Introduction
The most common bipolar junction transistors (BJT) used by hobbyists and QRPs are the 2N2222, 2N3904 and 2N4401. These NPN transistors have similar characteristics, and perform well at HF frequencies.

This tutorial explains how to "read" the data sheets on these devices and understand the specifications – which will enable you to interpret data sheets for other devices as well.

The manufacturer's data sheets contains information in the following general categories:
1. Maximum (Breakdown) Ratings
2. "On" Characteristics
3. Small Signal Characteristics
4. Switching Characteristics

1. Maximum (Breakdown) Ratings
The maximum ratings are provided to ensure that the voltages and currents applied do not damage or cause excessive heating to the device. The maximum ratings for the 2N2222, 2N3904 and 2N4401 are shown in Table 1. The voltages, currents and power dissipation listed should not be exceeded to prevent damage to the device.

V_{CEO} is the maximum collector-emitter voltage and V_{CBO} is the maximum collector-base voltage. Fortunately, these breakdown voltages are well above the typical 12v used in most QRP applications.

This is not the case with V_{EBO}, the maximum emitter-base voltage, typically 5–6v. If exceeded, this can cause a physical breakdown of the base junction, destroying the

<table>
<thead>
<tr>
<th>Table 1 – MAXIMUM (BREAKDOWN) RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Collector–Emitter</td>
</tr>
<tr>
<td>Collector–Base</td>
</tr>
<tr>
<td>Emitter–Base</td>
</tr>
<tr>
<td>Max. Coll. Current</td>
</tr>
<tr>
<td>Power dissipation</td>
</tr>
</tbody>
</table>
transistor. In a circuit, the biasing scheme sets the base-emitter voltage, V_{BE}, to be safely below V_{EBO}. However, in large-signal applications, V_{BE} must include the DC base bias and the peak voltage of the signal to ensure V_{EBO} will not be exceeded.

Collector Current, $I_{c(max)}$, is the other maximum rating to be closely followed. Collector current exceeding $I_{c(max)}$ can damage the transistor, due to excessive current through the device, initiating thermal runaway – destroying the collector-emitter junction. The destruction of a transistor in this manner is technically called catastrophic substrate failure for good reason!

Most QRP circuits are usually biased for well below $I_{c(max)}$. $V_{be(max)}$ and $I_{c(max)}$ are generally a concern only in large-signal applications, such as RF drivers, PA stages, and some oscillator circuits.

2. ON CHARACTERISTICS

These specifications define the DC performance of the device while it is forward biased ($V_{be} > 0.7\text{v}$), causing collector current to flow, or "on." The DC Characteristics in Table 2 are not absolute design values, but rather test values as measured by the manufacturer. This is why the data is listed with the test conditions, such as "$I_{c}=1\text{mA}, V_{CE}=10\text{v}.$"

HFE is the measured DC current gain of the transistor (see Rule of thumb for HFE). It is used for biasing the device in the linear region – primarily class A. Most data sheets provide HFE at two different collector currents, usually 1 and 10mA. Since most QRP circuits are biased for $I_{c} \leq 5\text{mA}$ (to conserve battery drain), HFE at $I_{c}=1\text{mA}$ is typically used.

HFE also varies from transistor–to–transistor. This is why the data sheets list both HFE (min) and HFE (max). The manufacturer tested a large batch of 2N2222s and determined that hfe ranged from 50 (HFE_{min}) to 150 (HFE_{max}) at $I_{c}=1\text{mA}$, as shown on the data sheets (Table 2). Statistically, most transistors will fall between 50 and 150, or about $HFE=100$. This is why most design guides will recommend using a value of $HFE=100$ for bias calculations. Since the 2N3904 has a higher DC current gain, often $HFE=150$ is recommended for that device.

$HFE_{\text{min. and max.}}$, at $I_{c}=1$ and 10mA, can be plotted on a logarithmic graph (lines 1 and 2 on Fig. 1). The average

Table 2 – DC "ON" CHARACTERISTICS

<table>
<thead>
<tr>
<th>Device</th>
<th>2N2222</th>
<th>2N2222A</th>
<th>2N3904</th>
<th>2N4401</th>
<th>MMBT3904</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Current Gain, HFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{c}=0.1\text{mA}, V_{CE}=10\text{v}$</td>
<td>$HFE_{\text{Min.}}$</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>$I_{c}=1.0\text{mA}, V_{CE}=10\text{v}$</td>
<td>$HFE_{\text{Min.}}$</td>
<td>50</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>$I_{c}=10\text{mA}, V_{CE}=10\text{v}$</td>
<td>$HFE_{\text{Max.}}$</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>$I_{c}=10\text{mA}, V_{CE}=10\text{v}$</td>
<td>$HFE_{\text{Max.}}$</td>
<td>75</td>
<td>75</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage, $V_{CE(sat)}$</td>
<td></td>
<td>225</td>
<td>250</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage, $V_{CE(sat)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{c}=150\text{mA}, I_{B}=15\text{mA}$</td>
<td>$V_{CE(sat)}$</td>
<td>0.4vdc</td>
<td>0.3vdc</td>
<td>0.3vdc†</td>
<td>0.4vdc</td>
</tr>
<tr>
<td>$I_{c}=150\text{mA}, I_{B}=15\text{mA}$</td>
<td>$V_{BE(sat)}$</td>
<td>0.13vdc</td>
<td>1.2vdc</td>
<td>0.85vdc</td>
<td>0.95vdc</td>
</tr>
</tbody>
</table>

† $I_{c}=50\text{mA}, I_{B}=5\text{mA}$ on 2N3904

Rule of thumb for HFE:

Conventions used in electronic literature:

- **HFE** or hfe (upper case letters) is the DC Current Gain
- **Hfe** or hfe (lower case) is the AC current gain

Fig. 1 – Constructing an HFE vs. I_{c} plot

$X = HFE$ values from data sheet

$HFE_{\text{(min)}}$, $HFE_{\text{(max)}}$, and $HFE_{\text{(typ)}}$ on 2N2222
value, HFE typ., can then be drawn (line 3, Fig. 1). This gives you HFE (typ) for various collector currents.

The value used for HFE is not critical. Using HFE=100, or even the conservative value of 50, will work 99% of the time. Therefore, one scarcely needs the data sheets for the DC characteristics, as the typical HFE = 100 at Ic=1mA is valid for most general purpose NPN transistors. Fig. 2 shows Ib vs. Ic for HFE at 50 and 100.

Saturation voltages, VCE(sat) and VBE(sat), defines the transistor behavior outside the linear operating region, that is, in the saturated region. This is of interest when operating the transistor as a saturated switch. The keying transistor in a transmitter, forming the +12v transmit voltage on key–down, is an example of a saturated switch.

3. SMALL SIGNAL CHARACTERISTICS

The small-signal characteristics describe the AC performance of the device. There is no standardized industry definition of small-signal (vs. large-signal), but is generally defined where the AC signal is small compared to the DC bias voltage. That is, the signal levels are well within the linear operating region of the transistor.

The small signal characteristics include:
1) gain bandwidth product (Ft)
2) the AC current gain (hfe)
3) input and output impedances (hie and hoe)
4) input and output capacitances (Cibo and Cobo)
5) the noise figure (NF).

The small signal parameters are the most important to understand, as they describe the transistor's behavior at audio and RF frequencies, and used in the circuit design equations. These parameters vary greatly from one transistor type to another, such that making assumptions (as we did with DC HFE =~100) can be risky. The data sheets must be used. The small-signal characteristics for Ft and hfe, from the data sheets, are shown in Table 3.

Gain Bandwidth Product, or Ft, is defined as the frequency at which the AC current gain, hfe, equals 1 (0dB). See Fig. 3 (next page). This is the maximum frequency the device produces gain as an amplifier or oscillator.

On RF transistor data sheets, Ft is not always given. Instead, the power gain, Gp (or Gpe for common emitter power gain) is tested at a specific frequency. Ft can be derived from this information as shown in Table 4. Equations x and Gp(mag) convert the power gain, in dB, to unitless magnitude, as is hfe.

Rule of thumb for HFE:
Most general purpose NPN transistors have a DC HFE = 100 (typ) and thus used in most biasing equations for DC and low frequencies.
hfe is the ac small-signal current gain, and dependent on both frequency and the collector current. Hfe is also known as the ac beta. **Ft** and **hfe** work together to define the overall AC gain of the transistor at a specific frequency, as illustrated in Fig. 3.

hfeo is the low-frequency hfe, often very close to the DC HFE. The values for **hfe** shown in the data sheets are normally measured at 1KHz and Ic=1mA (sometimes @10mA). Hfeo is fairly constant from the audio frequencies to about 300 KHz.

Beta cut-off frequency, **fβ**, is the "3db point" of hfe, where hfe=0.707hfeo, or fβ=Ft/hfeo. **fβ** is seldom listed on the data sheets. **hfe** drops fairly linearly from fβ to Ft at 6dB/octave. **Ft**, and the hfe vs. frequency plots, are seldom shown in the data books. *This is why learning to interpret the data sheets is important to determine the actual gain (hfe) a transistor will provide at a specific frequency.*

Design Example: Constructing an Hfe vs. Frequency Plot

Let's figure out what hfe will be for a 2N2222 on the 40M band, using both graphical and equational methods. It's really easy.

From Table 3, hfe=50 (min) to 300 (max). Let's pick hfe=150 as the average. Since hfe is measured at 1KHz, this is also hfeo. Draw a line on a chart to represent hfeo=150 (line #1, Fig. 4).

Calculate fβ and hfe @ fβ as follows: (Ft=250MHz, 2N2222)
\[fβ = \frac{Ft}{hfeo} = \frac{250MHz}{150} = 1.7 \text{ MHz} \]
\[hfe = fβ \times 0.707 = 0.707 \times 150 = 106 \]
Draw a dot at hfe @ fβ on the chart (hfe=106 @ 1.7 MHz)

Or ... calculate hfe at the desired frequency, fo, such as 7MHz
\[hfe = \frac{Ft}{fo} = \frac{250MHz}{7MHz} = 36 \]
Draw a line between fβ (or fo) and Ft (line #2, Fig. 4) to complete the hfe vs. frequency plot of the 2N2222 at Ic=1mA.

Therefore, at 7 MHz
ac gain is hfe = 36

How much signal gain will the 2N2222 provide at 144 MHz?
\[hfe = \frac{Ft}{fo} = \frac{250MHz}{144MHz} = 1.7, \text{ or almost unity!} \]

This is why general purpose transistors (Ft <400MHz) are not used at VHF for lack of useful gain above ~50 MHz.

Hfe vs. Ic. Hfe is also a function of Ic as shown in Fig. 5. This data sheet chart is used to adjust hfe at Ic other than 1mA, where hfe is measured. For designing battery powered circuits, Ic=1mA is recommended. Firstly, data sheet values can be used directly, saving additional calculations, since most parameters are listed for Ic=1mA. Secondly, these transistors have ample gains at Ic=1mA or less. The additional gain at a higher Ic may not justify...
the increase in battery drain. I.e., two amplifiers at Ic=1mA will yield far more gain than one amplifier at Ic=2mA.

Table 6 shows hfe at different frequencies for the 2N2222.

Table 5 lists the remaining small-signal characteristics.

Input impedance, hie, is the resistive element of the base-emitter junction, and varies with Ic. It is used for input impedance calculations, and not particularly useful in itself without considering Cibo.

Input capacitance, Cibo, is the capacitance across the base-emitter junction. For the 2N2222, Cibo(max)=30pF. The reactance (Xc) of Cibo is in parallel with hie(Xc||hie) – causing the equivalent input impedance, Zin, to be frequency dependent as shown in Table 6. As can be seen, Xc(Cibo) dictates the input impedance of the transistor, not hie. Cibo is thus important in estimating Zin at any given frequency. In selecting a transistor for RF, the smaller the value of Cibo, the better. In this case, the input impedance is called Zin, since it includes the frequency dependent reactance components.

Input resistance, Rin, for the common-emitter transistor, can also be estimated using hfe and emitter current, Ie, as follows:

\[Rin = \frac{re(hfe+1)}{Ie(mA)} \]

where, \(re = \frac{26}{Ie(mA)} \) (Ie \(\approx \) Ic)

The results of Rin from the above are also shown in Table 6 for comparison. This method is generally preferred since hfe and Ie are known with greater accuracy than is hie and Cibo. In this case, the input impedance is called Rin, since it only includes resistive components (no reactance components).

The differences between the two methods, while close, demonstrates the difficulty in determining with certainty the input impedance of a transistor.

Output Admittance, hoe, represents the output resistance of the transistor by taking the reciprocal of the admittance. For example, at hoe(typ)=10umhos, Rout = 1/hoe = 1/10umhos = 100KΩ. Like hie, hoe is not particularly useful by itself.

Output Resistance, Ro, is approximately the parallel equivalent of hoe and the collector load resistance, Rc, or Ro = Rc|hoe. See Fig. 6. Since Rc tends to be in the 1–5KΩ range, and hoe 20–100KΩ, Rc will dominate the output resistance of the transistor. As a result, output impedance is usually estimated by: Zo \(\approx \) Rc. Note that the output impedance is set primarily by circuit values (Rc), and not by the transistor’s small-signal parameters.

\[Rin = \frac{re(hfe+1)}{Ie(mA)} \]

where, \(re = \frac{26}{Ie(mA)} \)

Table 6 – 2N2222 Input Impedances

<table>
<thead>
<tr>
<th>Freq (MHz)</th>
<th>hfe</th>
<th>Rin (Ω)</th>
<th>Xc(Cibo)</th>
<th>Zin (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>71</td>
<td>1872Ω</td>
<td>1516Ω</td>
<td>1150Ω</td>
</tr>
<tr>
<td>7.0</td>
<td>36</td>
<td>962Ω</td>
<td>758Ω</td>
<td>658Ω</td>
</tr>
<tr>
<td>10.1</td>
<td>25</td>
<td>676Ω</td>
<td>525Ω</td>
<td>475Ω</td>
</tr>
<tr>
<td>14.0</td>
<td>18</td>
<td>494Ω</td>
<td>379Ω</td>
<td>352Ω</td>
</tr>
<tr>
<td>21.0</td>
<td>12</td>
<td>312Ω</td>
<td>253Ω</td>
<td>241Ω</td>
</tr>
<tr>
<td>28.0</td>
<td>9</td>
<td>234Ω</td>
<td>190Ω</td>
<td>183Ω</td>
</tr>
<tr>
<td>50.0</td>
<td>5</td>
<td>130Ω</td>
<td>106Ω</td>
<td>104Ω</td>
</tr>
<tr>
<td>144</td>
<td>2</td>
<td>52Ω</td>
<td>37Ω</td>
<td>36Ω</td>
</tr>
</tbody>
</table>

\[\text{Zin(eq)} = Xc|hie \]

where,
\[\text{Rin} = \frac{\text{rc}(hfe+1)}{Ie(mA)} \]
\[\approx \frac{\text{Rc}}{hoe} \]

\[Z_\text{o, Ro} = \frac{\text{Rc}+\text{hoe}}{\text{Rc}+\text{hoe}} \]

Table 5 – SMALL SIGNAL CHARACTERISTICS – Part 2

<table>
<thead>
<tr>
<th>2N 2222</th>
<th>2N 2222A</th>
<th>2N 3904</th>
<th>2N 4401</th>
<th>MMBT 3904</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance ‡</td>
<td>Cibo (max)</td>
<td>30pF</td>
<td>25pF</td>
<td>8pF</td>
</tr>
<tr>
<td>Output capacitance ‡</td>
<td>Cobo (max)</td>
<td>8pF</td>
<td>8pF</td>
<td>4pF</td>
</tr>
<tr>
<td>Input Impedance, typ. †</td>
<td>hie (min)</td>
<td>2KΩ</td>
<td>2KΩ</td>
<td>1KΩ</td>
</tr>
<tr>
<td></td>
<td>hie (max)</td>
<td>8KΩ</td>
<td>8KΩ</td>
<td>10KΩ</td>
</tr>
<tr>
<td>Output Admittance †</td>
<td>hoe (min)</td>
<td>5*</td>
<td>5*</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td>hoe (max)</td>
<td>35*</td>
<td>35*</td>
<td>40*</td>
</tr>
<tr>
<td>Noise Figure †</td>
<td>NF (max)</td>
<td>4dB</td>
<td>4dB</td>
<td>5dB</td>
</tr>
</tbody>
</table>

† Measured at 1 KHz ‡ Measured at 1 MHz ＊ *μmhos
Cobo is the output capacitance, and is in parallel with the output resistance. However, Cobo is \(<10\text{pF}\) in most general purpose NPN transistors and has little effect at HF. This parameter is important in RF transistors operating in the VHF/UHF spectrum, where the shunting effect becomes a significant component of the output impedance. Obviously, the lower the value of Cobo, the better.

Noise Figure, NF, is defined as the ratio of the input to the output noise, neither of which is easily measurable by the amateur. The transistor will add noise, then be amplified by the hfe of the device just as the signal is, forming signal plus noise output, or S+N. The excess in the S+N to signal power is due to the noise figure (NF) of the device.

For the QRPer, the NF of the transistor is not highly important on HF. See Table 7. Select a transistor with a low NF for the audio stage(s), however, as this is where it will be the most evident.

Transconductance, \(g_m\), is another parameter provided on some data sheets. If not provided, \(g_m\) can be estimated by: \(g_m = 0.038 \times I_e(\text{mA})\).

4. SWITCHING CHARACTERISTICS

The Switching Characteristics define the operating limits of the transistor when used in pulsed, digital logic, or switching applications. QRP switching circuits include T-R switching, CW keying and band switching circuits using transistors. These are really large-signal characteristics, since the transistor is being driven from cut-off to saturation in most switching applications.

Fig. 7 illustrates the switching characteristics terms:
- \(td\), delay time is the time from the input \(L\textendash H\) transition until the output begins to respond.
- \(tr\), rise time is the time it takes the output to go from 10% to 90% output voltage.
- \(ts\), storage time is the time from the input \(H\textendash L\) transition until the output responds. This is usually the longest delay.
- \(tf\), fall time is the time it takes the output to go from 90% to 10% output voltage.

These switching times, in the tens of nanoseconds, are thousands of times faster than the requirements for QRP applications, and seldom a design criteria when selecting a transistor. It is presented here for completeness only.

This tutorial should allow one to interpret the transistor data sheets, whether the complete data sheets from the manufacturer, or the abbreviated listings, such as found in the NTE Cross-Reference or in the ARRL Handbook. Many manufacturer’s provide complete data sheets online. Understanding transistor specifications is essential in designing your own circuits, or identifying those "ham fest special" transistors and their suitability for your next project. Biasing transistors using these specs will be presented in a future Handyman’s tutorial.