Imaging and calibration errors

- Most data corruptions are separable

\[V_{ij}^{\text{Obs}}(\nu, t) = G_{ij}(\nu, t) \left(\int \int P_{ij}(\nu, t) I^M(l, m, \nu) e^{2\pi i (u_{ij} l + v_{ij} m)} dl dm \right) \]

Data \rightarrow Corruptions \rightarrow Sky

\[G_{ij} = G_i G^*_j \] where \(G_i \) is the complex antenna based gains (direction independent)

\[P_{ij} = P_i(l,m)P_j(l,m) \] where \(P_i \) is the image plane errors (direction dependent).

- Assuming \(P_{ij} = 1 \), direction independent terms can be solved by minimizing:

\[\sum_{ij} |V_{ij}^{\text{Obs}} - G_i G_j^* V^M|^2 \text{ w.r.t. } G_i 's \]

- Direction dependent terms remain separable in the visibility domain, but more expensive to apply (not simple division)

\[V_{ij}^{\text{Obs}} = E_{ij} \ast V^M_{ij} \text{ where } E_{ij} = E_i \ast E_j^* ; E_i = FT[P_i] \]
Challenges

• Explicitly incorporate the scale information in the deconvolution algorithms.

 ➤ Widely separated pixels are coupled due to the sidelobes of the Point Spread Function (PSF). Fast computation of this coupling is a challenge.

 ➤ Decoupling the various scales in the image, or controlling the dimensionality of the search space is a challenge.

• Solving for direction dependent corruptions as a function of time, frequency and polarization.

• Incorporate these direction dependent effects while predicting the model visibilities.

• Modeling the sky as a function of frequency and polarization.

S. Bhatnagar/NAWG, 11May 2005
Roadmap: Wide-band imaging
(Note on “Imaging/calibration algorithm research”, Aug. 2004)

- Wide-band imaging
 - Formulate the problem
 - Simulations/tests with existing algorithms
 - Scale-sensitive decomposition as a function of frequency
 - Incorporating PB effects in deconvolution
Roadmap: PB effects

- **PB effects (pointing, squint, ionospheric/atmospheric)**
 - Formulate the problem: Done (EVLA Memo 84)
 - Test cases: Done (EVLA Memo for the solver)
 - Single pointing imaging tests: Done (in preparation)
 - Solver: Tested for basic correctness.
 - User level tool: Work in progress
 - Application of squint and pointing correction during imaging
 - Solver for pointing offsets
Roadmap: Component based Imaging

• Scale sensitive decomposition: Asp-Clean, MS-Clean
 ➔ Extend it to incorporate frequency dependence
 ➔ Simulations
 ➔ Extend the work on PB effects to work with the above during imaging
Roadmap: Inter-dependence

• Wide-band imaging needs
 ➔ The basic Asp-Clean machinery for $I(l, m, v)$
 ➔ The basic PB machinery for forward and inverse transforms $P_{ij}(l, m, v)$
 ➔ Both the above for tests/simulations/actual algorithm development

• Full beam polarimetry
 ➔ The basic PB machinery for the transforms
 ➔ More sophisticated PB modeling

• Mosaicking
 ➔ Pointing Selfcal + all the above

• Estimation of computing/Data I/O needs

S. Bhatnagar/NAWG, 11May 2005