EVLA Front-End CDR

EVLA
Q-Band (40-50 GHz)
Receiver
EVLA Q-Band Receiver Overview

1) EVLA Upgrade
 - Existing VLA Configuration
 - Required Modifications
 - New Upgraded EVLA Block Diagram

2) Block Converter Scheme

3) Noise & Headroom Model

4) Performance Improvement Simulations

5) MMIC Post-Amp Module

6) EVLA Q-Band Interim Receivers

7) Test Results
 - RF vs. IF Post-Amps
 - Swept LO1 vs. Block Converter Mode
EVLA Q-Band Receiver
Existing VLA Configuration

RCP IF Out

- 7.7-9.1 GHz
- 16-19.5 GHz

LCP IF Out

- 7.7-9.1 GHz

LO Ref

- 40-50 GHz
- 16-19.5 GHz
- 7.5-12.5 GHz

Dewar

- Old
- Integrated
- New
- Remove

Pol

- 40-50 GHz

LCP

- 16-19.5 GHz

Dewar

- Integrated
- New
- Remove

RCP

- 40-50 GHz

LCP

- 16-19.5 GHz

Pol

- 40-50 GHz

Integrated

Remove

Old

New
EVLA Q-Band Receiver

VLA to EVLA Modifications

LO & IF Chain

- **Adopt Block Converter Scheme (40-50 → 18-8GHz)**
 - Retain Spacek Tripler/Mixer Assemblies. Although original VLA spec for IF was 8400" 100 MHz, the units work at 1-18 GHz.
 - Remove all narrowband 8.4 GHz IF components, including
 - Isolators, Filters and Post-amps
 - Replace with wideband DC-Blocks and 8-18 GHz Isolators
 - IF & LO bulkhead SMA connectors are replaced with 2.9mm

- **Replace Current LO Ref Amp with Limiting version**
 - Leveled Output = 21.5 ± 0.5 dBm over ± 6 dBm input range
 - Add Input Isolator
EVLA Q-Band Receiver
VLA to EVLA Modifications

RF Chain

• Add new Q-Band Post-Amp Module (QPAM)
 • Caltech-designed, NRAO-built MMIC-based amplifier
 • Has 39-51 GHz input filter to improve Headroom
 • 23 dB gain in front of mixer improves T_{Rx} by up to 5-10°K

• Add RF Isolator before Q-PAM unit to reduce ripple
 • Custom Dorado unit with circular input & square output flanges

• Bench evaluation tests carried out on each receiver to improve the match between the various circular waveguide components

• Brackets to eliminate microphonics
EVLA Q-Band Receiver

VLA to EVLA Modifications

Other Changes

• Replace Old Card Cage with new design
 • Mount underneath; new extended legs required
 • Add new AC Box
 • Add Noise Diode Interface Box (includes ±15V & ±5V regulators)

• Receiver rotated 180° from current VLA orientation
 • Cold-head now points to the rear of the receiver
 • New front connector panel required

• New mounting tower allows for a Dry Air system to encompass the feed-horn & eliminate moisture buildup as well as provide RFI shielding
EVLA Q-Band Receiver
New Upgraded Configuration

<table>
<thead>
<tr>
<th>Component</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewar</td>
<td>Dorado 4IWC45-1</td>
<td>NRAO CDL</td>
</tr>
<tr>
<td>Pol</td>
<td>Atlantic Microwave AMC 1233 Septum Polarizer & Cal Coupler</td>
<td>Post-Amp Module Caltech 3XM45-8.4-0.1L/R RF=40-50 GHz</td>
</tr>
<tr>
<td>LCP</td>
<td>Paanotech KYG2121-K2 (w/g)</td>
<td>Post-Amp Module Caltech 3XM45-8.4-0.1L/R RF=40-50 GHz</td>
</tr>
<tr>
<td>LNA</td>
<td></td>
<td>Noise/COM NC 5222 ENR > 20 dB</td>
</tr>
<tr>
<td>Variable Attenuator</td>
<td></td>
<td>Magic-T MDL 22TH128</td>
</tr>
<tr>
<td>Magic-T</td>
<td></td>
<td>Limiting LO Amplifier Norden N03-4010</td>
</tr>
<tr>
<td>LO Ref</td>
<td></td>
<td>LO Ref</td>
</tr>
<tr>
<td>RCP IF Out</td>
<td>8-18 GHz</td>
<td>16-19.5 GHz</td>
</tr>
<tr>
<td>Tripler/Mixer Assembly Spacek 3XM45-8.4-0.1L/R RF=40-50 GHz</td>
<td></td>
<td>Tripler/Mixer Assembly Spacek 3XM45-8.4-0.1L/R RF=40-50 GHz</td>
</tr>
<tr>
<td>Isolator</td>
<td>MICA T-610S10 10-20 GHz</td>
<td>Isolator MICA T-708540 8-18 GHz</td>
</tr>
<tr>
<td>TCal</td>
<td>0 dBm</td>
<td>18 dBm</td>
</tr>
<tr>
<td>Limiting LO Amplifier</td>
<td>PA8207-2F 16.0-19.3 GHz</td>
<td>PA8207-2F 16.0-19.5 GHz</td>
</tr>
<tr>
<td>Limiting LO Amplifier</td>
<td>P_in = 21.0 ± 0.5 dBm for 36 dBm input</td>
<td>P_out = 21.0 ± 0.5 dBm for 36 dBm input</td>
</tr>
<tr>
<td>DC-Block</td>
<td>Inmet 8055H 0.01-18 GHz</td>
<td>DC-Block</td>
</tr>
</tbody>
</table>

Notes:
- The new configuration includes upgrades to the LO Ref, RCP IF Out, and LCP IF Out sections.
- The new configuration also involves changes to the Tripler/Mixer Assembly and the DC-Block components.
- The variable attenuator and Magic-T MDL are new additions.
- The limiting LO amplifier and PA8207-2F are used to limit the input signal to 18 dBm.

R. Hayward
EVLA Front-End CDR – EVLA Q-Band Receiver
24 April 2006
Q-Band Block Conversion

Frequency Diagram

- Translation of 40-50 GHz down to 8-18 GHz
- LO Ref 19.333 GHz × 3 = 58 GHz
 - Closest L301 Lock Point is actually 19.238 GHz
Replace all old 5-stage GaAsFET’s with new MAP-style InP units, as well as several existing MAP units which have inferior performance.

24 new LNA’s

Upgrade existing 4-stage MAP amps by returning them to CDL for substitution of Cryo-3 device in the 1st stage.

35 upgraded LNA’s

Original MAP amplifier designed for 35-46 GHz bandwidth. A new 4-stage Cryo-3 design under development to improve gain flatness & sensitivity at the high-end.
<table>
<thead>
<tr>
<th>EVLA Q-Band Rx</th>
<th>P (1dB)</th>
<th>P (1%)</th>
<th>Temp</th>
<th>NF/C</th>
<th>Loss/Gain</th>
<th>Loss/Gain</th>
<th>Delta T</th>
<th>Trx</th>
<th>BW</th>
<th>Pnoise</th>
<th>Pnoise</th>
<th>Headroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RHH : 28 March 2006)</td>
<td>(dBm)</td>
<td>(dBm)</td>
<td>(K)</td>
<td>(dB)</td>
<td>(linear)</td>
<td>(dB)</td>
<td>(K)</td>
<td>(MHz)</td>
<td>(dB)</td>
<td>(dBm)</td>
<td>dBm/GHz</td>
<td>(dB)</td>
</tr>
<tr>
<td>Weather Window</td>
<td>300</td>
<td>-0.05</td>
<td>0.9886</td>
<td>3.474</td>
<td>-82.5</td>
<td>3.514</td>
<td>-82.1</td>
<td>300</td>
<td>-0.05</td>
<td>-30</td>
<td>0.9886</td>
<td>3.514</td>
</tr>
<tr>
<td>Feed Horn</td>
<td>300</td>
<td>-0.05</td>
<td>0.9886</td>
<td>3.514</td>
<td>-82.1</td>
<td>-82.0</td>
<td>-82.1</td>
<td>300</td>
<td>-0.05</td>
<td>-30</td>
<td>0.9886</td>
<td>3.514</td>
</tr>
<tr>
<td>Vacuum Window</td>
<td>300</td>
<td>-0.01</td>
<td>0.9977</td>
<td>0.708</td>
<td>-82.0</td>
<td>-82.1</td>
<td>-82.1</td>
<td>300</td>
<td>-0.01</td>
<td>-30</td>
<td>0.9977</td>
<td>0.708</td>
</tr>
<tr>
<td>Septum Polarizer</td>
<td>18</td>
<td>-0.3</td>
<td>0.9333</td>
<td>1.320</td>
<td>-82.1</td>
<td>-82.1</td>
<td>-82.2</td>
<td>18</td>
<td>-0.3</td>
<td>-30</td>
<td>0.9333</td>
<td>1.320</td>
</tr>
<tr>
<td>Waveguide</td>
<td>18</td>
<td>-0.1</td>
<td>0.9772</td>
<td>0.461</td>
<td>-82.2</td>
<td>-82.2</td>
<td>-82.2</td>
<td>18</td>
<td>-0.1</td>
<td>-30</td>
<td>0.9772</td>
<td>0.461</td>
</tr>
<tr>
<td>Cal Coupler (IL)</td>
<td>18</td>
<td>-0.2</td>
<td>0.9550</td>
<td>0.954</td>
<td>-82.2</td>
<td>-82.2</td>
<td>-82.2</td>
<td>18</td>
<td>-0.2</td>
<td>-30</td>
<td>0.9550</td>
<td>0.954</td>
</tr>
<tr>
<td>Cal Coupler (Branch)</td>
<td>300</td>
<td>-30</td>
<td>0</td>
<td>1.000</td>
<td>0.300</td>
<td>-82.2</td>
<td>-82.2</td>
<td>300</td>
<td>-30</td>
<td>-30</td>
<td>0.300</td>
<td>0.300</td>
</tr>
<tr>
<td>Isolator</td>
<td>18</td>
<td>-0.5</td>
<td>0.8913</td>
<td>2.586</td>
<td>-82.4</td>
<td>-82.4</td>
<td>-82.4</td>
<td>18</td>
<td>-0.5</td>
<td>-30</td>
<td>0.8913</td>
<td>2.586</td>
</tr>
<tr>
<td>LNA</td>
<td>-10</td>
<td>-22</td>
<td>25</td>
<td>35</td>
<td>3162.2777</td>
<td>33.032</td>
<td>-44.8</td>
<td>25</td>
<td>-22</td>
<td>0.6310</td>
<td>0.000</td>
<td>25</td>
</tr>
<tr>
<td>Flexguide</td>
<td>18</td>
<td>-2</td>
<td>0.6310</td>
<td>0.004</td>
<td>-46.8</td>
<td>-46.8</td>
<td>-46.8</td>
<td>18</td>
<td>-2</td>
<td>-30</td>
<td>0.6310</td>
<td>0.004</td>
</tr>
<tr>
<td>Stainless Steel W/G</td>
<td>159</td>
<td>-2</td>
<td>0.6310</td>
<td>0.062</td>
<td>46.42</td>
<td>46.42</td>
<td>-48.8</td>
<td>159</td>
<td>-2</td>
<td>0.6310</td>
<td>0.062</td>
<td>46.42</td>
</tr>
<tr>
<td>Waveguide</td>
<td>300</td>
<td>0</td>
<td>1.0000</td>
<td>0.000</td>
<td>-48.8</td>
<td>-48.8</td>
<td>-48.8</td>
<td>300</td>
<td>0</td>
<td>-30</td>
<td>1.0000</td>
<td>0.000</td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.038</td>
<td>-49.2</td>
<td>-49.2</td>
<td>-49.2</td>
<td>300</td>
<td>-0.5</td>
<td>-30</td>
<td>0.8913</td>
<td>0.038</td>
</tr>
<tr>
<td>Mixer</td>
<td>-2</td>
<td>-14</td>
<td>300</td>
<td>-8</td>
<td>0.1585</td>
<td>1.876</td>
<td>-57.1</td>
<td>300</td>
<td>-8</td>
<td>-30</td>
<td>0.1585</td>
<td>1.876</td>
</tr>
<tr>
<td>DC Block</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.272</td>
<td>-57.6</td>
<td>-57.6</td>
<td>-57.6</td>
<td>300</td>
<td>-0.5</td>
<td>-30</td>
<td>0.8913</td>
<td>0.272</td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.305</td>
<td>-59.6</td>
<td>-59.6</td>
<td>-59.6</td>
<td>300</td>
<td>-0.5</td>
<td>-30</td>
<td>0.8913</td>
<td>0.305</td>
</tr>
<tr>
<td>IF Post-Amp</td>
<td>10</td>
<td>-2</td>
<td>446.0</td>
<td>4</td>
<td>3162.2708</td>
<td>4.172</td>
<td>-34.3</td>
<td>446.0</td>
<td>-2</td>
<td>-30</td>
<td>446.0</td>
<td>4.172</td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.001</td>
<td>53.08</td>
<td>-34.8</td>
<td>-34.8</td>
<td>300</td>
<td>-0.5</td>
<td>-30</td>
<td>0.8913</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Estimated EVLA Q-Band TRx, Output Power & Headroom

With RF Post-Amps

<table>
<thead>
<tr>
<th>EVLA Q-Band Rx</th>
<th>P (1dB)</th>
<th>P (1%)</th>
<th>Temp</th>
<th>NF/C</th>
<th>Loss/Gain</th>
<th>Loss/Gain (linear)</th>
<th>Delta T</th>
<th>Trx</th>
<th>BW</th>
<th>Pnoise</th>
<th>Pnoise Headroom</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHH : 28 March 2006</td>
<td>(dBm)</td>
<td>(dBm)</td>
<td>(K)</td>
<td>(dB)</td>
<td>(dB)</td>
<td>(K)</td>
<td>(K)</td>
<td>(MHz)</td>
<td>(dBm)</td>
<td>(dBm/GHz)</td>
<td>(dB)</td>
</tr>
<tr>
<td>Weather Window</td>
<td>300</td>
<td>-0.05</td>
<td>0.9886</td>
<td>3.474</td>
<td>-84.5</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Feed Horn</td>
<td>300</td>
<td>-0.05</td>
<td>0.9886</td>
<td>3.514</td>
<td>-94.5</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Vacuum Window</td>
<td>300</td>
<td>-0.01</td>
<td>0.9977</td>
<td>0.708</td>
<td>-83.4</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Septum Polarizer</td>
<td>18</td>
<td>-0.3</td>
<td>0.9333</td>
<td>1.320</td>
<td>-83.6</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Waveguide</td>
<td>18</td>
<td>-0.1</td>
<td>0.9772</td>
<td>0.461</td>
<td>-83.6</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Cal Coupler (IL)</td>
<td>18</td>
<td>-0.2</td>
<td>0.9550</td>
<td>0.954</td>
<td>-83.7</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Cal Coupler (Branch)</td>
<td>300</td>
<td>-30</td>
<td>0</td>
<td>0.000</td>
<td>-83.7</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Isolator</td>
<td>18</td>
<td>-0.5</td>
<td>0.8913</td>
<td>2.586</td>
<td>-83.9</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>LNA</td>
<td>-10</td>
<td>-22</td>
<td>25</td>
<td>35</td>
<td>3162.2777</td>
<td>33.032</td>
<td>-46.2</td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexguide</td>
<td>18</td>
<td>-2</td>
<td>0.6310</td>
<td>0.004</td>
<td>-48.2</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel W/G</td>
<td>159</td>
<td>-2</td>
<td>0.6310</td>
<td>0.062</td>
<td>46.42</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Vacuum Window</td>
<td>300</td>
<td>-0.2</td>
<td>0.9550</td>
<td>0.015</td>
<td>-50.4</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Waveguide</td>
<td>300</td>
<td>-1</td>
<td>0.7943</td>
<td>0.085</td>
<td>-51.4</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-1</td>
<td>0.7943</td>
<td>0.107</td>
<td>-51.6</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Filter (39-51 GHz)</td>
<td>300</td>
<td>-1</td>
<td>0.7943</td>
<td>0.135</td>
<td>12000</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>RF Post-Amp</td>
<td>5</td>
<td>-7</td>
<td>751.7</td>
<td>5.5</td>
<td>22</td>
<td>1.648</td>
<td>-28.5</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-1</td>
<td>0.7943</td>
<td>0.001</td>
<td>-29.5</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Mixer</td>
<td>-2</td>
<td>-14</td>
<td>300</td>
<td>-8</td>
<td>0.1585</td>
<td>0.018</td>
<td>-37.5</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-Block</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.003</td>
<td>-38.0</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
<tr>
<td>Isolator</td>
<td>300</td>
<td>-0.5</td>
<td>0.8913</td>
<td>0.003</td>
<td>48.43</td>
<td>-48.2</td>
<td>-26.0</td>
<td>10000</td>
<td>-84.5</td>
<td>-94.5</td>
<td></td>
</tr>
</tbody>
</table>

For Tsky of 26.0 and as high as 68K
EVLA Q-Band

Simulated Impact of new RF Post-Amps on Receiver Performance

Simulation Parameters
- T_{LNA}: 10 → 30°K
- LNA Gain: 35 → 25 dB
- Mixer Loss: -8 or -13 dB

IF Post-Amp Scheme
- *Moderately affected by LNA Gain roll-off*
- *Strongly affected by Mixer Conversion Loss*

RF Post-Amp Scheme
- T_{Rx} Affected less by LNA Gain roll-off
- *Negligible affect from Mixer Conversion Loss*
EVLA Q-Band
Q-Band Post-Amp Module (Q-PAM)
(Prototype units designed & built at Caltech)

Assembled Module

Disassembled Module

Bottom Block

Top Block

39-51 GHz Filter

MMIC Amplifier

Amp Bias Card

R. Hayward

EVLA Front-End CDR – EVLA Q-Band Receiver
24 April 2006
EVLA Q-Band
Q-PAM Prototype
(Test Results courtesy of Patrick Cesarano, Caltech)

Gain
24 ± 1 dB

Input Return Loss
< -5 dB
(will need an Isolator)

Noise Figure
< 6 dB

Compression Point
> +3 dBm
(spec was -5 dBm)

Q-Band 40LN2 powered Amplifier Module:
Compression Performance (3 dBm 1 dB compression point)
First NRAO Production
Batch of 6 Units

Q-Band Post-Amplifier Modules (QPAM) - No Isolators
27 Jan 2006
QPAM SN001 with V(Gate) = -0.385V
QPAM SN002 with V(Gate) = -0.382V
QPAM SN003 with V(Gate) = -0.384V
QPAM SN004 with V(Gate) = -0.383V
QPAM SN005 with V(Gate) = -0.385V
QPAM SN006 with V(Gate) = -0.361V
Caltech SN001

Gain roll off at high-end likely due to devices in the Raytheon wafer (they made 3 attempts to meet the standard DC spec’s).

Performance improvement still very attractive.
QPAM’s with Isolators

Graph:
- **X-axis:** Frequency (GHz)
- **Y-axis:** Gain (dB) and Return Loss (dB)

Legend:
- **Q-Band Post-Amplifier Modules (QPAM) SN006**
 - 27 Jan 2006
- **QPAM with No Isolators**
- **QPAM with Input Isolator**
- **QPAM with Output Isolator**
- **QPAM with Input & Output Isolators**
QPAM Unit Cost

- Assumes minimum of 66 QPAM units
- Direct Cost = $1,000
- Indirect Cost = $3,800
 - if include pro-rated costs (with KaDCM) of
 - Caltech contract
 - Wafers
 - 50 GHz test equipment
 - Wire bonder & accessories, etc.
Interim receivers will eventually be returned to the lab for further modifications, including:
- new Card Cage
- new AC Box
- new VR/Cal Box
- new Front Panel
Q-Band SN 17 - Third EVLA Interim Receiver
IF vs. RF Post-Amps with "Poor" LCP Spacek Mixer (9D22)
24 Feb 2006

Using Swept LO1 Mode (with 8.4/1.4 GHz IF filter):
Old style VLA configuration with IF Post-Amps
EVLA configuration with NRAO RF Post-Amps & Dorado Isolators
Q-Band SN 17 - Third EVLA Interim Receiver

Swept LO1 vs. Block Converter Mode
23 Feb 2006

Swept LO 1 Mode : LO1 = 48.4 to 58.4 GHz, LO2 = 8.4 GHz
Block Converter Mode : LO1 = 58.0 GHz, LO2 = 18.0 to 8.0 GHz

LCP
- Swept LO1 Mode (QL176216.345)
- BC Mode 58 GHz (QL176216.478)
- LNA Noise Temperature (QM-75)

RCP
- Swept LO1 Mode (QR176215.646)
- BC Mode 58 GHz (QR176216.407)
- LNA Noise Temperature (QM-76)

The graphs show the receiver temperature and gain for both LCP and RCP modes in Swept LO1 and Block Converter modes, with frequency ranges from 40 to 50 GHz.
Q-Band SN 17 – 3rd EVLA Interim Rx
Gain Flatness in 2 GHz Bandwidths - No Equalization
Block Converter Mode - (LO1 = 58, LO2 = 18-8 GHz)
(23 Feb 2006)

Normalized Gain
Frequency & Gain Slope Equalization
40-42 GHz with 0 dB
42-44 GHz with 0 dB
44-46 GHz with 0 dB
46-48 GHz with 0 dB
48-50 GHz with 0 dB

Frequency (GHz)
Normalized Gain (dB)
LCP (QL17626.478)
RCP (QR176216.407)
Q-Band SN 17 – 3rd EVLA Interim Rx
Gain Flatness in 2 GHz Bandwidths - Best Equalization
Block Converter Mode - (LO1 = 58, LO2 = 18-8 GHz)
(23 Feb 2006)
EVLA Q-Band Summary

• Incremental upgrade to an existing VLA receiver band
• EVLA design improves sensitivity and broadband performance
• New/upgraded LNA’s will provide even more improvement
• M&S Budget - $109.1K already spent out of $254.7K allotment
 – Remaining large ticket items
 - QPAM production
 - LNA’s
 - Cables
 - New Card Cages

• To keep within the EVLA Project spend profile, it was felt that the upgraded design was low risk and that we could confidently proceed with mass production
• **We hope the FE CDR Panel agrees…**
Questions ?
Backup Slides
VLA/EVLA
Q-Band (40-50 GHz)
Receiver

• VLA is currently outfitted with 30 Q-Band receiver systems:
 • Mexico provided initial - $1M funding in the mid 1990’s to build the first 10 receivers.
 • NRAO built the next 15 receivers from RE funding.
 • EVLA provided funds to build the final 5 receivers, later compensated by Mexican EVLA funding.

• EVLA will upgrade existing VLA systems.
Limiting LO Amp

ALC Microwave ALA04-0028

- Input Frequency: 16-19.5 GHz
- P_{In} (min): -6 dBm
- P_{In} (max): +6 dBm
- P_{Out} (min): +21.5 dBm
- P_{Out} (max): +22.5 dBm
- O/P Variation over I/P Drive (max): "0.5 dB
- Power Flatness with Freq (max): "0.5 dB
- Max Input No Damage: +20 dBm

Desirable to protect the Spacek Tripler/Mixer assemblies from being blown by excursions in LO Ref power.
Q-Band Dewar Innards