

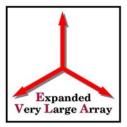
1

EVLA Phase II (Completion) Goals

Rick Perley EVLA Project Scientist

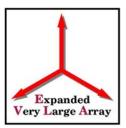
Rick Perley

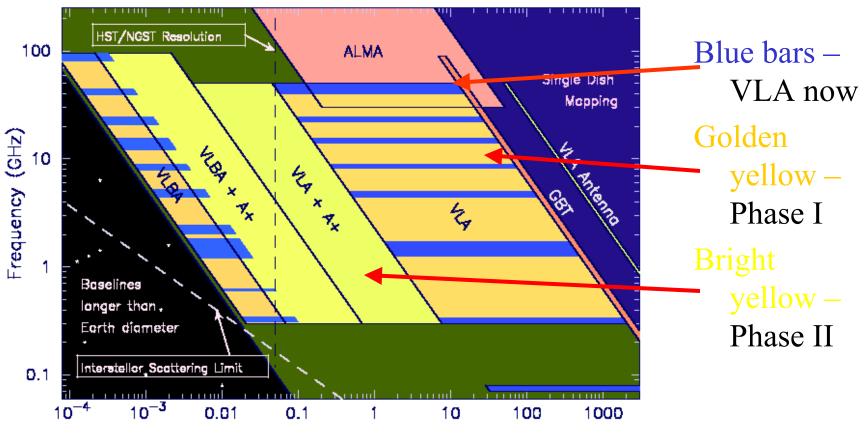
- Phase I of the EVLA will provide fantastic sensitivity, frequency resolution and access.
- But much of the science available with these capabilities will be compromised unless a similar improvement in resolution is gained.
- Increasing the EVLA resolution by a factor of 10, and combining the EVLA with the VLBA will give a single instrument with a resolution range of 10⁶, over a frequency range of 1000.
- This is the goal of the EVLA Completion.


- Increase VLA resolution by a factor of 10, with imaging performance equal to current VLA.
 - Consists of ~8 new 'stations' within NM, plus 2 existing VLBA antennas (PT, LA).
 - All ten will be connected by fiber to the new correlator
 - The ten-element array is called the New Mexico Array

- 2. Extend low-frequency limit below 1 GHz.
 - Continuous coverage to ~ 300 MHz, perhaps lower?
 - Must be done with prime-focus feeds.
 - This requires a removable subreflector.
- 3. Improve low surface brightness imaging capabilities.
 - Construction of a new 'E'-configuration.
- In addition, we will plan for the eventual integration of the VLBA, to form a single, real-time continental-scale interferometer array.

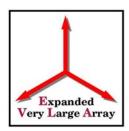
- Key Scientific Driver: Milliarcsecond Imaging of Thermal Sources.
 - $\sigma_{\rm T} \sim 30$ K from 2-40 GHz, with resolution 6-60 mas
 - $\sigma_s \sim 10 \ \mu$ Jy at 0.1 arcsecond resolution at 1.5 GHz
- This combination of sensitivity and resolution opens up new classes of sources for detailed mapping:
 - Stellar atmospheres, binary stars, novae
 - Proto-planetary disks
 - Hypercompact Galactic HII Regions
 - Extra-galactic HII Regions

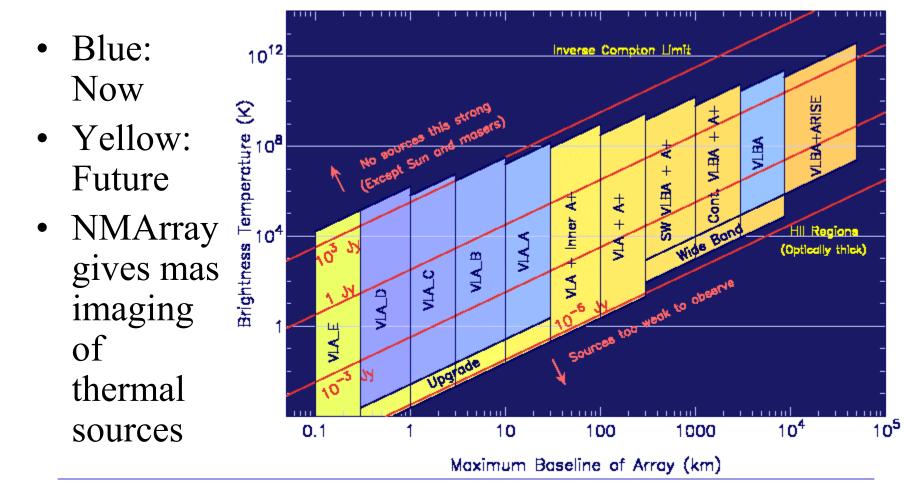




- Flexibility of Configuration:
 - NMA+VLA: ~37 antennas offer unbeatable performance and flexibility.
 - The NMA alone is an always-available stand-alone instrument
 - Sensitivity of current VLA, with 10x the resolution
- Pathway to the Future
 - Integration with the VLBA a single array, flexibly configured.
 - Possible growth path to the SKA.

Resolution-Frequency Coverage of NRAO Telescopes

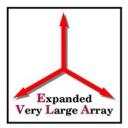


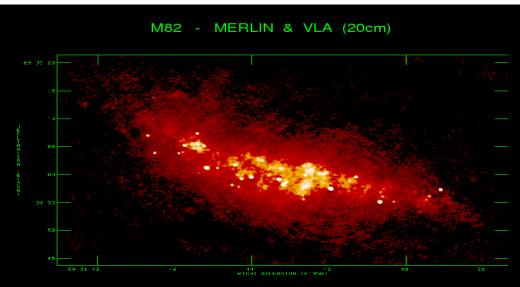


Resolution (arcseconds)

Brightness Temperature Coverage of EVLA & VLBA

NMA Science: Novae


• Imaging every nova in the Galaxy, within a few days of the explosion:


 Θ = 0.57 v₁₀₀₀ t_{day}/d_{kpc} milliarcseconds

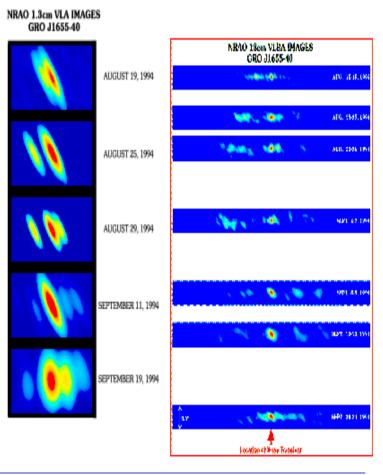
- \rightarrow Evolution from optically thick to thin
- \rightarrow Mass estimate
- \rightarrow 3D temperature/density distributions

NMA Science: Nearby Galaxies

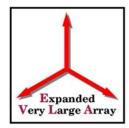
- Resolve ultra-compact HIIs throughout M31/M33 (Θ=0.03pc)
- Map Tycho/Kepler SNR analogues in M81/M82 (Θ=0.1pc)
- Image >50 star clusters in the Antennae (<10pc resolution)

NMA Science: High z Mapping

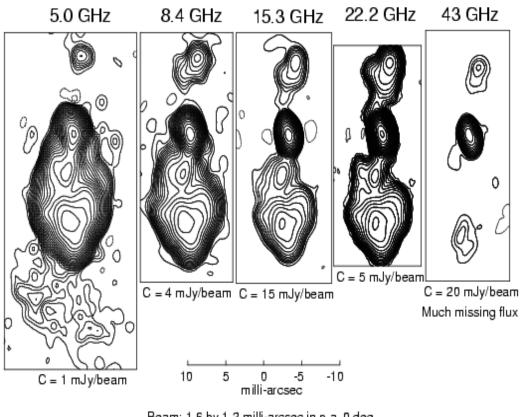
- Distinguishing AGNs from starbursts:
 - HII regions have $T_b < 10^5 \text{ K}$
 - → Sources >3.3 mJy which aren't resolved by the NMA must be AGN (independent of freq.)
- 1 kpc > 0.1-0.15 arcsec at all z
 - NMA resolution: Θ =0.125 arcsec at 1.5 GHz !
 - → NMA will have <1Kpc resolution for the entire universe (with sub-µJy sensitivity)</p>



NMA Science: X-ray Transients


- Ubiquity of jets
- Monitoring: continuous multi-freq. coverage
- Quiescent source imaging
- Check jet "prejudices"

 (one-sided, flip-flopping, pattern speeds, orientations)

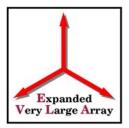


NMA Science: AGNs

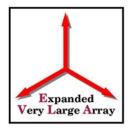
- Spectral index imaging
- Milli-halos
- Small-scale diffuse emission (central starbursts?) (cf. Mrk 231)

Beam: 1.6 by 1.2 milli-arcsec in p.a. 0 deg

Contour levels = C * (-2, -1, 1, 2, 2.8, 4.0, 5.7, 8.0 ... 2**n/2)



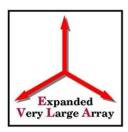
- Gravitational Lenses
 - Currently, ~80 are known.
 - Unique value gives a census based on gravitating matter. Other cosmological census methods are based on light emission.
 - EVLA could find ~1000 lenses (Chris Kochanek)


The New Mexico Array Design Progress

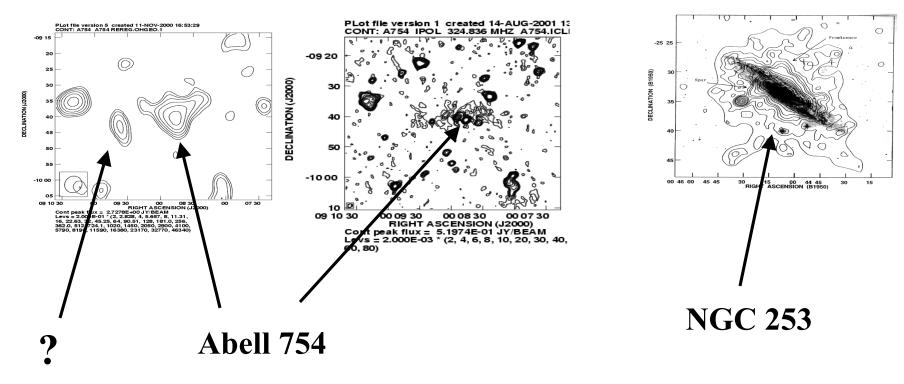
• Design group, led by Frazer Owen, has made considerable progress in defining the array design.

Low-Frequency Science

Unique Aspects of Low-Frequency Imaging:


Long-lived relativistic electrons

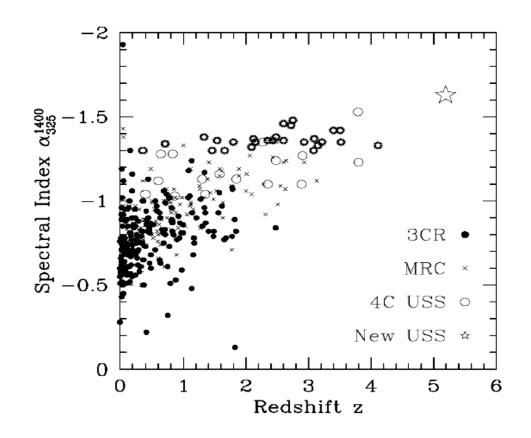
 \rightarrow relics & halos


- High-z sources (radio continuum, HI, OH)
- Free-free & synchrotron-self absorption
 - Measures B-fields, thermal densities
- Faraday rotation & scattering (scale as ν^{-2} & $\nu^{-4)}$
 - Measure B-fields, thermal densities

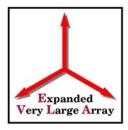
Low-Frequency Science



Relics and Halos


Low-Frequency Science

Finding USS sources:


Showing the relationship between α and z.

Deep surveys at low frequencies are used to find high-z sources.

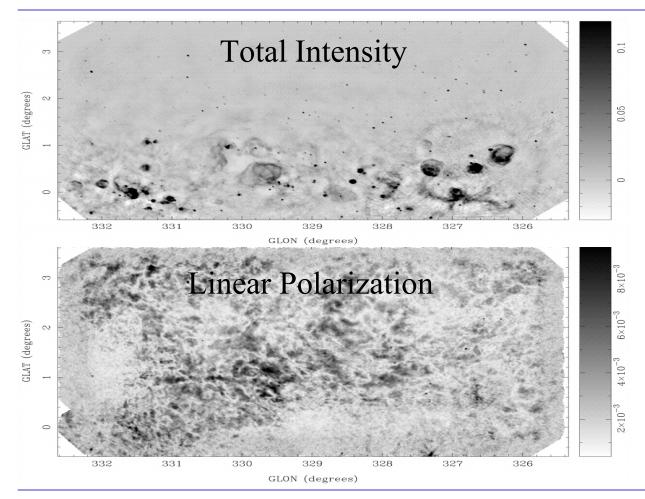
Low-Frequency Science

Damped Lyα Systems: HI absorption

- Opacity & optical $N_H \rightarrow T_{spin}$
- 21cm profile \rightarrow gas kinematics
- NMA \rightarrow image absorption

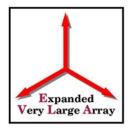
 \rightarrow rotation curves!




ISM Polarimetry

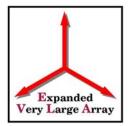
- Linearly polarized signals are rotated during ISM propagation
 - Faraday rotation goes as λ^2
 - Sensitive to very small fluctuations in ISM
 - Lower frequencies are most sensitive, but high resolution needed.
- Trace regions of turbulence, e.g. near supernova remnants
- Monitor polarization for time variability
 → track size scales, velocities in ISM

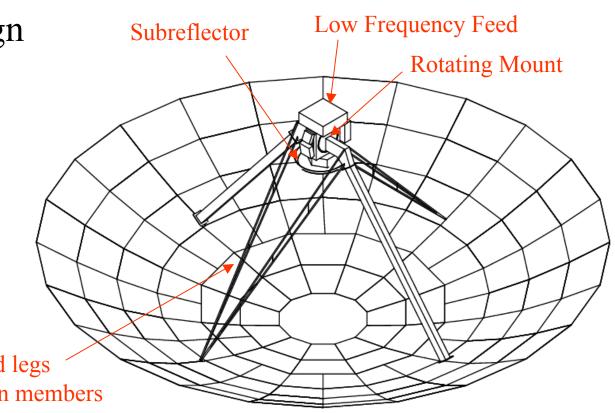
Low-Frequency Science



Two Views of the Galactic Plane at 21 cm.

Rick Perley


Low-Frequency Extension

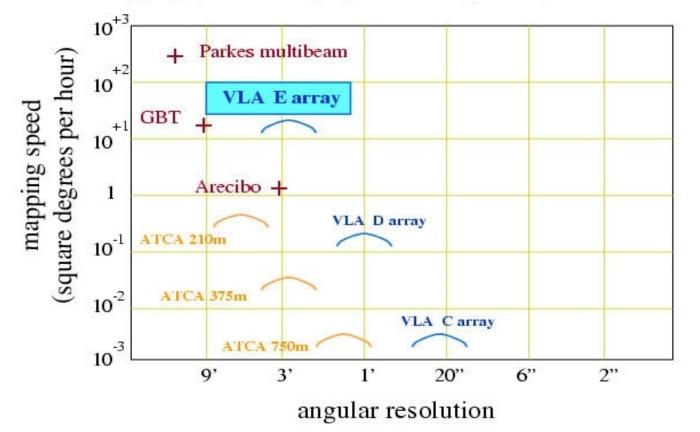

- Cassegrain focus not useable for $\lambda > 30$ cm
- To employ prime focus, subreflector must be removed.
- A rotating system has been designed, but not tested.
- Testing of this design is included in Phase I, but no schedule has been developed.

Rotating Subreflector Mount

• J. Ruff design to enable access to prime focus.

Horizontal quadruped legs Replaced with tension members

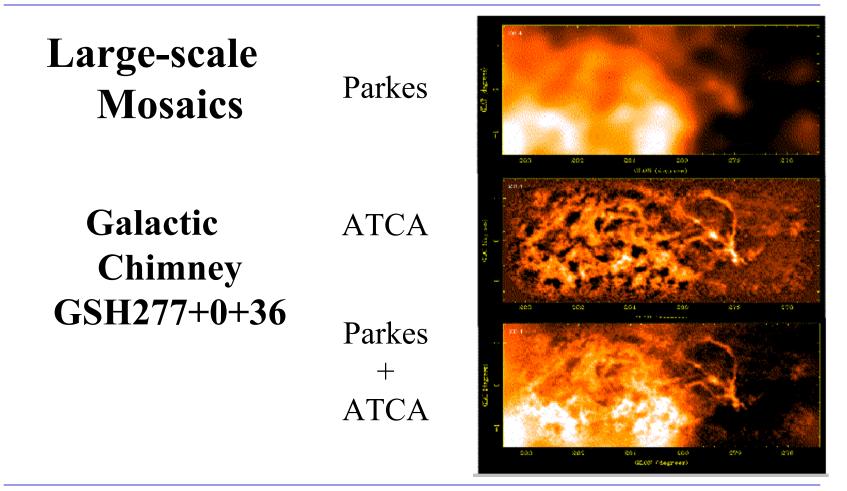
Rick Perley


- Surface brightness sensitivity
 - Although D-configuration can do low-surface brightness imaging, it is much slower.
- Image quality
 - Denser uv-coverage → lower sidelobes at low resolution → superior imaging performance
 - Fidelity improved by factor ~7 (Holdaway 1996)
- ➔Mosaics would be faster & will produce superior images, particularly when GBT data are included.

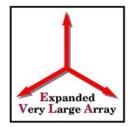
E Configuration Science

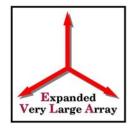
Mapping (mosaicing) speed for $\sigma_T = 1$ K, $\delta v=0.8$ km/s

Unique combination of resolution, mapping speed, and fidelity Especially important for spectroscopy of thermalized lines

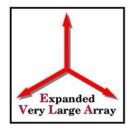

The Local HI Web

- Theory + opt. studies suggest there should be a "web" of low column density gas joining nearby galaxies.
- A deep (2700hr) integration with VLA/E would yield an rms of 3 x 10^{15} cm⁻² ($\delta v = 1$ km/s)


E Configuration Science


'E-Configuration' Studies

• Frazer is leading a design effort here, and will report on this in the next talk.


Interaction of EVLA with SKA

- Many of the key issues confronting SKA development must be addressed for the EVLA:
 - Wide-bandwidth FO transmission
 - RFI-tolerant design
 - RFI excision, avoidance, and subtraction.
 - Hi-Fidelity Imaging (all Stokes' parameters)
 - Data availability and archiving
 - End-to-End Computing and overall Data Management
 - Exploration of the uJy sky, (before the nJy).
 - Remote site selection and operation
- EVLA is the SKA (without the collecting area)

 $EVLA \rightarrow SKA$?

- NRAO approach is to provide a growth path from VLA ➡ EVLA ➡ SKA.
- Even if SKA is developed elsewhere, the technology development underway for EVLA is crucial to SKA success.

Issues

- Station Definition
 - EVLA goal is to provide the capability to do the science as soon as feasible.
 - 25-meter antennas have solid advantages
 - Simple optics, known properties.
 - They are also big and expensive.
 - SKA-style array may provide more collecting area for less cost.
 - Significant disadvantages shadowing, variable station beam, performance losses at highest and lowest frequencies

Issues



- Interaction with SKA
 - SKA Advocates are not enthusiastic about Phase 2.
 - We believe our approach is safe and solid we can provide the capability with high confidence of success.
- Location of 'Orphan components' Low Frequencies and E-configuration.

- Priority of returning to Phase I. Trade-offs.

• Timing: When to submit proposal? When to design for completion?