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Observational Astrophysics

Space is a unique laboratory for extreme Physics



 

Observational Astrophysics

Make images at different parts of the 
electromagnetic spectrum



 

Observational Astrophysics

Use a radio interferometer to
 “synthesize” a very large dish



 

Observational Astrophysics

Multi-spectral imaging : Chemistry, Doppler shifts
                                      Emission Physics



 

Observational Astrophysics

Received and measured signals are non-ideal
  => Use algorithms to reconstruct sky signals



 

Observational Astrophysics

Received and measured signals are non-ideal
  => Use algorithms to reconstruct sky signals



 

Observational Astrophysics

Many data analysis strategies
 => Algorithms operated by trained humans



 

Current NRAO radio interferometers

Very Large Array (1975+)

27 dishes (25m each)
1-50 GHz
4 configs (1,3,10,30 km)

Typical data rate : 1 TB / day 

Manual data analysis ==> 
  Assisted pipeline processing

Atacama Large Millimeter Array (2011+) 
 (partners are ESO, NAOJ)

60 dishes (12m + 7m)
35-950 GHz
150m – 16km + Short spacing array

Typical data rate :  700 GB / day 

Assisted Pipeline processing



 

Future NRAO radio interferometers

Next Generation VLA (2030 – if funded)

214 dishes (18m each + short spacing)
1.2 – 50.5, 70-116 GHz GHz
Fixed config : 1000km baselines

Expected data rate :  ~ 1 PB / day

Science Ready Data Products

ALMA upgrades (2020+) 

60 dishes (12m + 7m short spacings)
35-950 GHz
Baselines of 150m – 16km 

Expected data rate :  2.5 TB / day

Assisted pipelines ==> Science 
Ready Data Products



 

Future NRAO radio interferometers

Major areas of focus (related to Computer Science)

(1)  High Performance Computing
(2)  End-to-end Automation 

Technical projections show that both problems are tractable

But, current practices are not optimal. 

Work is required to optimize throughput and algorithmic reliability.



 

An interferometer is an indirect imaging device

b

Young’s double slit experiment



 

An interferometer is an indirect imaging device
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Young’s double slit experiment Each antenna-pair => one 2D fringe



 

An interferometer is an indirect imaging device

       2D Fourier transform : 

 
Image =  sum of cosine 'fringes'.

b

Young’s double slit experiment Each antenna-pair => one 2D fringe



 

An interferometer is an indirect imaging device

b

Young’s double slit experiment Each antenna-pair => one 2D fringe

⟨EiE j
∗
⟩

X

Ei
E j

Measuring fringe parameters

Amplitude, Phase :               is a complex number

Orientation, Wavelength :    Vector between each
                                                   pair of antennas

Goal : Measure as many distinct fringes as possible
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Aperture Synthesis Imaging

Image with   2 antennas =>  1 fringe

Synthesized Aperture Observed Image



 

Aperture Synthesis Imaging

Image with   5 antennas =>  10 fringes

Synthesized Aperture Observed ImageObserved Image



 

Aperture Synthesis Imaging

Image with  11 antennas =>  55 fringes

Synthesized Aperture Observed ImageObserved Image



 

Aperture Synthesis Imaging

Image with  27 antennas =>  351 fringes

Synthesized Aperture Observed ImageObserved Image



 

Aperture Synthesis Imaging

Image with  27 antennas over 2 hours

   “ Earth Rotation Synthesis “

Synthesized Aperture Observed ImageObserved Image



 

Aperture Synthesis Imaging

Synthesized Aperture Observed Image

Image with  27 antennas over 4 hours

   “ Earth Rotation Synthesis “

Observed Image



 

Aperture Synthesis Imaging

Synthesized Aperture Observed Image

Image with  27 antennas over 4 hours
      at 2 observing frequencies

   “ Multi-frequency Synthesis “ 

Observed Image



 

Aperture Synthesis Imaging

Synthesized Aperture Observed Image

Image with  27 antennas over 4 hours
      at 3 observing frequencies

   “ Multi-frequency Synthesis “ 

Observed Image



 

Data Acquisition and Analysis

Flagging Calibration Imaging

Correlation  (Real time system.  FPGA/ASIC + backend cluster)

Time Series → Correlation → Spectral Channels → Integrate

Example Data rate : N(N-1)/2 * 1000 complex values per second

Data Archive  ( 2.4 PB RAID storage)

Each observation is stored as a relational database

Example : VLA archive is 1.8 PB in size ( + 1 TB per day )

Post Processing – (1.6 PB Lustre FS, workstations, 90 node cluster, AWS)

Identify and mask 
corrupted data
( RFI, Instrument 
errors, etc )

Derive and apply 
corrections to undo 
the effects of complex 
valued antenna gains

Reconstruct images  by 
iterative model fitting 
while correcting for other 
instrumental effects

Thanks to J.Robnett for numbers



 

Radio Frequency 
Interference 
- Cellular phones, aircraft 
radar, satellite comms, 
military radar, car 
radars, etc… 

Instrumental flags
- Antenna tracking 
delays, glitches in 
signal processing, 
antenna dropouts, 
shadowing...

Know RFI sources

Flagging Calibration Imaging



 

Radio Frequency 
Interference 
- Cellular phones, aircraft 
radar, satellite comms, 
military radar, car 
radars, etc… 

Instrumental flags
- Antenna tracking 
delays, glitches in 
signal processing, 
antenna dropouts, 
shadowing...

Know RFI sources

Automatic Flagging 

- Model based and statistical 
outlier detectors

- Needs manual tuning
   ( Algorithm R&D ongoing )

- Parallelization via partitioning 
   ( RFI type is classifiable )

Flagging Calibration Imaging
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The front-end electronics on each antenna introduces a multiplicative 
complex gain on the incoming signal.  This must be removed. 

Calibration is usually a multi-stage process (different reasons, averaging, etc)

Gain solutions are a useful diagnostic of antenna-based instrumental errors
       => Detect outliers and apply flags to data.

          Algorithms and their implementations can parallelize easily.

          Iterative solvers : O(N_ant ^2 )
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(1) Observe a known source

                            is known

(2) Use data from all correlation pairs  ij
      Solve for complex gains 

(3) Apply corrections
      to target data : 
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Flagging Calibration Imaging
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Measurement Eqn : 

Iterative solution :

[A ] Im=V obs

I i+ 1
m =I i

m+ g[ AT W A ]+ ( AT W (V obs−A I i
m))

Flagging Calibration Imaging

Image reconstruction is an iterative model-fitting / optimization problem



 

Flagging Calibration Imaging

High Performance Computing

Computing, Data Volume, Image Sizes, Memory Use,..



 

Data volume

N_data = 
  N_ant^2  x 
  N_chan  x 
  N_pol     x
  N_time

Complex 
numbers

Lustre I/O 

Example :
 8hr data
 300 GB

Flagging Calibration Imaging



 

Data volume

N_data = 
  N_ant^2  x 
  N_chan  x 
  N_pol     x
  N_time

Complex 
numbers

Lustre I/O 

Example :
 8hr data
 300 GB

Gridding : Convolutional resampling

O(N_data) x  (nxn) complex multiply/add (n=5 - 100)
=> Compute load : O(N_data) *  10^{2-5} flops 

Data parallelization, Multi-threading, GPUs, etc… 

Example : Major cycle : 1hr → 10 days (Diff Algorithms)

Flagging Calibration Imaging



 

Major Cycle
- Partitioned on rows

Minor Cycle
- Single Node

Data partitioning to parallelize compute/IO intensive major cycles

I/O and computing is parallelized.
Memory requirements add up

Images are 
typically 2D, and 
pixel partitioning is 
not needed.

Gather / 
Scatter

Flagging Calibration Imaging



 

Data volume

N_data = 
  N_ant^2  x 
  N_chan  x 
  N_pol     x
  N_time

Complex 
numbers

Lustre I/O 

Example :
 8hr data
 300 GB

Gridding : Convolutional resampling

O(N_data) x  (nxn) complex multiply/add (n=5 - 100)
=> Compute load : O(N_data) *  10^{2-5} flops 

Data parallelization, Multi-threading, GPUs, etc… 

Example : Major cycle : 1hr → 10 days (Diff Algorithms)

Image sizes 

N_pix =  Nx x Ny x 
     N_chan x N_pol

Real / Complex

FFTs : O(NlogN)
Pixel math: O(N^2)
Mem : ~8 copies

Multi-threading
Chan parallelization

Nx : 1k → 40k
N_chan : 200 - 16K

Example : 
   2K x 2K x 1000
  ~15 GB per image

Flagging Calibration Imaging



 

Major Cycle Minor Cycle

Data and Image partitioning to parallelize Spectral Cube imaging
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Images are typically 3D, 
and partitioning along 
the frequency axis is 
required.

Image pixels : 

1kx1k to  80kx80k

Spectral channels (per 
pixel) : 

1k to 16K 

Flagging Calibration Imaging



 

Data volume

N_data = 
  N_ant^2  x 
  N_chan  x 
  N_pol     x
  N_time

Complex 
numbers

Lustre I/O 

Example :
 8hr data
 300 GB

Gridding : Convolutional resampling

O(N_data) x  (nxn) complex multiply/add (n=5 - 100)
=> Compute load : O(N_data) *  10^{2-5} flops 

Data parallelization, Multi-threading, GPUs, etc… 

Example : Major cycle : 1hr → 10 days (Diff Algorithms)

Image sizes 

N_pix =  Nx x Ny x 
     N_chan x N_pol

Real / Complex

FFTs : O(NlogN)
Pixel math: O(N^2)
Mem : ~8 copies

Multi-threading
Chan parallelization

Nx : 1k → 40k
N_chan : 200 - 16K

Example : 
   1K x 1K x 256
  ~1 GB per image

Number of iterations :  5 – 10    major cycle loops
                                     10^2 to 10^4  minor cycle steps

Runtime varies by 1-2 orders of magnitude. Depends on data.

Flagging Calibration Imaging



 

Image reconstruction is typically a “deconvolution” process.

Algorithms :  Parameterized models + Iterative model fitting. 
                        Feature extraction + classification, Mixed models

  – Basis functions are : Delta functions, Gaussians, Wavelets, Shapelets, 
Polynomials to represent spectral structure or time-variability, 2D,3D,4D models
      
  – Metrics being optimized : L2 or L1 or TV norms, weighted combination of 
norms and a-priori bias terms, etc.. 

  – Optimization schemes : Greedy algorithms + gradient descent, etc..

Observed image = Instrumental Point-Spread-Function convolved with the true sky 

Flagging Calibration Imaging



 

No unique solution (theoretically) => Differences between algorithm outputs

=> Algorithm choice depends on sky structure, data quality, target science 

=> Different algorithms and parameters (e.g. convergence criteria) could result 
       in orders of magnitude differences in computing load.

Output 
Image

Residual 
Image

    CLEAN                        MEM                  MS-CLEAN                    ASP

Metrics for Image Quality :  Noise RMS, Peak residual, Dynamic Range, etc...
                                            
Recognizing characteristic error patterns,  Knowing when to stop trying.

Flagging Calibration Imaging



 

Recognizing imaging artifacts
  => Choose appropriate next step
  => Recognise when to stop
  => Quantify remaining errors

Flagging Calibration Imaging



 

Science Ready Data Products – Automated Analysis Pipelines

Flagging Calibration Imaging



 

Science Ready Data Products – Automated Analysis Pipelines

Online flags

Auto-flag Cal

Tsys flag

Calculate Tsys

WVR correction

Flag low gains

Set Cal Model
Import data
from Archive

Bandpass Cal

Flag outliers

Flux Cal

Flag outliers

Time Cal

Apply solutions

Ant Pos Corr

Image Calibrator

Check size

Export Data/Images
To Archive

Flagging Calibration Imaging

Split target data

Continuum Sub

Image Continuum

Image Spectral

Quality Assurance

Export Images 
to Archive 

Observe
Data

Quality Assurance

Autoflag target

Web-Logs of results, diagnostic plots, QA metrics



 

Science Ready Data Products – Automated Analysis Pipelines

VLA Pipeline (Calibration only). VLA Sky Survey Pipeline (Calibration + Imaging)

=> Current practice works, but we would like to reduce manpower 
       required both for heuristic development as well as Quality Assessment.

=> Limited plans to support complicated or experimental modes.

No Intervention Intervention
Tweaked Sent to Manual

Cycle 2

Cycle 3

Cycle 4

ALMA Calibration Pipeline

Our current pipeline steps are the result of hand-optimized manual tuning by a 
team of scientists, validated on ~100 datasets, for a few ‘standard’ usage modes.

Graphs from J.Kern



 

Areas where Machine Learning and AI may be useful

(1) Automating the data analysis decision tree :  

It is possible to choose a sequence of steps and detailed parameter tunings that 
provides the best flagging, calibration and imaging outcome for any given 
dataset.   This may differ between types of datasets and science goals.

(2) Error recognition : 

Humans are adept at identifying RFI patterns in plots of recorded data, 
non-standard antenna behaviour from calibration solution plots, and artifacts and 
other tell-tale shapes in images. 

(3) Telescope monitoring and control :

Using telemetry and monitoring data to classify problems and their symptoms and 
perhaps predict failures.   Use information about RFI sources, weather, to optimize 
the observation schedule and setup.

(4) Image and Spectrum analysis : 

Feature detection/description and classification for surveys and catalogues
Spectral profile matching (mixed models)
Quality assessment : Have we gotten the best we can out of the data ? 



 

This is an interdisciplinary field

 Radio 
Astronomy

Applied 
Mathematics

Computer 
Science

Astrophysics

Physics of Interferometry

* This 
diagram 
ignores the 
telescope 
hardware, 
electronics, 
DSP and the 
correlator ! Trained Humans

Optimization algorithms

Model fitting techniques
e.g. Compressed Sensing

Statistics, etc..

Customized 
techniques

Software Engineering.
(Flexibility vs Stability)

HPC 
( Lustre, Raids, 
GPUs, Clusters, 
AWS )

Machine Learning

Databases

Real-time systems

Parallel 
optimization 
algorithms

FFTW, 
GPU libs

Software Products

Production 
Systems

Science/Tech 
Requirements

Data analysis 
strategies

R&D

Signal/Image 
Processing


