Wide-band (wide-field) imaging

Goal : Make images at the wide-band sensitivity level

Outline :
— Bandwidth and bandwidth-ratio
— Frequency-dependent sky and instrument
— Methods to reconstruct intensity and spectra
— Wide-field effects of wide-band imaging
— Wide-band self-calibration

Flagging + RFI

Goal : Discard data unusable for imaging

Outline :
— Flagging based on data-selection
— Automatic RFI identification and flagging

1.131.141.151.161.171.181.19 1.2
— before:LR == gfter:LR — tfcrop

Urvashi Rau (NRAO) EVLA Data Reduction Workshop, NRAO, Socorro,NM 24 Feb 2012



Bandwidth and bandwidth-ratio

Instantaneous bandwidth : Vmex ™ YVmin

VLA =50 MHz
EVLA= 1 GHz at L-Band, 4 GHz at C-band, upto 8 GHz at higher bands.

Currently, maximum bandwidthis 2 GHz => (x6)

Broad-band receivers => Higher 'instantaneous' continuum sensitivity
0-5 O-chan
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Higher BWR (2:1 atL,S, C bands ) => Stronger frequency-dependent effects
within the band (sky and instrument)
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Wideband Imaging Options

(1) Make images for each (2) Combine all frequencies

channel / SPW separately. during imaging
( MES : multi-frequency synthesis )
- Signal-to-noise ratio : one SPW
- Signal-to-noise ratio : all SPWs
- Angular resolution varies e
with SPW (smooth to lowest) - Angular resolution is given by
the highest frequency
- Imaging fidelity may change
across SPWs - Imaging fidelity is given by
the combined uv-coverage

When will this suffice ? When do you need MFS ?

- Sources have sufficient SNR in - Single channel / SPW sensitivity is too low

a single channel / SPW
- Complicated fields where single-SPW
- UV-coverage per SPW gives uv-coverage gives non-unigue solutions
un-ambiguous reconstructions
- Need high angular-resolution images
- You don't need the highest-possible (intensity and spectral index)

angular resolution for spectra
(But, need to model / reconstruct spectra too... )



Comparison of single-SPW imaging with MFS - Intensity

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

Single SPW Imaging MS-MES (3 terms)
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=> Similar results
- both methods reconstruct plausible intensity images.
- both have similar residual errors due to deconvolution.

( MS-MFS : Multi-Scale Multi-Frequency Synthesis : models intensity and spectrum (Taylor polynomial) )



Comparison of single-SPW imaging with MFS — Spectral Index

Data : 20 VLA snapshots at 9 frequencies across L-band + wide-band self-calibration

MS-MFS Spectral Index
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- Limited to resolution of the lowest
.+ frequency
wzooo - Shows effect of insufficient single-
frequency uv-coverage

- Shows imaging fidelity due to multi-
30° scale deconvolution
- - Shows expected structure with
errors < 0.2

Two-point spectrum (1.4 —4.8 GHz) => |t helps to use the combined uv-

coverage and solve for sky spectra.

Can often extract more information from
your data, compared to traditional
methods, but not always.

C.Carilli et al, Ap.J. 1991.

(VLA AB.C.D Array at L and C band) Multi-Scale Multi-Frequency Synthesis




Multi-Scale MFS : as implemented in CASA

Sky Model : Collection of multi-scale flux

S V=
components whose amplitudes Ify=2t I,
follow a polynomial in frequency

1= LI+, ]

Image Reconstruction : Linear least squares + Deconvolution (2011AgA..532A.71R , arXiv:1106.2745 )

User Parameters : Imaging mode . mode="'mfs'

Number of Taylor-polynomial coeffs.  : nterms=2
Reference frequency . reffreq = '1.5GHZ'
Set of spatial scales (in units of pixels) : multiscale=[0,6,10]

Data Products : Taylor-Coefficient images o1, I, .-

- Interpret in terms of a power-law : spectral index and curvature

x(x—1)

I,=I, L=I« IL=I,

+p

(Or, evaluate the spectral cube (for non power-law spectra) )



Dynamic Range (vs) NTERMS - 3C286 field (point sources)
(1=14.4 Jy/bm, alpha =-0.47, BW=1.1GHz at Lband )

NTERMS =1 NTERMS =2
Rms : Rms :
9 mJy -- 1 mJy _ 1 mJy -- 0.2 mJy
DR : ' " DR :

1600 -- 13000 10,000 -- 17,000

NTERMS =3 NTERMS = 4
Rms :

: . Rms
0.2 mJy -- 85 udy

0.14 mJy -- 80 udy

DR :

. DR .
65,000 -- 170,000

>110,000 -- 180,000



Error estimates : Bandwidth-ratio vs 'nterms'

Peak Off-source Residuals
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Absolute Error in Peak Flux

If spectra are ignored

If there is high SNR,

Peak Off-source Residuals

=> more terms gives
smaller errors

Note : These plots are
for one point-source at
the phase center, with
very high signal-to-
noise levels.

In practice, use
nterms>2 only if there
is high SNR (>100),
and if you can see
spectral artifacts in the
image with nterms=2




Multi-Scale vs Point-Source model for wideband imaging

MFS
Intensity Image /(4 terms)\A

multi-scale point-source

Spectral | —
Turn-over x=—2

=> For extended emission,
—> a multi-scale model gives better spectral index and curvature maps



Separating regions/sources based on spectral index structure

(2011ApJ...739L..20B , arXiv:1106.2796 )

Initial results of a pilot survey (EVLA RSRO AB1345 ). These examples used nterms=2, and about 5 scales.

=> Within L-band and C-band, can tell-apart regions by their spectral-index
(+/-0.2) if SNR>100.

=> These images have a dynamic-range limit of few x 1000



Small spatial-scales - moderately-resolved sources

Can reconstruct the spectrum at the angular resolution of the highest frequency

Restored Intensity image
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Very large spatial scales - without short-spacing data

The spectrum at the largest spatial scales is NOT constrained by the data

Amplitude vs UV dist
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Very large spatial scales — with short-spacing data

External short-spacing constraints help ( visibility data, or starting image model )

Amplitude vs UV dist
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Spectral Curvature : VLA data : M87 1.1-1.8 GHz

Data : 10 VLA snapshots at 16 frequencies across L-band
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X =-0.52, B =-0.48

T T T T T T T T T 4 ‘
b L]
- ;

I

| | | | | | | 1
49°.5 4825 47°5 46%.5

|
30TE1 8

|

—0.3

5
o
—0.5 ¢

0.0
log({nu/nuo)

From existing P-band (327 MHz), L-band(1.42 GHz)
and C-band (5.0 GHz) images of the core/jet
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=> Need SNR > 100 to fit spectral index variation ~ 0.2 ( at the 1-sigma level ... )
=> Be very careful about interpreting f3



Wide-Field issues : Wide-band Primary-Beam

3C286 field , C-config , L-band

Total Intensity Image
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Verified spectral-indices by pointing directly at one
background source.

—~ compared X with ‘corrected’ X off center

center

Obtained O X = 0.05to 0.1 for SNR or 1000 to 20

Also verified via holography observations at two frequencies

PB-correction + MS-MFS not yet available in 'clean’, but
approximate correction is possible with a python script.
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J200D Declination

J2000 Deslinaticn

|IC10 dwarf-galaxy : spectral-index : wideband PB correction

After PB-correction

+ angular re 'II'III’I' offered by MS-MFS

Before PB-correction
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50% of PB

(2011ApJd...739L..23H, arXiv:1108.0401 )

Result of post-MS-MFS wide-band PB-correction (CASA)

For comparison, spectral-index map made by PB-correcting
single-SPW images smoothed to the lowest resolution (AIPS).

This post-deconvolution correction assumes that the primary-
beam does not vary / rotate during the observation, and that
all points are weighted equally....




Choices that effect errors during wide-band imaging

- Artifacts in the continuum image due to too few Taylor-terms.

Very high signal-to-noise,point-sources : use a higher-order polynomial.
Otherwise, use 2 or 3 terms to prevent over-fitting.

- Error in spectral index/curvature due to too many Taylor-terms.

Low signal-to-noise : use a linear approximation.
Again, nterms=2 or 3 is safer for low signal-to-noise extended emission.

- Error propagation during the division of one noisy image by another.

Extended emission : use multiple spatial scales to minimize this error (see output error map)
Choice of scale sizes : by eye, and verifying that the total-flux converges

- Flux-models that are ill-constrained by the measurements
Choose scales/nterms appropriately. For very large scales, add short-spacing information.

- Wide-field errors : Time and Frequency-variability of the Primary Beam

Use W-projection, A-projection along with MS-MFS (software in progress)

Remember : Increased imaging sensitivity (over wide fields), high-fidelity high dynamic-range
reconstructions of both spatial and spectral structure.



Choices that effect performance (current MS-MFS implementation)

- Major Cycle runtime x N (and size of dataset)

taylor

— N_Taylor residual images are gridded separately; N_Taylor model images are 'predicted'.
— Wide-field corrections are applied during gridding (A-W-Projection, mosaicing).

- Minor Cycle runtime x N taylorN scales NV pixels

2
N taylor N scales +N taylor +N taylor N scales N pixels

- Minor Cycle memory x [0,5

Rate of convergence : Typical of steepest-descent-style optimization
algorithms : logarithmic. Can control 'loop gain', 'cleaning depth’

Some source structures will handle loop-gains of 0.3 to 0.5 or more (0.3 is safe).

Runtimes reported by different people have ranged from 1 hr to several days.

=> Different choices of parameters => Choose only what you really need.
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Only MS-Clean
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MS-MFS +
W-Projection
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Max sampled spatial scale : 19 arcmin (L-band, D-config)
Angular size of G55.7+3.4 : 24 arcmin

'
MS-Clean was able to reconstruct total-flux of 1.0 Jy
MS-MFS large-scale spectral fit is unconstrained.
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_ Wide-field effects of wide-band imaging
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G55.7+3.4 : within the main lobe of the PB
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Wide-band Self-calibration ( using MS-MFS wideband model )

In CASA, 'clean’' saved a wide-band model (calready=True). Or, use 'ft'.
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Peak residual = 32 mJy/bm

Peak residual = 65 mJy/bm
Off-source rms = 6 mJy/bm

Off-source rms = 18 mJy/bm

Amplitudes of
bandpass gain
solutions......

5 chans x 7 spectral-windows

- Can use MS-MFS on your calibrators too, if you don't know their spectra.
- Can also use this wide-band model for continuum subtraction.



Flagging + Examining your data for RFI

Flagging Modes
— operator logs of known bad antennas and time-ranges / online flags
— shadowing between antennas (elevation-dependent)
— elevation-dependent flags
— known frequency ranges with bad RFI
— exact zeros (from the correlator) , clip very high points, 'automatic flagging '

At L-Band, can use ~500 MHz with very rough flagging, ~800 MHz if done carefully.

Spectrum of percentage of RFl-affected data
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One way to examine your data, is to run ‘autoflag' and look at flag counts

— Inspect uncalibrated data to identify 'clean’ regions

— Get an estimate of the fraction of total bandwidth usable for imaging.

— Obtain a flagversion to use as a starting point (first calibration/imaging pass).

— Run it on RFI monitoring data — feed-back information about un-documented RFI



Automatic RFI identification and flagging

TFCrop : Detect outliers on the 2D time-freq plane.

— Average visibility amplitudes along one dimension
— Fit a piece-wise polynomial to the base of RFI spikes
-- calculate 'sigma’ of data - fit.
— Flag points deviating from the fit by more than N-sigma
— Repeat along the second dimension.

— Grow/extend flags along time, frequency, polarization 0 === =
. 1.131.141.151.161.171.181.19 1.2
Can operate on un-calibrated data + one pass through MS — before:LR == afterilR — tfcrop

'testautoflag’ in CASA 3.3. 'tflagdata’ in CASA 3.4

RFLAG : Detect outliers using a sliding-window rms in time

y/////////////////////////mu:,,,.,‘.,‘,,,.,, (o i SICl G .,.,,,,.,..,,.,.//,//////////Wf////////,m

— For each channel, . v
— Calculate rms of real and imag parts of visibilities across a
sliding time window.
— Calculate the mean-rms across time, and deviations of these
rmss from the mean. i
— Search for outliers
(local rms > N x (median-rms + median-deviation)
— For each timestep,
— Calculate a median-rms across channels, and flag points
deViating from this median. ~ threshold sd feld-sputimestep average over baselines]  — treshld st (ed-spwimestep average over baselnes)
— Grow/extend flags (pol, time, freq, baselines) | - et i py g v sles nineses) s (it sputinestp g v sles

0.25

02

0.05

0

0.05

Needs calibrated data + two passes through data. -
“RFLAG” in AIPS. 'tflagdata’ in CASA 3.4 |t || o




Visualize Data/FIags at run-time ( testautoflag in CASA 3.3, tflagdata in CASA 3.4)
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Example 1 (with extension along frequency, and statistics-based flagging)

(0) 0137+331=3C48
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Example 2 (an example where it is better to flag more than less..)
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Example 3 (with broad-band RFI)
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RFI identification strategies
— RFl is in-general frequency and direction-dependent (satellites / local/ ... )
=> |Inspect and decide flagging strategies separately per SPW /IF and Field.
=> [nspect baseline groups (short, mid, long... ), especially at higher frequencies
— Choose which correlations to operate on (extend flags to others)
=> RL, LR have higher RFI signal-to-noise, and RR and LL have stronger band-
shape information (depends on what you're looking for)
— Operate on bandpass-corrected data
=> Do a bandpass calibration in a separate step, or use methods that account for
uneven bandpass levels.
— Hanning Smoothing

=> when there is very strong RFI with ringing in nearby channels.
( for weak RFI, this can spread the RFI to more channels )
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