Science with JVLA and ALMA

From science fiction to fact

Jansky VLA

* Focus on last ~ 5 years (highlights from NSF reports, APR, POP, LRP...)
* Emphasize complimentarity: multi-wavelength, multi-messenger




Decadal Survey 2020

l. Worlds and Suns in Context: Pathways to Habitable VWorlds
a. Planet Formation
b. Planetary Science
c. Exospace Weather

ll. Cosmic Ecosystems: Unveiling the drivers of Galaxy Growth
b. Star Formation Laws
c. First Galaxies
lll. New messengers, New Physics: New Windows on the
Dynamic Universe

a. Gravitational VWave Sources

b. Explosive Universe
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ALMA: close to 2000 proposals per year ~ 50% more
than HST or JWST!
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Pathways to Habitable Worlds

Exoplanets: Biggest Advance in Astronomy in last two decades

Cumulative Detections Per Year
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ALMA and JVLA imaging of planet formation on few AU scales

HL Tau: the archetype dusty disk surrounding a | M_, | Myr old proto-star at 140 pc
distance. VLA and ALMA imaging at ~ 40mas (5 AU) resolution trace the growth of
dust grains into planetesimals, and the gaps and clumps that result from the influence
of early planets on the disks themselves.
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Planet Formation as an Industry
DSHARP: ALMA 250 GHz images of thermal emission from dust in 20

¢
-

protoplanetary disk at 40mas (5AU) scales.

* Concentric emission rings
and depleted gaps.

* Occasional spiral patterns
and small arc-shaped
asymmetries => dynamic

* Wide range of radii: a few
to more than 100 AU

* Wide range in brightness
contrast

ﬁ Andrews ea.2018



Pathways to Habitable Worlds

Lifecycle of Planets

Gemini/GPI

ALMA

MUSE/VLT

ALMA 350 GHz and VLT images of circumplanetary Gemini direct imaging of gas
disks in PDS 70 (Isella et al. 2019): accretion onto giant planet 51 Eridani b
two protoplanets at 50mas resolution. (Macintosh ea. 2015)
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Pathways to Habitable Worlds
The Ocean of Europa

Europa is one of the more plausible sites for development of life in the Solar
system, due to a likely subsurface salt water ocean.

ALMA 233 GHz

Trumbo ea. 2018

ALMA temperature map at 200 km resolution shows complex structure from 30 K to
90 K, and unexplained cold and hot spots, possibly associated with subsurface activity.

Consistent with fractured, dynamic, icy surface ~ 20 km thick, possibly much thinner |l
in places, with subsurface liquid water ocean, and a rocky core.



Severe Space Weather

* Coronal mass ejections (CME) are the most violent space weather phenomenon, traveling
at ~1000 km/s, with potential for major impact on the Earth.

* Faraday rotation measurements with the VLA, plus real-time in situ density measurements
by Parker Probe, yield the most precise measurement of the magnetic field in a CME of
30mG at 10 R,. Strong fields ‘focus’ the CME as it travels from the Sun.

Left: SOHO image of a CME,
with location of background
radio sources used for VLA RM
measurements. Right: time
behavior of the RMs of source |
with passage of the CME (Kooi
et al. 2021).
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Space Weather: Solar dynamic imaging

* Solar spicules are ubiquitous jets of cool (10*K) material launched from the
chromosphere into the corona at up to 100 km/s, thereby heating the corona and
powering Solar wind. Launch mechanism remains unknown.

* 3mm free-free and UV line emission are complementary, formed under LTE and
non-LTE, respectively, and can be used to determine gas temperature and densities.

ALMA: 3 mm (100 GHz) SD0/AIA 171A IRIS 2796A

ALMA 3mm and SDO/IRIS dynamic observations of Spicules on the Solar limb
(Bastian et al. 202 1), at ésec cadence, 1.5” (1 100 km) resolution, over | Omin.
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* M-dwarfs: most common star likely to host 0002
habitable planets. Often very magnetically active, 3
. e = 500-
with extreme flares and aurorae indicating °
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* Proxima Centauri (0.12 M,): closest 210000
O
exoplanetary system (1.3 pc) with an Earth-mass = _
planet at 0.05 AU and T~230.
0q .............................................. Bl

« ALMA, HST, and others, have detected the most 0.3988 0.3989 \ 0.3990
BMJD (58604+)
extreme flare from Prox Cen,: 7sec, factor !
1,000 increase at |.3mm! ALMA 250 GHz and HST UV light
« Extreme flares driven by magnetic reconnection: curves of the extreme flare from Proxima

extreme activity could be detrimental to the Centauri (Macgregor et al. 2021)

formation of life = new term in Drake equation




Cosmic Ecosystems: Unveiling the drivers of Galaxy Growth

Cosmic Baryon Cycle: How do galaxies convert gas into stars?

ﬂ The HI Nearby Galaxy Survey (THINGS) ﬂ\

F. Walter, E. Brinks, E. de Blok, F. Bigiel, M. Thomley, R. Kennicutt
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VLA/THINGS survey: HI 21cm imaging of atomic ALMA/PHANGS survey: CO 2-1 imaging of
gas in a representative sample of disk galaxies at molecular gas in representative sample of disk
200pc resolution (Walter et al. 2008). galaxies at 200pc resolution (Leroy et al. 2018)




NGC628 HI, 28um. HST

NOG 2400 e Observe 100,000 giant molecular
clouds => relationships between:
HI, H,, SF, Stars, and influence of
galaxy dynamics




Star Formation Law T T T T T
relationship between gas ai I "
star formation in galaxies ; PPN

- Stars form in molecular 1 E | R
clouds (not HI') ' ' |

- Normal galaxies (Milky
Way): gas depletion
timescale ~ 2.5e9 yr

- Starburst galaxies: gas

depletion timescales ~
2.5e8 yr

l0g g [Mo yrT kpc-z]

- tp <ty => requires gas
resupply from IGM (HII
Hl & H,)
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Galaxies into the Dark Ages

Cosmological Deep Fields
HS UD

ALMA 250 GHz rms = 9.5 ujy
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Thousands of galaxies in optical, radio, and dust, out to
to z ~ 9, or just 500 Myr after the Big Bang



Star Formation History of Universe
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What about the Gas!?

ASPECS: Full spectral scans of ALMA 90m 250 GHz, in UDF
COLDz: scan VLA 32 band in COSMQOS, GOODS-N
Unbiased Search for CO from z =0 to 5.3




ASPECS-LP.3mm.05 AGN
ASPECS + COLDz: 30 CO galaxies Zcoz—1) = 1.550

z=05to0 5.3

ASPECS-LP.3mm.08
Zcoz-1) = 1.382 .o
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Dense Gas History of the Universe

Fundamental change in galaxy properties over time
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Cosmic Ecosystems: Unveiling the drivers of Galaxy Growth

Cosmic Baryon Cycle over Time
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ALMA opens a new window on the first galaxies

Atomic Fine Structure Linestoz>9
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* Dynamics of It galaxies to | kpc
* ISM conditions

* New redshift machine for It galaxies



New messengers, New Physics

New Windows on the Dynamic Universe

Optical Pan ea.2017
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Gravitational Waves Sources:The VLA was key
in the multi-wavelength campaign that discovered Hallinan ea. 2017
the EM counter-part to the merging binary ~ 30 M, 20 JVLA

black-holes, identified with a galaxy at z = 0.093. #20 410 0 -0 20 420 +10 0 -0 -20
Offset (") Offset (")

-10

Offset from Galactic Nucleus (")




Smothered, then emerging, relativistic jet
model for merging binary black hole
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The radio light curve of GW 170817 and VLBA imaging of the emerging relativistic
jet from the merging binary black hole system. Right: schematic model for the EM
counterpart to GW source: a wide angle jet which is trapped by the explosion
debris (Dobie ea. 2018; Mooley ea. 20138).




VLASS: the radio transient factory

2500 explosive transients per epoch

FIRST 1997

VLASS transient VT [210+4956: not
detected in FIRST, but appears in VLASS

|dentified with dwarf galaxy at z = 0.035

Radio spectrum => synchrotron self-

absorption model
3.6 kpc

Likely merger-driven core collapse o R e s wTcsac
supernova (Dong et al. 2021).
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In 1983, | lived in a Universe where:

The only planets were in the Solar system

PP ‘disks’ were point sources

The most distant galaxy was 3¢295 at z=0.5

The existence of Black Holes was hotly contested
Gravitational waves were an even vaguer prediction
Physical cosmology bordered on metaphysics

The sky was considered (mostly) static and immutable




