The Physics of Jet Dissipation

D. S. De Young
National Optical Astronomy Observatory

X-Ray and Radio Connections – Santa Fe 5 February 2004
Overview

- Motivation and Basic Principles
- Global Dissipative Processes
 - Underlying Instabilities
 - Non-Linear Evolution and End State
 - Role of Magnetic Fields
 - Applications
- Local Dissipative Processes
- Lobe Death
- Implications
Jet Dissipation

- Dissipation/Destruction:
 - Self Inflicted
 - Due to Interaction with Environment

- Types:
 - Global
 - Local
 - Induced
 - Inevitable
Jet Dissipation – Related To:

- Radio Source Morphology/Type
- Extragalactic Emission Lines
- Metallicity of the Early IGM and ICM
- “Alignment Effect” in High-z Objects
- X-Ray Knots and Hot Spots
- Evolution of YSO Jets
Jet Interaction with Environment

- Most Important Form of Dissipation
- Mediates Energy, Mass, and Momentum Transfer Between Jets and Their Environment
- May be a Way to Determine:
 - Jet Content
 - Jet Bulk Flow Speeds
 - Jet B Fields
 - And Thus Constrain AGN Models
Dissipation Via Surface Instabilities

- **Universal**
 - Present at Some Level in All Jets in All Environments

- **Global**
 - Involve Most of Jet Surface for Long Times

- **Inevitable (?)**
 - Very Special Circumstances Required to Prevent Occurrence
Dissipation Via Surface Instabilities

- Non-Linear Phase Creates Turbulent Mixing Layer
 - Entrains Ambient Medium
 - Transfers Momentum and Energy to Ambient Medium
 - Mixing Layer Can Penetrate Entire Jet Volume
 - Can Decelerate Jet to Subsonic Drift Motion
Hydrodynamic Dissipation

- Kelvin-Helmholtz Instability
 - Interface Between Fluids in Relative Motion
K-H Instability

- **Linear Regime:**
 - Perturbations Unstable at All Wavelengths in the Absence of Restoring Forces
 \[\Delta U^2 \geq [2(\rho_1 + \rho_2)/\rho_1 \rho_2] \{T(\rho_1 - \rho_2)\}^{1/2} \]
 - Shortest Wavelengths Most Unstable
 \[\Gamma = k\Delta U(\rho_1 \rho_2)^{1/2} / (\rho_1 + \rho_2) \]
K-H Instability

- **Quasi-Linear Regime:**
 - Waves “Break”
 - Vorticity Created
 - “Cat’s Eye” Structures Form
K-H Instability

- Fully Non-Linear Regime:
 - Development of Turbulent Mixing Layer
Mixing Layers

- Entrainment Very Effective
 - “Ingest – Digest” Process
Mixing Layers

- K-H Instability and Mixing Layers in Supersonic Flows
Mixing Layers

- Growth of K-H Instability and Mixing Layers is Inhibited By:
 - Compressibility
 - Spread of Initial Velocity Shear in Transverse Direction
 - Supersonic Relative Speeds

\[
\tan \phi \propto M^{-1}
\]
Mixing Layers

- Thickness Grows with Distance/Time

\[\tan \phi = C \left(\frac{\rho_L}{\rho_H} \right)^\alpha (v_{REL})^{-\beta} \]

- Mixing Layer Can Permeate Entire Jet
Relativistic Jets

- Data Very Sparse
- Use Numerical simulations
 - (Marti et al., Aloy et al., 1999-2003)
- 3d Simulations Show:
 - No “Backflow”
 - Development of Shear/Mixing Layers
 - Deceleration
The Effect of Magnetic Fields

- Remove Isotropy
- Add Viscosity
- Stabilize – In Principle

\[\Gamma = 0.5 |k \cdot U_R| \left[1 - \frac{(2 v_A k \cdot B)^2}{(k \cdot U_R)^2}\right]^{1/2} \]

- or, stable if

\[M_A = \frac{U_R}{v_A} \leq 2 \]

- for

\[k \parallel B \parallel U_R \]
The Effect of Magnetic Fields

- What are “Reasonable” Field Strengths?
- What Are the Field Strengths in Jets?
- What is the Origin of Jet Magnetic Fields?
 - Global Value of Beta $>> 1.0$
- Empirical Data Scarce
 - ICM Values Imply Beta $\sim 100 - 1000$
The Effect of Magnetic Fields

- Numerical Simulations Required
 - Jones et al. 1996 – 2000
- Two Dimensional MHD
 - Still Mixes for Beta > 10
 - Enhanced Local Fields
 - “Cat’s Eyes” Destroyed
 - Turbulence Suppressed by Geometry, Boundaries
The Effect of Magnetic Fields

- Three Dimensional MHD
 - Enhanced Local Fields
 - For High Beta > 100
 - Evolves to Turbulence
 - Turbulent B Amplification
 - Enhanced Dissipation due to Magnetic Reconnection
 - Instability Remains
 “Essentially Hydrodynamic”
Jet Dissipation

- Penetration of Turbulent Mixing Layer Throughout Jet Volume
 - Since \(\tan \phi \approx C (\rho_J/\rho_{Amb})^{-\alpha} M^{-1} \)
 - Then Mixing Layer Thickness = Jet Radius at
 \[\Delta R = L_{MIN} \tan \phi = R_{jet} \]
 - or
 \[L_{MIN} \approx C' R_{jet} M (\rho_J/\rho_{Amb})^\alpha \]

- At This Point Jet Is Fully Mixed, Turbulent
Jet Dissipation

- Saturated, Turbulent Jet Has Now
 - Entrained Mass from Ambient Medium
 - (Bicknell 1984, De Young 1982, 1986)
 - Accelerated and Heated this Mass
 - Significantly Decelerated, Possibly to Subsonic Plume
 - Locally Amplified any Ambient or Entrained Magnetic Fields
Saturated Mixed Jets

- Could Explain FRII – FRI Dichotomy
 - (De Young 1993, Bicknell 1995, Liang 1996)
Saturated Mixed Jets

- And The FRII – FRI Dichotomy
Saturated Mixed Jets

Could Explain

- Transport of Astrated Material to Extragalactic Scales via Mass Entrainment
 - Emission Lines in ICM and Outside Galaxies
 - Cooling and Jet Induced Star Formation
 - Extragalactic Blue Continuum
 - Dust Formation; Alignment Effect at Large z
- Injection of Metals into ICM
- Contamination of IGM at Very Early Epochs
Local Dissipative Processes: Internal Shocks

- Require Special Circumstances:
 - Changing Jet Input
 - Local and Sudden Change in External Medium
 - Ambient Pressure Changes
 - Ambient Density Changes
 - Jet Expansion
 - Jet Bending
 - Jet Disruption
Internal Shocks: Effects

- Partial Thermalization of Flow
- Particle Acceleration (J. Kirk)
- Magnetic Field Compression
 \[B_1 \approx B_0 (\gamma + 1)/(\gamma - 1) \]
- Radiation
 - Thermal
 \[T_1 \approx T_0 (2\gamma M_0^2)/(\gamma + 1)^2 \]
 - Non-Thermal
 \[P_{\text{Synch}} \propto B^2 E^2 \]
Internal Shocks: Dissipation

- Internal Shocks Along Jet:
 - Mostly Oblique
 - Mostly Redirect Flow – Internal “Weather”
 - Not Disruptive
 - Mostly Convert Energy
 \[\rho v^2 \rightarrow \Delta T, \Delta B^2, \Delta E \]
Extragalactic Internal Shocks

Marshall et al. 2001

Siemiginowska et al. 2002
Extragalactic Internal Shocks

- Dissipative and Radiative Losses “Small”
 - Jet Not Disrupted, Hence:
 - Shocks Are Weak and/or Oblique
 - X-Ray and Radio Luminosities from Knots (Modulo Beaming) << Kinetic Energy Flux

- But - Emission May Provide Evidence for Jet Flow Speeds
 - SSC vs. IC on CMB
Termination Shocks

- Ideal:
 - (Beware Axisymmetric Calculations)
- Actual:

M. Norman

Tregillis & Jones
Termination Shocks

- May Be The Major Source of Energy Dissipation for Non-Infiltrated Flows

- May Be The Major Source of Turbulent Energy in Radio Lobes
Conclusions

- Primary Jet Dissipation Mechanisms
 - Surface Mixing Layers
 - Termination Shocks
 - Turbulence

- Dissipation Processes Can Lead To:
 - Enrichment of IGM/ICM
 - Amplification of B Fields
 - Particle Acceleration?
 - Distant Emission Lines, Star Formation
Conclusions

- The Magnetic Field Problem
 - Origin
 - Strength
 - Geometry
 - Evolution and Amplification

- A Problem for Both Jets and Lobes
Conclusions

- A Remaining Mystery