Constructing Wideband Mosaics with DSA

- Algorithm options in the image domain
- How to choose between options

U.Rau, NRAO

DSA Algorithm Group Meeting

9 Sept 2025

Wideband Mosaic: Measurement and Model

$$I_{fp}^{obs} = I_{fp}^{psf} \times (P_{fp} \cdot I_{f}^{sky})$$
 where $I_{f}^{sky} = I_{f0}^{sky} (f / f0)^{\alpha}$

$$\Rightarrow$$
 $V_{fp}^{obs} = S_{fp} \cdot (A_{fp} \times V_{f}^{sky})$ where $V_{f}^{sky} = F[I_{f}^{sky}]$

Wideband Mosaic: Measurement and Model

Doggodfrugt ISKV

Dagie

$$I_{fp}^{obs} = I_{fp}^{psf} \times (P_{fp} \cdot I_{f}^{sky})$$
 where $I_{f}^{sky} = I_{f0}^{sky} (f / f0)^{\alpha}$

$$\Rightarrow$$
 $V_{fp}^{obs} = S_{fp} \cdot (A_{fp} \times V_{f}^{sky})$ where $V_{f}^{sky} = F[I_{f}^{sky}]$

Basic	Reconstruct 1919	pointing
Mosaic	Reconstruct I ^{sky} across multiple P _p	For each frequency
Wideband	Reconstruct $I^{\text{sky}}_{\text{ f0}}$, α in the presence of P_{f}	For each pointing
Wideband Mosaic	Reconstruct $I^{\rm sky}_{\ \ { m f0}}$, $lpha$ with both ${ m P_p}$ and ${ m P_f}$	_

For each frequency and

Wideband Mosaic: Measurement and Model

Poconstruct Isky

Pacie

$$I_{fp}^{obs} = I_{fp}^{psf} \times (P_{fp} \cdot I_{f}^{sky})$$
 where $I_{f}^{sky} = I_{f0}^{sky} (f / f0)^{\alpha}$

Observed wb-mosaic : $I_{\text{wbmos}}^{\text{obs}} = \sum_{\text{fp}} I_{\text{fp}}^{\text{psf}} \times (P_{\text{fp}} \cdot I_{\text{fp}}^{\text{sky}})$

Dasic	Reconstruct	pointing
Mosaic	Reconstruct Isky across multiple Pp	For each frequency
Wideband	Reconstruct $I^{\text{sky}}_{\text{f0}}$, α in the presence of P_{f}	For each pointing
Wideband Mosaic	Reconstruct ${\sf I^{sky}}_{\sf f0}$, α with both ${\sf P_p}$ and ${\sf P_f}$	_

For each frequency and

Basic Imaging (single pointing, single frequency)

Gridding algorithm/kernel	When & How ?	
Prolate spheroidal func and/or w-term kernel $I^{obs} = I^{psf} x (P. I^{sky})$	PB does not vary during the imaging time range or across baselines	
$\Rightarrow I^{\text{model}} = P \cdot I^{\text{sky}}$	=> P is multiplicative on the sky => Deconvolve. Then PB-correct	
AW-Projection kernel : Aperture illumination w/wo w-term kernel and PS	PB varies per visibility : pointing offsets, beam squint (azimuthal asymm.) + rotation.	
$I^{\text{obs}} = P^* \cdot [I^{\text{psf}} \times (P \cdot I^{\text{sky}})]$	=> Gridding : pseudo-inverse of P per vis → Phase corrections are applied.	
sqrt{ P*P } ⇒ I ^{model} ≈ P . I ^{sky}	=> Image domain convolution eqn is not exact → Need to iterate	

Normalization choices : 1 , flatnoise = $sqrt\{|P^*P|\}$, flatsky = $|P^*P|$

Mosaic, Wideband and Both

Mosaic Imaging

PSF changes with pointing

The UV-coverage changes across time, as a mosaic is constructed...

- PSF rotation with time
- Projection effects with elevation

Resulting angular resolution can change too.

Mosaic Imaging

PSF changes with pointing

PB changes with pointing

Sky emission extends across multiple pointings

The UV-coverage changes across time, as a mosaic is constructed...

- PSF rotation with time
- Projection effects with elevation

Resulting angular resolution can change too.

Wideband Imaging

PSF changes with frequency

Wideband Imaging

PSF changes with frequency

PB changes with frequency

Wideband Imaging

PSF changes with frequency

PB changes with frequency

Sky changes with frequency

Wideband Imaging with full PB fov

40°00'

Primary Beam introduces an artificial "spectral index "

Single Pointing ⇒ Can ignore the PB spectral index in the middle of the FOV

(About -1.4 at the HPBW)

Wideband Mosaic

Primary Beam introduces an artificial "spectral index "

Mosaic ⇒ Cannot ignore the PB spectral index anywhere in the mosaic

- \Rightarrow P_p and P_f indicate spatial and spectral weighting \rightarrow wbmos 'sensitivity'
- \Rightarrow Need to exclude P_p and P_f when reconstructing the sky model

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x (P . I^{sky})$

If joint UV coverage or SNR is needed for accurate recon.

Image domain UV domain

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x (P . I^{sky})$

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

E.g. Simple spatial structure.
High SNR

Accurate super-resolution.

Continuum (Wideband model)

E.g. Bright outliers

Low SNR emission that

extends beyond PB fov.

E.g. Complicated multiscale spatial and spectral structure.

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} \times (P . I^{sky})$

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \frac{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}{\sum_{p} P_{p}}$$

Continuum (Wideband model)

E.g. Simple spatial structure. High SNR

E.g. Bright outliers
Low SNR emission that
extends beyond PB fov.

$$I^{obs}_{mos} = \frac{\sum_{p} P_{p} . I^{obs}_{p}}{\sum_{p} P_{p}}$$

E.g. Complicated multiscale spatial and spectral structure.

Accurate super-resolution.

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x$ (P. I^{sky})

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \underbrace{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}_{\text{p}}$$

Continuum (Wideband model)

E.g. Simple spatial structure.
High SNR

Accurate super-resolution.

$$I^{\text{model}}_{\text{wb}} = \sum_{f} R_{f} x I^{\text{model}}_{f}$$

$$P_{f}$$

E.g. Bright outliers

Low SNR emission that
extends beyond PB fov.

$$I^{\text{obs}}_{\text{mos}} = \sum_{p} P_{p} . I^{\text{obs}}_{p}$$
$$\sum_{p} P_{p}$$

E.g. Complicated multiscale spatial and spectral structure.

$$I^{\text{model}}_{f} = \sum_{tt} w_{f}^{tt} I^{\text{model}}_{tt} ||$$

$$w = (f - f0)/f0$$

$$I^{\text{model}}_{f} = [H^{-1}]I^{\text{obs}}_{f}$$

where
$$I_{tt}^{obs} = \sum_{f} w_{f}^{tt} I_{f}^{obs}$$

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x$ (P. I^{sky})

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \underbrace{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}_{\text{p}}$$

Continuum (Wideband model)

E.g. Simple spatial structure.

High SNR Accurate super-resolution.

 $I^{\text{model}}_{\text{wb}} = \sum_{f} R_{f} x I^{\text{model}}_{f}$ P_{f}

$$I^{\text{obs}}_{\text{mos}} = \sum_{p} P_{p} . I^{\text{obs}}_{p}$$
$$\sum_{p} P_{p}$$

spatial and spectral structure.
$$I^{\text{model}}_{f} = \sum_{t} w_{f}^{tt} I^{\text{model}}_{tt} ||$$

E.g. Complicated multiscale

 $\underline{W} = (f-f0)/f0$ $I^{\text{model}}_{\text{tt}} = [H^{-1}]I^{\text{obs}}_{\text{tt}}$ $\text{where } I^{\text{obs}}_{\text{f}} = \sum_{f} w_f^{\text{tt}} I^{\text{obs}}_{f}$

Separate Deconvolution

Accumulate $I^{model} \approx P \cdot I^{sky}$

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{\text{obs}} \approx I^{\text{psf}} x$ (P . I^{sky})

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \underbrace{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}_{\sum_{p} P_{p}}$$

Continuum (Wideband model)

E.g. Simple spatial structure.

High SNR
Accurate super-resolution.

 $I_{wb}^{model} = \sum_{f} R_{f} x I_{f}^{model}$

E.g. Bright outliers

Low SNR emission that
extends beyond PB fov.

$$I_{\text{mos}}^{\text{obs}} = \sum_{p} P_{p} . I_{p}^{\text{obs}}$$
$$\sum_{p} P_{p}$$

E.g. Complicated multiscale spatial and spectral structure.

 $I^{\text{model}}_{f} = \sum_{tt} w_{f}^{tt} I^{\text{model}}_{tt} ||$ $\underline{w} = (f-f0)/f0 \longrightarrow$ $I^{\text{model}}_{f} = [H^{-1}]I^{\text{obs}}_{f}$

where lobs - \(\sigma \) with lobs

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x (P . I^{sky})$

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \underbrace{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}_{\text{p}}$$

E.g. Bright outliers

Continuum (Wideband model)

E.g. Simple spatial structure.

High SNR Accurate super-resolution.

 $I^{\text{model}}_{\text{wb}} = \sum_{f} R_{f} x I^{\text{model}}_{f}$

E.g. Complicated multiscale spatial and spectral structure.

$$\sum_{\text{mos}} = \sum_{\text{p}} P_{\text{p}} \cdot I^{\text{obs}}_{\text{p}}$$

$$\sum_{\text{p}} P_{\text{p}}$$

Low SNR emission that

extends beyond PB fov.

$$I^{\text{model}}_{f} = \sum_{tt} w_{f}^{tt} I^{\text{model}}_{tt} ||$$

$$w = (f-f0)/f0$$

$$I^{\text{model}}_{f} = [H^{-1}] I^{\text{obs}}_{f}$$

where $I_{tt}^{obs} = \sum_{f} w_{f}^{tt} I_{f}^{obs}$

Separate Deconvolution

Accumulate I^{model} ≈ P . I^{sky}

If UV coverage and SNR allow accurate recon per channel and pointing

Joint Deconvolution

Accumulate $I^{obs} \approx I^{psf} x (P . I^{sky})$

If joint UV coverage or SNR is needed for accurate recon.

Image UV domain

Mosaic (PB-weighted sum)

E.g. No bright outliers
High SNR extended emission

$$I^{\text{model}}_{\text{mos}} = \frac{\sum_{p} P_{p} \cdot I^{\text{model}}_{p}}{\sum_{p} P_{p}}$$

Continuum (Wideband model)

E.g. Simple spatial structure. High SNR

Accurate super-resolution.

$$I^{\text{model}}_{\text{wb}} = \sum_{f} R_{f} x I^{\text{model}}_{f}$$

$$P_{f}$$

E.g. Bright outliers
Low SNR emission that

extends beyond PB fov.

$$\frac{\sum_{p} P_{p} \cdot I^{obs}}{\sum_{p} P_{p}}$$

spatial and spectral structure. $I^{\text{model}}_{f} = \sum_{tt} w_{f}^{tt} I^{\text{model}}_{tt} ||$

E.g. Complicated multiscale

$$I^{\text{model}}_{\text{tt}} = [H^{-1}]I^{\text{obs}}_{\text{tt}}$$

PB correction is always approximate -> Need to iterate

Wide-band Mosaic Options

	Separate deconvolution per pointing	Joint deconvolution across pointings
Separate deconvolution per channel	Image and deconvolve each chan and pointing separately	Joint mosaic deconvolution per channel Divide out P _{f,mos}
•	Construct mosaic per chan Divide out P _{f,mos} Construct (low rank) wideband model	Construct (low rank) wideband image model
Joint wideband deconvolution	Wideband deconvolution and low-rank model per pointing	Combine chans and pointings before joint deconvolution
	(Before deconvolution, remove P_{fp} and apply $P_{ref,p}$)	(Before deconvolution, remove P_{fp} and apply $P_{ref,p}$)
	Divide out P _{ref} Construct mosaic image model	Divide out $\sum_{p} P_{ref,p}$

For VLA psfs...

Method	I/I_{true}	I/I_{true}	I/I_{true}	$\alpha - \alpha_{true}$	$\alpha - \alpha_{true}$
Intensity Range	$> 20\mu Jy$	$5-20\mu Jy$	$< 5\mu Jy$	$> 50 \mu Jy$	$10 - 50 \mu Jy$
Cube	0.9 ± 0.1	0.9 ± 0.3	0.9 ± 0.5	-0.5 ± 0.2	-0.6 ± 0.5
Cube + AWP	1.0 ± 0.05	1.0 ± 0.2	1.0 ± 0.3	-0.15 ± 0.1	-0.1 ± 0.25
MTMFS + WB-AWP	1.0 ± 0.02	1.0 ± 0.04	1.0 ± 0.15	-0.05 ± 0.05	-0.1 ± 0.2

Example for VLA PSFs:

Joint mosaics and wideband recon were better than other options

Ref: Deep wideband single pointings and mosaics in radio interferometry: How accurately do we reconstruct intensities and spectral indices of faint sources? (U.Rau et al 2016 AJ 152 124)

For DSA?

Evaluate assumptions for RC images (per frequency/pointing)

- RC : For each RC image, is $I_{fp}^{obs} = I_{fp}^{psf} \times (P_{fp} \cdot I_{fp}^{sky})$ true ?
 - A basic prerequisite for DAT
- DAT: How accurately can image reconstruction be done per RC image?
 - When is a joint mosaic or wideband recon needed?

Simulate observed RC images per channel and pointing. Test combination options.

- Simplest: Perfect image recon per chan/pointing + one-step wbmos combination.
- Iterative : Joint reconstruction (for mosaic or wideband or both)
 - Approximate reverse transform
 - Accurate forward transform in the image domain
 - Calculate residuals with RC images Iobs (similar to 'Clark CLEAN')

Questions to address with this info (From meeting participants - 9 Sept 2025)

- Constraints on co-addition to form mosaics.
 - Storing PSFs?
 - What granularity at which to save RC images.... Pointings, frequency, timeranges...
- Limitations of knowledge of freq-dep of sources
- Goal wideband : ~ 3:1 BWR
- Outputs
 - Multiple freq resolutions and bws.
 - 1.3GHz continuum with in-band spectral model. (at continuum sensitivity)
 - And/Or 130MHz subband images.
 - Don't forget Polarization sky and instrument.