Antennas in Radio Astronomy
Peter Napier

Ninth Synthesis Imaging Summer School
Socorro, June 15-22, 2004

Outline

• Interferometer block diagram
• Antenna fundamentals
• Types of antennas
• Antenna performance parameters
• Receivers

Outline

• Interferometer block diagram
• Antenna fundamentals
• Types of antennas
• Antenna performance parameters
• Receivers

Importance of the Antenna Elements

• Antenna amplitude pattern causes amplitude to vary across the source.
• Antenna phase pattern causes phase to vary across the source.
• Polarization properties of the antenna modify the apparent polarization of the source.
• Antenna pointing errors can cause time varying amplitude and phase errors.
• Variation in noise pickup from the ground can cause time variable amplitude errors.
• Deformations of the antenna surface can cause amplitude and phase errors, especially at short wavelengths.

General Antenna Types

Wavelength > 1 m (approx)
Wire Antennas
- Dipole
- Yagi
- Helix
- or arrays of these

Wavelength < 1 m (approx)
Reflector antennas

Wavelength ~ 1 m (approx)
Hybrid antennas (wire reflectors or feeds)
Basic Antenna Formulas

Effective collecting area \(A(v, \theta, \phi) \) m²

On-axis response \(A_0 = \eta A \)

\(\eta = \) aperture efficiency

Normalized pattern (primary beam)

\(A(v, \theta, \phi) = A(v, \theta, \phi)/A_0 \)

Beam solid angle \(\Omega = \int A(v, \theta, \phi) \, d\Omega \)

\(A_0 \, \Omega_0 = \lambda^2 \)

Aperture-Beam Fourier Transform Relationship

\(f(u, v) = \text{complex aperture field distribution} \)

\(u, v = \text{aperture coordinates (wavelengths)} \)

\(F(l, m) = \text{complex far-field voltage pattern} \)

\(l = \sin \theta \cos \phi, \quad m = \sin \theta \sin \phi \)

\(F(l, m) = \int f(u, v) \, \exp (2\pi i (u l + v m)) \, du \, dv \)

\(f(u, v) = \int \frac{F(l, m)}{A_0} \, \exp (-2\pi i (u l + v m)) \, dl \, dm \)

For VLA: \(\theta_{3\text{dB}} = 1.02/D \), First null = 1.22/D.

\(D = \text{reflector diameter in wavelengths} \)

Primary Antenna Key Features

+ Beam does not rotate
+ Better tracking accuracy
- Higher cost
- Poorer gravity performance
- Non-intersecting axis

Types of Antenna Mount

+ Lower cost
+ Better gravity performance
- Beam rotates on the sky

Beam Rotation on the Sky

Parallactic angle

Reflector Types

- Prime focus (GMRT)
- Cassegrain focus (AT)
- Offset Cassegrain (VLA)
- Narymsh (DyRO)
- Beam Waveguide (NRO)
- Dual Offset (ATA)
Reflector Types

- Prime focus (GMRT)
- Cassagrain focus (AT)
- Offset Cassagrain (VLA)
- Naysmith (OVRD)
- Beam Waveguide (NRO)
- Dual Offset (ATA)

Antenna Performance Parameters

Aperture Efficiency

\[A_0 = \eta_A \eta_t \eta_r \eta_n \eta_b \eta_s \eta_t \eta_m \]

- \(\eta_A \) = reflector surface efficiency
- \(\eta_b \) = blockage efficiency
- \(\eta_s \) = feed spillover efficiency
- \(\eta_t \) = feed illumination efficiency
- \(\eta_m \) = diffraction, phase, match, loss

\[\eta_s = \exp(-4\pi\sigma/\lambda)^2 \]

e.g., \(\sigma = \lambda/16 \), \(\eta_s = 0.5 \)

Antenna Pointing Design

- Reflector structure
- Subreflector mount
- Quadrupod
- El encoder
- Az encoder
- Rail flatness
- Foundation

Antenna Performance Parameters

- VLA and EVLA Feed System Design

- Primary Beam

- Error Scatter Pattern

- dB = 10log(power ratio) = 20log(voltage ratio)

- For VLA, \(\eta_s = 1.02/D \), First null = 1.22/D

- Contours: -3, -6, -10, -15, -20, -25, -30, -35, -40 dB

Antenna Performance Parameters

- Pointing Accuracy

\[\sigma_\theta = \text{rms pointing error} \]

Often \(\sigma_\theta < \theta_{3dB}/10 \) acceptable

Because \(A(\theta_{3dB}/10) \approx 0.97 \)

BUT, at half power point in beam

\[A(\theta_{3dB}/2) \approx 0.63 \]

For best VLA pointing use Reference Pointing.

\[\sigma_\theta = 3\text{ arcsec} = \theta_{3dB}/17 \text{ @ 50 GHz} \]
ALMA 12m Antenna Design

Surface: $\sigma = 25 \mu$m
Pointing: $\Delta \theta = 0.6$ arcsec
Carbon fiber and invar reflector structure
Pointing metrology structure inside alidade

Antenna Performance Parameters

Polarization

Antenna can modify the apparent polarization properties of the source:
- Symmetry of the optics
- Quality of feed polarization splitter
- Circularity of feed radiation patterns
- Reflections in the optics
- Curvature of the reflectors

Off-Axis Cross Polarization

Cross polarized aperture distribution
Cross polarized primary beam

VLA 4.8 GHz
cross polarized primary beam

Antenna Holography

VLA 4.8 GHz
Far field pattern amplitude
Phase not shown

Aperture field distribution amplitude
Phase not shown

Receivers

<table>
<thead>
<tr>
<th>Noise Temperature</th>
<th>Matched load</th>
<th>Temp T (°K)</th>
<th>Gain G</th>
<th>B/W (GHz)</th>
<th>P_{out}</th>
<th>P_{in}</th>
<th>$P_{\text{in}} = G \times P_{\text{in}}$</th>
</tr>
</thead>
</table>
| Rayleigh-Jeans approximation
$P_{\text{in}} = n T_{\text{RJ}}$ (W),
$n = $ Boltzman's constant (1.38*10^{-23} J/°K)
When observing a radio source
$T_{\text{rad}} = T_{\text{s}} + T_{\text{th}}$
Toys = system noise when not looking
at a discrete radio source
$T_{\text{rad}} = $ source antenna temperature
$T_{\text{s}} = n AS(2k\lambda) = KS$
$S = $ source flux (Jy)
SEFD = system equivalent flux density
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy)
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy)
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy) |
|---|---|---|---|---|---|---|---|
| When observing a radio source
$T_{\text{rad}} = T_{\text{s}} + T_{\text{th}}$
Toys = system noise when not looking
at a discrete radio source
$T_{\text{rad}} = $ source antenna temperature
$T_{\text{s}} = n AS(2k\lambda) = KS$
$S = $ source flux (Jy)
SEFD = system equivalent flux density
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy)
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy)
SEFD = $T_{\text{s}}K_{\text{SEFD}}$ (Jy) |

** Corrections to Chapter 3 of Synthesis Imaging in Radio Astronomy II**

Equation 3-8: replace u,v with l,m
Figure 3-7: abscissa title should be ΔDI