Detailed Technical Points
Outline

- FIR filter.
- Recirculation.
- Correlator chip.
- LTA controller.
FIR Filter

- Desirable to implement in FPGA to minimize NRE+risk, and maximize flexibility (baseband input arrangement, 8-bit processing, 2-stage capability).

- Currently, it will not be affordable to implement 1024 taps, 4-bits in an FPGA (requires XC2V4000-5 >$1000 each).

- However, reducing the number of taps to ~500 should enable it to fit in an XC2V1500-5 @ ~$344 (Xilinx price projection to 2004).

- But, the budget is $200/chip…

- So, with 3-bit data, and cosine symmetric, should fit a 511-tap FIR in an XC2V1000-5 @ $224 ea. (Xilinx price projection to 2004).
FIR Filter

• With XC2V1000-5 chip for a cosine symmetric FIR:

 – Only have ~320 taps with 4 bits (direct realization, 4773 logic slices).

 – This is only 160 taps with 8 bits initial quantization. But, with 4-bit requantization, only 1/8 bandpass required, therefore gang two chips to yield 320 taps. Ganging chips is probably going to be required for narrower band selection, but reduces number of sub-bands available...

 – But, problem with 8-bit initial quantization and 7-bit requantization (because of output data highways). Only 160 taps to produce 1/16 bandpass…not acceptable performance!
 • Solution: 1 pol’n per Station Board? (but still only 320 taps).
 • Solution: smaller LUT? (less reject-band attenuation when we want it).
 • Solution: no 7-bit requantization…just chuck interference sub-band...
FIR Direct Realization: B=4-bits

For B=4, L=12, N=512:
LS=7638 logic slices
XC2V1500=7680 LS’s
(max 16-bit adder)

For B=4, L=10, N=512:
LS=6638 logic slices
XC2V1500=7680 LS’s
(max 16-bit adder)

\[LS = \frac{1}{2} \left[(N - 1) \cdot B + N \cdot L + N \cdot \sum_{i=1}^{\text{ceil} \left(\log_2 (N) \right)} \frac{(L + i)}{2^i} \right] \]
Cosine Symmetric B=3-bits

For B=3, L=12, N=511:
LS=4582 logic slices
XC2V1000=5120 LS’s
(max 16-bit adder)

For B=3, L=10, N=511:
LS=4082 logic slices

For B=3, L=10, N=1023:
LS=8174 logic slices
XC2V2000-5=10752 LS’s
and $431!

$$LS = \frac{1}{2} \left[B \cdot N + \frac{N - 1}{2} \cdot (B+1) + L \cdot \left(\frac{N+1}{2} \right) + \frac{N+1}{2} \cdot \left(\text{ceil} \left(\log_2 \left(\frac{N+1}{2} \right) \right) \right) \right] + B$$
31-tap, poly-phase=4, cosine symmetric FIR
Or...minimum LUT fit

- Fit LUT and adder tree to number of bits used for each tap.
- Requires one design for every set of tap coefficients.
 - May be possible/practical with HDL coding of FPGA.
 - But, savings drop as filter narrows!: 1/16 avg=5, 1/64 avg=7, 1/256 avg=10

Number of bits actually used in LUT vs tap number

For B=3, L=5, N=1023:
LS=5622 logic slices
XC2V1000=5120 LS’s
XC2V1500=7680

For B=3, L=5, N=767:
LS=4205 logic slices
XC2V1000=5120 LS’s
Or...Gate Array

1023 taps: ~16k logic slices \equiv 4M system gates (Xilinx) \equiv ~32k FF’s \approx 200k gates?

(PLUS: dual-port memory for sub-band multi-beaming!)
Reject band attenuation test: three out-of-band interference lines (1023 tap)

Test conditions:
- 3-bit sampling
- 1023-tap cosine symmetric
- 1/16 passband
- Autocorrelation
- Kaiser window
- Interf. power = 75
- Noise power = 1

Locations of out-of-band interference lines.

12-bit LUT: ~63 dB
10-bit LUT: ~52 dB
8-bit LUT: ~47 dB
Reject band attenuation test: one out-of-band interference line (1023 tap)

- Test conditions:
 - 3-bit sampling
 - 1023-tap cosine symmetric
 - 1/16 passband
 - Autocorrelation
 - Kaiser window
 - Interf. power = 25
 - Noise power = 1

Location of out-of-band interference line.

Using “block floating-point” buys ~5 dB better rejection.
Reject band attenuation test: three out-of-band interference lines (511 tap)

Test conditions:
- 3-bit sampling
- 511-tap cosine symmetric
- 1/16 passband
- Autocorrelation
- Kaiser window
- Interf. power = 75
- Noise power = 1

Locations of out-of-band interference lines.

In-band reference lines

10-bit LUT: ~57 dB
8-bit LUT: ~47 dB
12-bit LUT: ~72 dB
There is no primary language text to transcribe.
1023-tap, 3-bit samples, cosine sym

8-bit LUT

10-bit LUT

12-bit LUT

8-bit LUT, block fp

10-bit LUT, block fp

12-bit LUT, block fp
FIR Filter Sub-band Boundary Loss Curves
1023 taps, -1.25 dB cutoff has been used for almost all previous testing.

2047 taps would be very nice!
With 1023 taps, ~1 MHz more is degraded due to requantization (1.3%) and fringe rotator loss (2.2%). With 511 taps it is ~2.5 MHz more, with 255 taps it is ~4.5 MHz.
Clearly not acceptable performance.
Using the “meteor” FIR filter design program, with ~1.7 dB passband ripple did not yield significantly better performance than the FFT filter design with a flat passband.

Some attenuation is sacrificed, only 50 dB achieved.
With 511 taps, this *may* be acceptable performance.

-6 dB cutoff: 1/16 bandpass with +/- 1 dB ripple

1/16 bandpass response using FFT filter design

Doesn't matter: folds over and washes out anyway.
Recirculation

- Use (expensive, $98) DPSRAM (2 x 256k x 18 ≡ 512k x 18).
- Good enough for 256k spectral points.
- Requires 1 msec correlator chip readout.
- Can only afford two data and phase paths:
 - Carry phase with data to simplify phase generation.
 - Allows 4 pol’n products on one baseband.
 - Simultaneous non-recirculation correlation.
- Controlled by DUMPTRIG and Recirculation Controller configuration.
Y current write pointer (start) Y current write pointer (end)

Y end read pointer Y zero delay read pointer Y start read pointer

Y delay = 4 samples

X current write pointer (start) X current write pointer (end)

X end read pointer X zero delay read pointer

X delay = 10 samples

Case:
Total # lags = 32
Block size = 4 lags
Nblocks = 8
For:
Y recirc block = 2
X recirc block = 5

Y-Station Recirculation Buffer X-Station Recirculation Buffer
X-Station Recirculation Buffer - Timestamp Analysis

Case:
- Total # lags synthesized = 32768
- Block size = 2048 lags
- Nbblocks = 16
- Burst readout time = 1 ms
- Effective integration time = 16 ms
- Sample rate: 16 Ms/s
- Buffer size: 512k

Means indicate locations of zero relative delay ("ZD")

Delay = 13312

1 ms output burst:
256k samples @ 256 Ms/s

1 ms of input data @ 16 Ms/s

Location of write pointer when last burst dump finished:
This is the TIMESTAMP of the last burst dump record.
Integration time = 16 msec

Total "smear time" = 31 msec

Case: 16 x recirculation with original real-time sample rate of 16 Ms/s, 512 k buffer with 256k sample burst size.
Integration time = 80 msec

Total "smear time" = 95 msec.

Case: 16 x recirculation with original real-time sample rate of 16 Ms/s, 512 k buffer with 256k sample burst size. 16 msec frame integration; total integration time 80 msec; "smear time" 95 msec.
DUMPTRIG: 16X recirculation, no pulsar phase binning

Each “recirculation block” must have its own bin to accumulate into. Thus, there are logical blocks/dumps and logical pulsar time/phase bins that map into physical bins in the LTA.
Recirculation Controller to Correlator Chip Functional Timing

CLOCKO

SDATA00-0

SDATA00-1

SDATA00-2

SDATA00-3

PHASE00-x

SCHID_FRAME

DVALID[0:7]

SE_CLK-0

SE_CLK-1

SE_CLK-2

SDATA02-0

PHASE02-0

DELAY_FRAME

DELAY

DUMP_SYNC

DUMP_EN0

DUMP_EN1

RECIRC_BLK

TIMESTAMP

Note: DUMP_SYNC is asserted whenever any of the DUMP_EN lines are asserted. DUMP_SYNC is not necessarily coincident with SCHID_FRAME; but dump signals are synchronous to CLOCK128.

DUMP_EN control bits:

- **CLR**: If set, then the output of the lag chain shift registers is cleared.
- **DC2 DC1 DC0**

<table>
<thead>
<tr>
<th>DC2</th>
<th>DC1</th>
<th>DC0</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>First dump of data into LTA. Just save data in LTA bin.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Add data to existing LTA data and save in LTA bin.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Last dump: add to LTA data; flag LTA bin as ready.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Speed dump: bypass LTA directly to output. The data bias is removed.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Dump data and discard it.</td>
</tr>
</tbody>
</table>

PB[0:15] Phase bin number for this particular dump.

HSP[0:3] Harmonic suppression phase. This 4-bit phase has been added to the PHASE data and must be removed by the LTA controller. This suppresses harmonics of strong narrowband interference and can be turned on or off by a control register in the recirculation controller. The correlator chip simply passes this phase data onto the LTA controller.

RECIRC_BLK and TIMESTAMP are for the data dump that just occurred.

TIMESTAMP word 0:

- bits 0 - 31: number of seconds since last epoch.

TIMESTAMP word 1:

- bits 0 - 28: number of clocks since last PPS
- bits 29 - 31: major epoch.

Note: Each DELAY FRAME is 100 bits long. 96 bits contain 8 baseband delays, each 12 bits long. 3 bits after the last baseband delay are don't care.
Correlator Chip

• Plan 2048 complex-lag chip, 4-bit/16-level multipliers, 5-level fringe rotation.
• Specialized interfaces and control for high-performance.
• Knows very little about recirculation…passes information from the Recirculation Controllers onto the LTA controller via the output data frame.
• 16 x 128 complex-lag chip. Each 128 c-lag section is individually controlled and always has its own output data frame.
 – Homogeneous, simple, and fast operation.
Simplified Correlator Chip Quad (CCQ) Block Diagram

128 Complex-Lag Correlator Cell

Dump Storage Registers (serial readout)

Decoder

EVL A Correlator Conceptual Design Review
Complex lags

Center Lag = N/2
Correlator Chip Output Data Frame:

<table>
<thead>
<tr>
<th>Field</th>
<th>Bit positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNCH</td>
<td>0-27</td>
</tr>
<tr>
<td>STATUS BITS</td>
<td>28</td>
</tr>
<tr>
<td>LTA (Phase) BIN</td>
<td>48</td>
</tr>
<tr>
<td>RECIRC_BLK-Y RECIRC_BLK-X</td>
<td>49-51</td>
</tr>
<tr>
<td>DVCOUNT-Center</td>
<td>52</td>
</tr>
<tr>
<td>DVCOUNT-Edge</td>
<td>53</td>
</tr>
<tr>
<td>DATA_BIAS</td>
<td>54</td>
</tr>
<tr>
<td>TIMESTAMP-0</td>
<td>55</td>
</tr>
<tr>
<td>TIMESTAMP-1</td>
<td>56</td>
</tr>
<tr>
<td>Lag 0-In_phase accumulator</td>
<td>57</td>
</tr>
<tr>
<td>Lag 0-Quadrature accumulator</td>
<td>58</td>
</tr>
<tr>
<td>Lag 1-In_phase accumulator</td>
<td>59</td>
</tr>
<tr>
<td>Lag 1-Quadrature accumulator</td>
<td>60</td>
</tr>
<tr>
<td>Lag 127-In_phase accumulator</td>
<td>61</td>
</tr>
<tr>
<td>Lag 127-Quadrature accumulator</td>
<td>62</td>
</tr>
<tr>
<td>Parity Check</td>
<td>63</td>
</tr>
</tbody>
</table>

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12
W13-261 W262 W263 W264 W265
LTA Controller

- One per corr. chip in FPGA (or, one per 4 corr. Chips)
- Corr. Chip data frame tells the LTA Controller what to do with it, and exactly where to put it.
 - But, LTA Controller is smart enough not to overwrite good data waiting for output.
 - Smart enough for burst operation.
 - “Speed dump” by-passes LTA RAM...straight to output.
- Use 128 MHz readout so cheap, slow-speed-grade FPGA can be used.
- Transmits ready data on local FPDP bus…that flows to output FPDP interface.
B. Carlson, 2001-Nov-02

EVLA Correlator Conceptual Design Review
LTA Controller FPGA Functional Block Diagram
LTA Controller: FPDP Normal Output Data Frame

<table>
<thead>
<tr>
<th>28</th>
<th>24</th>
<th>20</th>
<th>16</th>
<th>12</th>
<th>8</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNCH</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DATA_BIN#</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reserv</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ChpID</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CCID</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FType</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BBID-Y</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBID-X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBID-Y</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBID-X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID-Y</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SID-X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS BITS</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAME_COUNT</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECIRC_BLK-Y</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECIRC_BLK-X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVCOUNT-Center</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVCOUNT-Edge</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserved</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMESTAMP-0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMESTAMP-1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 0-In_phase accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 0-Quadrature accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1-In_phase accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1-Quadrature accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 127-In_phase accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 127-Quadrature accumulator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNCH</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Board ID</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKSUM</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W0
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13-261
W262
W263
W264
W265
LTA Controller: FPDP “Speed Dump” Data Frame

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNCH</td>
<td>28-0</td>
<td>Sync word</td>
</tr>
<tr>
<td>STATUS BITS</td>
<td>Reserv.</td>
<td>ChipID</td>
</tr>
<tr>
<td>Phase BIN#</td>
<td></td>
<td>RECIRC_BLK-Y</td>
</tr>
<tr>
<td>DVCOUNT</td>
<td>Center</td>
<td>DVCOUNT-Edge</td>
</tr>
<tr>
<td>DATA_BIAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMESTAMP-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMESTAMP-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 0-In_phase accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 0-Quadrature accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1-In_phase accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1-Quadrature accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 127-In_phase accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 127-Quadrature accumulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKSUM</td>
<td>W0-W265</td>
<td>Board ID</td>
</tr>
</tbody>
</table>

B. Carlson, 2001-Nov-02

EVLA Correlator Conceptual Design Review
This Just In ...
FIR Filter Chip

• AMI semiconductor FPGA-to-gate array conversion (0.18 µm --full production capacity available Dec. 2001).
 – NRE: $200k (XCV2000E-8 [1024 taps, 4-bit])
 – per chip cost: $50 (10k piece pricing…5k piece pricing unavailable).
 – 13-16 weeks lead-time for straight conversion.

• Total FIR cost: ~$430k (save up to $500k).

• Some loss of flexibility because no longer programmable, but design is still very flexible.
Correlator Chip

• AMI semiconductor could convert FPGA design to 0.18 µm gate array and scale up the number of lags.
 – Cost: NRE $200k, $50 each in 10k quantities.

• Could build prototype correlator chip in FPGA and do a conversion from the FPGA design to gate array.
 – Can test and debug design fully with tools now being purchased.
 – Eliminates need for development using full custom toolsets.
 – Drop-in the full custom chip (footprint compatible).

• The big question is power…is gate array capable???
 – Must get serious answers before any decision is made.

• Potential savings: ~$300k (over the budgeted $1 million).
Correlator Chip

- THIS PAGE CONFIDENTIAL
High-Speed Cabling

• “Woven Electronics” cable with MDR-80 connector:
 – 3 m: roughly $100-$125 each in 3k quantity (GORE: $268 ea). **Save:** ~$400k.
 – 13 m: waiting for quotation (Guess ~$230). **Save:** ~$160k.
 – Will work on cable configuration to meet our requirements…probably flat cable…have access to expanded PTFE as well…not just normal Woven Electronics flat cable.
 – May require “relaxed” Baseline Rack cable routing.
Modified Baseline Rack Cabling

- 20 row x 2 col Station Data Fanout Boards
- Cable tray and exit cable clamps/guides
- 40 sub-band cables from station racks
- Baseline Sub-racks (12U x 400 mm)
- Air entry
- Station Data Fanout Boards

B. Carlson, 2001-Nov-02
EVLA Correlator Conceptual Design Review
Recirculation Memory

• 256k x 36-bit IDT memory now available for ~$82.

• Could allow *full* performance recirculation on 2 pairs (no phase jitter, 4-bit data).

• Could allow *reduced* performance recirculation on all 8 basebands (8x3 + 8 + 2 = 34 bits), but with 3-bit data (and 4/fs phase jitter?).

• **BUT:** for I/O, requires a 600E-8 FPGA ($263 vs current $143 for 400E-8). **Total extra cost:** ~$300k.
Summary

- FIR savings (~$500k) + cable savings (~$500k) + correlator chip savings (~$300k) = $1.3 million.

- Total project cost $10.4 million, including $1.4 million contingency.

- Improved recirculation width costs additional ~$300k.