EVLA Data Processing PDR

Observation Scheduling

Boyd Waters, NRAO
e2e-EVLA Interaction

Observation Scheduling Software

Proposal Preparation and Submission
Observation Preparation
Observation Scheduling
Data Archive
Image Pipeline
Data Post-Processing

Monitor & Control System

Observation Scheduling
Data Archive
Image Pipeline
Data Post-Processing

Antenna
Feed
Receiver
IF System
Fiber Optics Transmission System
Local Oscillator

Monitor and Control System

CBE Correlator

July 18 - 19, 2002
EVLA Data Processing PDR
Boyd Waters
Diagram Design: B. Clark

Diagram showing the e2e-EVLA II system with the following components:

- E2E
 - Data Reduction System
 - "Observe"
 - "How's it going" Screen
 - Scheduler
- M & C
 - Astronomer
 - System
 - M & C
 - Correlator
 - Other hardware
- Archive

The diagram illustrates the flow between these components as part of the e2e-EVLA II system.
Observation Scripting Path

Scriptor

Intentional Proposal

Prioritized Proposal

project

Queue

Real-time

XML

XML

Observing Table

Glish Script

Data representation

July 18 - 19, 2002

EVLA Data Processing PDR

Boyd Waters
Scheduling Phases

1. **Scheduling Phases**
 - **Real-Time Scheduler**
 - **Control Scripts**
 - **Test Engineer**
 - **Observing System**
 - Calibration Data is a specific kind of "conditions" data.
 - Dynamic Scheduler
 - Array Operator
 - Real-Time Scheduler
 - **Queue**
 - **Visibility Data**
 - **9. Remote Observing Toolkit**
 - **Prioritized Proposal**
 - **Generate Observing Scripts**
 - **Scriptor**
 - **8. Observation Scheduling Toolkit**
 - **5. Observation Scripting Toolkit**
 - Calibration Data
 - Normalized Proposal
 - **[Image] Observation Monitoring and Control System**

2. **Observation Monitoring and Control System**
 - Test Engineer
 - Visibility Data
 - Calibration Data
 - **Monitor Data**
 - Control Scripts - "as observed"
Dynamic Scheduling

Structure the Observation…
…so that we can…

Respond to Events on a Short Time Scale

Changing conditions (e.g. weather)
Targets of Opportunity (e.g. GRBs)

→ **Block-Based Scheduling**
Observing Block

Preamble

Post-amble

~20(?) minutes nominal
Observing “Session”

• A series of blocks
• Preamble is run ONLY for the FIRST
• Post-amble is run ONLY for the LAST
Observing Block Constraints

• “Run this block until the calibrations converge”
• “I can’t run unless the previous block has run successfully”
• “I MUST run at 16:42:30 GST on 30 May 2002”
 – (fixed scheduling is dynamic scheduling with time-domain constraints)
Block Templates

- Debug blocks
- Template blocks
- “Default” blocks
Block-Based Scheduler

Telescope sees **ONE BLOCK AT A TIME:**

Block Queue

- **Preamble**
- **“Post-amble”**

- **Observing Block**

Implications:

- Simplifies the telescope state data
- Telescope reports block execution status back to the block queue
- All “observing logic” is maintained by the Block Queue
Block Execution

Input Queue:

Execution:
Next Steps

• Gather and Codify Requirements
 – Observing Block constraints

• M&C ↔ Observing System Interaction
 – Formal Model

• Observing System Scripting
 – How instrument commands and observing constraints are expressed