggested by these data and shown by low-resolution observations,
and to also see if there is any difference between the spectra of the bright filaments and the
background between 2 and 8 GHz. At C-band, the field-of-view of an EVLA antenna is
a few times smaller than the angular extent of the M87 radio halo and this measurement
would require a mosaic observation. The MS-MFS algorithm with wide-band primary-
beam correction can in principle be used for wide-band mosaicing, but this has not been
demonstrated yet. Therefore, a wide-band mosaic of M87 at C-band would (a) probe the
halo spectra at high resolution and help confirm or reject theinitial-injection model of spec-
tral evolution and (b) serve as a good target field on which to test the MS-MFS algorithm
for mosaicing and establish a data analysis path for future such observations.



APPENDIX A

IMAGING SENSITIVITY

The sensitivity (lowest detectable flux above the noise) forthe output from a
single baseline (or, the noise per visibility value) is given by

∆Vi j =
1
ηs

S EFD
√

2∆ντacc

(A.1)

whereS EFD = 1023Tsys(2kB/ηaA) Jy is theSource-Equivalent Flux Density, defined
as the source flux density that effectively doubles theTsys of the receivers.τacc is the
per visibility integration time inseconds, ∆ν is the channel bandwidth inHertz, A is the
collecting area of an antenna incm2, ηa is the antenna efficiency,ηs is the system efficiency
andTsys is the antenna system temperature inK.

The image sensitivity for a single channel stokes I image (using RR and LL data)
is given as

∆Im =
1
√

2ηs

S EFD
√

N(N − 1)∆ντint

(A.2)

whereτint is the total integration time inseconds. The factor of
√

2 in the denominator
is for the two independant data channels (RR and LL). The image sensitivity for a multi-
frequency image overNch channels is given as∆Im/

√
Nch.

In terms of eqnA.1, this is equal to the numerical estimate based on the number
of data points as given by

∆Im =
∆Vi j

√

N(N−1)
2 NchNtNpol

(A.3)

whereNt = τint/τacc is the number of timesteps andNpol = 2 for a stokes I image that uses
the RR and LL polarizations.

For example, forTsys = 35K,ηa = 0.55,ηs = 0.78,N = 27,A = π(12502)cm2,τint = 8hr,
τacc = 300sec,∆ν = 10MHz,Nch = 128 andNpol = 2.

SEFD : 357.803 Jy

Total effective bandwidth : 1280 MHz

Noise per visibility : 5.92e-03 Jy

Image Sensitivity : 2.01e-06 Jy
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APPENDIX B

LINEAR LEAST SQUARES

Measurement Equations : An instrument that measures a physical quantity can often
be characterized as a system of linear equations. Consider aset ofn measurements of a
physical quantity that is described by a list ofm parameters. Let [A] be a measurement
matrix of shapen × m, ~x a vector of parameters of shapem× 1 describing the physical
quantity, and~b the data vector of shapen× 1.

[A]~x = ~b (B.1)

The matrix [A] describes how the physical quantity~x gets modified by the instrument dur-
ing the measurement process, and is called thetransfer functionof the instrument. The
effect of this transfer function has to be removed from the measured values~b to recover a
true estimate of~x. This corresponds to finding [A−1] and computing~x = [A−1]~b.

If the matrix [A] is square, positive definite and of full rank and there is no noise
in the measurement, then an exact [A−1] exists and~x can be exactly computed. In a real
system, there is usually noise associated with the measurement and [A] may not be positive
definite by construction. In both these cases, an exact [A−1] will not exist, but a pseudo
inverse [A+] can be calculatedvia χ2 minimization designed to give a (weighted) linear
least-squares estimate for~x.

Normal Equations : Let [W] be ann× n diagonal weight matrix associated with the
measurement noise in~bn×1.

χ2 =
(

[A]~x− ~b
)†

[W]
(

[A]~x− ~b
)

(B.2)

= ~x†[A†WA]~x+ ~b†[W]~b− ~x†[A†W]~b− ~b†[WA]~x (B.3)

To minimizeχ2, take its derivative w.r.to the parameters~x† and solve▽χ2 = 0.
Note that

[

▽ ~x†
]

~x = 0.

▽ χ2 = [A†WA]~x− [A†W]~b ≡ 0 (B.4)

[A†WA]~x = [A†W]~b (B.5)

These are called the Normal Equations, and the matrix on the left-hand-side is given by
[A†WA] = 1

2 ▽
2 χ2 and is called the Hessian matrix.
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Pseudo-Inverse : The solution is given by

~x = [A†WA]−1[A†W]~b (B.6)

[A+] ≡ [A†WA]−1[A†W] is the pseudo inverse of the system. If [A] is unitary, then [A+] =
[A−1].

EqnB.6can be evaluated exactlyvia LU or Cholesky decomposition if [A†WA] is
invertible. When a direct computation of the solution is notfeasible or [A†WA] is singular,
an iterative approach is required to solve▽χ2 = 0.

Iterative Solution : The solution of▽χ2 = 0 is a root-finding problem. Consider the
Taylor expansion of a functionf (x).

f (x) = f (a) + f ′(x)|a(x− a) (B.7)

Setting f (x) = 0, gives

x = a− 1
f ′(x)|a

f (a) (B.8)

Therefore,▽χ2 = 0 can be solved iteratively from an initial guess as follows.

~xi+1 = ~xi + α[A
†WA]−1

(

[A†W]~b− [A†WA]~xi

)

(B.9)

whereαǫ{0, 1} is a step-size andi indicates iteration number. Various approximations of
[A†WA]−1 can be used in this iterative process. In a first-order optimization, [A†WA]−1 is
approximated by the inverse of the main diagonal of the Hessian and a step sizeα < 1 is
used to dampen the effect of this inaccuracy (steepest descent, levenberg-macquart). Higher
order methods provide better approximations of [A†WA]−1 (BFGS, etc..)

Linear least squares in Interferometric Imaging : For the problem of interferomet-
ric imaging, the measurement matrix is usually singular andwe need to work with the
normal equations. For standard imaging, the Hessian matrix[A†WA] is a Toeplitz matrix
with a shifted version of a single function in each row. When applied to a column vec-
tor of image pixels, it implements the shift-multiply-add sequence of a convolution. The
associated convolution kernel (elements of the middle (unshifted) row) is called the point-
spread-function. The RHS of the normal equations is therefore the result of a convolution
between a vector of image pixels representing the sky brightness distribution and another
vector of image pixels containing the point-spread-function. Therefore, in the context of
interferometric imaging, the iterative process describedabove is called a deconvolution. A
diagonal approximation of the Hessian matrix and its inverse reduces to a pixel-by-pixel
normalization of the RHS by the peak of the point-spread-function. The pixel amplitudes
at the locations of the source peaks measure the source flux inphysical units, and provide
enough information to construct a model to add to~xi.
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General Block Linear Least Squares : Another way to write the measurement equa-
tions are to express the linear system of equations as a sum ofseveral such systems. The
Hessian matrix and normal equations are derived in the same way, but are now written in
block matrix form. In certain situations, such as when the parameters are themselves mod-
eled as a linear combination of unknown coefficients and known basis functions, such a
form allows a simple but effective approximation of the Hessian and its inverse.

Let [Ap] be ann×mmeasurement matrix for the quantity~xp written as anm× 1 list. A set
of Np measurements are added together to form ann× 1 list of data (~b). The block-matrix
equivalent of Eqn.B.1 is given as follows.

Np
∑

p=0

[Ap]~xp = ~b (B.10)

The measurement and normal equations can be written in standard block matrix form, and
an iterative solution computed similar to regular linear least squares. For simplicity, let
Np = 3, and let there bem parameters in each subset~xp.

Measurement Equations in Block form :

[

[A0] [A1] [A2]
]
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= ~b (B.11)

All Np measurement matrices of shapen × m are placed side-by-side to form a larger
measurement matrix. The list of parameters becomes a vertical stack ofNp vectors each of
shapem× 1. The new measurement matrix of shapen×mNp operates on anmNp × 1 list
of parameters to form ann× 1 list of measurements.

Normal Equations in Block form : The normal equations can also be written in block-
matrix form. Note that matrix products can be written block-by-block to follow the element-
by-element multiplications implicit in Eqns.B.2 to B.5 (which show how normal equations
are constructed from measurement equations). The following equation shows Eqn.B.5 in
block matrix form, before multiplying out the matrix blocks.
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[W] ~b (B.12)

When these block matrices are multiplied out, the normal equations become a system of
equations in which the Hessian has the shapemNp×mNp and the list of parameters and the
RHS vector containmNp × 1 elements each.
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The full Hessian consists ofNp × Np blocks, each of sizem×m. the list of parameters is
a stack ofNp column vectors, and the RHS vector is a set ofNp weighted inversions of the
data vector.

Iterative Solution in Block form : An iterative solution to this system is obtained by
following Eqn.B.9 with block matrices.
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A few points to note about this solution process are :

1. The computation of the RHS of the normal equationsvia [A†pW]~b is equivalent to a
matched-filtering process, where thepth RHS vector is a measure of how close the
data match a template (contained in [Ap]).

2. Off diagonal Hessian blocks are a measure of the non-orthogonality of the p basis
functions. A Hessian with non-zero blocks only on the diagonal implies a perfectly
orthogonal basis set, and then each parameter can be solved independent of the oth-
ers. If off-diagonal blocks contain non-zero elements, it implies that the parameters
are coupled and need to be treated together during the solution process.

3. The condition number of the block Hessian matrix gives a measure of how robust an
inversion would be. For example, if the basis functions are linearly dependent, the
block Hessian will be rank-deficient, there will be some eigen-values equal to zero,
and the condition number rises sharply, indicating that thesolution process is highly
sensitive to variations in its parameters.

4. If the p basis functions form a geometric progression, then this block Hessian is
a Vandermonde system with a geometric progression in each row and column. A
useful property of such a system is that the diagonal blocks are the result of even
powers of basis functions and the system is guaranteed to be block positive definite
and block-invertible or block-diagonalizable.
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Block Linear least squares in Interferometric Imaging : For interferometric imaging
in which the model is represented as a linear combination of coefficients and basis func-
tions, each Hessian block is a Toeplitz convolution operator. The RHS vector is therefore
a sum of convolutions of different image pixel vectors and convolution kernels, and the
process of solving such a system is called a block or joint deconvolution. In this particular
form, the Hessian can be approximated by a matrix of diagonalblocks where the elements
on the diagonal of each block is the peak of the point-spread-function represented by that
block. This provides a better estimate of its inverse than just a diagonal approximation of
the full Hessian, and forms anNp × Np matrix to be inverted per pixel. WhenNp = 1,
this process is equivalent to a pixel-by-pixel normalization by the peak of the point-spread-
function. When the basis functions involve a geometric progression, this per-pixelNp ×Np

matrix is exactly invertible, and simultaneously producesestimates for all the coefficients
involved in describing the amplitude of that pixel.
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