AN APPROACH BASED ON PLASMA KINETIC THEORY TO THE X-RAY AND RADIO CONNECTION IN CLUSTERS OF GALAXIES

N. Okabe
Astronomical Institute, Tohoku University
Aramaki, Aoba-ku, Sendai, 980-8578, Japan
OKABE@ASTR.TOHOKU.AC.JP

M. Hattori
HATTORI@ASTR.TOHOKU.AC.JP

Abstract
We show that magnetic fields are spontaneously generated in plasmas with temperature gradients. This mechanism is the same as the Weibel instability because the velocity distribution function is non-equilibrium and anisotropic for heat flows. The growth of the instability is saturated by the wave-particle interaction. After the saturation, the generated small-scale magnetic fields evolve into larger-scale fields via inverse-cascade. This mechanism is a new possibility of the origin of magnetic fields in various space plasma. We apply this mechanism to clusters of galaxies. This mechanism can explain observational aspects of cluster radio halos. In addition, we find the inverse-Compton scattering of the cosmic microwave background (CMB) radiation with electrons occurs because of anisotropic velocity distribution function induced by temperature inhomogeneities. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel’dovich effect (gradT SZE). The result provides a direct method for measuring the heat conductivities and the functional form of the electron momentum distribution functions in the plasma with a temperature gradient.

1 Introduction
We have studied the X-ray and radio connection in clusters of galaxies, based on the plasma kinetic theory. We found the magnetic fields are generated in plasmas with temperature gradients. That means that magnetic fields are naturally connected with the thermal plasma. The outline of the generation mechanism is as follows and the details are presented in each section: the electron velocity distribution function should deviate from Maxwell-Boltzmann, since the heat flux always flows when the plasma has the temperature gradients (in Sect. 2). Then, the low frequency transverse magnetic waves grows even in the absence of an background magnetic field. Since the instability was found by Ramani and Laval (1978), the instability is referred to the Ramani-Laval (RL) instability in this paper. We have shown that the mechanism of the RL instability is identical to the Weibel instability which is well-known as one of the mechanism of the magnetic fields generation (in Sect. 3). We found that the saturation level of RL instability is determined by the wave-particle interaction Ramani & Laval (1978); Gallev & Natanzon (1991). The saturated magnetic fields will evolve into the large scales through an inverse cascade process, as reported in the numerical simulations of the Weibel instability Lee (1973); Sentoku et al. (2000, 2002). These nonlinear evolutions of the RL instability are presented in Sect. 4. We apply this to clusters of galaxies and roughly estimate magnetic field strengths generated by the temperature gradients. We present these results and predictions in Sect. 5. We examine the inverse-Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, based on the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel’dovich effect (gradT SZE) in Sect. 6.
inhomogeneity in a hot electron plasma with a tem-
perature variation scale of L. Consider the tempera-
ture variation along the temperature gradient,v_\parallel.

2 The velocity distribution function in a plasma with heat flux

In this section, we discuss from a physical point of view how the anisotropic electron velocity distribution function is set up when a temperature inhomogeneity exists in the plasma. The absence of a background magnetic field is assumed. Consider the temperature inhomogeneity in a hot electron plasma with a temperature variation scale of L. Since the heat conduction carries the heat flux from the hotter to the cooler regions, the heat flux along the temperature gradient takes a negative finite value; $q \propto \langle v_\parallel^2 \Delta f \rangle < 0$ where the angle brackets denote an integral over velocity space and the subscript \parallel denotes the component parallel to the temperature gradient. Therefore, the electron velocity distribution function f must deviate from the Maxwell-Boltzmann form for the distribution function deviation of a plasma $f_\parallel \rightarrow -\infty$. Thus, type C is the only possible form for the distribution function deviation of a plasma where a finite heat flow exists.

The deviation Δf can also be deduced analytically. The Boltzmann equation is

$$\frac{\partial f}{\partial t} + v_\parallel \frac{\partial f}{\partial x_\parallel} - \frac{e}{m} E_\parallel \frac{\partial f}{\partial v_\parallel} = -\nu (f - f_m),$$

where E_\parallel is the zeroth-order electric field along the temperature gradient and the right-hand side has the Krook operator for the collision term, where ν is the Coulomb collision frequency. For simplicity, pressure balance is assumed. Then, $E_\parallel = 0$ (Ramani & Laval 1978). If perturbative treatment is appropriate for describing the system, the distribution function can be expanded in ϵ (Chapman & Cowling 1960) as

$$f = f_m + \epsilon f^{(1)} + \epsilon^2 f^{(2)} \ldots ,$$

where $f^{(j)} (j = 1,2 \cdots)$ describes the deviation of the distribution function from the Maxwell-Boltzmann to the order of ϵ^j. This expansion is known as the Chapman-Enskog expansion. Now, we set the heat conduction $q = \{\frac{1}{2} \rho_T \rho_e v_\parallel^2 f_\parallel \Delta f \} = -\nabla \cdot \mathbf{Q}$, where $\Delta f \approx 1.31 \eta_c \lambda_c (k_B T/m_e)^{1/2}$ is the Spitzer conductivity with Coulomb mean free path λ_e (Sarazin 1988). Therefore, the electron distribution function, to first order in ϵ, is obtained as

$$f = f_m \left[1 + \epsilon \frac{v_\parallel}{v_{th}} \left(\frac{5}{2} - \frac{v_\parallel^2}{v_{th}^2}\right)\right],$$

$$\epsilon = \frac{8 \rho_T \rho_e}{5 \eta_c \lambda_c (k_B T/m_e)^{1/2}} \nabla T \approx 0.74 \lambda_e \nabla \ln T.$$
the waves this can be interpreted as a decrease of the effective electron temperature in the direction of the temperature gradient, T_{\perp}, by $\sim 1 - \epsilon^2$ relative to the temperature perpendicular to the temperature gradient, T_{\parallel} (Fig. 2). The growth of the magnetic waves in this instability is therefore due to essentially the same mechanism as in the Weibel instability (Weibel 1959; Fried 1959), in which the temperature anisotropy is the driving force of the instability. Consider the waves traveling nearly parallel to the temperature gradient. In this case, $T_{\perp,k} \sim T_{\parallel}$ and $T_{\parallel,k} \sim T_{\parallel}$, where $T_{\perp,k}$ and $T_{\parallel,k}$ are the temperature components perpendicular and parallel to the wave vector for the observers comoving with the waves, respectively. Since $T_{\perp,k} > T_{\parallel,k}$, the waves can grow. As a result, the direction of the magnetic field generated by the instability is almost perpendicular to the temperature gradient. The growth rate of the mode that travels in the direction of the temperature gradient with wavenumber k is obtained from that of the Weibel instability (Krall & Trivelpiece 1973),

$$
\gamma \sim v_{\text{th}} \left[\left(\frac{T_{\perp}}{T_{\parallel}} - 1 \right) k - \left(\frac{ck}{\omega_p} \right)^2 k \right]
$$

$$
\sim v_{\text{th}} \left[\epsilon^2 k - \left(\frac{ck}{\omega_p} \right)^2 k \right].
$$

The growth rate gets the maximum value of $\gamma_{\text{max}} \sim \epsilon^2 (v_{\text{th}}/c) \omega_p$ at $k = k_{\text{max}} \sim \omega_p/c$. When the direction of the wave-vector is perpendicular to the temperature gradient, $T_{\perp,k} = T_{\parallel}$ and $T_{\parallel,k} = T_{\perp}$. Since $T_{\perp,k} < T_{\parallel,k}$ in this case, the wave cannot grow. These results are exactly the same as the results found from plasma kinetic theory, except for numerical factors (Ramani & Laval 1978; Okabe & Hattori 2003a).

4 On the nonlinear evolution of the RL instability

The nonlinear saturation level of the excited wave is estimated assuming that the wave-particle interaction determines the saturation level. The fundamentals are illustrated in Fig. 3 (Ramani & Laval 1978; Gallev & Natanzon 1991). Once the Larmor radius of an electron gets shorter than the wavelength of the growing mode, the electron is trapped by the magnetic field of the wave, and the magnetic flux enclosed by its orbit becomes finite. Then, the kinetic energy of the trapped electron starts to monotonically increase with the growth of the magnetic field strength, since the in-

![Diagram](https://example.com/diagram.png)

Figure 2: The v_\parallel section (solid line) of the total velocity distribution function $f_m + f^{(1)}$ in a plasma with a temperature gradient. The peak position is shifted by $\sim ev_{\text{th}}$ from Maxwell-Boltzmann. The peak value is increased by $\sim 1 + \epsilon^2$ compared to Maxwell-Boltzmann. For comparison, the Maxwell-Boltzmann velocity distribution function shifted by $\sim ev_{\text{th}}$ is drawn with the dashed line. The velocity distribution function gets thinner in the v_\parallel direction. This can be interpreted as the decrease of the effective temperature by $\sim 1 - \epsilon^2$ in the direction of the temperature gradient.
Figure 3: Nonlinear saturation by wave-particle interaction. Top: For \(r_L > k_{\text{max}}^{-1} \). The thermal electrons travel throughout the waves, but their orbits are randomly disturbed by the wavy magnetic fields. Bottom: For \(r_L < k_{\text{max}}^{-1} \). The thermal electrons are trapped by the fields and feel net nonzero fields.

The increase of the magnetic flux enclosed by the electron orbit causes induction electric fields that accelerate the electron like a betatron accelerator. Once the Larmor radius of a typical thermal electron, \(r_L \sim v_b \omega_c^{-1} \), gets shorter than the wavelength of the fastest growing mode, that is, \(r_L k_{\text{max}} < 1 \), the increase of the kinetic energy of the electron system becomes significant if the waves still continue to grow. Since this ultimately violates energy conservation, the growth of the magnetic field strength must be saturated when \(r_L k_{\text{max}} \sim 1 \). The evolution of the magnetic fields after the nonlinear saturation could be described as follows: Some numerical simulations that follow the evolution of the Weibel instability showed that the strength of the magnetic field driven by the Weibel instability decreases after it reaches the maximum value (Morse & Nielson 1971). This can be understood as follows: After the magnetic field strength reaches the saturated level, the electric current field starts to act as individual electric beams every half-wavelength. Each beam is surrounded by the azimuthal magnetic field generated by the current beam itself. The electric beams interact with each other via the Ampere force (Sentoku et al. 2000, 2002). Beams in the same direction are attracted to each other and automatically gather. Finally, they merge into one larger beam. Since the physical mechanism of the growth of the RL instability is the same as for the Weibel instability, as shown in Fig. 2, the same evolution is expected even in the RL case. Although the reduction of the heat conductivity was originally considered to be due to electrons scattered by the waves generated by the RL instability (Ramani & Laval 1978; Hattori & Umetsu 2000), this may not be the case. As discussed above, the wavy magnetic field generated by the instability could tend to form a global magnetic field automatically. Therefore, the suppression of the heat conductivity may be determined by the trapping of the electrons by the organized magnetic field. To estimate the suppression of the heat conductivity quantitatively, we have to know the final structure of the magnetic field due to the self-organization. Detailed nonlinear studies, numerical simulations for example, are needed to...
answer these questions.

5 Applications to clusters of galaxies

The Chandra and XMM-Newton unveiled the various temperature structures in clusters of galaxies: global gradients, fluctuations and sharp changes across cold fronts Markevitch et al. (2000). Based on our proposed mechanism, self-organized magnetic fields can be generated in clusters with temperature gradients, since the timescale of inverse-cascading of the magnetic fields is expected to be short compared with the dynamical timescale. Therefore, we can estimate the generated magnetic field strengths from the observational data. Since the generated magnetic fields are ubiquitous in the temperature inhomogeneities, the saturated magnetic fields can be compared with volume-averaged strengths estimated by radio halos and relics, or inverse-Compton hard-X-ray emissions. However, we do not know the structure of generated fields, including the coherent length. Therefore, it is difficult to compare with results of Faraday rotation measurement and we now focus on four clusters with cold fronts and diffuse radio emissions. we shall roughly estimate the saturated strength from the X-ray data. While we should use number densities and temperatures of plasma with no magnetic fields, using the data of clusters which have magnetic fields does not significantly change the estimates since the generated magnetic energy is much smaller than the thermal energy. The predicted strengths of magnetic fields are in a good agreement with the observed strengths. We summarize the results and prediction of this mechanism.

- Our proposed mechanism can predict that ~ 5 μG magnetic fields along cold fronts in A3667 exist all over fronts Okabe & Hattori (2003a), while the existence of fields required to suppress the KH instability is not indicated all over fronts Vikhlinin, Markevitch & Murray (2001).

- Magnetic fields required from a viewpoint of hydrodynamics can be naturally explained by the plasma kinetic theory.

- Our proposed mechanism can predict 0.1–1 μG magnetic fields derived by studies of radio halos and inverse-Compton hard X-ray emissions Okabe & Hattori (2003b).

- Magnetic fields are ubiquitous in any space plasma with temperature inhomogeneities.

- The magnetic fields are naturally connected with thermal plasma via this mechanism.

- There is the possibility that the morphologies of radio halos and relics are associated with that of the X-ray temperature map, since the regions where magnetic fields exist are determined by temperature inhomogeneities.

- The steep correlation between the radio power P_ν and the temperature k_BT Liang et al. (2000) can also explained Okabe & Hattori (2004).

- Magnetic field strengths do not depend on redshift because the evolution timescale of magnetic fields is short Okabe & Hattori (2003a).

- The heat conduction could be self-regulated, since magnetic fields are generated by the plasma itself.

6 The spectrum of the gradient-T SZE

We examine the inverse-Compton scattering of the CMB radiation with electrons in the intracluster medium which has a temperature gradient, based on the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel’dovich effect (gradT SZE). Here we shall simply report results. We will treat this in more detail the forth coming paper (Hattori & Okabe, in prep). The spectrum of the gradT SZE is obtained by inserting the Planck function in the right hand side of the above obtained third-order Boltzmann equation and integrating over line of sight. The frequency dependent amplitude of the distortion expressed in temperature is obtained as

$$\Delta T^\nabla T = \frac{12\sigma_T}{mc^3} T_\gamma \int d\ell f_{\kappa}\kappa_sp\cdot \nabla T_\nu \frac{1}{x^2} \Delta \nabla T(x),$$

$$\Delta \nabla T(x) \equiv -\frac{x^4e^x}{(e^x - 1)^2} \left[1 - \frac{94}{75} xc\coth\frac{x}{2} + \frac{14}{75} x^2 \left(\coth^2\frac{x}{2} + \frac{1}{2\sinh^2\frac{x}{2}} \right) \right],$$

where $x = \frac{h\nu}{k_BT}$, h is the Planck constant, c is a speed of light, ν is the frequency of the CMB photon, T_γ is the temperature of the CMB, σ_T is the Thomson cross section, $d\ell$ is the line of sight integral and
\(f_k = \kappa / \kappa_{SP} \) is the heat conductivity in the Spitzer value unit, and \(\mathbf{n} \equiv \frac{\mathbf{p}}{p} \) is the direction cosine of the observed photon, respectively. The frequency dependence of the kernel function \(\Delta \nabla T(z) \) is different from those of the thermal and kinetic SZE Hu et al. (1994); Birkinshaw (1999). When the hotter region locates closer to the observer, the intensity becomes brighter and fainter than the CMB spectrum in the frequency regions lower and higher than 326GHz, respectively. The amplitude of the distortion depends on the conductivity \(f_k \kappa_{SP} \) and therefore, if the gradT SZE is detected, the heat conductivity can be directly obtained without the model assumption which, for instance, the cooling time or the dynamical time is equal to the conduction time \(t_{\text{cool}} = t_{\text{cond}} \) or \(t_{\text{age}} = t_{\text{cond}} \).

Acknowledgments

This work is partially supported by a Grant-in-Aid for the 21st Century COE Program “Exploring New Science by Bridging Particle-Matter Hierarchy” in Tohoku University, funded by the Ministry of Education, Science, Sports and Culture of Japan. NO acknowledges financial support for attending this conference from the 21st Century COE Program in Tohoku University.

References

Sarazin, C. L. 1988, X-ray emission from the Clusters of Galaxies (Cambridge: Cambridge Univ. Press)