
A&A manuscript no.
(will be inserted by hand later)

Your thesaurus codes are:
23 (03.09.2); (03.13.3); (03.20.3); (04.01.1)

ASTRONOMY
AND

ASTROPHYSICS
August 24, 2000

Definition of the Flexible Image Transport System (FITS)

R. J. Hanisch1, A. Farris1, E. W. Greisen2, W. D. Pence3, B. M. Schlesinger4 P. J. Teuben5, R. W.
Thompson6, and A. Warnock III7

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 USA
2 National Radio Astronomy Observatory
3 NASA Goddard Space Flight Center
4 Raytheon STX
5 University of Maryland
6 Computer Sciences Corporation
7 A/WWW Enterprises

August 24, 2000

Abstract. The Flexible Image Transport System—
FITS—has been in use in the astronomical community for
over two decades. A newly updated version of the standard
has recently been approved by the International Astro-
nomical Union FITS Working Group. This new version of
the standard appears here in its entirety. As a preface we
briefly describe the process by which the standard evolves
and revisions are approved, and note two minor changes
to NOST 100–2.0 which were adopted by the IAU FWG.

Key words: Instrumentation: miscellaneous – Methods:
miscellaneous – Techniques: miscellaneous – Astronomical
databases: miscellaneous

Introduction

The Flexible Image Transport System—FITS—was orig-
inally developed in the late 1970s to enable the exchange
of astronomical image data between computers of different
type, with different word lengths and different means of
expressing numerical values. Although the IEEE numeri-
cal formats have been widely adopted by the computer in-
dustry during the past twenty years, and in 1989 the FITS
Standard was revised to utilize them, to this day computer
manufacturers have yet to agree upon a single standard for
bit order. In addition, independent of the numerical val-
ues themselves, a standard is essential for expressing the
relationship of the data to the instrument with which they
were obtained, to the position on the sky or association
with wavelength, or with other general descriptive infor-
mation that collectively constitutes the metadata for the
observation. FITS has evolved over the years, encompass-
ing new and more complex data structures in accord with
the increasing sophistication of new astronomical instru-
ments, and providing support for much more than the “im-

Correspondence to: hanisch@stsci.edu

ages” implied by the name. Images, spectra, data cubes,
text tables, and binary tables are all supported, and with a
variety of conventions in nomenclature and structure these
basic elements have been combined to accommodate data
spanning the range from digital (and digitized) images to
output from computational simulations. Moreover, FITS
has been immensely successful as a community-wide data
format standard. No other scientific community has had
anything like the success the astronomy community has
had with FITS, and we are envied by many other commu-
nities for this cohesiveness. We have a process for amend-
ing and adding to the standard that assures broad commu-
nity participation, and although this sometimes makes the
process of change rather slow it helps to assure community
support and compliance. All major astronomical software
packages read and write FITS format data, and many have
adopted FITS not only for exchange with other programs
and facilities, but as a native run-time data format. The
inherent inefficiencies of FITS (such as sequential header
records, which when the allocated space is filled and a
new header record is desired to be written, requires all
following data to be rewritten) have been offset by the
tremendous improvements in CPU and I/O efficiencies of
modern desktop computers.

Development of the NOST Standard

In 1987 NASA developed plans for the Astrophysics Data
System, an integrated approach to the management of
data from all astrophysics missions. Although much of
the original plan for the ADS failed to be realized (the
current ADS abstract and bibliographic services being a
notable exception), the policy decision was reached that
all NASA astrophysics mission data sets should be made
available to the community in the FITS format. In 1990
the NASA/Science Office of Standards and Technology—
NOST—established the FITS Support Office to assist mis-

2 R. J. Hanisch et al.: FITS Standard

sion data managers in formatting their data in FITS.
NOST also commissioned the first of the FITS Technical
Panels whose task was to recast the FITS papers (pub-
lished in Astronomy and Astrophysics Supplements into a
form acceptable as an official NASA standard. The first
draft standard, NOST 100–0.1, was released in December
1990. Since then there have been six revisions of the NOST
standard, clarifying ambiguities and adding new features
with each version. The accompanying paper represents
NOST 100–2.0 and contains all FITS revisions and exten-
sions that have been approved by the IAU-FWG through
the end of 1998.

The NOST Technical Panel was responsible for devel-
oping the standards documents, making these available
for public review and comment, and then evaluating each
comment received and making additional revisions to the
standard as necessary to address the comment. All com-
ments and the NOST Technical Panel reactions to them
were posted on the Internet and distributed by e-mail to
all who submitted comments. This process of open review
and discussion was audited by the NOST Accreditation
Panel to assure that community input was open and un-
restricted, and that the Technical Panel was fully account-
able to the community. Once approved by the Accredita-
tion Panel, the NOST FITS document becomes the official
NASA standard.

Adoption of the Standard by the Community

FITS is used world-wide in astronomy, and thus a NASA
FITS standard is not the final word. Recognizing the
value-added of the NOST FITS Technical Panel’s work,
however, the community has taken the NASA standard
as both a practical working document and has officially
endorsed it through regional and international organi-
zations. There are three regional FITS committees: the
North American FITS Committee, which is convened un-
der the auspices of the Working Group on Astronomical
Software of the American Astronomical Society, the Euro-
pean FITS Committee, and the Japanese FITS Commit-
tee. Changes to the FITS standard are voted on in these
committees and then forwarded for review to the FITS
Working Group of the International Astronomical Union.
The IAU FWG is the final voice of approval for revisions
to the standard.

The NOST Technical Panel worked hard to resolve
all discrepancies between the various FITS papers and to
clarify all potentially ambiguous text. Nevertheless, some
areas of the document may still be unclear to some readers
or may be subject to misinterpretation. It is left to future
Technical Panels to continue the effort to refine and clar-
ify the document. These Technical Panels will also need
to incorporate the results of future FITS negotiations into
the document, such as the anticipated World Coordinate
Systems (WCS) agreements [???citations].

The NOST 100-2.0 document was approved by all
three of the regional FITS Committees, without dissent,
during 1999 and, in a vote taken on [date???] the IAU
FITS Working Group adopted the following resolution,
without dissent:

The IAU FITS Working [IAU-FWG] Group adopts
the“Definition of the Flexible Image Transport Sys-
tem (FITS)” [NOST 100–2.0] as the official version
of the FITS standards, superseding Astron. Astro-
phys. Suppl. 44, 363–370 (1981) and the other FITS
papers listed in Section 2 of NOST 100-2.0, with
these interpretations/modifications of its text:

1. Use of the word ‘deprecated’ in the first para-
graph of Section 7 “Random Groups Struc-
ture” is understood to mean that binary ta-
ble extensions should be used in new astro-
nomical application areas instead of the random
groups format where either is appropriate and
where there is no historical precedent for ran-
dom groups. Existing applications of the ran-
dom groups structure (almost exclusively inter-
ferometry) may continue to use random groups
as needed indefinitely.

2. It is noted that the following sentence in
B.2, “The size implied by the TDIMn keyword
will equal the element count specified in the
TFORMn keyword.” is not valid in the case
of variable length array columns. This sentence
should be replaced with wording similar to the
following: “The total number of elements in the
array equals the product of the dimensions spec-
ified in the TDIMn keyword. This size must be
equal to the repeat count on the TFORMn key-
word, or, in the case of columns which have a
’P’ TFORMn datatype, equal to the array length
specified in the variable length array descriptor
(see Appendix B.1). In the special case where
the variable length array descriptor has a size
of zero, then the TDIMn keyword is not appli-
cable.”

Acknowledgements. The authors acknowledge the support of
NOST, in particular, Don Sawyer, for spearheading the stan-
dardization effort. The National Space Science Data Center
and Astrophysics Data Facility at NASA Goddard Space Flight
Center have sponsored the FITS Support Office, staffed for
many years by Barry Schlesinger and overseen by Richard
A. White. The community owes immeasurable thanks to Don
Wells, National Radio Astronomy Observatory, for his tireless
efforts in building consensus in the FITS community and his
leadership of the IAU FITS Working Group. Preben Grosbøl,
European Southern Observatory, preceded Don in this role and
has also provided leadership within the European community.
Bill Pence (HEASARC, NASA Goddard Space Flight Center)
has written the most complete FITS I/O software package and
this is widely used in the community. The authors of the origi-
nal FITS papers, Don Wells, Eric Greisen, Ron Harten, Preben

R. J. Hanisch et al.: FITS Standard 3

Grosbøl, Daniel Ponz, Randy Thompson, J??? Muñoz, Bill
Cotton, Doug Tody, and Bill Pence, deserve great credit for
their ground-breaking work and ingenuity in adapting FITS to
accommodate new data structures.

The members of the regional FITS committees (as of Octo-
ber 1999) and the IAU FITS Working Group are listed below.

North American FITS Committee

Peter Teuben, Chair U. Maryland
Steve Allen Lick Observatory
Daniel Durand HIA/CADC
Allen Farris STScI
Arne Henden USNO
Robert Kibrick Lick Observatory
William Lupton Keck Observatory
Eric Mandel CfA
Robert Narron IPAC
William Pence NASA GSFC
Jeffrey Percival U. Wisconsin
Arnold Rots CfA
Skip Schaller Steward Observatory
Barry Schlesinger Raytheon STX
Randall Thompson Computer Sciences Corp.
Doug Tody NOAO
Stephen Walton Cal. State U. Northridge
Archibald Warnock A/WWW Enterprises
Don Wells NRAO
Robert Hanisch STScI (ex officio)

European FITS Committee

Preben Grosbøl, Chair ESO
Peter Bunclark IoA, Cambridge
Anatoly Piskunov IoA, Russian Acad. Sci.
Ernst Raimond NFRA
Patrick Wallace RAL

Japanese FITS Committee

Shiro Nishimura, Chair NAOJ
Osamu Kanamitsu Fukuoka U.
Yasuhiro Murata ISAS
Eiji Nishihara NAOJ
Toshiyuki Sasaki NAOJ
Shigeomi Yoshida U. Tokyo

IAU FITS Working Group

Don Wells, Chair USA
Bill Cotton USA
John Glaspey USA
Eric Greisen USA
Preben Grosbøl Germany (ESO)
Robert Hanisch USA
Don Jennings USA
Osamu Kanamitsu Japan
Francois Ochsenbein France
William Pence USA
Bruce Peterson Australia
Anatoly Piskunov Russia
Ernst Raimond The Netherlands
Peter Teuben USA
Doug Tody USA
Pat Wallace UK
Wayne Warren USA

4 R. J. Hanisch et al.: FITS Standard

Definition of the Flexible Image Transport
System (FITS)

March 29, 1999

Standard

NOST 100–2.0

NASA/Science Office of Standards and Technology
Code 633.2

NASA Goddard Space Flight Center
Greenbelt, MD 20771

USA

Foreword to NOST 100–2.0

The NASA/Science Office of Standards and Technol-
ogy (NOST) of the National Space Science Data Center
(NSSDC) of the National Aeronautics and Space Admin-
istration (NASA) has been established to serve the space
science communities in evolving cost effective, interopera-
ble data systems. The NOST performs a number of func-
tions designed to facilitate the recognition, development,
adoption, and use of standards by the space science com-
munities.

Approval of a NOST standard requires verification by
the NOST that the following requirements have been met:
consensus of the Technical Panel, proper adjudication of
the comments received from the targeted space and Earth
science community, and conformance to the accreditation
process.

A NOST standard represents the consensus of the
Technical Panel convened by the NOST. Consensus is es-
tablished when the NOST Accreditation Panel determines
that substantial agreement has been reached by the Tech-
nical Panel. However, consensus does not necessarily imply
that all members were in full agreement with every item
in the standard. NOST standards are not binding as pub-
lished; however, they may serve as a basis for mandatory
standards when adopted by NASA or other organizations.

A NOST standard may be revised at any time, de-
pending on developments in the areas covered by the stan-
dard. Also, within five years from the date of its issuance,
this standard will be reviewed by the NOST to determine
whether it should 1) remain in effect without change, 2)
be changed to reflect the impact of new technologies or
new requirements, or 3) be retired or canceled.

The Technical Panel that developed this version of the
standard consisted of the following members:

Robert J. Hanisch, Chair, Space Telescope Science Institute
William D. Pence, Secretary, NASA GSFC
Barry M. Schlesinger, Past Secretary, Raytheon STX
Allen Farris, Space Telescope Science Institute
Eric W. Greisen, National Radio Astronomy Observatory
Peter J. Teuben, University of Maryland
Randall W. Thompson, Computer Sciences Corporation
Archibald Warnock, A/WWW Enterprises

Members of the previous Technical Panels also included:
Lee E. Brotzman, Hughes STX
Edward Kemper, Hughes STX
Michael E. Van Steenberg, NASA GSFC
Wayne H. Warren Jr., Hughes STX
Richard A. White, NASA Goddard Space Flight Center

Introduction to NOST 100–2.0

The Flexible Image Transport System (FITS) evolved out
of the recognition that a standard format was needed for
transferring astronomical data from one installation to an-
other. The original form, or Basic FITS [1], was designed
for the transfer of images and consisted of a binary ar-
ray, usually multidimensional, preceded by an ASCII text
header with information describing the organization and
contents of the array. The FITS concept was later ex-
panded to accommodate more complex data formats. A
new format for image transfer, random groups, was de-
fined [2] in which the data would consist of a series of
arrays, with each array accompanied by a set of associ-
ated parameters. These formats were formally endorsed [3]
by the International Astronomical Union (IAU) in 1982.
Provisions for data structures other than simple arrays or
groups were made later. These structures appear in exten-
sions, each consisting of an ASCII header followed by the
data whose organization it describes. A set of general rules
governing such extensions [4] and a particular extension,
ASCII table [5], were endorsed by the IAU General As-
sembly [6] in 1988. At the same General Assembly, an IAU
FITS Working Group (IAUFWG) was formed [7] under
IAU Commission 5 (Astronomical Data) with the mandate
to maintain the existing FITS standards and to review,
approve, and maintain future extensions to FITS, recom-
mended practices for FITS, implementations, and the the-
saurus of approved FITS keywords. In 1989, the IAUFWG
approved a formal agreement [8] for the representation of
floating point numbers. In 1994, the IAUFWG endorsed
two additional extensions, the image extension [9] and the
binary table extension [10]. FITS was originally designed
and defined for 9-track half-inch magnetic tape. However,
as improvements in technology have brought forward other
data storage and data distribution media, it has generally
been agreed that the FITS format is to be understood as
a logical format and not defined in terms of the physical
characteristics of any particular data storage medium. In
1994, the IAUFWG adopted a set of rules [11] govern-
ing the relation between the FITS logical record size and

R. J. Hanisch et al.: FITS Standard 5

the physical block size for sequential media and bitstream
devices. The IAUFWG also approved in 1997 an agree-
ment [12] defining a new format for encoding the date and
time in the DATE, DATE-OBS, and other related DATExxxx

keywords to correct the ambiguity in the original DATE
keyword format beginning in the year 2000.

1. Overview

An archival format must be utterly portable and
self-describing, on the assumption that, apart from
the transcription device, neither the software nor
the hardware that wrote the data will be available
when the data are read. “Preserving Scientific Data
on our Physical Universe,” p. 60. Steering Com-
mittee for the Study on the Long-Term Reten-
tion of Selected Scientific and Technical Records of
the Federal Government, [US] National Research
Council, National Academy Press 1995.

1.1. Purpose

This standard formally defines the FITS format for data
structuring and exchange that is to be used where appli-
cable as defined in §1.3. It is intended as a formal cod-
ification of the FITS format that has been endorsed by
the IAU for transfer of astronomical data, fully consistent
with all actions and endorsements of the IAU and the IAU
FITS Working Group (IAUFWG). Minor ambiguities and
inconsistencies in FITS as described in the original papers
are eliminated.

1.2. Scope

This standard specifies the organization and content of
FITS data sets, including the header and data, for all
standard FITS formats: Basic FITS, the random groups
structure, the ASCII table extension, the image exten-
sion, and the binary table extension. It also specifies min-
imum structural requirements for new extensions and gen-
eral principles governing the creation of new extensions. It
specifies the relation between physical block sizes and logi-
cal records for FITS files on bitstream devices and sequen-
tial media. For headers, it specifies the proper syntax for
card images and defines required and reserved keywords.
For data, it specifies character and value representations
and the ordering of contents within the byte stream. It
defines the general rules to which new extensions are re-
quired to conform.

1.3. Applicability

This standard describes an extensible data interchange
format particularly well suited for transport and archiv-
ing of arrays and tables of astronomical data. The IAU
has recommended that all astronomical computer facilities

support FITS for the interchange of binary data. It has
been NASA policy for its astrophysics projects to make
their data available in FITS format. This standard may
also be used to define the format for data transport in
other disciplines, as may be determined by the appropri-
ate authorities.

1.4. Organization of This Document

§3 is a glossary of definitions, acronyms, and symbols. In
§4, this document describes the overall organization of a
FITS file, the contents of the first (primary) header and
data, the rules for creating new FITS extensions, and the
relation between physical block sizes and logical records
for FITS files on bitstream devices and sequential media.
The next two sections provide additional details on the
header and data, with a particular focus on the primary
header. §5 provides details about header card image syn-
tax and specifies those keywords required and reserved in
a primary header. §6 describes how different data types
are represented in FITS. The following sections describe
the headers and data of two standard FITS structures,
the now deprecated random groups records (§7) and the
current standard extensions: ASCII table, image, and bi-
nary table (§8). Throughout the document, deprecation of
structures or syntax is noted where relevant. Files contain-
ing deprecated features are valid FITS, but these features
should not be used in new files; the old files using them
remain standard because of the principle that no change
in FITS shall cause a valid FITS file to become invalid.

The Appendixes contain material that is not part of
the standard. The first, Appendix A, provides a formal
expression of the keyword/value syntax for header card
images described in §5.2. Appendix B provides examples
of widely accepted FITS conventions that are not part of
the formal FITS standard. It describes three conventions
in use with the binary table extension — one for handling
multidimensional arrays, one for including variable length
arrays, and one for arrays of substrings. Appendix C de-
scribes aspects of the implementation of FITS on phys-
ical media not covered by the blocking agreement. Ap-
pendix D is the appendix to the agreement endorsed by the
IAUFWG for a new format for keywords expressing dates.
The new format uses a four-digit value for the year, and
thus eliminates any ambiguity in dates from the year 2000
and after. This appendix is not part of the formal agree-
ment. It contains a detailed discussion of time systems.
It has been slightly reformatted for stylistic compatibility
with the remainder of this document. Appendix E lists
the differences between this standard and the specifica-
tions of prior publications; it also identifies those ambigu-
ities in the documents endorsed by the IAU on which this
standard provides specific rules. The next four appendixes
provide reference information: a tabular summary of the
FITS keywords (Appendix F), a list of the ASCII char-
acter set and a subset designated ASCII text (Appendix

6 R. J. Hanisch et al.: FITS Standard

G), a description of the IEEE floating point format (Ap-
pendix H), and a list of the extension type names that
have been reserved as of the date this document was issued
(Appendix I). Appendix J is a list of NOST documents,
including earlier versions of this standard.

2. References

1. Wells, D. C., Greisen, E. W., and Harten, R. H. 1981,
“FITS : A Flexible Image Transport System,” Astron.
Astrophys. Suppl., 44, 363–370.

2. Greisen, E. W. and Harten, R. H. 1981, “An Extension
of FITS for Small Arrays of Data,” Astron. Astrophys.
Suppl., 44, 371–374.

3. IAU. 1983, Information Bulletin No. 49.
4. Grosbøl, P., Harten, R. H., Greisen, E. W., and Wells,

D. C. 1988, “Generalized Extensions and Blocking Fac-
tors for FITS,” Astron. Astrophys. Suppl., 73, 359–
364.

5. Harten, R. H., Grosbøl, P., Greisen, E. W., and Wells,
D. C. 1988, “The FITS Tables Extension,” Astron.
Astrophys. Suppl., 73, 365–372.

6. IAU. 1988, Information Bulletin No. 61.
7. McNally, D., ed. 1988, Transactions of the IAU, Pro-

ceedings of the Twentieth General Assembly (Dor-
drecht: Kluwer).

8. Wells, D. C. and Grosbøl, P. 1990, “Floating Point
Agreement for FITS,” (available electronically from
ftp://nssdc.gsfc.nasa.gov/pub/fits/fp agree.

ps).
9. Ponz, J. D., Thompson, R. W., and Muñoz, J. R.

1994, “The FITS Image Extension,” Astron. Astro-
phys. Suppl., 105, 53–55.

10. Cotton, W. D., Tody, D. B., and Pence, W. D. 1995,
“Binary Table Extension to FITS,” Astron. Astrophys.
Suppl., 113, 159–166.

11. Grosbøl, P. and Wells, D. C. 1994, “Blocking of Fixed-
block Sequential Media and Bitstream Devices,”
(available electronically from FITS Support Office at
ftp://nssdc.gsfc.nasa.gov/pub/fits/blocking94.

txt).
12. Bunclark, P. and Rots, A. 1997, “Precise re-definition

of DATE-OBS Keyword encompassing the millen-
nium,” (available electronically from
ftp://nssdc.gsfc.nasa.gov/pub/fits/year2000

agreement.txt).
13. ANSI. 1978, “American National Standard for In-

formation Processing: Programming Language FOR-
TRAN,” ANSI X3.9–1978 (ISO 1539) (New York:
American National Standards Institute, Inc.).

14. ANSI. 1977, “American National Standard for Infor-
mation Processing: Code for Information Interchange,”
ANSI X3.4–1977 (ISO 646) (New York: American Na-
tional Standards Institute, Inc.).

15. IEEE. 1985, “American National Standard — IEEE
Standard for Binary Floating Point Arithmetic”.

ANSI/IEEE 754–1985 (New York: American National
Standards Institute, Inc.).

16. Jennings, D. G., Pence, W. D., Folk, M., and
Schlesinger, B. M, 1997, “A Hierarchical Grouping
Convention for FITS,” preprint, available electroni-
cally from
http://fits.gsfc.nasa.gov/group.html .

17. “Going AIPS,” 1990, National Radio Astronomy Ob-
servatory, Charlottesville, VA.

18. Muñoz, J. R. “IUE data in FITS Format,” 1989, ESA
IUE Newsletter, 32, 12–45.

3. Definitions, Acronyms, and Symbols

 Used to designate an ASCII blank.
ANSI American National Standards Institute.
Array A sequence of data values. This sequence corre-

sponds to the elements in a rectilinear, n-dimension
matrix (0 ≤ n ≤ 999).

Array value The value of an element of an array in a
FITS file, without the application of the associated
linear transformation to derive the physical value.

ASCII American National Standard Code for Informa-
tion Interchange.

ASCII blank The ASCII character for blank which is
represented by hexadecimal 20 (decimal 32).

ASCII character Any member of the 7-bit ASCII char-
acter set.

ASCII NULL Hexadecimal 00.
ASCII text ASCII characters hexadecimal 20–7E.
Basic FITS The FITS structure consisting of the pri-

mary header followed by a single primary data array.
Bit A single binary digit.
Byte An ordered sequence of eight consecutive bits

treated as a single entity.
Card image A sequence of 80 bytes containing ASCII

text, treated as a logical entity.
Conforming extension An extension whose keywords

and organization adhere to the requirements for con-
forming extensions defined in §4.4.1 of this standard.

DAT 4mm Digital Audio Tape.
Deprecated This term is used to refer to obsolete struc-

tures that should not be used for new applications but
remain valid.

Entry A single value in a table.
Extension A FITS HDU appearing after the primary

HDU in a FITS file.
Extension name The identifier used to distinguish a

particular extension HDU from others of the same
type, appearing as the value of the EXTNAME keyword.

Extension type An extension format.
Field A set of zero or more table entries collectively de-

scribed by a single format.
File A sequence of one or more records terminated by an

end-of-file indicator appropriate to the medium.
FITS Flexible Image Transport System.

R. J. Hanisch et al.: FITS Standard 7

FITS file A file with a format that conforms to the spec-
ifications in this document.

FITS structure One of the components of a FITS file:
the primary HDU, the random groups records, an ex-
tension, or, collectively, the special records following
the last extension.

Floating point A computer representation of a real
number.

Fraction The field of the mantissa (or significand) of a
floating point number that lies to the right of its im-
plied binary point.

Group parameter value The value of one of the pa-
rameters preceding a group in the random groups
structure, without the application of the associated lin-
ear transformation.

GSFC Goddard Space Flight Center.
HDU Header and Data Unit. A data structure consisting

of a header and the data the header describes. Note
that an HDU may consist entirely of a header with no
data records.

Header A series of card images organized within one or
more FITS logical records that describes structures
and/or data which follow it in the FITS file.

Heap A supplemental data area, currently defined to fol-
low the table in a binary table extension.

IAU International Astronomical Union.
IAUFWG International Astronomical Union FITS

Working Group.
IUE International Ultraviolet Explorer.
IEEE Institute of Electrical and Electronic Engineers.
IEEE NaN IEEE Not-a-Number value.
IEEE special values Floating point number byte pat-

terns that have a special, reserved meaning, such
as −0, ±∞, ±underflow, ±overflow, ±denormalized,
±NaN. (See Appendix H).

Indexed keyword A keyword that is of the form of a
fixed root with an appended positive integer count.

Keyword The first eight bytes of a header card image.
Logical record A record comprising 2880 8-bit bytes.
Mandatory keyword A keyword that must be used in

all FITS files or a keyword required in conjunction
with particular FITS structures.

Mantissa Also known as significand. The component of
an IEEE floating point number consisting of an explicit
or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Matrix A data array of two or more dimensions.
NOST NASA/Science Office of Standards and Technol-

ogy.
Physical value The value in physical units represented

by an element of an array and possibly derived from
the array value using the associated, but optional, lin-
ear transformation.

Picture element A single location within an array.
Pixel Picture element.

Primary data array The data array contained in the
primary HDU.

Primary HDU The first HDU in a FITS file.
Primary header The first header in a FITS file, con-

taining information on the overall contents of the file
as well as on the primary data array.

Record A sequence of bits treated as a single logical en-
tity.

Reference point The point along a given coordinate
axis, given in units of pixel number, at which a value
and increment are defined.

Repeat count The number of values represented in a
binary table field.

Reserved keyword An optional keyword that may be
used only in the manner defined in this standard.

Special records A series of 23040-bit (2880 8-bit byte)
records, following the primary HDU, whose internal
structure does not otherwise conform to that for the
primary HDU or to that specified for a conforming
extension in this standard.

Standard extension A conforming extension whose
header and data content are specified explicitly in this
standard.

Type name The value of the XTENSION keyword, used to
identify the type of the extension in the data following.

Valid value A member of a data array or table corre-
sponding to an actual physical quantity.

4. FITS File Organization

4.1. Overall

A FITS file shall be composed of the followingFITS struc-
tures, in the order listed:

– Primary HDU
– Conforming Extensions (optional)
– Other special records (optional)

Each FITS structure shall consist of an integral num-
ber of FITS logical records. The primary HDU shall start
with the first record of the FITS file. The first record of
each subsequent FITS structure shall be the record im-
mediately following the last record of the preceding FITS
structure. The size of a FITS logical record shall be 23040
bits, corresponding to 2880 8-bit bytes.

4.2. Individual FITS Structures

The primary HDU and every extension HDU shall con-
sist of an integral number of header records consisting of
ASCII text, which may be followed by an integral number
of data records. The first record of data shall be the record
immediately following the last record of the header.

8 R. J. Hanisch et al.: FITS Standard

4.3. Primary Header and Data Array

The first component of a FITS file shall be the primary
header. The primary header may, but need not be, fol-
lowed by a primary data array. The presence or absence
of a primary data array shall be indicated by the values
of the NAXIS or NAXISn keywords in the primary header
(§5.4.1.1).

4.3.1. Primary Header

The header of a primary HDU shall consist of a series of
card images in ASCII text. All header records shall consist
of 36 card images. Card images without information shall
be filled with ASCII blanks (hexadecimal 20).

4.3.2. Primary Data Array

In FITS format, the primary data array shall consist of a
single data array of 0–999 dimensions. The random groups
convention in the primary data array is a more compli-
cated structure (see §7). The data values shall be a byte
stream with no embedded fill or blank space. The first
value shall be in the first position of the first primary
data array record. The first value of each subsequent row
of the array shall be in the position immediately following
the last value of the previous row. Arrays of more than
one dimension shall consist of a sequence such that the
index along axis 1 varies most rapidly, that along axis 2
next most rapidly, and those along subsequent axes pro-
gressively less rapidly, with that along axis m, where m is
the value of NAXIS, varying least rapidly; i.e., the elements
of an array A(x1, x2, . . . , xm) shall be in the order shown
in Figure 1. The index count along each axis shall begin
with 1 and increment by 1 up to the value of the NAXISn

keyword (§5.4.1.1).

If the data array does not fill the final record, the re-
mainder of the record shall be filled by setting all bits to
zero.

4.4. Extensions

4.4.1. Requirements for Conforming Extensions

All extensions, whether or not further described in this
standard, shall fulfill the following requirements to be in
conformance with this FITS standard.

4.4.1.1 Identity Each extension type shall have a unique
type name, specified in the header according to the syntax
codified in §5.4.1.2. To preclude conflict, extension type
names must be registered with the IAUFWG. The FITS
Support Office shall maintain and provide a list of the
registered extensions.

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

...,
A(NAXIS1, 2, . . . , 1),

...,
A(1, NAXIS2, . . . , NAXISm),

...,
A(NAXIS1, NAXIS2, . . . , NAXISm)

Fig. 1. Arrays of more than one dimension shall consist of a
sequence such that the index along axis 1 varies most rapidly
and those along subsequent axes progressively less rapidly. Ex-
cept for the location of the first element, array structure is
independent of record structure.

4.4.1.2 Size Specification The total number of bits in the
data of each extension shall be specified in the header for
that extension, in the manner prescribed in §5.4.1.2.

4.4.1.3 Compatibility with Existing FITS Files No exten-
sion shall be constructed that invalidates existing FITS
files.

4.4.2. Standard Extensions

A standard extension shall be a conforming extension
whose organization and content are completely specified
in this standard. Only one FITS format shall be approved
for each type of data organization. Each standard exten-
sion shall have a unique name given by the value of the
XTENSION keyword (see Appendix I)

4.4.3. Order of Extensions

An extension may follow the primary HDU or another
conforming extension. Standard extensions and other con-
forming extensions may appear in any order in a FITS file.

4.5. Special Records

The first 8 bytes of special records must not contain the
string “XTENSION”. It is recommended that they not con-
tain the string “SIMPLE ”. The records must have the
standard FITS 23040-bit record length. The contents of
special records are not otherwise specified by this stan-
dard.

R. J. Hanisch et al.: FITS Standard 9

4.6. Physical Blocking

4.6.1. Bitstream Devices

For bitstream devices, including but not restricted to log-
ical file systems, FITS files shall be written with fixed
blocks of a physical block size equal to the 23040-bit FITS
logical record size.

4.6.2. Sequential Media

4.6.2.1 Fixed Block For fixed block length sequential me-
dia, including but not restricted to optical disks (accessed
as a sequential set of records), QIC format 1/4-inch car-
tridge tapes, and local area networks, FITS files shall be
written as a bitstream, using the fixed block size of the
medium. If the end of the last logical record does not co-
incide with the end of a physical fixed block, all bits in the
remainder of the physical block containing the last logical
record shall be set to zero. After an end-of-file mark has
been detected in the course of reading a FITS file, sub-
sequent incomplete FITS logical records should be disre-
garded.

4.6.2.2 Variable Block For variable block length sequen-
tial media, including but not restricted to 1/2-inch 9-track
tapes, DAT 4 mm cartridge tapes, and 8 mm cartridge
tapes, FITS files may be written with an integer blocking
factor equal to 1–10 logical records per physical block.

5. Headers

5.1. Card Images

5.1.1. Syntax

Header card images shall consist of a keyword, a value
indicator (optional unless a value is present), a value (op-
tional), and a comment (optional). Except where specifi-
cally stated otherwise in this standard, keywords may ap-
pear in any order.

A formal syntax, giving a complete definition of the
syntax of FITS card images, is given in Appendix A. It
is intended as an aid in interpreting the text defining the
standard.

5.1.2. Components

5.1.2.1 Keyword (bytes 1–8) The keyword shall be a
left justified, 8-character, blank-filled, ASCII string with
no embedded blanks. All digits (hexadecimal 30 to
39,“0123456789”) and upper case Latin alphabetic char-
acters (hexadecimal 41 to 5A, “ABCDEFG HIJKLMN OPQRST

UVWXYZ”) are permitted; no lower case characters shall be
used. The underscore (hexadecimal 5F, “ ”) and hyphen
(hexadecimal 2D, “-”) are also permitted. No other char-
acters are permitted. For indexed keywords with a single
index the counter shall not have leading zeroes.

5.1.2.2 Value Indicator (bytes 9–10) If this field contains
the ASCII characters “= ”, it indicates the presence of
a value field associated with the keyword, unless it is a
commentary keyword as defined in §5.4.2.4. If the value
indicator is not present or if it is a commentary keyword
then columns 9–80 may contain any ASCII text.

5.1.2.3 Value/Comment (bytes 11–80) This field, when
used, shall contain the value, if any, of the keyword, fol-
lowed by optional comments. The value field may be a null
field; i.e., it may consist entirely of spaces. If the value field
is null, the value associated with the keyword is undefined.
If a comment is present, it must be preceded by a slash
(hexadecimal 2F, “/”). A space between the value and
the slash is strongly recommended. The value shall be the
ASCII text representation of a string or constant, in the
format specified in §5.2. The comment may contain any
ASCII text.

5.2. Value

The structure of the value field shall be determined by
the type of the variable. The value field represents a sin-
gle value and not an array of values. The value field must
be in one of two formats: fixed or free. The fixed format
is required for values of mandatory keywords and recom-
mended for values of all others. This standard imposes no
requirements on case sensitivity of character strings other
than those explicitly specified.

5.2.1. Character String

If the value is a fixed format character string, column 11
shall contain a single quote (hexadecimal code 27, “’”);
the string shall follow, starting in column 12, followed
by a closing single quote (also hexadecimal code 27) that
should not occur before column 20 and must occur in or
before column 80. The character string shall be composed
only of ASCII text. A single quote is represented within
a string as two successive single quotes, e.g., O’HARA =
’O’’HARA’. Leading blanks are significant; trailing blanks
are not.

Free format character strings follow the same rules as
fixed format character strings except that the starting and
closing single quote characters may occur anywhere within
columns 11–80. Any columns preceding the starting quote
character and after column 10 must contain the space
character.

Note that there is a subtle distinction between the fol-
lowing 3 keywords:

KEYWORD1= ’’ / null string keyword

KEYWORD2= ’ ’ / blank keyword

KEYWORD3= / undefined keyword

The value of KEYWORD1 is a null, or zero length string
whereas the value of the KEYWORD2 is a blank string (nom-

10 R. J. Hanisch et al.: FITS Standard

inally a single blank character because the first blank in
the string is significant, but trailing blanks are not). The
value of KEYWORD3 is undefined and has an indeterminate
datatype as well, except in cases where the data type of
the specified keyword is explicitly defined in this standard.

The maximum allowed length of a keyword string is 68
characters (with the opening and closing quote characters
in columns 11 and 80, respectively). In general, no length
limit less than 68 is implied for character-valued keywords.

5.2.2. Logical

If the value is a fixed format logical constant, it shall ap-
pear as a T or F in column 30. A logical value is represented
in free format by a single character consisting of T or F.
This character must be the first non-blank character in
columns 11–80. The only characters that may follow this
single character are spaces, or a slash followed by an op-
tional comment (see §5.1.2.3).

5.2.3. Integer Number

If the value is a fixed format integer, the ASCII representa-
tion shall be right justified in columns 11–30. An integer
consists of a ‘+’ (hexadecimal 2B) or ‘−’ (hexadecimal
2D) sign, followed by one or more ASCII digits (hexadec-
imal 30 to 39), with no embedded spaces. The leading ‘+’
sign is optional. Leading zeros are permitted, but are not
significant. The integer representation described here is
always interpreted as a signed, decimal number.

A free format integer value follows the same rules as
fixed format integers except that it may occur anywhere
within columns 11–80.

5.2.4. Real Floating Point Number

If the value is a fixed format real floating point number,
the ASCII representation shall appear, right justified, in
columns 11–30.

A floating point number is represented by a decimal
number followed by an optional exponent, with no em-
bedded spaces. A decimal number consists of a ‘+’ (hex-
adecimal 2B) or ‘−’ (hexadecimal 2D) sign, followed by a
sequence of ASCII digits containing a single decimal point
(‘.’), representing an integer part and a fractional part of
the floating point number. The leading ‘+’ sign is optional.
At least one of the integer part or fractional part must be
present. If the fractional part is present, the decimal point
must also be present. If only the integer part is present, the
decimal point may be omitted. The exponent, if present,
consists of an exponent letter followed by an integer. Let-
ters in the exponential form (‘E’ or ‘D’) shall be upper
case. Note: The full precision of 64-bit values cannot be
expressed over the whole range of values using the fixed
format.

A free format floating point value follows the same
rules as fixed format floating point values except that it
may occur anywhere within columns 11–80.

5.2.5. Complex Integer Number

There is no fixed format for complex integer numbers.

If the value is a complex integer number, the value
must be represented as a real part and an imaginary part,
separated by a comma and enclosed in parentheses. Spaces
may precede and follow the real and imaginary parts.
The real and imaginary parts are represented as integers
(§5.2.3). Such a representation is regarded as a single value
for the complex integer number. This representation may
be located anywhere within columns 11–80.

5.2.6. Complex Floating Point Number

There is no fixed format for complex floating point num-
bers.

If the value is a complex floating point number, the
value must be represented as a real part and an imaginary
part, separated by a comma and enclosed in parentheses.
Spaces may precede and follow the real and imaginary
parts. The real and imaginary parts are represented as
floating point values (§5.2.4). Such a representation is re-
garded as a single value for the complex floating point
number. This representation may be located anywhere
within columns 11–80.

5.3. Units

The units of all FITS header keyword values, with the ex-
ception of measurements of angles, should conform with
the recommendations in the IAU Style Manual [7]. For
angular measurements given as floating point values and
specified with reserved keywords, degrees are the recom-
mended units (with the units, if specified, given as ’deg’).

5.4. Keywords

5.4.1. Mandatory Keywords

Mandatory keywords are required in every HDU as de-
scribed in the remainder of this subsection. They may
be used only as described in this standard. Values of the
mandatory keywords must be written in fixed format.

5.4.1.1 Principal The SIMPLE keyword is required to be
the first keyword in the primary header of all FITS files.
Principal mandatory keywords other than SIMPLE are re-
quired in all FITS headers. The card images of any pri-
mary header must contain the keywords shown in Table 1
in the order given. No other keywords may intervene be-
tween the SIMPLE keyword and the last NAXISn keyword.

R. J. Hanisch et al.: FITS Standard 11

1 SIMPLE

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...
(other keywords)
...

last END

Table 1. Mandatory keywords for primary header.

The total number of bits in the primary data array, ex-
clusive of fill that is needed after the data to complete the
last record (§4.3.2), is given by the following expression:

Nbits = |BITPIX| × (NAXIS1× NAXIS2× · · · × NAXISm), (1)

where Nbits is non-negative and the number of bits ex-
cluding fill, m is the value of NAXIS, and BITPIX and the
NAXISn represent the values associated with those key-
words.

SIMPLE Keyword The value field shall contain a logical
constant with the value T if the file conforms to this stan-
dard. This keyword is mandatory for the primary header
and is not permitted in extension headers. A value of F
signifies that the file does not conform to this standard.

BITPIX Keyword The value field shall contain an integer.
The absolute value is used in computing the sizes of data
structures. It shall specify the number of bits that rep-
resent a data value. The only valid values of BITPIX are
given in Table 2.

Value Data Represented

8 Character or unsigned binary integer
16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer

-32 IEEE single precision floating point
-64 IEEE double precision floating point

Table 2. Interpretation of valid BITPIX value.

NAXIS Keyword The value field shall contain a non-
negative integer no greater than 999, representing the
number of axes in the associated data array. A value of
zero signifies that no data follow the header in the HDU.

NAXISn Keywords The value field of this indexed keyword
shall contain a non-negative integer, representing the num-
ber of elements along axis n of a data array. The NAXISn

must be present for all values n = 1,...,NAXIS, and for
no other values of n. A value of zero for any of the NAXISn

signifies that no data follow the header in the HDU. If
NAXIS is equal to 0, there should not be any NAXISn key-
words.

END Keyword This keyword has no associated value.
Columns 9–80 shall be filled with ASCII blanks.

5.4.1.2 Conforming Extensions All conforming exten-
sions must use the keywords defined in Table 3 in the
order specified. No other keywords may intervene between
the XTENSION keyword and the last NAXISn keyword. This
organization is required for any conforming extension,
whether or not further specified in this standard.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...
(other keywords, including . . .)
PCOUNT

GCOUNT
...

last END

Table 3. Mandatory keywords in conforming extensions.

The total number of bits in the extension data array
exclusive of fill that is needed after the data to complete
the last record such as that for the primary data array
(§4.3.2) is given by the following expression:

Nbits = |BITPIX| × GCOUNT×

(PCOUNT+ NAXIS1× NAXIS2× · · · × NAXISm), (2)

where Nbits is non-negative and the number of bits ex-
cluding fill, m is the value of NAXIS, and BITPIX, GCOUNT,
PCOUNT, and the NAXISn represent the values associated
with those keywords.

XTENSION Keyword The value field shall contain a char-
acter string giving the name of the extension type. This
keyword is mandatory for an extension header and must
not appear in the primary header. For an extension that
is not a standard extension, the type name must not be
the same as that of a standard extension.

The IAUFWG may specify additional type names that
must be used only to identify specific types of extensions;
the full list shall be available from the FITS Support Of-
fice.

12 R. J. Hanisch et al.: FITS Standard

PCOUNT Keyword The value field shall contain an integer
that shall be used in any way appropriate to define the
data structure, consistent with Eq. 2.

GCOUNT Keyword The value field shall contain an integer
that shall be used in any way appropriate to define the
data structure, consistent with Eq. 2.

EXTEND Keyword The use of extensions necessitates a sin-
gle additional keyword in the primary header of the FITS
file. If the FITS file may contain extensions, a card im-
age with the keyword EXTEND and the value field con-
taining the logical value T must appear in the primary
header immediately after the last NAXISn card image, or,
if NAXIS=0, the NAXIS card image. The presence of this
keyword with the value T in the primary header does not
require that extensions be present.

5.4.2. Other Reserved Keywords

These keywords are optional but may be used only as de-
fined in this standard. They apply to any FITS structure
with the meanings and restrictions defined below. Any
FITS structure may further restrict the use of these key-
words.

5.4.2.1 Keywords Describing the History or Physical Con-
struction of the HDU

DATE Keyword Starting January 1, 2000, the following for-
mat shall be used. FITS writers should commence writing
the value of the DATE keyword in this format starting Jan-
uary 1, 1999 and before January 1, 2000. The value field
shall contain a character string giving the date on which
the HDU was created, in the form YYYY-MM-DD, or the
date and time when the HDU was created, in the form
YYYY-MM-DDThh:mm:ss[.sss.. .], where YYYY shall be the
four-digit calendar year number, MM the two-digit month
number with January given by 01 and December by 12,
and DD the two-digit day of the month. When both date
and time are given, the literal T shall separate the date and
time, hh shall be the two-digit hour in the day, mm the two-
digit number of minutes after the hour, and ss[.sss. . .]
the number of seconds (two digits followed by an optional
fraction) after the minute. No fields may be defaulted and
no leading zeroes omitted. The decimal part of the sec-
onds field is optional and may be arbitrarily long, so long
as it is consistent with the rules for value formats of §5.2.

The value of the DATE keyword shall always be ex-
pressed in UTC when in this format, for all data sets cre-
ated on earth.

The following format may appear on files written be-
fore January 1, 2000. The value field contains a character
string giving the date on which the HDU was created, in

the form DD/MM/YY, where DD is the day of the month,
MM the month number with January given by 01 and De-
cember by 12, and YY the last two digits of the year, the
first two digits being understood to be 19. Specification
of the date using Universal Time is recommended but not
assumed.

Copying of a FITS file does not require changing any
of the keyword values in the file’s HDUs.

ORIGIN Keyword The value field shall contain a character
string identifying the organization or institution responsi-
ble for creating the FITS file.

BLOCKED Keyword This keyword may be used only in the
primary header. It shall appear within the first 36 card
images of the FITS file. (Note: This keyword thus cannot
appear if NAXIS is greater than 31, or if NAXIS is greater
than 30 and the EXTEND keyword is present.) Its presence
with the required logical value of T advises that the phys-
ical block size of the FITS file on which it appears may
be an integral multiple of the logical record length, and
not necessarily equal to it. Physical block size and logical
record length may be equal even if this keyword is present
or unequal if it is absent. It is reserved primarily to pre-
vent its use with other meanings. Since the issuance of
version 1 of this standard, the BLOCKED keyword has been
deprecated.

5.4.2.2 Keywords Describing Observations

DATE-OBS Keyword The format of the value field for
DATE-OBS keywords shall follow the prescriptions for the
DATE keyword (§5.4.2.1). Either the 4-digit year format
or the 2-digit year format may be used for observation
dates from 1900 through 1999 although the 4-digit format
is preferred.

When the format with a four-digit year is used, the
default interpretations for time shall be UTC for dates be-
ginning 1972-01-01 and UT before. Other date and time
scales are permissible. The value of the DATE-OBS key-
word shall be expressed in the principal time system or
time scale of the HDU to which it belongs; if there is any
chance of ambiguity, the choice shall be clarified in com-
ments. The value of DATE-OBS shall be assumed to refer to
the start of an observation, unless another interpretation
is clearly explained in the comment field. Explicit specifi-
cation of the time scale is recommended. By default, times
for TAI and times that run simultaneously with TAI, e.,g.,
UTC and TT, will be assumed to be as measured at the
detector (or, in practical cases, at the observatory). For
coordinate times such as TCG, TCB, and TDB which are
tied to an unambiguous coordinate system, the default
shall be time as if the observation had taken place at the
origin of the coordinate time system. Conventions may be

R. J. Hanisch et al.: FITS Standard 13

developed that use other time systems. Appendix D of
this document contains the appendix to the agreement on
a four digit year, which discusses time systems in some
detail.

When the value of DATE-OBS is expressed in the two-
digit year form, allowed for files written before January
1, 2000 with a year in the range 1900-1999, there is no
default assumption as to whether it refers to the start,
middle or end of an observation.

DATExxxx Keywords The value fields for all keywords be-
ginning with the string DATE whose value contains date,
and optionally time, information shall follow the prescrip-
tions for the DATE-OBS keyword.

TELESCOP Keyword The value field shall contain a char-
acter string identifying the telescope used to acquire the
data associated with the header.

INSTRUME Keyword The value field shall contain a char-
acter string identifying the instrument used to acquire the
data associated with the header.

OBSERVER Keyword The value field shall contain a char-
acter string identifying who acquired the data associated
with the header.

OBJECT Keyword The value field shall contain a character
string giving a name for the object observed.

EQUINOX Keyword The value field shall contain a floating
point number giving the equinox in years for the celestial
coordinate system in which positions are expressed.

EPOCH Keyword The value field shall contain a floating
point number giving the equinox in years for the celes-
tial coordinate system in which positions are expressed.
Starting with Version 1, this standard has deprecated the
use of the EPOCH keyword and thus it shall not be used
in FITS files created after the adoption of this standard;
rather, the EQUINOX keyword shall be used.

5.4.2.3 Bibliographic Keywords

AUTHOR Keyword The value field shall contain a charac-
ter string identifying who compiled the information in the
data associated with the header. This keyword is appro-
priate when the data originate in a published paper or are
compiled from many sources.

REFERENC Keyword The value field shall contain a char-
acter string citing a reference where the data associated
with the header are published.

5.4.2.4 Commentary Keywords

COMMENT Keyword This keyword shall have no associated
value; columns 9–80 may contain any ASCII text. Any
number of COMMENT card images may appear in a header.

HISTORY Keyword This keyword shall have no associated
value; columns 9–80 may contain any ASCII text. The
text should contain a history of steps and procedures as-
sociated with the processing of the associated data. Any
number of HISTORY card images may appear in a header.

Keyword Field is Blank Columns 1–8 contain ASCII
blanks. Columns 9–80 may contain any ASCII text. Any
number of card images with blank keyword fields may ap-
pear in a header.

5.4.2.5 Array Keywords These keywords are used to de-
scribe the contents of an array, either alone or in a series of
random groups (§7). They are optional, but if they appear
in the header describing an array or groups, they must be
used as defined in this section of this standard. They shall
not be used in headers describing other structures unless
the meaning is the same as that for a primary or groups
array.

BSCALE Keyword This keyword shall be used, along with
the BZERO keyword, when the array pixel values are not
the true physical values, to transform the primary data
array values to the true physical values they represent,
using Eq. 3. The value field shall contain a floating point
number representing the coefficient of the linear term in
the scaling equation, the ratio of physical value to array
value at zero offset. The default value for this keyword is
1.0.

BZERO Keyword This keyword shall be used, along with
the BSCALE keyword, when the array pixel values are not
the true physical values, to transform the primary data ar-
ray values to the true values. The value field shall contain
a floating point number representing the physical value
corresponding to an array value of zero. The default value
for this keyword is 0.0.

The transformation equation is as follows:

physical value = BZERO+ BSCALE× array value (3)

BUNIT Keyword The value field shall contain a character
string, describing the physical units in which the quanti-

14 R. J. Hanisch et al.: FITS Standard

ties in the array, after application of BSCALE and BZERO,
are expressed. These units must follow the prescriptions
of §5.3.

BLANK Keyword This keyword shall be used only in head-
ers with positive values of BITPIX (i.e., in arrays with in-
teger data). Columns 1–8 contain the string, “BLANK ”
(ASCII blanks in columns 6–8). The value field shall con-
tain an integer that specifies the representation of array
values whose physical values are undefined.

CTYPEn Keywords The value field shall contain a charac-
ter string, giving the name of the coordinate represented
by axis n.

CRPIXn Keywords The value field shall contain a floating
point number, identifying the location of a reference point
along axis n, in units of the axis index. This value is based
upon a counter that runs from 1 to NAXISn with an incre-
ment of 1 per pixel. The reference point value need not
be that for the center of a pixel nor lie within the actual
data array. Use comments to indicate the location of the
index point relative to the pixel.

CRVALn Keywords The value field shall contain a floating
point number, giving the value of the coordinate specified
by the CTYPEn keyword at the reference point CRPIXn.
Units must follow the prescriptions of §5.3.

CDELTn Keywords The value field shall contain a floating
point number giving the partial derivative of the coordi-
nate specified by the CTYPEn keywords with respect to the
pixel index, evaluated at the reference point CRPIXn, in
units of the coordinate specified by the CTYPEn keyword.
These units must follow the prescriptions of §5.3.

CROTAn Keywords This keyword is used to indicate a ro-
tation from a standard coordinate system described by
the CTYPEn to a different coordinate system in which the
values in the array are actually expressed. Rules for such
rotations are not further specified in this standard; the
rotation should be explained in comments. The value field
shall contain a floating point number giving the rotation
angle in degrees between axis n and the direction implied
by the coordinate system defined by CTYPEn.

DATAMAX Keyword The value field shall always contain a
floating point number, regardless of the value of BITPIX.
This number shall give the maximum valid physical value
represented by the array, exclusive of any special values.

DATAMIN Keyword The value field shall always contain a
floating point number, regardless of the value of BITPIX.
This number shall give the minimum valid physical value
represented by the array, exclusive of any special values.

5.4.2.6 Extension Keywords These keywords are used to
describe an extension and should not appear in the pri-
mary header.

EXTNAME Keyword The value field shall contain a charac-
ter string, to be used to distinguish among different ex-
tensions of the same type, i.e., with the same value of
XTENSION, in a FITS file.

EXTVER Keyword The value field shall contain an integer,
to be used to distinguish among different extensions in a
FITS file with the same type and name, i.e., the same
values for XTENSION and EXTNAME. The values need not
start with 1 for the first extension with a particular value
of EXTNAME and need not be in sequence for subsequent
values. If the EXTVER keyword is absent, the file should be
treated as if the value were 1.

EXTLEVEL Keyword The value field shall contain an inte-
ger, specifying the level in a hierarchy of extension levels
of the extension header containing it. The value shall be 1
for the highest level; levels with a higher value of this key-
word shall be subordinate to levels with a lower value. If
the EXTLEVEL keyword is absent, the file should be treated
as if the value were 1.

5.4.3. Additional Keywords

5.4.3.1 Requirements New keywords may be devised in
addition to those described in this standard, so long as
they are consistent with the generalized rules for keywords
and do not conflict with mandatory or reserved keywords.

5.4.3.2 Restrictions No keyword in the primary header
shall specify the presence of a specific extension in a FITS
file; only the EXTEND keyword described in §5.4.1.2 shall
be used to indicate the possible presence of extensions. No
keyword in either the primary or extension header shall
explicitly refer to the physical block size, other than the
deprecated BLOCKED keyword of §5.4.2.1.

6. Data Representation

Primary and extension data shall be represented in one
of the formats described in this section. FITS data shall
be interpreted to be a byte stream. Bytes are in order of
decreasing significance. The byte that includes the sign bit
shall be first, and the byte that has the ones bit shall be
last.

R. J. Hanisch et al.: FITS Standard 15

6.1. Characters

Each character shall be represented by one byte. A char-
acter shall be represented by its 7-bit ASCII [14] code in
the low order seven bits in the byte. The high-order bit
shall be zero.

6.2. Integers

6.2.1. Eight-bit

Eight-bit integers shall be unsigned binary integers, con-
tained in one byte.

6.2.2. Sixteen-bit

Sixteen-bit integers shall be twos-complement signed bi-
nary integers, contained in two bytes.

6.2.3. Thirty-two-bit

Thirty-two-bit integers shall be twos-complement signed
binary integers, contained in four bytes.

6.2.4. Unsigned Integers

Unsigned sixteen-bit integers can be represented in FITS
files by subtracting 32768 from each value (thus offsetting
the values into the range of a signed sixteen-bit integer)
before writing them to the FITS file. The BZERO keyword
(or the TZEROn keyword in the case of binary table columns
with TFORMn = ’I’) must also be included in the header
with its value set to 32768 so that FITS reading software
will add this offset to the raw values in the FITS file, thus
restoring them to the original unsigned integer values. Un-
signed thirty-two-bit integers can be represented in FITS
files in a similar way by applying an offset of 2147483648
(231) to the data values.

6.3. IEEE-754 Floating Point

Transmission of 32- and 64-bit floating point data within
the FITS format shall use the ANSI/IEEE-754 standard
[15]. BITPIX = -32 and BITPIX = -64 signify 32- and 64-
bit IEEE floating point numbers, respectively; the abso-
lute value of BITPIX is used for computing the sizes of data
structures. The full IEEE set of number forms is allowed
for FITS interchange, including all special values.

The BLANK keyword should not be used when BITPIX

= -32 or -64; rather, the IEEE NaN should be used to
represent an undefined value. Use of the BSCALE and BZERO

keywords is not recommended.

Appendix H has additional details on the IEEE format.

7. Random Groups Structure

Although it is standard FITS, the random groups struc-
ture has been used almost exclusively for applications in
radio interferometry; outside this field, few FITS readers
can read data in random groups format. The binary table
extension (§8.3) can accommodate the structure described
by random groups. While existing FITS files use the for-
mat, and it is therefore included in this standard, its use
for future applications has been deprecated since the issue
of Version 1 of this standard.

7.1. Keywords

7.1.1. Mandatory Keywords

The SIMPLE keyword is required to be the first keyword
in the primary header of all FITS files, including those
with random groups records. If the random groups for-
mat records follow the primary header, the card images
of the primary header must use the keywords defined in
Table 4 in the order specified. No other keywords may in-
tervene between the SIMPLE keyword and the last NAXISn
keyword.

1 SIMPLE

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXISn, n=2, . . . , value of NAXIS
...
(other keywords, which must include . . .)
GROUPS

PCOUNT

GCOUNT
...

last END

Table 4. Mandatory keywords in primary header preceding
random groups.

The total number of bits in the random groups records
exclusive of the fill described in §7.2 is given by the fol-
lowing expression:

Nbits = |BITPIX| × GCOUNT×

(PCOUNT+ NAXIS2× NAXIS3× · · · × NAXISm), (4)

where Nbits is non-negative and the number of bits ex-
cluding fill, m is the value of NAXIS, and BITPIX, GCOUNT,
PCOUNT, and the NAXISn represent the values associated
with those keywords.

16 R. J. Hanisch et al.: FITS Standard

7.1.1.1 SIMPLE Keyword The card image containing this
keyword is structured in the same way as if a primary data
array were present (§5.4.1).

7.1.1.2 BITPIX Keyword The card image containing this
keyword is structured as prescribed in §5.4.1.

7.1.1.3 NAXIS Keyword The value field shall contain an
integer ranging from 1 to 999, representing one more than
the number of axes in each data array.

7.1.1.4 NAXIS1 Keyword The value field shall contain the
integer 0, a signature of random groups format indicating
that there is no primary data array.

7.1.1.5 NAXISn Keywords (n=2, . . . , value of NAXIS) The
value field shall contain an integer, representing the num-
ber of positions along axis n-1 of the data array in each
group.

7.1.1.6 GROUPS Keyword The value field shall contain the
logical constant T. The value T associated with this key-
word implies that random groups records are present.

7.1.1.7 PCOUNT Keyword The value field shall contain an
integer equal to the number of parameters preceding each
array in a group.

7.1.1.8 GCOUNT Keyword The value field shall contain an
integer equal to the number of random groups present.

7.1.1.9 END Keyword The card image containing this key-
word is structured as described in §5.4.1.

7.1.2. Reserved Keywords

7.1.2.1 PTYPEn Keywords The value field shall contain a
character string giving the name of parameter n. If the
PTYPEn keywords for more than one value of n have the
same associated name in the value field, then the data
value for the parameter of that name is to be obtained
by adding the derived data values of the corresponding
parameters. This rule provides a mechanism by which a
random parameter may have more precision than the ac-
companying data array elements; for example, by sum-
ming two 16-bit values with the first scaled relative to the
other such that the sum forms a number of up to 32-bit
precision.

7.1.2.2 PSCALn Keywords This keyword shall be used,
along with the PZEROn keyword, when the nth FITS group
parameter value is not the true physical value, to trans-

form the group parameter value to the true physical values
it represents, using Eq. 5. The value field shall contain a
floating point number representing the coefficient of the
linear term in Eq. 5, the scaling factor between true val-
ues and group parameter values at zero offset. The default
value for this keyword is 1.0.

7.1.2.3 PZEROn Keywords This keyword shall be used,
along with the PSCALn keyword, when the nth FITS group
parameter value is not the true physical value, to trans-
form the group parameter value to the physical value. The
value field shall contain a floating point number, repre-
senting the true value corresponding to a group parame-
ter value of zero. The default value for this keyword is 0.0.
The transformation equation is as follows:

physical value = PZEROn+

PSCALn× group parameter value (5)

7.2. Data Sequence

Random groups data shall consist of a set of groups. The
number of groups shall be specified by the GCOUNT keyword
in the associated header record. Each group shall consist of
the number of parameters specified by the PCOUNT keyword
followed by an array with the number of elements Nelem

given by the following expression:

Nelem = (NAXIS2× NAXIS3× · · · × NAXISm), (6)

where Nelem is the number of elements in the data array in
a group, m is the value of NAXIS, and the NAXISn represent
the values associated with those keywords.

The first parameter of the first group shall appear in
the first location of the first data record. The first element
of each array shall immediately follow the last parameter
associated with that group. The first parameter of any
subsequent group shall immediately follow the last ele-
ment of the array of the previous group. The arrays shall
be organized internally in the same way as an ordinary
primary data array. If the groups data do not fill the final
record, the remainder of the record shall be filled with zero
values in the same way as a primary data array (§4.3.2).
If random groups records are present, there shall be no
primary data array.

7.3. Data Representation

Permissible data representations are those listed in §6.
Parameters and elements of associated data arrays shall
have the same representation. Should more precision be
required for an associated parameter than for an element
of a data array, the parameter shall be divided into two

R. J. Hanisch et al.: FITS Standard 17

or more addends, represented by the same value for the
PTYPEn keyword. The value shall be the sum of the physi-
cal values, which may have been obtained from the group
parameter values using the PSCALn and PZEROn keywords.

8. Standard Extensions

8.1. The ASCII Table Extension

Data shall appear as an ASCII table extension if the pri-
mary header of the FITS file has the keyword EXTEND set
to T and the first keyword of that extension header has
XTENSION= ’TABLE ’.

8.1.1. Mandatory Keywords

The header of an ASCII table extension must use the
keywords defined in Table 5. The first keyword must
be XTENSION; the seven keywords following XTENSION

(BITPIX . . .TFIELDS) must be in the order specified with
no intervening keywords.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT

8 TFIELDS
...
(other keywords, which must include . . .)
TBCOLn, n=1, 2, . . . , k where k is the value

of TFIELDS
TFORMn, n=1, 2, . . . , k where k is the value

of TFIELDS
...

last END

Table 5. Mandatory keywords in ASCII table extensions.

XTENSION Keyword The value field shall contain the char-
acter string value text ’TABLE ’.

BITPIX Keyword The value field shall contain the integer
8, denoting that the array contains ASCII characters.

NAXIS Keyword The value field shall contain the integer 2,
denoting that the included data array is two-dimensional:
rows and columns.

NAXIS1 Keyword The value field shall contain a non-
negative integer, giving the number of ASCII characters
in each row of the table.

NAXIS2 Keyword The value field shall contain a non-
negative integer, giving the number of rows in the table.

PCOUNT Keyword The value field shall contain the integer
0.

GCOUNT Keyword The value field shall contain the integer
1; the data records contain a single table.

TFIELDS Keyword The value field shall contain a non-
negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TBCOLn Keywords The value field of this indexed keyword
shall contain an integer specifying the column in which
field n starts. The first column of a row is numbered 1.

TFORMn Keywords The value field of this indexed keyword
shall contain a character string describing the format in
which field n is encoded. Only the formats in Table 6, in-
terpreted as ANSI FORTRAN-77 [13] input formats and
discussed in more detail in §8.1.5, are permitted for en-
coding. Format codes must be specified in upper case.
Other format editing codes common to ANSI FORTRAN-
77 such as repetition, positional editing, scaling, and field
termination are not permitted. All values in numeric fields
have a number base of ten (i.e., they are decimal); binary,
octal, hexadecimal, and other representations are not per-
mitted.

Field Value Data Type

Aw Character
Iw Decimal integer

Fw.d Single precision real
Ew.d Single precision real, exponential notation
Dw.d Double precision real, exponential notation

Table 6. Valid TFORMn format values in TABLE extensions.

END Keyword This keyword has no associated value.
Columns 9–80 shall contain ASCII blanks.

8.1.2. Other Reserved Keywords

In addition to the mandatory keywords defined in §8.1.1,
the following keywords may be used to describe the struc-

18 R. J. Hanisch et al.: FITS Standard

ture of an ASCII table data array. They are optional, but if
they appear within an ASCII table extension header, they
must be used as defined in this section of this standard.

TSCALn Keywords This indexed keyword shall be used,
along with the TZEROn keyword, when the quantity in field
n does not represent a true physical quantity. The value
field shall contain a floating point number representing
the coefficient of the linear term in Eq. 7, which must be
used to compute the true physical value of the field. The
default value for this keyword is 1.0. This keyword may
not be used for A-format fields.

TZEROn Keywords This indexed keyword shall be used,
along with the TSCALn keyword, when the quantity in field
n does not represent a true physical quantity. The value
field shall contain a floating point number representing
the zero point for the true physical value of field n. The
default value for this keyword is 0.0. This keyword may
not be used for A-format fields.

The transformation equation used to compute a true
physical value from the quantity in field n is

physical value = TZEROn+ TSCALn× field value. (7)

TNULLn Keywords The value field for this indexed key-
word shall contain the character string that represents an
undefined value for field n. The string is implicitly blank
filled to the width of the field.

TTYPEn Keywords The value field for this indexed key-
word shall contain a character string, giving the name of
field n. It is recommended that only letters, digits, and un-
derscore (hexadecimal code 5F, “ ”) be used in the name.
String comparisons with the values of TTYPEn keywords
should not be case sensitive. The use of identical names
for different fields should be avoided.

TUNITn Keywords The value field shall contain a charac-
ter string describing the physical units in which the quan-
tity in field n, after any application of TSCALn and TZEROn,
is expressed. Units must follow the prescriptions in §5.3.

8.1.3. Data Sequence

The table is constructed from a two-dimensional array of
ASCII characters. The row length and the number of rows
shall be those specified, respectively, by the NAXIS1 and
NAXIS2 keywords of the associated header records. The
number of characters in a row and the number of rows in
the table shall determine the size of the character array.
Every row in the array shall have the same number of
characters. The first character of the first row shall be

at the start of the record immediately following the last
header record. The first character of subsequent rows shall
follow immediately the character at the end of the previous
row, independent of the record structure. The positions in
the last data record after the last character of the last row
of the data array shall be filled with ASCII blanks.

8.1.4. Fields

Each row in the array shall consist of a sequence of fields,
with one entry in each field. For every field, the ANSI
FORTRAN-77 format of the information contained, lo-
cation in the row of the beginning of the field and (op-
tionally) the field name, shall be specified in keywords of
the associated header records. A separate format keyword
must be provided for each field. The location and format
of fields shall be the same for every row. Fields may over-
lap. There may be characters in a table row that are not
included in any field.

8.1.5. Entries

All data in an ASCII table extension field shall be ASCII
text in a format that conforms to the rules for fixed field
input in ANSI FORTRAN-77 [13] format, as described
below, including implicit decimal points. The only possi-
ble formats shall be those specified in Table 6. If values
of -0 and +0 must be distinguished, then the sign char-
acter should appear in a separate field in character for-
mat. TNULLn keywords may be used to specify a character
string that represents an undefined value in each field. The
characters representing an undefined value may differ from
field to field but must be the same within a field. Writ-
ers of ASCII tables should select a format appropriate to
the form, range of values, and accuracy of the data in the
table.

The value of a character-formatted (Aw) field is a
character string of width w containing the characters in
columns TBCOLn through TBCOLn+w− 1.

The value of an integer-formatted (Iw) field is an in-
teger number determined by removing all blanks from
columns TBCOLn through TBCOLn+w− 1 and interpreting
the remaining, right-justified characters as a signed deci-
mal integer. A blank field has value 0. All characters other
than blanks, the decimal integers (“0” through “9”) and a
single leading sign character (“+” and “-”) are forbidden.

The value of a real-formatted field (Fw.d, Ew.d, Dw.d)
is a real number determined from the w characters from
columns TBCOLn through TBCOLn+w − 1. The value is
formed by

1. Discarding all blank characters and right-justifying the
non-blank characters,

2. Interpreting the first non-blank characters as a nu-
meric string consisting of a single optional sign (“+”
or “-”) followed by one or more decimal digits (“0”

R. J. Hanisch et al.: FITS Standard 19

through “9”) optionally containing a single decimal
point (“.”). The numeric string is terminated by the
end of the right-justified field or by the occurrence of
any character other than a decimal point (“.”) and
the decimal integers (“0” through “9”). If the string
contains no explicit decimal point, then the implicit
decimal point is taken as immediately preceding the
rightmost d digits of the string, with leading zeros as-
sumed if necessary.

3. If the numeric string is terminated by a
(a) “+” or “-”, interpreting the following string as an

exponent in the form of a signed decimal integer,
or

(b) “E”, or “D”, interpreting the following string as an
exponent of the form E or D followed by an option-
ally signed decimal integer constant.

4. The exponent string, if present, is terminated by the
end of the right-justified string.

5. Characters other than those specified above are forbid-
den.

The numeric value of the table field is then the value of
the numeric string multiplied by ten (10) to the power
of the exponent string, i.e., value = numeric string ×
10(exponent string). The default exponent is zero and a
blankfield has value zero. There is no difference between
the F, D, and E formats; the content of the string deter-
mines its interpretation. Numbers requiring more preci-
sion and/or range than the local computer can support
may be represented. It is good form to specify a D for-
mat in TFORMn for a column of an ASCII table when that
column will contain numbers that cannot be accurately
represented in 32-bit IEEE binary format (see Appendix
H).

Note that the above definitions allow for embedded
blanks anywhere in integer-formatted and real-formatted
fields and implicit decimal points in real-formatted fields.
FITS reading tasks will have to honor these flexibilities.
However, since these flexibilities are likely to cause con-
fusion and possible misinterpretation, it is recommended
that FITS writing tasks write tables with explicit deci-
mal points and no embedded or trailing blanks whenever
possible.

8.2. Image Extension

Data shall appear as an image extension if the primary
header of the FITS file has the keyword EXTEND set to T

and the first keyword of that extension header has
XTENSION= ’IMAGE ’.

8.2.1. Mandatory Keywords

The XTENSION keyword is required to be the first keyword
of all image extensions. The card images in the header
of an image extension must use the keywords defined in

Table 7 in the order specified. No other keywords may
intervene between the XTENSION and GCOUNT keywords.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
5 PCOUNT

6 GCOUNT
...
(other keywords . . .)
...

last END

Table 7. Mandatory keywords in image extensions.

XTENSION Keyword The value field shall contain the char-
acter string value text ’IMAGE ’.

BITPIX Keyword The value field shall contain an integer.
The absolute value is used in computing the sizes of data
structures. It shall specify the number of bits that rep-
resent a data value. The only valid values of BITPIX are
given in Table 2.

NAXIS Keyword The value field shall contain a non-
negative integer no greater than 999, representing the
number of axes in the associated data array. A value of
zero signifies that no data follow the header in the image
extension.

NAXISn Keywords The value field of this indexed keyword
shall contain a non-negative integer, representing the num-
ber of elements along axis n of a data array. The NAXISn

must be present for all values n = 1, ..., NAXIS, and
for no other values of n. A value of zero for any of the
NAXISn signifies that no data follow the header in the im-
age extension. If NAXIS is equal to 0, there should not be
any NAXISn keywords.

PCOUNT Keyword The value field shall contain the integer
0.

GCOUNT Keyword The value field shall contain the integer
1; each image extension contains a single array.

END Keyword This keyword has no associated value.
Columns 9–80 shall be filled with ASCII blanks.

20 R. J. Hanisch et al.: FITS Standard

8.2.2. Units

The units of all header keyword values in an image exten-
sion shall follow the prescriptions in §5.3.

8.2.3. Data Sequence

The data format shall be identical to that of a primary
data array as described in §4.3.2.

8.3. Binary Table Extension

Data shall appear as a binary table extension if the pri-
mary header of the FITS file has the keyword EXTEND set
to T and the first keyword of that extension header has
XTENSION= ’BINTABLE’.

8.3.1. Mandatory Keywords

The XTENSION keyword is the first keyword of all binary
table extensions. The seven keywords following (BITPIX
. . .TFIELDS) must be in the order specified in Table 8,
with no intervening keywords.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT

8 TFIELDS
...
(other keywords, which must include . . .)
TFORMn, n=1, 2, . . . , k where k is the value

of TFIELDS
...

last END

Table 8. Mandatory keywords in binary table extensions.

XTENSION Keyword The value field shall contain the char-
acter string ’BINTABLE’.

BITPIX Keyword The value field shall contain the integer
8, denoting that the array is an array of 8-bit bytes.

NAXIS Keyword The value field shall contain the integer 2,
denoting that the included data array is two-dimensional:
rows and columns.

NAXIS1 Keyword The value field shall contain a non-
negative integer, giving the number of 8-bit bytes in each
row of the table.

NAXIS2 Keyword The value field shall contain a non-
negative integer, giving the number of rows in the table.

PCOUNT Keyword The value field shall contain the number
of bytes that follow the table in the associated extension
data.

GCOUNT Keyword The value field shall contain the integer
1; the data records contain a single table.

TFIELDS Keyword The value field shall contain a non-
negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TFORMn Keywords The value field of this indexed keyword
shall contain a character string of the form rTa. The re-
peat count r is the ASCII representation of a non-negative
integer specifying the number of elements in field n. The
default value of r is 1; the repeat count need not be present
if it has the default value. A zero element count, indicating
an empty field, is permitted. The data type T specifies the
data type of the contents of field n. Only the data types in
Table 9 are permitted. The format codes must be speci-
fied in upper case. For fields of type P, the only permitted
repeat counts are 0 and 1. The additional characters a are
optional and are not further defined in this standard. Ta-
ble 9 lists the number of bytes each data type occupies in
a table row. The first field of a row is numbered 1. The
total number of bytes nrow in a table row is given by

nrow =

TFIELDS∑

i=1

ribi (8)

where ri is the repeat count for field i, bi is the number
of bytes for the data type in field i, and TFIELDS is the
value of that keyword, must equal the value of NAXIS1.

END Keyword This keyword has no associated value.
Columns 9–80 shall contain ASCII blanks.

8.3.2. Other Reserved Keywords

In addition to the mandatory keywords defined in §8.3.1,
these keywords may be used to describe the structure of
a binary table data array. They are optional, but if they
appear within a binary table extension header, they must
be used as defined in this section of this standard.

R. J. Hanisch et al.: FITS Standard 21

TFORMn 8-bit
value Description Bytes

L Logical 1
X Bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
A Character 1
E Single precision floating point 4
D Double precision floating point 8
C Single precision complex 8
M Double precision complex 16
P Array Descriptor 8

∗ number of 8-bit bytes needed to contain all bits

Table 9. Valid TFORMn data types in BINTABLE extensions.

TTYPEn Keywords The value field for this indexed key-
word shall contain a character string, giving the name of
field n. It is recommended that only letters, digits, and un-
derscore (hexadecimal code 5F, “ ”) be used in the name.
String comparisons with the values of TTYPEn keywords
should not be case sensitive. The use of identical names
for different fields should be avoided.

TUNITn Keywords The value field shall contain a charac-
ter string describing the physical units in which the quan-
tity in field n, after any application of TSCALn and TZEROn,
is expressed. Units must follow the prescriptions in §5.3.

TNULLn Keywords The value field for this indexed key-
word shall contain the integer that represents an unde-
fined value for field n of data type B, I, or J. The keyword
may not be used if field n is of any other data type.

TSCALn Keywords This indexed keyword shall be used,
along with the TZEROn keyword, when the quantity in field
n does not represent a true physical quantity. It may not
be used if the format of field n is A, L, or X. The interpre-
tation for fields of type P is not defined. A proposed in-
terpretation is described in Appendix B.1. For fields with
all other data types, the value field shall contain a float-
ing point number representing the coefficient of the linear
term in Eq. 7, which is used to compute the true physical
value of the field, or, in the case of the complex data types
C and M, of the real part of the field, with the imaginary
part of the scaling factor set to zero. The default value for
this keyword is 1.0.

TZEROn Keywords This indexed keyword shall be used,
along with the TSCALn keyword, when the quantity in field
n does not represent a true physical quantity. It may not
be used if the format of field n is A, L, or X. The interpre-

tation for fields of type P is not defined. A proposed inter-
pretation is described in Appendix B.1. For fields with all
other data types, the value field shall contain a floating
point number representing the true physical value corre-
sponding to a value of zero in field n of the FITS file, or,
in the case of the complex data types C and M, in the real
part of the field, with the imaginary part set to zero. The
default value for this keyword is 0.0. Equation 7 is used to
compute a true physical value from the quantity in field
n.

TDISPn Keywords The value field of this indexed keyword
shall contain a character string describing the format rec-
ommended for the display of the contents of field n. If the
table value has been scaled, the physical value, derived us-
ing Eq. 7, shall be displayed. All elements in a field shall
be displayed with a single, repeated format. For purposes
of display, each byte of bit (type X) and byte (type B) ar-
rays is treated a an unsigned integer. Arrays of type A may
be terminated with a zero byte. Only the format codes in
Table 10, discussed in §8.3.4, are permitted for encoding.
The format codes must be specified in upper case. If the
Bw.m, Ow.m, and Zw.m formats are not readily available to
the reader, the Iw.m display format may be used instead,
and if the ENw.d and ESw.d formats are not available, Ew.d
may be used. The meaning of this keyword is not defined
for fields of type P in this standard but may be defined in
conventions using such fields.

Field Value Data Type

Aw Character
Lw Logical

Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Single precision real

Ew.dEe Single precision real, exponential notation
ENw.d Engineering; E format with exponent multi-

ple of 3
ESw.d Scientific; same as EN but nonzero leading

digit if not zero
Gw.dEe General; appears as F if significance not lost,

else E.
Dw.dEe Double precision real, exponential notation

Table 10. Valid TDISPn format values in BINTABLE extensions.
w is the width in characters of displayed values, m is the mini-
mum number of digits displayed, d is the number of digits to
right of decimal, and e is number of digits in exponent. The .m

and Ee fields are optional.

22 R. J. Hanisch et al.: FITS Standard

THEAP Keyword The value field of this keyword shall con-
tain an integer providing the separation, in bytes, between
the start of the main data table and the start of a sup-
plemental data area called the heap. The default value
shall be the product of the values of NAXIS1 and NAXIS2.
This keyword shall not be used if the value of PCOUNT is
zero. A proposed application of this keyword is presented
in Appendix B.1.

TDIMn Keywords The value field of this indexed keyword
shall contain a character string describing how to inter-
pret the contents of field n as a multidimensional array,
providing the number of dimensions and the length along
each axis. The form of the value is not further specified
by this standard. A proposed convention is described in
Appendix B.2.

8.3.3. Data Sequence

The data in a binary table extension shall consist of a
Main Data Table which may, but need not, be followed
by additional bytes. The positions in the last data record
after the last additional byte, or, if there are no additional
bytes, the last character of the last row of the data array,
shall be filled by setting all bits to zero.

8.3.3.1 Main Data Table The table is constructed from a
two-dimensional byte array. The number of bytes in a row
shall be specified by the value of the NAXIS1 keyword and
the number of rows shall be specified by the NAXIS2 key-
word of the associated header records. Within a row, fields
shall be stored in order of increasing column number, as
determined from the n of the TFORMn keywords. The num-
ber of bytes in a row and the number of rows in the table
shall determine the size of the byte array. Every row in
the array shall have the same number of bytes. The first
row shall begin at the start of the record immediately fol-
lowing the last header record. Subsequent rows shall begin
immediately following the end of the previous row, with
no intervening bytes, independent of the record structure.
Words need not be aligned along word boundaries.

Each row in the array shall consist of a sequence of
fields. The number of elements in each field and their data
type shall be specified in keywords of the associated header
records. A separate format keyword must be provided for
each field. The location and format of fields shall be the
same for every row. Fields may be empty, if the repeat
count specified in the value of the TFORMn keyword of the
header is 0. The following data types, and no others, are
permitted.

Logical If the value of the TFORMn keyword specifies data
type L, the contents of field n shall consist of ASCII T in-

dicating true or ASCII F, indicating false. A 0 byte (hex-
adecimal 0) indicates an invalid value.

Bit Array If the value of the TFORMn keyword specifies
data type X, the contents of field n shall consist of a se-
quence of bits starting with the most significant bit; the
bits following shall be in order of decreasing significance,
ending with the least significant bit. A bit array shall be
composed of an integral number of bytes, with those bits
following the end of the data set to zero. No null value is
defined for bit arrays.

Character If the value of the TFORMn keyword specifies
data type A, field n shall contain a character string of zero
or more members, composed of ASCII text. This charac-
ter string may be terminated before the length specified by
the repeat count by an ASCII NULL (hexadecimal code
00). Characters after the first ASCII NULL are not de-
fined. A string with the number of characters specified by
the repeat count is not NULL terminated. Null strings
are defined by the presence of an ASCII NULL as the first
character.

Unsigned 8-Bit Integer If the value of the TFORMn keyword
specifies data type B, the data in field n shall consist of
unsigned 8-bit integers, with the most significant bit first,
and subsequent bits in order of decreasing significance.
Null values are given by the value of the associated TNULLn

keyword.

16-Bit Integer If the value of the TFORMn keyword speci-
fies data type I, the data in field n shall consist of twos-
complement signed 16-bit integers, contained in two bytes.
The most significant byte shall be first. Within each byte
the most significant bit shall be first, and subsequent bits
shall be in order of decreasing significance. Null values are
given by the value of the associated TNULLn keyword. Un-
signed integers can be represented using the convention
described in §6.2.4.

32-Bit Integer If the value of the TFORMn keyword spec-
ifies data type J, the data in field n shall consist of
twos-complement signed 32-bit integers, contained in four
bytes. The most significant byte shall be first, and sub-
sequent bytes shall be in order of decreasing significance.
Within each byte, the most significant bit shall be first,
and subsequent bits shall be in order of decreasing signifi-
cance. Null values are given by the value of the associated
TNULLn keyword. Unsigned integers can be represented us-
ing the convention described in §6.2.4.

Single Precision Floating Point If the value of the TFORMn
keyword specifies data type E, the data in field n shall con-

R. J. Hanisch et al.: FITS Standard 23

sist of ANSI/IEEE-754 [15] 32-bit floating point numbers,
as described in Appendix H. All IEEE special values are
recognized. The IEEE NaN is used to represent invalid
values.

Double Precision Floating Point If the value of the
TFORMn keyword specifies data type D, the data in field
n shall consist of ANSI/IEEE-754 [15] 64-bit double pre-
cision floating point numbers, as described in Appendix H.
All IEEE special values are recognized. The IEEE NaN is
used to represent invalid values.

Single Precision Complex If the value of the TFORMn key-
word specifies data type C, the data in field n shall consist
of a sequence of pairs of 32-bit single precision floating
point numbers. The first member of each pair shall rep-
resent the real part of a complex number, and the second
member shall represent the imaginary part of that com-
plex number. If either member contains a NaN, the entire
complex value is invalid.

Double Precision Complex If the value of the TFORMn key-
word specifies data type M, the data in field n shall consist
of a sequence of pairs of 64-bit double precision floating
point numbers. The first member of each pair shall rep-
resent the real part of a complex number, and the second
member of the pair shall represent the imaginary part of
that complex number. If either member contains a NaN,
the entire complex value is invalid.

Array Descriptor If the value of the TFORMn keyword spec-
ifies data type P, the data in field n shall consist of not
more than one pair of 32-bit integers. The meaning of
these integers is not defined by this standard. The pro-
posed application of this data type is described in Ap-
pendix B.1.

8.3.3.2 Bytes Following Main Table The main data table
shall be followed by zero or more bytes, as specified by the
value of the PCOUNT keyword. The meaning of these bytes
is not further defined by this standard. One proposed ap-
plication is described in Appendix B.1.

8.3.4. Data Display

Character data are encoded under format code Aw. If the
character datum has length less than or equal to w, it
is represented on output right-justified in a string of w

characters. If the character datum has length greater than
w, the first w characters of the datum are represented on
output in a string of w characters. Character data are not
surrounded by single or double quotation marks unless
those marks are themselves part of the data value.

Logical data are encoded under format code Lw. Log-
ical data are represented on output with the character T

for true or F for false right justified in a blank-filled string
of w characters. A null value may be represented by a com-
pletely blank string of w characters.

Integer data (including bit X and byte B type fields) are
encoded under format codes Iw.m, Bw.m, Ow.m, and Zw.m.
The default value of m is one and the “.m” is optional. The
first letter of the code specifies the number base for the
encoding with I for decimal (10), B for binary (2), O for
octal (8), and Z for hexadecimal (16). Hexadecimal format
uses the upper-case letters A through F to represent dec-
imal values 10 through 15. The output field consists of w
characters containing zero or more leading blanks followed
by a minus if the internal datum is negative followed by
the magnitude of the internal datum in the form of an un-
signed integer constant in the specified number base with
only as many leading zeros as are needed to have at least m
numeric digits. Note that m ≤ w is allowed if all values are
positive, but m < w is required if any values are negative.
If the number of digits required to represent the integer
datum exceeds w, then the output field consists of a string
of w asterisk (*) characters.

Real data are encoded under format codes Fw.d,
Ew.dEe, Dw.dEe, ENw.d, and ESw.d. In all cases, the out-
put is a string of w characters including the decimal point,
any sign characters, and any exponent including the expo-
nent’s indicators, signs, and values. If the number of digits
required to represent the real datum exceeds w, then the
output field consists of a string of w asterisk (*) charac-
ters. In all cases, d specifies the number of digits to ap-
pear to the right of the decimal point. The F format code
output field consists of w − d − 1 characters containing
zero or more leading blanks followed by a minus if the
internal datum is negative followed by the absolute mag-
nitude of the internal datum in the form of an unsigned
integer constant. These characters are followed by a dec-
imal point (“.”) and d characters giving the fractional
part of the internal datum, rounded by the normal rules
of arithmetic to d fractional digits. For the E and D for-
mat codes, an exponent is taken such that the fraction
0.1 ≤ |datum|/10exponent < 1.0. The fraction (with appro-
priate sign) is output with an F format of width w− e− 2
characters with d characters after the decimal followed by
an E or D followed by the exponent as a signed e+ 1 char-
acter integer with leading zeros as needed. The default
value of e is 2 when the Ee portion of the format code is
omitted. If the exponent value will not fit in e + 1 char-
acters but will fit in e + 2 then the E (or D) is omitted
and the wider field used. If the exponent value will not
fit (with a sign character) in e + 2 characters, then the
entire w-character output field is filled with asterisks (*).
The ES format code is processed in the same manner as
the E format code except that the exponent is taken so
that 1.0 ≤ fraction < 10. The EN format code is processed
in the same manner as the E format code except that the

24 R. J. Hanisch et al.: FITS Standard

exponent is taken to be an integer multiple of 3 and so
that 1.0 ≤ fraction < 1000.0. All real format codes have
number base 10. There is no difference between E and D

format codes on input other than an implication with the
latter of greater precision in the internal datum.

The Gw.dEe format code may be used with data of any
type. For data of type integer, logical, or character, it is
equivalent to Iw, Lw, or Aw, respectively. For data of type
real, it is equivalent to an F format (with different num-
bers of characters after the decimal) when that format will
accurately represent the value and is equivalent to an E

format when the number (in absolute value) is either very
small or very large. Specifically, for real values outside the
range 0.1 − 0.5×10−d−1 ≤ value < 10d − 0.5, it is equiv-
alent to Ew.dEe. For real values within the above range,
it is equivalent to Fw′.d′ followed by 2 + e blanks, where
w′ = w− e− 2 and d′ = d− k for k = 0, 1, . . . , d if the real
datum value lies in the range 10k−1 (1 − 0.5×10−d) ≤
value ≤ 10k (1 − 0.5×10−d).

Complex data are encoded with any of the real data
formats as described above. The same format is used for
the real and imaginary parts. It is recommended that the
2 values be separated by a comma and enclosed in paren-
theses with a total field width of 2w+ 3.

9. Restrictions on Changes

Any structure that is a valid FITS structure shall remain
a valid FITS structure at all future times. Use of certain
valid FITS structures may be deprecated by this or future
FITS standard documents.

Appendix A: Formal Syntax of Card Images

(This Appendix is not part of the NOST FITS standard
but is included for convenient reference.)

The following notation is used in defining the formal
syntax.

:= means “is defined to be”
X | Y means one of X or Y (no ordering relation

is implied)
[X] means that X is optional
X. . . means X is repeated 1 or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A

through Z
\0xnn means the ASCII character associated

with the hexadecimal code nn
{. . .} expresses a constraint or a comment (it

immediately follows the syntax rule)

The following statements define the formal syntax
used in FITS free format card images.

FITS card image :=
FITS commentary card image | FITS value card image

FITS commentary card image :=
COMMENT keyword [ascii text char...] |
HISTORY keyword [ascii text char...] |
BLANKFIELD keyword [ascii text char...] |
keyword field anychar but equal [ascii text char...] |
keyword field ’=’ anychar but space [ascii text char...]

{Constraint: The total number of characters in a
FITS commentary card image must be exactly equal to
80.}

FITS value card image :=
keyword field value indicator [space...] [value] [space...]
[comment]

{Constraint: The total number of characters in a
FITS value card image must be exactly equal to 80.}
{Comment: If the value field is not present, the value of
the FITS keyword is not defined.}

keyword field :=
[keyword char...] [space...]

{Constraint: The total number of characters in the
keyword field must be exactly equal to 8.}

keyword char :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘/’ [ascii text char...]

ascii text char :=
space–‘~’

anychar but equal :=
space–‘<’ | ‘>’–‘~’

anychar but space :=
‘!’–‘~’

R. J. Hanisch et al.: FITS Standard 25

value :=
character string value | logical value | integer value |
floating value | complex integer value |
complex floating value

character string value :=
begin quote [string text char...] end quote

{Constraint: The begin quote and end quote are not part
of the character string value but only serve as delimiters.
Leading spaces are significant; trailing spaces are not.}

begin quote :=
quote

end quote :=
quote

{Constraint: The ending quote must not be immediately
followed by a second quote.}

quote :=
\0x27

string text char :=
ascii text char

{Constraint: A string text char is identical to an
ascii text char except for the quote char; a quote char is
represented by two successive quote chars.}

logical value :=
‘T’ | ‘F’

integer value :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a
signed decimal number. It may contain leading zeros.}

sign :=
‘−’ | ‘+’

digit :=
‘0’–‘9’

floating value :=
decimal number [exponent]

decimal number :=
[sign] [integer part] [?.? [fraction part]]

{Constraint: At least one of the integer part and frac-
tion part must be present.}

integer part :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponent letter [sign] digit [digit...]

exponent letter :=
‘E’ | ‘D’

complex integer value :=
‘(’ [space...] real integer part [space...] ‘,’ [space...]
imaginary integer part [space...] ‘)’

real integer part :=
integer value

imaginary integer part :=
integer value

complex floating value :=
‘(’ [space...] real floating part [space...] ‘,’ [space...]
imaginary floating part [space...] ‘)’

real floating part :=
floating value

imaginary floating part :=
floating value

Appendix B: Proposed Binary Table Conventions

(This Appendix is not part of the NOST FITS Standard
but is included for informational purposes only.)

In the paper describing the binary table exten-
sion, type name ’BINTABLE’ [10], the authors present
three conventions: one for variable length arrays,
one for multidimensional arrays and one for sub-
string arrays. These conventions, discussed in ap-
pendixes to the proposal, are not part of the formal
BINTABLE rules adopted by the IAUFWG but are
expected to enjoy wide acceptance. The draft text
for those appendixes, available on-line in the directory
http://www.cv.nrao.edu/fits/documents/standards/,
is reproduced here nearly verbatim; the only changes are
those required for stylistic consistency with the rest of
this document.

B.1. “Variable Length Array” Facility

One of the most attractive features of binary tables is that
any field of the table can be an array. In the standard case
this is a fixed size array, i.e., a fixed amount of storage is
allocated in each record for the array data—whether it is
used or not. This is fine so long as the arrays are small
or a fixed amount of array data will be stored in each
record, but if the stored array length varies for different
records, it is necessary to impose a fixed upper limit on
the size of the array that can be stored. If this upper limit

26 R. J. Hanisch et al.: FITS Standard

is made too large excessive wasted space can result and
the binary table mechanism becomes seriously inefficient.
If the limit is set too low then it may become impossible
to store certain types of data in the table.

The “variable length array” construct presented here
was devised to deal with this problem. Variable length ar-
rays are implemented in such a way that, even if a table
contains such arrays, a simple reader program which does
not understand variable length arrays will still be able
to read the main table (in other words a table contain-
ing variable length arrays conforms to the basic binary
table standard). The implementation chosen is such that
the records in the main table remain fixed in size even if
the table contains a variable length array field, allowing
efficient random access to the main table.

Variable length arrays are logically equivalent to regu-
lar static arrays, the only differences being 1) the length of
the stored array can differ for different records, and 2) the
array data is not stored directly in the table records. Since
a field of any datatype can be a static array, a field of any
datatype can also be a variable length array (excluding
type P, the variable length array descriptor itself, which is
not a datatype so much as a storage class specifier). Con-
ventions such as TDIMn (see Appendix B.2) apply equally
to both variable length and static arrays.

A variable length array is declared in the table header
with a special field datatype specifier of the form

rPt(emax)

where the “P” indicates the amount of space occupied by
the array descriptor in the data record (64 bits), the ele-
ment count r should be 0, 1, or absent, t is a character
denoting the datatype of the array data (L, X, B, I, J, etc.,
but not P), and emax is a quantity guaranteed to be equal
to or greater than the maximum number of elements of
type t actually stored in a table record. There is no built-
in upper limit on the size of a stored array; emax merely
reflects the size of the largest array actually stored in the
table, and is provided to avoid the need to preview the
table when, for example, reading a table containing vari-
able length elements into a database that supports only
fixed size arrays. There may be additional characters in
the TFORMn keyword following the emax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte array

indicates that field 8 of the table is a variable length array
of type byte, with a maximum stored array length not to
exceed 1800 array elements (bytes in this case).

The data for the variable length arrays in a table is
not stored in the actual data records; it is stored in a
special data area, the heap, following the last fixed size
data record. What is stored in the data record is an array
descriptor. This consists of two 32-bit integer values: the
number of elements (array length) of the stored array, fol-
lowed by the zero-indexed byte offset of the first element

of the array, measured from the start of the heap area.
Storage for the array is contiguous. The array descriptor
for field N as it would appear embedded in a data record
is illustrated symbolically below:

. . . [field N–1] [(nelem,offset)] [field N+1] . . .

If the stored array length is zero there is no array data,
and the offset value is undefined (it should be set to zero).
The storage referenced by an array descriptor must lie
entirely within the heap area; negative offsets are not per-
mitted.

A binary table containing variable length arrays con-
sists of three principal segments, as follows:

[table header] [record storage area] [heap area]

The table header consists of one or more 2880-byte
FITS logical records with the last record indicated by the
keyword END somewhere in the record. The record storage
area begins with the next 2880-byte logical record follow-
ing the last header record and is NAXIS1×NAXIS2 bytes in
length. The zero indexed byte offset of the heap measured
from the start of the record storage area is given by the
THEAP keyword in the header. If this keyword is missing
the heap is assumed to begin with the byte immediately
following the last data record, otherwise there may be a
gap between the last stored record and the start of the
heap. If there is no gap the value of the heap offset is
NAXIS1 × NAXIS2. The total length in bytes of the heap
area following the last stored record (gap plus heap) is
given by the PCOUNT keyword in the table header.

For example, suppose we have a table containing 5 rows
each 168 byte records, with a heap area 2880 bytes long,
beginning at an offset of 2880, thereby aligning the record
storage and heap areas on FITS record boundaries (this
alignment is not necessarily recommended but is useful for
our example). The data portion of the table consists of 2
2880-byte FITS records, 840 bytes of which are used by
the 5 table records, hence PCOUNT is 2 × 2880 − 840, or
4920 bytes; this is expressed in the table header as:

NAXIS1 = 168 / Width of table row in bytes

NAXIS2 = 5 / Number of rows in table

PCOUNT = 4920 / Random parameter count

...

THEAP = 2880 / Byte offset of heap area

The values of TSCALn and TZEROn for variable length
array column entries are to be applied to the values in
the data array in the heap area, not the values of the
array descriptor. These keywords can be used to scale data
values in either static or variable length arrays.

While the above description is sufficient to define the
required features of the variable length array implemen-
tation, some hints regarding usage of the variable length
array facility may also be useful.

R. J. Hanisch et al.: FITS Standard 27

Programs which read binary tables should take care
to not assume more about the physical layout of the table
than is required by the specification. For example, there
are no requirements on the alignment of data within the
heap. If efficient runtime access is a concern one may want
to design the table so that data arrays are aligned to the
size of an array element. In another case one might want
to minimize storage and forgo any efforts at alignment (by
careful design it is often possible to achieve both goals).
Variable array data may be stored in the heap in any or-
der, i.e., the data for record N+1 is not necessarily stored
at a larger offset than that for record N . There may be
gaps in the heap where no data is stored. Pointer aliasing
is permitted, i.e., the array descriptors for two or more ar-
rays may point to the same storage location (this could be
used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be
used to store a “typeless” data sequence. Since FITS
is a machine-independent storage format, some form of
machine-specific data conversion (byte swapping, floating
point format conversion) is implied when accessing stored
data with types such as integer and floating, but byte ar-
rays are copied to and from external storage without any
form of conversion.

An important feature of variable length arrays is that
it is possible that the stored array length may be zero.
This makes it possible to have a column of the table for
which, typically, no data is present in each stored record.
When data is present the stored array can be as large
as necessary. This can be useful when storing complex
objects as records in a table.

Accessing a binary table stored on a random access
storage medium is straightforward. Since the data records
in the main table are fixed in size they may be randomly
accessed given the record number, by computing the offset.
Once the record has been read in, any variable length array
data may be directly accessed using the element count
and offset given by the array descriptor stored in the data
record.

Reading a binary table stored on a sequential access
storage medium requires that a table of array descriptors
be built up as the main table records are read in. Once all
the table records have been read, the array descriptors are
sorted by the offset of the array data in the heap. As the
heap data is read, arrays are extracted sequentially from
the heap and stored in the affected records using the back
pointers to the record and field from the table of array
descriptors. Since array aliasing is permitted, it may be
necessary to store a given array in more than one field or
record.

Variable length arrays are more complicated than reg-
ular static arrays and imply an extra data access per array
to fetch all the data for a record. For this reason, it is rec-
ommended that regular static arrays be used instead of
variable length arrays unless efficiency or other consider-
ations require the use of a variable array.

This facility is still undergoing trials and is not part of
the basic binary table definition.

B.2. “Multidimensional Array” Convention

It is anticipated that binary tables will need to contain
data structures more complex that those describable by
the basic notation. Examples of these are multidimen-
sional arrays and nonrectangular data structures. Suitable
conventions may be defined to pass these structures using
some combination of keyword/value pairs and table en-
tries to pass the parameters of these structures.

One case, multidimensional arrays, is so common that
it is prudent to describe a simple convention. The “Mul-
tidimensional array” convention consists of the following:
any column with a dimensionality of 2 or larger will have
an associated character keyword TDIMn =’(l,m,n...)’
where l, m, n,. . . are the dimensions of the array. The data
is ordered such that the array index of the first dimension
given (l) is the most rapidly varying and that of the last
dimension given is the least rapidly varying. The size im-
plied by the TDIMn keyword will equal the element count
specified in the TFORMn keyword. The adherence to this
convention will be indicated by the presence of a TDIMn

keyword in the form described above.
A character string is represented in a binary table

by a one-dimensional character array, as described under
“Character” in the list of datatypes in §8.3.3 (“Main Data
Table ”). For example, a Fortran 77 CHARACTER*20 vari-
able could be represented in a binary table as a charac-
ter array declared as TFORMn = ’20A ’. Arrays of
character strings, i.e., multidimensional character arrays,
may be represented using the TDIMn notation. For exam-
ple, if TFORMn = ’60A ’ and TDIMn = ’(5,4,3)’,
then the entry consists of a 4 × 3 array of strings of 5
characters each. (Variable length character strings are al-
lowed by the convention described in Appendix B.3. One
dimensional arrays of strings should use the convention in
Appendix B.3 rather than the “Multidimensional Array”
convention.)

This convention is optional and will not preclude other
conventions. This convention is not part of the binary ta-
ble definition.

B.3. “Substring Array” Convention

This appendix describes a layered convention for specify-
ing that a character array field (TFORMn = ’rA ’) consists
of an array of either fixed-length or variable-length sub-
strings within the field. This convention utilizes the option
described in the basic binary table definition to have ad-
ditional characters following the datatype code character
in the TFORMn value field. The full form for the value of
TFORMn within this convention is

’rA:SSTRw/nnn’

28 R. J. Hanisch et al.: FITS Standard

and a simpler form that may be used for fixed-length sub-
strings only is

’rAw’

where

r is an integer giving the total length including any
delimiters (in characters) of the field,

A signifies that this is a character array field,
: indicates that a convention indicator follows,
SSTR indicates the use of the “Substring Array”

convention,
w is an integer ≤ r giving the (maximum) number

of characters in an individual substring (not in-
cluding the delimiter), and

/nnn if present, indicates that the substrings have
variable-length and are delimited by an ASCII
text character with decimal value nnn in the
range 032 to 126 decimal, inclusive. This char-
acter is referred to as the delimiter character.
The delimiter character for the last substring
will be an ASCII NUL.

To illustrate this usage:

’40A:SSTR8’ signifies that the field is 40 characters
wide and consists of an array of 5 8-character
fixed-length substrings. This could also be ex-
pressed using the simpler form as ’40A8’

’100A:SSTR8/032’ signifies that the field is 100
characters wide and consists of an array of
variable-length substrings where each substring
has a maximum length of 8 characters and, ex-
cept for the last substring, is terminated by an
ASCII SPACE (decimal 32) character.

Note that simple FITS readers that do not understand
this substring convention can ignore the TFORM characters
following the rA and can interpret the field simply as a
single long string as described in the basic binary table
definition.

The following rules complete the full definition of this
convention:

1. In the case of fixed-length substrings, if r is not an
integer multiple of w then the remaining odd charac-
ters are undefined and should be ignored. For exam-
ple if TFORMn =’14A:SSTR3’, then the field contains 4
3-character substrings followed by 2 undefined charac-
ters.

2. Fixed-length substrings must always be padded with
blanks if they do not otherwise fill the fixed-length
subfield. The ASCII NUL character must not be used
to terminate a fixed-length substring field.

3. The character following the delimiter character in
variable-length substrings is the first character of the
following substring.

4. The method of signifying an undefined or null sub-
string within a fixed-length substring array is not ex-
plicitly defined by this convention (note that there is
no ambiguity if the variable-length format is used). In
most cases it is recommended that a completely blank
substring or other adopted convention (e.g. ’INDEF’)
be used for this purpose although general readers are
not expected to recognize these as undefined strings.
In cases where it is necessary to make a distinction
between a blank, or other, substring and an undefined
substring use of variable-length substrings is recom-
mended.

5. Undefined or null variable-length substrings are desig-
nated by a zero-length substring, i.e., by a delimiter
character (or an ASCII NUL if it is the last substring
in the table field) in the first position of the substring.
An ASCII NUL in the first character of the table field
indicates that the field contains no defined variable-
length substrings.

6. The “Multidimensional Array”convention described in
Appendix B.2 of this paper provides a syntax using the
TDIMn keyword for describing multidimensional arrays
of any datatype which can also be used to represent ar-
rays of fixed-length substrings. For a one dimensional
array of substrings (a two dimensional array of char-
acters) the “Substring Array” convention is preferred
over the “Multidimensional Array” convention. Multi-
dimensional arrays of (fixed length) strings require the
use of the “Multidimensional Array” convention.

7. This substring convention may be used in conjunction
with the “Variable Length Array” facility described
in Appendix B.1 of this paper. In this case, the two
possible full forms for the value of the TFORM keyword
are

TFORMn = ’rPA(emax):SSTRw/nnn’

and

TFORMn = ’rPA(emax):SSTRw’

for the variable and fixed cases, respectively.

This convention is optional and will not preclude other
conventions. This convention is not part of the binary ta-
ble definition.

Appendix C: Implementation on Physical Media

(This Appendix is not part of the NOST FITS Standard,
but is included as a guide to recommended practices.)

C.1. Physical Properties of Media

The arrangement of digital bits and other physical prop-
erties of any medium should be in conformance with the
relevant national and/or international standard for that
medium.

R. J. Hanisch et al.: FITS Standard 29

C.2. Labeling

C.2.1. Tape

Tapes may be either ANSI standard labeled or unlabeled.
Unlabeled tapes are preferred.

C.2.2. Other Media

Conventions regarding labels for physical media contain-
ing FITS files have not been established for other media.

C.3. FITS File Boundaries

C.3.1. Magnetic Reel Tape

Individual FITS files are terminated by a tape-mark.

C.3.2. Other Media

For fixed block length sequential media where the physi-
cal block size cannot be equal to or an integral multiple of
the standard FITS logical record length, a logical record
of fewer than 23040 bits (2880 8-bit bytes) immediately
following the end of the primary header, data, or an ex-
tension should be treated as an end-of-file. Otherwise, in-
dividual FITS files should be terminated by a delimiter
appropriate to the medium, analogous to the tape end-of-
file mark. If more than one FITS file appears on a physical
structure, the appropriate end-of-file indicator should im-
mediately precede the start of the primary headers of all
files after the first.

C.4. Multiple Physical Volumes

Storage of a single FITS file on more than one unlabeled
tape or on multiple units of any other medium is not uni-
versally supported in FITS. One possible way to handle
multivolume unlabeled tape was suggested in [1]. A con-
vention for logically grouping on-line FITS HDUs that
may physically be located in different sites has been pro-
posed in [16].

Appendix D: Suggested Time Scale Specification

[Not part of formal DATExxxx agreement]

1. Use of the keyword TIMESYS is suggested as an imple-
mentation of the time scale specification. It sets the
principal time system for time-related keywords and
data in the HDU (i.e., it does not preclude the addition
of keywords or data columns that provide information
for transformations to other time scales, such as side-
real times or barycenter corrections). Each HDU shall
contain not more than one TIMESYS keyword. Initially,
officially allowed values are:
UTC Coordinated Universal Time; defined since 1972.

UT Universal Time, equal to Greenwich Mean Time
(GMT) since 1925; the UTC equivalent before
1972; see: Explanatory Supplement, p. 76.

TAI International Atomic Time; “UTC without the
leap seconds”; 31 s ahead of UTC on 1997-07-01.

AT International Atomic Time; deprecated synonym of
TAI.

ET Ephemeris Time, the predecessor of TT; valid until
1984.

TT Terrestrial Time, the IAU standard time scale since
1984; continuous with ET and synchronous with
(but 32.184 s ahead of) TAI.

TDT Terrestrial Dynamical Time; = TT.
TDB Barycentric Dynamical Time.
TCG Geocentric Coordinate Time; runs ahead of TT

since 1977-01-01 at a rate of approximately 22
ms/year.

TCB Barycentric Coordinate Time; runs ahead of TDB
since 1977-01-01 at a rate of approximately 0.5
s/year.

For reference, see: Explanatory Supplement to the As-
tronomical Almanac, P. K. Seidelmann, ed., University
Science Books, 1992, ISBN 0-935702-68-7, or

http://tycho.usno.navy.mil/systime.html

Use of Global Positioning Satellite (GPS) time (19 s
behind TAI) is deprecated.

2. By default, times will be deemed to be as measured
at the detector (or in practical cases, at the observa-
tory) for times that run synchronously with TAI (i.e.,
TAI, UTC, and TT). In the case of coordinate times
(such as TCG and TCB) and TDB which are tied to
an unambiguous coordinate origin, the default mean-
ing of time values will be: time as if the observation
had taken place at the origin of the coordinate time
system. These defaults follow common practice; a fu-
ture convention on time scale issues in FITS files may
allow other combinations but shall preserve this de-
fault behavior. The rationale is that raw observational
data are most likely to be tagged by a clock that is
synchronized with TAI, while a transformation to co-
ordinate times or TDB is usually accompanied by a
spatial transformation, as well. This implies that path
length differences have been corrected for. Note that
the difference TDB − UTC, in that case, is approxi-
mately sinusoidal, with period one year and amplitude
up to 500 s, depending on source position. Also, note
that when the location is not unambiguous (such as
in the case of an interferometer) precise specification
of the location is strongly encouraged in, for instance,
geocentric Cartesian coordinates.

3. Note that TT is the IAU preferred standard. It may be
considered equivalent to TDT and ET, though ET should
not be used for data taken after 1984. For reference,
see: Explanatory Supplement, pp. 40-48.

30 R. J. Hanisch et al.: FITS Standard

4. If the TIMESYS keyword is absent or has an unrecog-
nized value, the value UTC will be assumed for dates
since 1972, and UT for pre-1972 data.

5. Examples. The three legal representations of the date
of October 14, 1996, might be written as shown in
Table D.1.

6. The convention suggested in this Appendix is part of
the mission-specific FITS conventions adopted for,
and used in, the RXTE archive, building on existing
High Energy Astrophysics FITS conventions. See:

http://heasarc.gsfc.nasa.gov/docs/xte/abc/

time tutorial.html

http://heasarc.gsfc.nasa.gov/docs/xte/abc/

time.html

The VLBA project has adopted a convention where
the keyword TIMSYS, rather than TIMESYS, is used,
currently allowing the values UTC and IAT. See p. 9
and p. 16 of:

http://www.cv.nrao.edu/fits/documents/

drafts/vlba format.ps

Appendix E: Differences from IAU-endorsed
Publications

(This Appendix is not part of the NOST FITS Standard
but is included for informational purposes only.)

Note: In this discussion, the term the FITS papers
refers to [1], [2], [4], [5], [9], and [10] collectively, the term
Floating Point Agreement (FPA) refers to [8], the term
Blocking Agreement refers to [11]; and the term DATExxxx
Agreement refers to the redefinition of the value format for
date keywords approved by the IAUFWG in 1997.

1. §3 — Definitions, Acronyms, and Symbols

Array value — This precise definition is not used in
the original FITS papers.

ASCII text — This permissible subset of the ASCII
character set, used in many contexts, is not pre-
cisely defined in the FITS papers.

Basic FITS — This definition includes the possibility
of floating point data arrays, while the terminology
in the FITS papers refers to FITS as described in
[1], where only integer arrays were possible.

Conforming Extension — This terminology is not
used in the FITS papers.

Deprecate — The concept of deprecation does not ap-
pear in the FITS papers.

FITS structure — This terminology is not used in the
FITS papers in the precise way that it is in this
standard.

Fraction — This terminology and the distinction be-
tween fraction and mantissa do not appear in the
Floating Point Agreement.

Header and Data Unit — This terminology is not
used in the FITS papers.

Indexed keyword — This terminology is not used in
the original FITS papers.

Physical value — This precise definition is not used in
the original FITS papers.

Reference point — This term replaces the reference
pixel of the FITS papers. The new terminology is
consistent with the fact that the array need not rep-
resent a digital image and that the reference point
(or pixel) need not lie within the array.

Repeat count —This terminology is not used in the
FITS papers.

Reserved keyword — The FITS papers describe op-
tional keywords but do not say explicitly that they
are reserved.

Standard Extension — This precise definition is new.
The term standard extension is used in some con-
texts in the FITS papers to refer to what this stan-
dard defines as a standard extension and in others
to refer to what this standard defines as conforming
extension.

2. §4.3.2 Primary Data Array
Fill format — This specification is new. The FITS pa-
pers and the FPA do not precisely specify the format
of data fill for the primary data array.

3. §4.4.1.1 Identity (of conforming extensions)
The FITS papers specify that creators of new exten-
sion types should check with the FITS standards com-
mittee. This standard identifies the committee specif-
ically, introduces the role of the FITS Support Office
as its agent, and mandates registration.

4. §4.6 Physical Blocking
This material is based entirely on the Blocking Agree-
ment. Material in the early FITS papers [1,4] specify-
ing the expression of FITS on specific physical media
is not part of this standard.

5. §4.6.1 Bitstream Devices
The Blocking Agreement specifies that this rule ap-
plies to FITS files written to logical file systems. This
standard applies the rule to all bitstream devices, not
only logical file systems.

6. §4.6.2.1 Fixed Block
The Blocking Agreement specifies that this rule applies
to FITS files written to optical disks, (accessed as a se-
quential set of records), QIC format 1/4-inch cartridge
tapes and Local Area networks. This standard extends
the rule to other fixed block length sequential media.

7. §4.6.2.2 Variable Block
The Blocking Agreement specifies that this rule ap-
plies to FITS files written to 1/2-inch 9 track tapes,
DDS/DAT 4mm cartridge tapes and 8mm cartridge
tape (Exabyte). This standard extends the rule to all
variable block length sequential media and eliminates
references to specific products.

R. J. Hanisch et al.: FITS Standard 31

DATE-OBS= ’14/10/96’ / Original format, means 1996 Oct 14.

TIMESYS = ’UTC ’ / Explicit time scale specification: UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation in UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation, also in UTC.

TIMESYS = ’TT ’ / Explicit time scale specification: TT.

DATE-OBS= ’1996-10-14T10:14:36.123’ / Date and time of start of obs. in TT.

Table D.1. Three legal representations of the date October 14, 1996.

8. §5.1.2.1 Keyword (as header component)
The specification of permissible keyword characters is
new. The FITS papers do not precisely define the per-
missible characters for keywords.

9. §5.1.2.2 Value Indicator (bytes 9–10)
The FITS papers do not specifically address the per-
missibility of null values. This standard states explic-
itly that they are permitted.

10. §5.1.2.3 Value/Comment (bytes 11–80)
In the FITS papers, the slash between the value and
comment is optional. This standard requires the slash,
consistent with the prescription of FORTRAN-77 list-
directed input.

11. §5.2 Value, including its subsections
The FITS papers specify that the value field is to be
written following the rules of ANSI FORTRAN-77 list-
directed input, with some restrictions. This standard
explicitly describes the format of the value field. The
FITS papers permit the value field to contain an ar-
ray of values. This standard specifies that there shall
be only one value in the value field. The FITS papers
require the fixed format for the most essential param-
eters. This standard identifies those parameters with
the values of the mandatory keywords.

12. §5.2.1 Character String
The standard explicitly describes how single quotes are
to be coded into keyword values, a rule only implied
by the FORTRAN-77 list-directed read requirements
of the FITS papers.
The standard states that in general, character-valued
keywords can have lengths up to the maximum 68 char-
acter length.

13. §5.2.3 Integer
The standard explicitly notes that the fixed format
for complex integers does not conform to the rules for
ANSI FORTRAN list-directed read.

14. §5.2.4 Real Floating Point Number
The standard explicitly notes that the full precision
of 64-bit values cannot be expressed as a single value
using the fixed format.

15. §5.2.5 Complex Integer Number
The standard does not support the fixed format for
complex integers defined in the FITS papers but is
consistent with FORTRAN-77 list-directed read as re-

quired in the FITS papers for free format. Because the
fixed format of the FITS papers did not conform to the
rules for FORTRAN-77 list-directed I/O, consistency
with both was impossible. There are no known FITS
files that use the fixed format for complex integers that
was defined in the FITS papers.

16. §5.2.6 Complex Floating Point Number
The standard does not support the fixed format
for complex floating point numbers defined in the
FITS papers but is consistent with FORTRAN-77 list-
directed read as required in the FITS papers for free
format. Because the fixed format of the FITS papers
did not conform to the rules for FORTRAN-77 list-
directed I/O, consistency with both was impossible.
There are no known FITS files that use the fixed for-
mat for complex floating point numbers that was de-
fined in the FITS papers.

17. §5.3 Units
The FITS papers recommend the use of SI units and
identify certain other units standard in astronomy.
This standard codifies the recommendation and makes
it more specific by referring to the IAU Style Manual
[7], while explicitly recommending degrees for angular
measure and requiring degrees for celestial coordinates.

18. §5.4.1.1 Principal (mandatory keywords)

(a) SIMPLE keyword — The explicit prohibition against
the appearance of the SIMPLE keyword in exten-
sions does not appear in the FITS papers.

(b) NAXIS keyword — The requirement that the NAXIS

keyword may not be negative is not explicitly spec-
ified in the FITS papers.

(c) NAXISn keyword — The requirement that the
NAXISn keyword may not be negative is not ex-
plicitly specified in the FITS papers.

19. §5.4.1.2 Conforming Extensions

(a) Nbits — The requirement that Nbits may not be
negative is not explicitly specified in the FITS pa-
pers.

(b) XTENSION keyword — That this keyword may not
appear in the primary header is only implied by
the FITS papers; the prohibition is explicit in this
standard. The FITS papers name a FITS stan-
dards committee as the keeper of the list of ac-

32 R. J. Hanisch et al.: FITS Standard

cepted extension type names. This standard specif-
ically identifies the committee and introduces the
role of the FITS Support Office as its agent.

20. §5.4.2 Other Reserved Keywords
That the optional keywords defined in the FITS papers
are to be reserved for both the primary HDUs and
all extensions with the meanings and usage defined in
those papers, as in the standard, is not explicitly stated
in all of them, although some keywords are explicitly
reserved in the papers describing the image and binary
table extensions.

21. §5.4.2.1 Keywords Describing the History or Physical
Construction of the HDU

(a) DATE Keyword — The notation for four-digit year
number is YYYY rather than the CCYY of the “DA-
TExxxx Agreement”. The recommendation for use
of Universal Time in the superseded format with a
two-digit year is not in the FITS papers.

(b) BLOCKED keyword — The FITS papers require the
BLOCKED keyword to appear in the first record of
the primary header even though it cannot when
the value of NAXIS exceeds the values described in
the text. They do not address this contradiction.
This standard deprecates the BLOCKED keyword.

22. §5.4.2.2 Keywords Describing Observations

(a) DATE-OBSKeyword — The recommendation for use
of Universal Time in the superseded format with a
two-digit year is not in the FITS papers.

(b) EQUINOX and EPOCH keywords — This standard re-
places the EPOCH keyword with the more appropri-
ately named EQUINOX keyword and deprecates the
EPOCH name.

23. §5.4.2.4 Commentary keywords
Keyword field is blank — Reference [1] contains the
text “BLANK” to represent a blank keyword field. The
standard clarifies the intention.

24. §5.4.2.5 Array keywords

(a) BUNIT Keyword — The FITS papers recommend
the use of SI units, degrees as the appropriate unit
for angles, and identify other units standard in as-
tronomy. This standard specically applies the rec-
ommendations of §5.3 to the BUNIT keyword.

(b) CTYPEn, CRVALn, CDELTn, and CROTAn Keywords
— This standard extends the recommendations on
units to coordinate axes, explicitly requiring deci-
mal degrees for coordinates.

(c) CRPIXn Keywords — This standard explicitly notes
the ambiguity in the location of the index number
relative to an image pixel.

(d) CDELTn Keywords — The definition in the standard
differs from that in the FITS papers in that it pro-
vides for the case where the spacing between index
points varies over the grid. For the case of constant
spacing, it is identical to the specification in the
FITS papers.

(e) DATAMAX and DATAMIN Keywords — The standard
clarifies that the value refers to the physical value
represented by the array, after any scaling, not the
array value before scaling. The standard also notes
that special values are not to be considered when
determining the values of DATAMAX and DATAMIN, an
issue not specifically addressed by the FITS papers
or the FPA.

25. §7 Random Groups Structure
The standard deprecates the Random Groups struc-
ture.

26. §7.1.2 Reserved Keywords (random groups)
That the optional keywords defined in the FITS papers
are to be reserved with the meanings and usage defined
in those papers, as in the standard, is not explicitly
stated in them.

27. §7.1.2.2 PSCALn Keywords — The default value is ex-
plicitly specified in the standard, whereas in the FITS
papers it is assumed by analogy with the BSCALE key-
word.

28. §7.1.2.3 PZEROn Keywords — The default value is ex-
plicitly specified in the standard, whereas in the FITS
papers it is assumed by analogy with the BZERO key-
word.

29. §8.1 ASCII Table Extension
The name ASCII table is given to the “tables” exten-
sion discussed in the FITS papers to distinguish it
from the binary table extension.

30. §8.1.1 Mandatory Keywords (ASCII table)

(a) NAXIS1 keyword — The requirement that the
NAXIS1 keyword may not be negative in an ASCII
table header is not explicitly specified in the FITS
papers.

(b) NAXIS2 keyword — The requirement that the
NAXIS2 keyword may not be negative in an ASCII
table header is not explicitly specified in the FITS
papers.

(c) TFIELDS keyword — The requirement that the
TFIELDS keyword may not be negative is not ex-
plicitly specified in the FITS papers.

(d) TFORMn keyword — The requirement that format
codes must be specified in upper case is implied
but not explicitly specified in the FITS papers.

31. §8.1.2 Other Reserved Keywords (ASCII table)
That the optional keywords defined in the FITS papers
are to be reserved with the meanings and usage defined
in those papers, as in the standard, is not explicitly
stated in them.

(a) TUNITn Keywords — The FITS papers do not ex-
plicitly recommend the use of any particular units
for this keyword, although the reference to the
BUNIT keyword may be considered an implicit ex-
tension of the recommendation for that keyword.
This standard makes the recommendation more

R. J. Hanisch et al.: FITS Standard 33

specific for the TUNITn keyword by requiring con-
formance to the prescriptions in §5.3.

(b) TSCALn Keywords — The prohibition against use in
A-format fields is stronger than the statement in the
FITS papers that the keyword “is not relevant”.

(c) TZEROn Keywords — The prohibition against use in
A-format fields is stronger than the statement in the
FITS papers that the keyword “is not relevant”.

32. §8.3.2 Other Reserved Keywords (Binary Table)
The EXTNAME, EXTVER, EXTLEVEL, AUTHOR, and
REFERENC keywords explicitly reserved for binary ta-
bles in the defining paper are reserved in the standard
under the general prescription of §5.4.2.

(a) TUNITn Keywords — The FITS papers do not ex-
plicitly recommend the use of any particular units
for this keyword. This standard makes the recom-
mendation more specific for the TUNITn keyword by
requiring conformance to the prescriptions of §5.3.

(b) TDISPn Keywords — The version of the BINTABLE

paper upon which the FITS committees voted
stated incorrectly that the values used to display
bit and byte arrays should be considered signed.
This standard follows the text in the published
BINTABLE paper, which specifies that these values
should be unsigned. The BINTABLE paper does not
specify how a TDISPn value for a field of type P is
interpreted; this standard explicitly mandates no
interpretation but allows conventions to provide in-
terpretations. The requirement that format codes
must be specified in upper case is implied but not
explicitly specified in the BINTABLE paper.

(c) THEAP Keywords — The FITS papers state only
that the keyword is reserved for use in the conven-
tion described in in Appendix B.1. This standard
makes the more specific statement that this key-
word is used to provide the separation, in bytes,
between the start of the main data table and the
start of a supplemental data area called the heap
and identifies the default value.

(d) TDIMn Keywords — The FITS papers state only
that the keyword is reserved for use in the con-
vention described in Appendix B.2. This standard
makes the more specific statement that the con-
tents of the value field contain a character string
describing how to interpret the contents of a field
as a multidimensional array.

33. §8.3.4 Data Display
The BINTABLE paper suggests that the format for dis-
play suggested by the TDISPn should be understood as
a Fortran-90 format or, where Fortran-90 is unavail-
able, a FORTRAN-77 format. This standard explicitly
describes the formats. The statement in the standard
concerning differences between E and D format codes,
which notes that the latter implies greater precision in

the internal datum, does not appear in the BINTABLE

paper.
34. §9 Restrictions on Changes

The FITS papers do not provide for the concept of
deprecation.

35. Appendix C Implementation on Physical Media
Material in the FITS papers specifying the expression
of FITS on specific physical media is not part of this
standard; what is provided in the appendix is purely
as a guide to recommended practices.

Appendix F: Summary of Keywords

(This Appendix is not part of the NOST FITS Standard,
but is included for convenient reference).

34 R. J. Hanisch et al.: FITS Standard

Principal Conforming ASCII Table Image Binary Table Random Groups
HDU Extension Extension Extension Extension Records

SIMPLE XTENSION XTENSION1 XTENSION2 XTENSION3 SIMPLE

BITPIX BITPIX BITPIX = 8 BITPIX BITPIX = 8 BITPIX

NAXIS NAXIS NAXIS = 2 NAXIS NAXIS = 2 NAXIS

NAXISn4 NAXISn4 NAXIS1 NAXISn4 NAXIS1 NAXIS1 = 0

EXTEND5 PCOUNT NAXIS2 PCOUNT = 0 NAXIS2 NAXISn4

END GCOUNT PCOUNT = 0 GCOUNT = 1 PCOUNT GROUPS = T

END GCOUNT = 1 END GCOUNT = 1 PCOUNT

TFIELDS TFIELDS GCOUNT

TBCOLn6 TFORMn6 END

TFORMn6 END

END
1 XTENSION= ’TABLE ’ for the ASCII table extension.
2 XTENSION= ’IMAGE ’ for the image extension.
3 XTENSION= ’BINTABLE’ for the binary table extension.
4 Runs from 1 through the value of NAXIS.
5 Required only if extensions are present.
6 Runs from 1 through the value of TFIELDS.

Table F.1. Mandatory FITS keywords for the structures described in this document.

All Array1 Conforming ASCII Table Binary Table Random Groups
HDUs HDUs Extension Extension Extension Records

DATE BSCALE EXTNAME TSCALn TSCALn PTYPEn

ORIGIN BZERO EXTVER TZEROn TZEROn PSCALn

BLOCKED2 BUNIT EXTLEVEL TNULLn TNULLn PZEROn

AUTHOR BLANK TTYPEn TTYPEn

REFERENC CTYPEn TUNITn TUNITn

COMMENT CRPIXn TDISPn

HISTORY CROTAn TDIMn

 CRVALn THEAP

DATE-OBS CDELTn

TELESCOP DATAMAX

INSTRUME DATAMIN

OBSERVER

OBJECT

EQUINOX

EPOCH2

1 Primary HDU, image extension, user-defined HDUs with same array structure.
2 Deprecated.

Table F.2. Reserved FITS keywords for the structures described in this document.

Production Bibliographic Commentary Observation

DATE AUTHOR COMMENT DATE-OBS

ORIGIN REFERENC HISTORY TELESCOP

BLOCKED1 INSTRUME

OBSERVER

OBJECT

EQUINOX

EPOCH1

1 Deprecated.

Table F.3. General reserved FITS keywords described in this document.

R. J. Hanisch et al.: FITS Standard 35

Appendix G: ASCII Text

(This appendix is not part of the NOST FITS standard;
the material in it is based on the ANSI standard for ASCII
[14] and is included here for informational purposes.)

In the following table, the first column is the decimal
and the second column the hexadecimal value for the char-
acter in the third column. The characters hexadecimal 20
to 7E (decimal 32 to 126) constitute the subset referred
to in this document as ASCII text.

36 R. J. Hanisch et al.: FITS Standard

ASCII Control ASCII Text

dec hex char dec hex char dec hex char dec hex char

0 00 NUL 32 20 SP 64 40 @ 96 60 ‘

1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }

30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text
Table G.1. ASCII character set

R. J. Hanisch et al.: FITS Standard 37

Appendix H: IEEE Floating Point Formats

(The material in this Appendix is not part of this stan-
dard; it is adapted from the IEEE-754 floating point stan-
dard [15] and provided for informational purposes. It is not
intended to be a comprehensive description of the IEEE
formats; readers should refer to the IEEE standard.)

FITS recognizes all IEEE basic formats, including the
special values.

H.1. Basic Formats

Numbers in the single and double formats are composed
of the following three fields:

1. 1-bit sign s
2. Biased exponent e = E + bias
3. Fraction f = •b1b2 · · ·bp−1

The range of the unbiased exponent E shall include every
integer between two values Emin and Emax, inclusive, and
also two other reserved values Emin−1 to encode ±0 and

denormalized numbers, and Emax+1 to encode ±∞ and
NaNs. The foregoing parameters are given in Table H.1.
Each nonzero numerical value has just one encoding. The
fields are interpreted as follows:

H.1.1. Single

A 32-bit single format number X is divided as shown in
Fig. H.1. The value v of X is inferred from its constituent
fields thus

1. If e = 255 and f 6= 0, then v is NaN regardless of s
2. If e = 255 and f = 0, then v = (−1)s∞
3. If 0 < e < 255, then v = (−1)s2e−127(1 • f)
4. If e = 0 and f 6= 0, then v = (−1)s2e−126(0 • f) (de-

normalized numbers)
5. If e = 0 and f = 0, then v = (−1)s0 (zero)

H.1.2. Double

A 64-bit double format number X is divided as shown in
Fig. H.2. The value v of X is inferred from its constituent
fields thus

1. If e = 2047 and f 6= 0, then v is NaN regardless of s
2. If e = 2047 and f = 0, then v = (−1)s∞
3. If 0 < e < 2047, then v = (−1)s2e−1023(1 • f)
4. If e = 0 and f 6= 0, then v = (−1)s2e−1022(0 • f)

(denormalized numbers)
5. If e = 0 and f = 0, then v = (−1)s0 (zero)

H.2. Byte Patterns

Table H.2 shows the types of IEEE floating point value,
whether regular or special, corresponding to all double and
single precision hexadecimal byte patterns.

38 R. J. Hanisch et al.: FITS Standard

Format
Parameter Single Double

Single Extended Double Extended

p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponent bias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Table H.1. Summary of Format Parameters

msb lsb msb lsb

2381

s te

. . . . widths

. . . . order
Fig. H.1. Single Format. msb means most significant bit, lsb means least significant bit

msb

1

s

msblsb lsb

e t

11 52 widths

. . . . order
Fig. H.2. Double Format. msb means most significant bit, lsb means least significant bit

R. J. Hanisch et al.: FITS Standard 39

Appendix I: Reserved Extension Type Names

(This Appendix is not part of the NOST FITS Standard,
but is included for informational purposes. It describes
the extension type names registered as of the date this
standard was issued.) A current list is available from the
FITS Support Office at

http://fits.gsfc.nasa.gov/xtension.html

or

ftp://nssdc.gsfc.nasa.gov/pub/fits/xtension.lis

IEEE value Double Precision Single Precision

+0 0000000000000000 00000000

denormalized 0000000000000001 00000001

to to
000FFFFFFFFFFFFF 007FFFFF

positive underflow 0010000000000000 00800000

positive numbers 0010000000000001 00800001

to to
7FEFFFFFFFFFFFFE 7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF 7F7FFFFF

+∞ 7FF0000000000000 7F800000

NaN1 7FF0000000000001 7F800001

to to
7FFFFFFFFFFFFFFF 7FFFFFFF

−0 8000000000000000 80000000

negative 8000000000000001 80000001

denormalized to to
800FFFFFFFFFFFFF 807FFFFF

negative underflow 8010000000000000 80800000

negative numbers 8010000000000001 80800001

to to
FFEFFFFFFFFFFFFE FF7FFFFE

negative overflow FFEFFFFFFFFFFFFF FF7FFFFF

−∞ FFF0000000000000 FF800000

NaN1 FFF0000000000001 FF800001

to to
FFFFFFFFFFFFFFFF FFFFFFFF

1 Certain values may be designated as quiet NaN (no diagnos-
tic when used) or signaling (produces diagnostic when used)
by particular implementations.

Table H.2. IEEE Floating Point Formats

40 R. J. Hanisch et al.: FITS Standard

Type Name Status Reference Sponsor Comments

’A3DTABLE’ L [17] NRAO Prototype binary table design used
in AIPS; subset of BINTABLE.

’BINTABLE’ S [10] IAU Binary table extension.
Available at FITS Archives in files
/documents/standards/bintable.aa*
of 1995-Feb-06. Note: only main
document, excluding appendixes.

’COMPRESS’ R none GSFC Suggested extension name by
A/WWW A. Warnock. Preliminary proposal

in FITS archives in the
files compress.*.

’DUMP ’ R none none Suggested extension name for
binary dumps.
No full proposal submitted.

’FILEMARK’ R none NRAO Suggested for equivalent
of tape mark on other media.
No full proposal submitted.

’IMAGE ’ S [9] IAU Image extension.

’IUEIMAGE’ L [18] IUE Local extension originally
defined for archiving
special IUE data products,
Identical to IMAGE.

’TABLE ’ S [5] IAU ASCII table extension.

’VGROUP ’ R none GSFC Suggested extension name for
HDF Vgroups (D. Jennings)
No formal proposal; not used in
current HDF-FITS

conversion proposals

Table I.1. Reserved Extension Type Names

Code Significance

D Draft extension proposal for discussion by regional FITS committees.
L Local FITS extension.
P Proposed FITS extension approved by regional FITS committees

but not by IAU FITS Working Group.
R Reserved type name for which a full draft proposal has not been submitted.
S Standard extension approved by IAU FITS Working Group and

endorsed by the IAU.

Table I.2. Status Codes

R. J. Hanisch et al.: FITS Standard 41

Acronym Meaning

NRAO National Radio Astronomy Observatory
AIPS Astronomical Image Processing System
A/WWW A/WWW Enterprises
HDF Hierarchical Data Format

Table I.3. Acronyms in List of Registered Extensions

42 R. J. Hanisch et al.: FITS Standard

Appendix J: NOST Publications

R. J. Hanisch et al.: FITS Standard 43

Document Title Date Status

NOST 100-0.1 FITS Standard December, 1990 Draft Standard

NOST 100-0.2 FITS Implementation Standard June, 1991 Revised Draft Standard
NOST 100-0.3 FITS Implementation Standard December, 1991 Revised Draft Standard
NOST 100-1.0 FITS Definition Standard March, 1993 Proposed Standard
NOST 100-1.0 FITS Definition Standard June, 1993 NOST Standard
NOST 100-1.1 FITS Definition Standard June, 1995 Proposed Standard
NOST 100-1.1 FITS Definition Standard September, 1995 NOST Standard
NOST 100-1.2 FITS Definition Standard April, 1998 Draft Standard
NOST 100-2.0 FITS Definition Standard March, 1999 NOST Standard

Table J.1. NOST Publications

