EVLA Advisory Panel Mtg.
System Overview & Status

Jim Jackson, Hardware Systems Engineer
Antenna 13

- Feed cone installed
 - Metal covered plastic core honeycomb material
 - RFI tight at seams
 - RFI gasket at base
 - Open base for access to front ends
Antenna 13

- X-Band front end installed
 - Cooled down and ready for system testing
 - Will allow testing of:
 - T304 Main downconverter
 - L301/302 Synthesizers
 - Total power digitizers
 - 8-Bit digitizers
 - Data transmission system
 - Transition hardware
 - DC power system
Antenna 13

- Racks installed
 - LO/IF & ACU Racks
 - Commercial RFI racks
 - DoD “Tempest” rated (approx 55dB @ 5GHz)
 - All I/O signals filtered or on fiber
 - Suitability for production to be evaluated
Antenna 13

• Racks installed
 – Front end rack
 • Reuse existing VLA B/F-rack frames
 • Adding metal covered plastic core honeycomb covers
Antenna 13

• Racks installed
 – G & H–Racks
 • G-Rack houses DTS/Sampler modules
 • H-Rack houses Ethernet switch
 • NRAO designed RFI tight enclosure (approx 80dB up to 10Ghz)
Antenna 13

- Fiber optics installed
 - Two hybrid cables installed between pedestal & vertex room
 - Each contains 12 single mode and 32 multi mode fiber
 - Watch spring design for azimuth cable wrap
 - Round Trip Phase testing has begun to evaluate performance of fiber on the antenna and in the ground
Antenna 13

- New HVAC system
 - Designed to minimize RFI leakage of vertex room
 - Closed air system – air handler located completely inside vertex room
 - Uses chilled water from outdoor condenser unit
 - Can utilize cold outdoor conditions for energy savings
Antenna 13

- 48 VDC power system
 - Commercial bulk power products
 - Designed for telecom
 - 52.5 Amp cont. capacity
 - N+1 redundant design for reliability
 - Battery backup for 1 hour
 - Installed in “Tempest” rated RFI shielded rack in antenna pedestal room
 - Reuses existing Square-D “QO” breakers and panels
VLA Site

- **Fiber termination room**
 - All fiber from array enters the building and terminates in patch panels at this point
 - Satisfies electric code requirements for outdoor fiber terminating in the building
 - Distributed to control building patch panels from this point
VLA Site

- Correlator room fiber optic cable penetrations
 - RFI tight
 - Fiber penetration into existing correlator room
 - Ethernet fibers in penetration to electronics room
 - IF fibers in separate penetration under floor
VLA Site

- Fiber optic patch panels
 - LO, IF and M&C patch panels
 - Array re-configuration is accomplished at these panels
VLA Site

- Buried fiber optic cable
 - Burial on east and west arms complete ahead of schedule
 - Burial on north arm begins in October 03
 - Field splicing begins after burial completion
VLA Site

• Networking equipment
 – New networking equipment installed in control building and AOC for EVLA
Hardware

• Front ends
 – K & Q-Band
 • Modified VLA units
 – New block downconverter
 – Q-Band – Caltech post amp
 – K-Band – new feed mount
 – Ka-Band
 • In design
 • Caltech block downconverter due in December 03
 • Scheduled for installation early summer 04
Hardware

• Front ends
 – L-Band
 • Christmas tree complete at VLA site
 • Feed components in production at VLA machine shop (90% complete)
 • Transition front end prototype to be installed Nov 03
 • Final EVLA front end to be installed May 04
 – C-Band
 • Detailed designs in drafting
 • Christmas tree complete at VLA site
Hardware

- Front ends
 - Card cage
 - PCB’s in layout
 - Mechanical packaging in design
 - Integrated harness and LNA protection board assembled and in testing
Hardware

• Digitizers
 – 8-bit, 2 Gsps digitizer
 • Dual Maxim MAX104, each running at 1Gsps
 • first prototype assembled & currently in testing
 • Installed in DTS module
Hardware

- **Digitizers**
 - 3-bit, 4 Gsps digitizer
 - ALMA device under development in France
 - design review 16-17 October in Bordeaux, France
 - Potential alt source of high speed A/D’s (Atmel)
 - 8 bit, 2 Gsps, 3GHz BW A/D samples available
 - 8 bit, 4 Gsps, 4GHz BW A/D in development
 - This device could replace both EVLA digitizers
Hardware

• DTS/Sampler Module
 – Prototype module assembled and in testing
 – NRAO designed RFI tight module (60-80dB shielding)
 – All digital electronics contained inside module
 – Analog IF & clocks on coax
 – Digital optical output on fiber
 – Timing & Ethernet on fiber
 – Design common with ALMA
 – Live demo in lab today
Hardware

- **DTS Deformatter**
 - Module mounts to WIDAR station card
 - Contains:
 - Fiber optic receivers
 - Demux / Deformatters
 - Transition FIR Filter
 - PCB assembled, FPGA code being finalized & tested
 - Housed in temporary racks in present correlator room during transition
Hardware

- P301/302 DC/DC Converter
 - Prototypes assembled and running in lab
 - Using Vicor DC-DC converters - low noise, zero switching design
 - Extensive output filtering
 - Flexible design allows for various configurations
 - Design common with ALMA
Hardware

- **Converters**
 - **T301 – 4/P converter**
 - modules in assembly
 - bench prototypes complete & tested
 - **T302 – LSC converter**
 - modules in assembly
 - bench prototypes complete & tested
• **Converters**
 – T303 – UX converter
 • bench prototype complete & tested
 • connectorized chassis version in final assembly & testing
 • contract award for integrated version in process (vendor selected)
Hardware

• Converters
 – T304 – Downconverter
 • Bench prototype complete & tested
 • Connectorized chassis version for test antenna in final assembly & testing
 • Design in progress for integrated version
Hardware

- Synthesizers
 - L301 12-20 GHz prototype complete and functioning in lab (demo today)
 - L302 10.8-14.8 GHz electronics assembled, tested and awaiting MIB software
 - Both ready for thermal and RFI testing
 - Potential for future integrated assemblies
Hardware

• Reference generators
 – L305 / L350
 • Printed circuit boards complete
 • bench prototypes in testing and debugging
 • modules under development
Hardware

- LO transmission & round trip phase
 - L351/L352/L353/L304
 - proof of concept and data gathering tests being performed in lab and at VLA site
 - bench integration prototypes in testing and debugging
 - modules under development
Hardware

• Types I -VI Modules
 – Prototype designs complete
 – Most components fabricated and assembled
 – Initial RFI and thermal testing has begun
 – Designs also now being adopted by ALMA BE IPT
Hardware

- Bench integration
 - Most modules assembled in plate form for testing in lab
Hardware

- Antenna MCB H-Rack
 - installed in Antenna 13
 - contains Cisco Ethernet switch
 - Triplite 1 KVA UPS
 - M&C fiber termination panel
Hardware

• MIB
 – NRAO design
 – Low RFI design
 – FO Ethernet Interface
 – Uses Infineon TC-11IB microprocessor
 – Plan to use contract assembly house – Quoted price $700 ea
System Change
(since last meeting)

• New timing synchronization scheme:
 • free running in normal operation
 • 19.2Hz and 1Hz synchronized to array central time by a pulse encoded in 512MHz optical reference
 – pulse is sent by deleting 8 clocks from 512Mhz reference
 – pulse is detected at antenna LO receiver, resets counters in FPGA
 – does not interfere with main reference signals in antenna
 • sync pulse sent only on command from M&C system
 • synchronization loss detected using DTS data stream or timing data sent back from antenna
 • network time broadcast sets time at next 1 Hz tick
Questions?