EVLA Data Processing PDR

Overview

Tim Cornwell, NRAO
EVLA: Data Management

- EVLA has sub-contracted EVLA data management to NRAO Data Management group
- End-to-end processing needs being addressed by DM End-to-end (e2e) project
- Data reduction needs being addressed by DM AIPS++ project
Principal EVLA Subsystems
End-to-end goals

• Streamline observer access to NRAO telescopes
 – End to end management from proposal to science
 – Cross-Observatory consistency

• Greatly improve data products to users of NRAO radio telescopes
 – Provide original, calibrated, and auxiliary data, default images and processing scripts
 – Improve monitoring of instrument behavior

• Greatly improve archive access
 – On-line access to archives of contemporary and historical images, surveys, catalogs, etc.
 – Technical and scientific data mining via web and NVO

To reach these goals, initiated End-to-end Project in July 2001
e2e requirements and scope

- Extensive discussion of *first pass* scientific requirements with Scientific Working Group
 - Captured in e2e project book:
 http://www.nrao.edu/e2e/documents/e2eprojectbook.doc
 - Proceeding on basis of current requirements
 - Description of workflow from proposal to observing script
 - Converted to high level architecture and data flow
- Refine scientific requirements at end of phase 1 (July 2002)
- Commit to design and scope at end of phase 2 (April 2003)
 - First e2e advisory group meeting ~ April 2003
- Spending ~ 15% of budget on planning
 - Good way to mitigate against risk
e2e development

- Current staff
 - John Benson, Tim Cornwell, Boyd Waters, Honglin Ye
 - Lindsey Davis (IRAF, NOAO – to join in Sept, funded by ALMA), another later
 - Doug Tody (IRAF, NOAO – to join in Sept, part of large NSF-funded collaboration)

- Use spiral development model
 - Develop in 9 month phases
 - Get requirements, plan, design, implement, test
 - Review requirements, plan, design, implement, test…..
 - Five year development plan consisting of 7 phases
 - Add new staff incrementally

- Three important principles
 1. Keep it simple
 2. Reuse as much as possible
 3. Deliver new capabilities soon and often
The Observing System provides feedback to the Real-Time Scheduler to allow for real-time adjustments. The Real-Time Scheduler then forms a 'Queue of Control Scripts' (e.g., crd files) from a 'Scenario'. The Observing System provides feedback to the Real-Time Scheduler to allow for real-time adjustments. The Observing System may also raise events via Monitor Data.
A "Scenario" is an ordered list of Projects.

The Real-Time Scheduler produces a Queue of Control Scripts (e.g. crd files) from a Scenario.

The Observing System provides feedback to the Real-Time Scheduler by reporting the Control Scripts "as observed". The Observing System may also raise events via Monitor Data. TBD.
Overall e2e architecture

<table>
<thead>
<tr>
<th>Package</th>
<th>How?</th>
<th>Priority</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Model</td>
<td>Document</td>
<td>High</td>
<td>First version</td>
</tr>
<tr>
<td>Proposal Submission Toolkit</td>
<td>Web form or Java-based tool</td>
<td>Medium</td>
<td>Investigation</td>
</tr>
<tr>
<td>Proposal Management Toolkit</td>
<td>Java-based tools plus database</td>
<td>Medium</td>
<td>Investigation</td>
</tr>
<tr>
<td>Telescope Simulation Toolkit</td>
<td>AIPS++ tools</td>
<td>High</td>
<td>Deferred</td>
</tr>
<tr>
<td>Observation Evaluation Toolkit</td>
<td>AIPS++ tools</td>
<td>Medium</td>
<td>Deferred</td>
</tr>
<tr>
<td>Observation Scripting Toolkit</td>
<td>GBT Observe, GUI editor</td>
<td>High</td>
<td>Investigation</td>
</tr>
<tr>
<td>Remote Observing Toolkit</td>
<td>Java, AIPS++ tools</td>
<td>Low</td>
<td>Deferred</td>
</tr>
<tr>
<td>Observation Scheduling Toolkit</td>
<td>OMS + local adaptations</td>
<td>Low</td>
<td>Investigations</td>
</tr>
<tr>
<td>Archive Toolkit</td>
<td>AIPS++ tables + AIPS++ tools</td>
<td>High</td>
<td>Prototyping</td>
</tr>
<tr>
<td>Pipeline Toolkit</td>
<td>Production rule software, AIPS++ tools</td>
<td>High</td>
<td>Prototyping</td>
</tr>
<tr>
<td>Pipeline heuristics</td>
<td>Glish scripts as production rules</td>
<td>High</td>
<td>Prototyping</td>
</tr>
<tr>
<td>Calibration source toolkit</td>
<td>Ingres db + Java</td>
<td>High</td>
<td>In development</td>
</tr>
</tbody>
</table>

Data flow
Telescopes and projects

- e2e will be retrofitted to all NRAO telescopes (GBT, VLA, VLBA)
- VLA
 - Putting archive on-line now, working towards pipeline processing
- EVLA
 - Sub-contracted to deliver entire e2e system for EVLA (for 18 FTE-years)
 - Close interaction with EVLA project team at all levels
- VLBA
 - Will start moving archive to disk after VLA archive
 - VLBA pipeline processing once AIPS++ can handle it
- GBT
 - Designing archive facility for deployment in GBT early 2003
 - Watching re-engineering of observing script generation
- ALMA
 - Sub-contracted to develop pipeline (framework only) and post-processing
 - Start development July 2002
 - ALMA has own equivalent to all parts of e2e
 - Trying for reuse if possible (e.g. Observation Scripting GUI from ALMA)
From NRAO to the National Virtual Observatory

- Produce images and catalogs from well-documented pipeline processing
- Images and catalogs available via NVO access tools
- All radio data stays within NRAO
- Other wavebands have similar relationships to NVO
- Built using web services and grid computing
ALMA has subcontracted development of offline processing and pipeline framework to NRAO

e2e:
- Must deliver pipeline framework
- No other re-use planned
- Proposal submission, observation scripting will be different

AIPS++:
- ALMA processing requirements documents being finalized
- AIPS++ in baseline plan
- AIPS++/ALMA tests under way to test compatibility
- ALMA representative (Gianni Raffi) recently joined AIPS++ Executive Committee
e2e timescales

- Customer requirements
 - ALMA development, Phase II starts this year, runs to 2006
 - GBT archive facility by end of proprietary period (early 2003)
 - NSF funding for archive work Sept 2001 – Sept 2003
 - Project book (http://www.nrao.edu/e2e) contains scientific requirements as currently understood

- First cycle of development (ended July 15, 2002)
 - Prototyped VLA archive and pipeline software and facility
 - Started loading VLA archive to disk
 - Improved support for VLA/VLBA calibrator database
 - Design for proposal submission and management

- Second cycle of development (ends in Q2 2003)
 - GBT archive facility
 - Thorough testing of archive and pipeline for VLA
 - Development of prototype observation scripting and scheduling
 - First advisory committee meeting

- End of overall generic development (2006)
 - Working archives, pipelines, ancillary software for VLA, VLBA, GBT
 - First generation for EVLA, ALMA

- Move onto EVLA and ALMA specific development (2006+)
EVLA critical dates

<table>
<thead>
<tr>
<th>Correlator to Archive</th>
<th>Due date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from CBE</td>
<td>Q3 2003</td>
<td>Desirable</td>
</tr>
<tr>
<td>Test correlator prototype</td>
<td>Q4 2005</td>
<td>Desirable</td>
</tr>
<tr>
<td>Start test first correlator subset at VLA</td>
<td>Q4 2006</td>
<td>Desirable</td>
</tr>
<tr>
<td>First science with correlator subset</td>
<td>Q2 2007</td>
<td>Highly desirable</td>
</tr>
<tr>
<td>New correlator operational</td>
<td>Q1 2009</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M&C to Archive</th>
<th>Due date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchtests monitor data</td>
<td>Q1 2003</td>
<td>Desirable</td>
</tr>
<tr>
<td>Prototype system on EVLA test antenna</td>
<td>Q2 2003</td>
<td>Desirable</td>
</tr>
<tr>
<td>Start observing in transition mode</td>
<td>Q2 2004</td>
<td>Required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheduling to and from M&C System</th>
<th>Due date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start test first correlator subset</td>
<td>Q4 2006</td>
<td>Highly desirable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post Processing</th>
<th>Due date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test first correlator subset</td>
<td>Q4 2006</td>
<td>Highly desirable</td>
</tr>
<tr>
<td>New correlator operational</td>
<td>Q1 2009</td>
<td>Required</td>
</tr>
</tbody>
</table>
Costing, schedule, deliverables, etc.

- Plan is to develop design in all e2e areas to level required to cost the project by end of development cycle 2 (April 2003)
- At that point, e2e commits to requirements, costing, schedule, deliverables
- Scope adjustments will be made at beginning of development cycles as agreed with EVLA
e2e resources

- ALMA numbers estimated by ALMA computing management
 - Seem to be in line with other ground based projects but considerably less than space based
- e2e numbers based upon straw man designs, reuse
- e2e scope will be adjusted to fit resources (~ 55 FTE-years)
- Neither constitute a detailed bottom-up derivation of resources from requirements

<table>
<thead>
<tr>
<th>Effort (FTE-years)</th>
<th>ALMA</th>
<th>e2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal Handling Software</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Scheduling Software</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Pipeline</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Data Archive</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>55</td>
</tr>
</tbody>
</table>
De-scoping options

• De-scoping occurs first within toolkits via priorities set by EVLA project
 – Potentially large de-scoping available here
• Next toolkits can be removed
• e2e is committed to provide Pipeline for ALMA
 – Pipeline requires Observation Scripting, Observation Scheduling, Archive
• Core architecture can survive removal of:
 – Telescope Simulation
 – Observation Evaluation
 – Remote Observing
• Spiral development allows these de-scopes to be made incrementally (at the beginning of each development cycle)
AIPS++ resources

• Expect roughly the same level of effort from AIPS++ on EVLA as on VLA currently

• Total effort ~ 10 FTE-years from 2003 to 2009

• Addressing EVLA-specific processing issues
EVLA-specific post processing

- Mostly well-understood and in place
 - AIPS++ package: can reduce VLA data end-to-end
 - BUT final requirements yet to be set
- EVLA-specific areas requiring more development
 - New modes of processing (next slide)
 - Very large data volumes
 - Automated flagging schemes
- Performance issues
 - Ensure that AIPS++ is efficient and fast enough (compare to AIPS)
 - AIPS++/AIPS speed ratio ~ 1 +1/-0.5 (with some outliers!)
 - Develop parallelized applications (e.g. imaging, calibration)
 - Well in progress in collaboration with NCSA
 - Develop location independent computing (a.k.a. Grid computing)
 - e.g. transparent access to archive and pipelines from remote locations
Examples of EVLA hard processing problems

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast-slew mosaicing</td>
<td>~10ms data sampling rate. Remove sliding primary beam.</td>
</tr>
<tr>
<td>Full bandwidth synthesis</td>
<td>Deconvolve wide bandwidths while accounting for spectral index, polarization, rotation measures, opacity, etc.</td>
</tr>
<tr>
<td>Full-beam high-fidelity polarization imaging</td>
<td>Correction of time- and angle-dependent beam polarization.</td>
</tr>
<tr>
<td>High fidelity imaging</td>
<td>Image and deconvolve at ~ 10^7. Currently about ~ 100 away from this in best possible cases.</td>
</tr>
<tr>
<td>Wide-angle full-beam imaging</td>
<td>Huge images, fast data sampling rates, many imaging facets to accommodate non-coplanar baselines</td>
</tr>
<tr>
<td>RFI mitigation</td>
<td>Removal of RFI post-correlation – requires high data rates</td>
</tr>
</tbody>
</table>
e2e status

<table>
<thead>
<tr>
<th>Package</th>
<th>Status</th>
<th>Who will present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Model</td>
<td>First version</td>
<td>Described in project book</td>
</tr>
<tr>
<td>Proposal Submission Toolkit</td>
<td>Design complete</td>
<td>Honglin</td>
</tr>
<tr>
<td>Proposal Management Toolkit</td>
<td>Design complete</td>
<td>Honglin</td>
</tr>
<tr>
<td>Telescope Simulation Toolkit</td>
<td>Design concept exists</td>
<td>Described in project book</td>
</tr>
<tr>
<td>Observation Evaluation Toolkit</td>
<td>Design concept exists</td>
<td>Described in project book</td>
</tr>
<tr>
<td>Observation Scripting Toolkit</td>
<td>Design concept exists</td>
<td>Boyd</td>
</tr>
<tr>
<td>Remote Observing Toolkit</td>
<td>No design yet</td>
<td>Tim</td>
</tr>
<tr>
<td>Observation Scheduling Toolkit</td>
<td>Design concept exists</td>
<td>Boyd</td>
</tr>
<tr>
<td>Archive Toolkit</td>
<td>Prototype complete</td>
<td>John</td>
</tr>
<tr>
<td>Pipeline Toolkit</td>
<td>Prototype complete</td>
<td>Tim</td>
</tr>
<tr>
<td>Pipeline heuristics</td>
<td>Prototype complete</td>
<td>Tim</td>
</tr>
<tr>
<td>Calibration source toolkit</td>
<td>First version complete</td>
<td>Honglin</td>
</tr>
</tbody>
</table>
Risks

- Creeping scope
 - Requires project discipline
 - *e.g.* scientific requirements for post-processing soon
- Lack of engagement by scientific staff
 - Work with DM Project Scientist (Dale Frail), DMSWG
- Observation scripting too hard
 - Develop incrementally
- Pipeline processing cannot be made to work for significant fraction of observations
 - Prototype on VLA: will require some changes to current practices
- Archive = Operational morass
 - Need automation and management staff soon
- Repeat of AIPS++
Lessons learned in AIPS++ project

- Software development:
 - Start new software development projects with realistic expectations
 - Control scope: initial requirements were developed without a reliable costing process
 - Management of distributed software projects is especially demanding
 - Establish firm staffing commitments
 - Continual refinement of processes important: moved to spiral development

- Package deployment:
 - Demonstrate scientific completeness: establishing threads of completeness by matching representative data to reduction scripts
 - User testing is vital: formed active, large Observatory-wide test group
 - Robustness: identifying and fixing defects as submitted
 - Performance must be regularly monitored: established benchmark suite, scheduled regular profiling, targeting known cases of poor performance
 - User interface design is very demanding: conducted one-on-one testing and group surveys
 - Documentation forms a gateway to the package: enlisted help of scientists in writing documentation
 - Training is best way to introduce new users to AIPS++: presenting tutorials to small groups

- Lessons learned applied across the Observatory, ALMA, e2e
Specific changes adopted by e2e

- **Spiral model**
 - Short development cycle
 - Deliver early and often

- **Involvement of scientists**
 - Set specifications at beginning of cycle 1
 - AOC scientists tested and advised on Calibrator Source Toolkit
 - Will review and change specifications at beginning of cycle 2
 - Dale Frail will be DM Project Scientist
 - Will be involved in pipeline development, testing of archive and proposal handling during cycle 2
 - Advisory Group meeting at end of cycle 2

- **Commit to requirements, plan, costing, schedule**
 - Design and development phase (first two cycles) ending in April 2003
 - Schedule, *etc.* then set