Ultra-Wide Field Imaging 1
a work in progress...

Steven T. Myers

National Radio Astronomy Observatory
Socorro, NM
Ultra-wide field imaging

• low-freq arrays image nearly the whole half-sky
 – LWA, MWA, LOFAR, SKA…
 – plus terrestrial interference on horizon!
• VLA 74 MHz already 10° FWHM!
• tiling the sky is tricky – use single spherical coord. system
 – but need a way to grid (e.g. HEALPIX)
• replace tangent plane coordinates with spherical (angular) coordinates
 – replace uv-plane with spherical harmonic multipoles \(l,m \)?
 – used in CMB (as well as atomic physics)
 – need to relate to interferometer system
The essence of W projection

- Evaluate this integral (and transpose) for regular grid in (l,m) and irregularly spaced samples in (u,v)

$$V(u, v, w) = \int \int \frac{d\xi d\eta}{\sqrt{1 - \xi^2 - \eta^2}} I(\xi, \eta) e^{i2\pi[u\xi + v\eta + w(\sqrt{1-\xi^2-\eta^2} - 1)]}$$

- Image space computation = multiplicative function

$$V(u, v, w) = \int \int \frac{d\xi d\eta}{\sqrt{1 - \xi^2 - \eta^2}} G(\xi, \eta, w) I(\xi, \eta) e^{-i2\pi(u\xi + v\eta)}$$

- Fourier space computation = convolution kernel

$$V(u, v, w) = G(u, v, w) \otimes V(u, v, w = 0)$$
Standard sky geometry

- **sky:**
 - unit sphere
 - tangent plane
 - direction cosines
 - $\xi = (\xi, \eta, \zeta)$

- **interferometer:**
 - $u = B / \lambda$
 - $u = (u, v, w)$

- project plane-wave onto baseline vector
 - phase $2\pi \xi \cdot u$
Wavefront correlations

- Rewrite the standard form of the relation as

\[V(u, v, w) = \int \int \frac{d\xi \, d\eta}{1 + \zeta} \, I(\xi, \eta) \, e^{i2\pi \xi \cdot u} \]

\[\xi = (\xi, \eta, \zeta) \quad u = (u, v, w) \]

\[1 + \zeta = \sqrt{1 - \xi^2 - \eta^2} \]

- Sky is 2-dimensional, but baseline vector 3-d
Whole-sky imaging & transforms

- Celestial spherical coordinates \((\theta, \phi)\)
 - choose pole: celestial, terrestrial, pointing direction
 - coordinates: RA-Dec, Az-ZA, other
 - Intensity field:
 \[
 I(\hat{n}) = (\theta, \phi)
 \]

- Spherical Harmonic Transforms
 \[
 a_{\ell m} = \int d^2\hat{n} Y_{\ell m}(\hat{n}) I(\hat{n})
 \]
 \[
 Y_{\ell m}(\theta, \phi) = P_{\ell} (\cos \theta) e^{-im\phi}
 \]
 - at high \(l\) these become Fourier transforms
 - complete orthogonal harmonic mode basis on sphere
 - there are fast versions and convolvers
Spherical maps

• Need optimized map geometry and fast convolvers:

http://www.eso.org/science/healpix
– see Wandelt & Gorski (astro-ph/0008227) for convolution
WMAP: case study

- HEALpix maps:

 K: 23GHz
 Ka: 33GHz
 Q: 41GHz
 W: 94GHz
Issues

• Is there a simple expression for $V(u,v,w)$ in terms of spherical harmonics (l,m)?
• Will the FSHT be fast enough?
• Are fast spherical convolvers fast enough?
• Tiling the sky: is HEALPIX the right way?
• Are there any practical advantages to doing it this way?

to be continued …