Transition Converter

- Supply signals from new antennas to old correlator.
- Will be discarded or abandoned in place when old correlator is turned off.
- Output must be compatible with signals from old antennas.
- Need 108+spares.
Transition Converter

- Processes 1GHz bandwidth data from 8 bit digitizers.
- Uses digital FIR to produce 50MHz bandwidth data.
- D/A converter produces analog signal input to VLA T4 filter modules.
Digital Filter

- Input is 8:1 demultiplexed data from DTS.
- 2 stage linear phase FIR architecture.
- First stage is an anti–alias bandpass 8:1 decimator.
- Second stage is a half band 2:1 decimator.
- Spectral inversions used to arrange to put second stage cutoff at VLA DC.
First stage

- Selects 1 of 8 sub bands created by 8:1 demultiplex of DTS data. Nominally sub band 5.
- Uses polyphase architecture to process 1GHz bandwidth at 256MHz clock rate.
- Sampling theorem is not violated, bandpass cannot be greater than 1 sub band width.
- Provides anti alias processing for second stage.
Second Stage

- Controls DC band edge at VLA T4 input.
- Cutoff must be sharp to prevent aliasing of image frequencies into VLA input.
- Uses half band architecture to exploit symmetries of filter coefficients to reduce required hardware by nearly $\frac{1}{2}$.
- 2:1 decimation produces output clock rate of 128MHz.
Spectral Inversion

- Works like mixing against a sine wave sampled at positive and negative peaks. Normalized frequency of 0.25.
- Multiply every other sample by -1.
- Symmetry of DFT suppresses images.
- Works.
Half Band FIR

- Linear phase filter has symmetric impulse response.
- Half band odd length FIR has every other impulse response output identically equal to zero except center sample.
- Other half of responses have cosine symmetry.
- Symmetries greatly reduce required hardware for implementation (nearly 1/2).
Magnitude response of 31 point half band FIR
Impulse response of 31 point half band FIR
Hardware Implementation

- Implemented in Xilinx Vertex II series FPGA.
- Space permitting will be implemented in FPGA on DTS fiber receiver board. Otherwise on temporary host boards, this would complicate operations when both correlators are in use.
- Using Carlson’s formulas for estimating resources approximately 4800 Virtex II logic slices.
Hardware Implementation

- Stage 1 – 100 Tap 8 bit data 8 bit quantized filter coefficients = 2571 slices.
- Stage 2 – 511 Tap half band 4 bit data 10 bit quantized coefficients = (exploiting symmetries) 2228 slices.
- 5000 slices + auxilliary functions.
- Treat these size estimates the way an astronomer would distance estimates.
- VLA correlator ~10,000–20,000 slices equiv.
Hardware Implementation

- XC2V1000 – 5,120 slices $400.
- XC2V1500 – 7,680 slices $700.
- XC2V2000 – 10,752 slices $950.
- If implemented on DTS receiver room for receiver functions is also needed, shares costs with permanent hardware. XC2V1500 looks adequate.
- $200 change per unit = >$20,000 total change.
Power Dissipation

- Wide band noise inputs tend to maximize power dissipation.
- Excess power dissipation shortens life of FPGA.
- Total power, in absolute terms, is not great but it is being dissipated in a small volume.
- Will effect packaging.
TRANSITION CONVERTER FIR FUNCTIONAL BLOCK DIAGRAM

STAGE 1
- 104 POINT
- BAND PASS
- 8:1 DECIMATOR
- 8 BIT DATA
- 8 BIT COEFFICIENTS

STAGE 2
- 513 POINT
- LOW PASS/HIGHPASS
- 2:1 DECIMATOR
- 4 BIT DATA
- 10 BIT COEFFICIENTS

SPECTRUM
INVERT

D/A

ANALOG
TO T4

8X8
BITS
256
MHz

4
256
MHz

10
128
MHz

10
128
MHz

15
104 tap Meteor optimized FIR, 8 bit quantized
104 tap Meteocor optimized FIR, 8 bit quantized dB MHz
513 point FIR half band. Kaiser param. 0.3, unquantized
513 point FIR half band, Kaiser param. .3 quantized to 10 bits