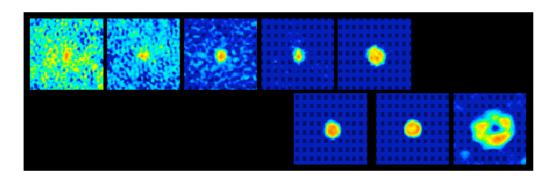


EVLA Phase II Scientific Overview

Michael P. Rupen

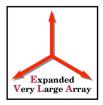
Michael Rupen

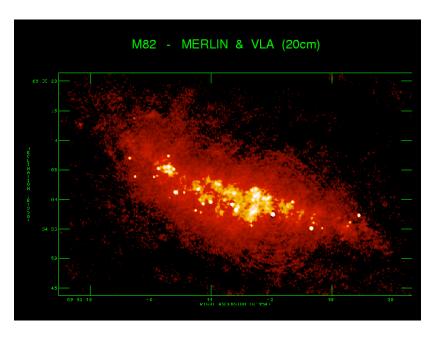
New Mexico Array



- Three arrays in one:
 - NMA+VLA: more than just dots
 - Milliarcsecond imaging of thermal sources
 - Rms 20-40 K from 2-40 GHz, with resolution 6-60mas
 - 0.1 arcsecond imaging of 10 μJy sources at 1.5 GHz
 - Joining the VLA and the VLBA
 - High-fidelity imaging from a few mas to ¹/₄ degree
 - Identical uv-coverage from 0.3 to 45 GHz
 - A stand-alone instrument
 - Sensitivity of current VLA, with 10x the resolution
 - Always available!

NMA Science: novae


• Imaging every nova in the Galaxy, within a few days of the explosion:

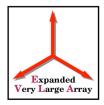

 Θ = 0.57mas (v/1000) t_day/d_kpc

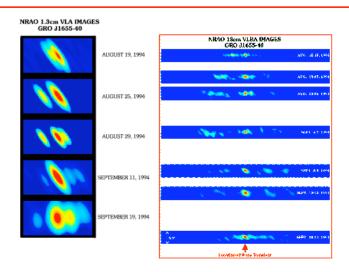
- \rightarrow Evolution from optically thick to thin
- \rightarrow Mass estimates
- \rightarrow 3D temperature/density distributions

NMA Science: nearby galaxies

- Resolve UCHIIs throughout M31/M33 (Θ=0.03pc)
- Map Tycho/Kepler analogues in M81/M82 (Θ=0.1pc)
- Image >50 star clusters in the Antennae (<10pc resolution)

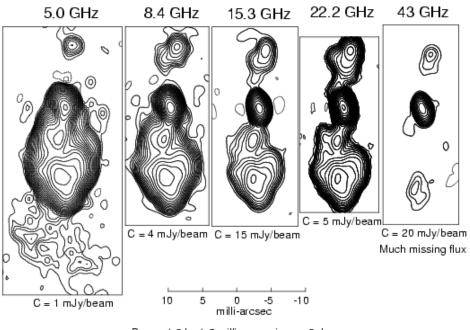
Michael Rupen


NMA Science: high z mapping



- Distinguishing AGNs from starbursts:
 - HII regions have $T_b < 10^5 \text{ K}$
 - →sources >3.3 mJy which aren't resolved by the NMA, must be AGN
- 1 kpc> 0.1-0.15arcsec at all z
 -Θ=0.125arcsec at 1.5 GHz !

NMA Science: X-ray transients



- Ubiquity of jets
- Monitoring: continuous multi-freq. coverage
- Quiescent source imaging
- Check jet "prejudices" (one-sided, flip-flopping, pattern speeds, orientations)

NMA Science: AGNs

Beam: 1.6 by 1.2 milli-arcsec in p.a. 0 deg Contour levels = C * (-2, -1, 1, 2, 2.8, 4.0, 5.7, 8.0 ... 2**n/2)

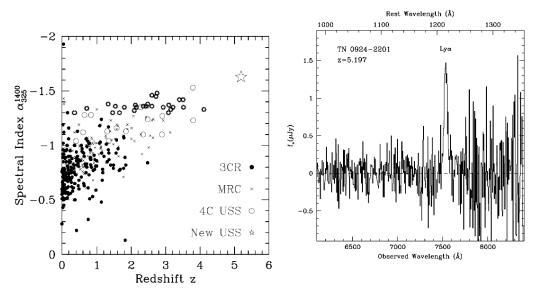
- Spectral index imaging
- Milli-halos
- Small-scale diffuse emission (central starbursts?) (cf. Mrk 231)

Michael Rupen

Low-Frequency Science

Low frequencies offer:

- Long-lived electrons → relics & halos
- High-z sources (radio continuum, HI, OH)
- Free-free & synchrotron-self absorption
- Faraday rotation & scattering (scale as $v^{-2} \& v^{-4}$)


Relics and Halos PLot file version 1 created 14-AUG-2001 13 CONT: A754 IPOL 324.836 MHZ A754.ICLI PLot file version 5 created 11-NOV-2000 CONT: A754 A754 REREG.OHGEO.1 -09 15 RA O 6 21 -09 20 25 DECLINATION (J2000) 30 30 DECLINATION (J2000) 35 40 40 45 50 55 -10 00 -10 00 05 00 08 30 ASCENSION (J2 BEAM 07 30 09 10 3 10 09 10 30 RIGH I ASCENSION 2.7278E+00 JY/BEAM 1 * (2, 2.828, 4, 5.657, 8, 11.31 25, 64, 90.51, 128, 181.0, 256 , 1020, 1450, 2050, 2900, 410 00 09 30 00 08 30 00 07 30 **RIGHT ASCENSION (J2000)** 45.: 24.1 Cont peak flux = 5.1974E-01 JY/BEAM Levs = 2.000E-03 * (2, 4, 6, 8, 10, 20, 30, 40, 60, 80) 0 Abell 754 -25 25 DECLINATION (B1950) **NGC 253** C 00 46 00 45 45 15 30 15 00 44 45 RIGHT ASCENSION (B1950) 30

Michael Rupen

High-z Steep-Spectrum Sources

Figure 2.1 Spectral index against redshift **(left)** for two flux-limited samples (3CR and MRC) illustrating the spectral index-redshift relation and two USS samples (4C and the WN/TN sample), illustrating the effectiveness in finding very high redshift objects from such samples. The star denotes the newly discovered radio galaxy 0924-2201. A Keck I LRIS spectrum of TN J0924-2201 is shown on the **(right)**. The emission line has been identified with Lya, indicating that this galaxy has a redshift of z=5.19.

Michael Rupen

Redshifted HI: EVLA vs. GMRT

• Assuming no evolution:

Number of Galaxies Detected in 400 hrs (dV=150 km/s, S/N=5)

Frequency	Redshift	EVLA Cass Focus	EVLA Prime Focus	GMRT
600 MHz	1.37	-	-	0
700 MHz	1.03	-	1	-
800 MHz	0.78	0	46	-
900 MHz	0.58	69	286	2??
1000 MHz	0.42	241	482	27
1100 MHz	0.29	413	507	56

Number of Galaxies Detected in 2700 hrs (dV=150 km/s, S/N=5 over line)

Frequency	Redshift	EVLA Cass Focus	EVLA Prime Focus	GMRT
600 MHz	1.37	-	-	0
700 MHz	1.03	-	200	-
800 MHz	0.78	2	936	-
900 MHz	0.58	767	1631	70??
1000 MHz	0.42	1027	1550	183
1100 MHz	0.29	1004	1150	186

Micl Rup

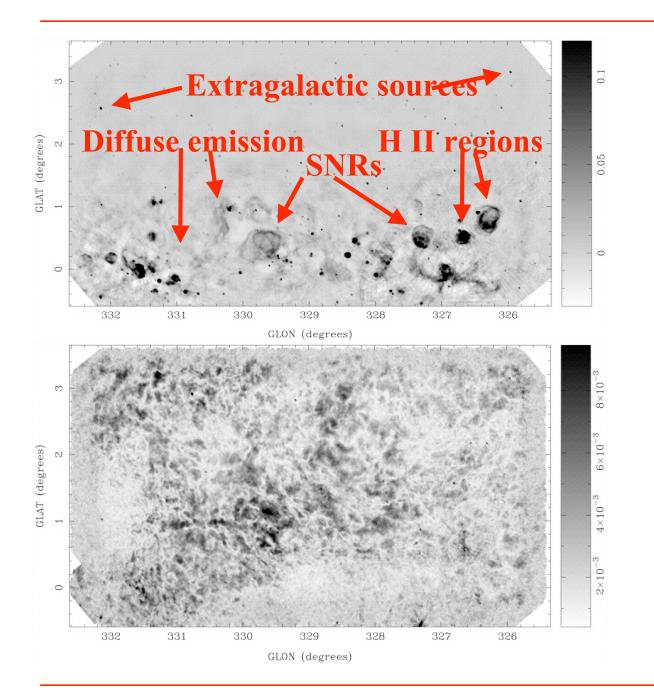
Low-Frequency Science

Damped Lya Systems: HI absorption

- Opacity & optical $N_H \rightarrow T_{spin}$
- 21cm profile \rightarrow gas kinematics
- NMA → image absorption
 → rotation curves!

Michael Rupen

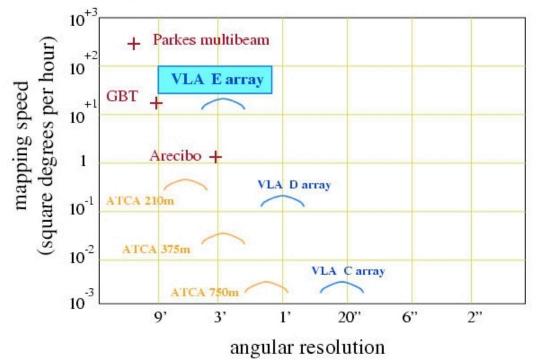
Low-Frequency Science


ISM Polarimetry

- Linearly polarized signals are rotated during ISM propagation
 - Faraday rotation goes as λ^2
 - See detailed structure of ISM
 - Sensitive to very small fluctuations
- Trace regions of turbulence, e.g. near supernova remnants
- Monitor polarization for time variability

 \rightarrow track size scales, velocities in ISM

Michael Rupen

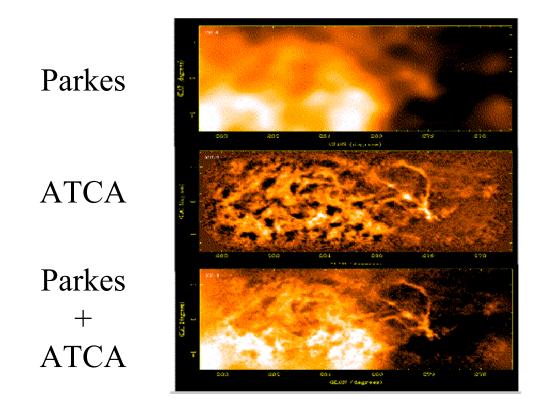


- Surface brightness sensitivity
 - Factor 1.5-2 in speed vs. tapered
 VLA/D (factor 56 vs. untapered)
- Image quality
 - Denser uv-coverage → lower sidelobes at low resolution
 - Fidelity improved by factor ~7 (Holdaway 1996)
- Mosaics would be faster & produce superior images

Mapping (mosaicing) speed for $\sigma_T = 1$ K, $\delta v=0.8$ km/s

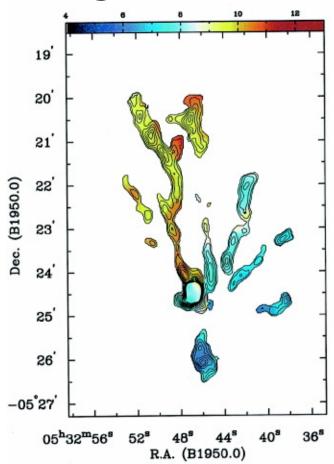
- Unique combination of resolution, mapping speed, and fidelity
- Especially important for spectroscopy of thermalized lines

The Local HI Web


- Theory + opt. studies suggest there should be a "web" of low column density gas joining nearby galaxies.
- A deep (2700hr) integration with VLA/E would yield an rms of 3e15 cm⁻² (dv=1 km/s)

Michael Rupen

Large-scale Mosaics


Galactic chimney GSH277+0+36

Michael	
Rupen	

Large-scale Mosaics

High-density ridges of ammonia in Orion

Michael Rupen

- Phase I brings all the radiation home, with sufficient spectral resolution to use it
- Phase II...
 - provides resolution commensurate with the improved sensitivity
 - builds on the success of the 74 and 330 MHz systems, to create a truly flexible & high-resolution low-frequency array
 - turns the VLA into a high-fidelity mosaicing instrument