Radio Science & Future Interferometers

T. Beasley
CARMA/Caltech
Owens Valley Radio Observatory

Astronomy

- Gather information about universe from
 - Electromagnetic radiation
 - Particles
 - Gravitational radiation...
- 2-3D imaging – sensitivity, resolution, fidelity
- More Resolution → Interferometry

Electromagnetic spectrum

- Physical properties – temperature, pressure, structure, magnetic fields + physical process → different emissions
- Atoms & molecules → unique radio frequencies

Main Processes - Radio Emission

- Synchrotron radiation - continuum
 - Energetic charged particles accelerating along magnetic field lines
- Thermal emission - continuum
 - Hot → Cool bodies
 - Charged particles interacting in a plasma at T
- Spectral Line emission – spectral line
 - Discrete transitions in atoms and molecules

Synchrotron Radiation

- Polarization properties of radiation provides information on magnetic field geometry
Jupiter - ATCA – 13cm

Supernova Remnants - Crab Nebula
- Remnant of a supernova from 1054 AD
- Expanding at 1000 km/sec
- Central star left behind a rapidly spinning pulsar
- Wind from pulsar energizes the nebula, causing it to emit in the radio

Center of our Galaxy

Extragalactic Supernovae

SN 1993J in M81
Bartel, Eckes, Horrobin, Rupen et al.

Magnetic Field Orientation in Galaxies

Radio Jets
- Cosmic jets are ubiquitous
- They range from extragalactic jets to microquasars in our galaxy
- Central black hole masses range from 1 to billions of solar masses
- Found in ~10% of quasars or other active galactic nuclei
Radio Jets - Theory

- Accretion of gas onto a massive central black hole releases tremendous amounts of energy
- Magnetic field collimates outflow and accelerates particles to close to the speed of light

Thermal Emission

- Emission from warm bodies
 - "Blackbody" radiation
 - Bodies with temperatures of ~ 3-30 K emit in the mm & submm bands
- Emission from accelerating charged particles
 - "Bremsstrahlung" or free-free emission from ionized plasmas
Spectral Line emission

- Hyperfine transition of neutral Hydrogen

Spectral Line emission

- Molecular rotational and vibrational modes - many in mm/submm

- Commonly observed molecules in space:
 - Carbon Monoxide (CO)
 - Water (H₂O), OH, HCN, HCO⁺, CS
 - Ammonia (NH₃), Formaldehyde (H₂CO)

- Less common molecules:
 - Sugar, Alcohol, Antifreeze (Ethylene Glycol), Phenol (phenol acid)

- SL: Doppler shifts + line profiles indicate kinematics and/or physical of sources

Neutral Hydrogen in Galaxies

- B/W-optical image of NGC 6544 from Digital Sky Survey
- Blue-Weberbok Synthesis Radio Telescope 21 cm image of Neutral Hydrogen
- Neutral Hydrogen is the raw fuel for all star formation
- Hydrogen usually much more extended than stars

21 cm Spectral Line Observations

- VLA 12-pointing mosaic Yusef et al. 1994

Molecular Lines - Schöier et al. 2001

- Rest Frequency (MHz)
- Observations from different sources
Astronomy

- Information via
 - Electromagnetic radiation
 - Particles

- Approach: 2D imaging. Parameters of interest → sensitivity, resolution, fidelity, spectroscopy

- More Angular Resolution → Interferometry
Future Radio Interferometers

- **Underway-funded**
 - EVLA (cm/mm)
 - ATA (cm)
 - SZA (cm/mm)
 - CARMA/SZA (mm)
 - ALMA (mm/submm)

- **Proposed**
 - LWA/LOFAR (m)
 - FASR (m/cm)
 - SKA (m/cm)

Expanded VLA - EVLA

- VLA – 27 x 25m reflectors, Y array arms up to 22 km long
- Built in 1970s, dedicated 1980
- Limited upgrading since original construction

EVLA Goals

- Use modern technology to obtain an order of magnitude improvement in most VLA observational capabilities
 - Continuous frequency coverage 1-50 GHz
 - 8 receiver bands, new LO system
 - Up to 1.6 GHz bandwidth per antenna
 - New IF system (8 x 2GHz), fiber optic digital transmission
 - New wideband, high spectral resolution correlator
 - New monitor/control and data processing systems
- Maintain VLA science during the decade-long upgrade

EVLA Performance

<table>
<thead>
<tr>
<th></th>
<th>VLA</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point source sensitivity</td>
<td>10 mJy</td>
<td>0.8 mJy</td>
<td>0.6 mJy</td>
</tr>
<tr>
<td>No. baseline pairs</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Maximum bandwidth per point</td>
<td>0.1 GHz</td>
<td>8 GHz</td>
<td>8 GHz</td>
</tr>
<tr>
<td>No. frequency channels, full BW</td>
<td>16</td>
<td>1,6384</td>
<td>1,6384</td>
</tr>
<tr>
<td>Max. frequency channels</td>
<td>51.2</td>
<td>1,6384 [2,021,444]</td>
<td>1,6384 [2,021,444]</td>
</tr>
<tr>
<td>Max. frequency resolution</td>
<td>381 Hz</td>
<td>~1 Hz</td>
<td>~1 Hz</td>
</tr>
<tr>
<td>(long) Frequency coverage</td>
<td>0.3-55 GHz</td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>No. baselines</td>
<td>351</td>
<td>351</td>
<td>666</td>
</tr>
<tr>
<td>Spatial resolution @ 5 GHz</td>
<td>0.4"</td>
<td>0.4"</td>
<td>0.04"</td>
</tr>
</tbody>
</table>

Phase II - New Mexico Array
The Allen Telescope Array

- First telescope designed specifically for the Search for Extra-Terrestrial Intelligence (SETI)
- Array of 350 commercial satellite dishes, 6m in diameter.
- Will speed SETI targeted searching by 100x
 - Will target from 100,000 to million nearby stars
 - Will scan 100 million radio channels
- Start-up scheduled for 2006 – Funded by Paul Allen (Microsoft)

Offset Gregorian Antenna

- 6.1 x 7.0 m Primary
- Log-periodic Feed
- 2.4 m Secondary
- Az-Ell Drive
- Shroud
 (feed can’t see ground or array)

ATA Science

- SETI
 - 100,000 FGK stars
 - Galactic plane survey (2nd generation DSP)
- HI
 - All sky HI, z < 0.03, Milky Way at 100 s
 - Large area to z ~ 0.1 or more
 - Zeeman measurements – magnetic field
- Temporal Variables
 - Pulsar Timing Array
 - Pulsar survey follow-ups
 - Extreme Scattering Events
 - Transients (e.g. gamma ray bursts)

Caltech
Six 10.4 m dishes

CARMA

Berkeley – Illinois – Maryland
Nine 6.1 m dishes

Chicago
Eight 3.5 m dishes
key features
- Heterogeneous array (890 m²) at new 2200m site
- six 10.4m antennas - OVRO
- nine 6.1m antennas - BIMA
- eight 3.5m antennas - SZA
- Frequency: 22-30GHz, 70-118 GHz, 220-270 GHz
- Arrays: four configs: 100m – 2000m + SZA
- Imaging over wide range of angular scales:
 CARMA: 0.15-30”, SZA: 30-180”
- More antennas ⇒ High-fidelity imaging + snapshot
- Mosaicing (point-click + OTF)

Millimeter science
- Studies of circumstellar/protoplanetary disks, stellar outflows, stellar winds from evolved stars
- Examine SF environments of nearby & distant galaxies
- Explore Solar System: Sun, planets, comets, KBOs
- Probe astrochemistry of ISM, IPM
- Image distant universe: CO/SF in high-redshift galaxies
- Cosmology experiments – SZ, CMB polarization

Atacama Large Millimeter Array

Most Compact configuration. Baseline extendible up to 14 km

ALMA

<table>
<thead>
<tr>
<th>Antennas</th>
<th>64 x 12 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collecting area</td>
<td>>7000 m²</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.02 λ mm</td>
</tr>
<tr>
<td>Receivers</td>
<td>10 bands: 0.3 – 7 mm (36 - 850 GHz)</td>
</tr>
<tr>
<td>Correlator</td>
<td>2016 baselines</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>16 GHz/baseline</td>
</tr>
<tr>
<td>Spectral channels</td>
<td>4096 per IF (8 x 2 GHz)</td>
</tr>
</tbody>
</table>
ALMA Science

- Formation of galaxies and clusters
- Formation of stars
- Formation of planets
- Creation of the elements
 - Old stellar atmospheres
 - Supernova ejecta
- Low temperature thermal science
- Planetary composition and weather
- Structure of Interstellar gas and dust
- Astrochemistry and the origins of life
Low Frequency Science Targets

- Redshifted HI from the Epoch of Reionization
- High-z standards
- Galaxy clusters and the ICM
- Cosmic-ray distribution, and air-shower radio bursts
- Steep spectrum and foreshock galaxies
- Supernova remnants and ISM energy budget
- Interstellar recombination lines
- Nearby pulsars, ghost nebulae
- Extragalactic gas giant planetary radio emission
- Stellar flares
- Interstellar medium propagation effects
- Transients, GRB and AGN
- Event Correlation, bunching
- Solar radio studies
- OME detection, mapping by IPS, scattering
- Extreme high-altitude ionosphere tomography
- Passive ionospheric radar

Frequency Agile Solar Radiotelescope (FASR)

- Of order 100 antennas (5000 baselines)
- Better than 1" imaging at 1s time resolution
- Full frequency coverage 0.1-30 GHz
- Designed Specifically for Solar Imaging
 - Full Sun (at least 12 GHz)
 - Designed for solar spatial scales
 - Designed for solar brightness variability

Square Kilometer Array - SKA

Next generation "discovery" telescope in the meter to centimeter wavelength region with

- 100 x sensitivity of EVLA
- Large instantaneous field of view
- New modes of operation (multiple simultaneous users - multibeaming)

→ extremely powerful survey telescope with the capability to follow up individual objects with high angular and time resolution

SKA Design Goals

- Sensitivity: $S_{\text{vis}} = 2 \times 10^{-2} \text{ m}^2 / \text{K}$
- Surface brightness sensitivity: 1K at 0.1 arcsec (continuum)
- Frequency range: 0.15 – 22 GHz
- Redshift coverage: $z<0.5$ (HI); $z<4.2$ (CO (1→0))
- Imaging field of view: 1 deg at 1.4 GHz
- Multi-beam capability: $N_{\text{beam}} = 120$
- Angular resolution: ≤ 0.015 arcsec at 1.4 GHz
- Number of spatial pixels: $>10^6$
- Instantaneous bandwidth: 0.5 + frequency/5 GHz
- Number of spectral channels: $>10^4$
- Image dynamic range: 106
- Polarisation purity: 40 dB

SKA scientific drivers

- Dark Ages and Epoch of Reionization
 - Ionization of neutral IGM
 - Properties of first luminous objects
- Large Scale Structure in the Universe
 - Dark energy as function of redshift
- Evolution of galaxies
 - Growth of black holes
 - Star formation rate
 - Protostellar disks
- Probing Gravity through pulsars
 - Black hole binaries as probes of strong gravity
 - Low-frequency gravity wave background
- Origin and evolution of Cosmic Magnetic Fields
 - Large scales, primordial fields
 - Small scales, turbulence & dynamos
1 deg² (minimum) field-of-view for surveys and transient events

Dark energy
- Alters distance measures in cosmology incl. evolution of Hubble parameter with time and growth of structure
- Power spectrum of the clustering of galaxies (angular/redshift) likely to contain a signature of acoustic oscillations at time of recombination
- Use scale of acoustic oscillations as a cosmological standard ruler to measure equation of state of dark energy at intermediate redshift and possibly its evolution. 1<z<2 optimal.
- SKA: In 360 hours and a 4 deg² FOV (@1.4) SKA will detect ~2x10⁸ HI galaxies. It can then cover ‘whole’ sky in ~5 years with 8 simultaneous FOVs.

Achieving the SKA
- Reduce overall cost per m² of collecting area by a factor ~10 cf. current arrays
- Maximising flexibility of design while...
- Minimising maintenance/running costs
 Take advantage of massive industrial R&D in fibre optics and electronics industries (“Moore’s Law” to ~2015) for transport and handling of data
 Develop innovative, cost effective, new concepts for collectors

History of IGM
Epoch of Reionization (EoR)
- Bench-mark in cosmic structure formation indicating the first luminous structures
- Search for HI spectral signature...... tough....

N x Arecibo
Kara region for array of large Arecibo-like Telescopes
D > 200 m
• 150-200m diameter stations
• large F/D
• focal platform supported by aerostat
• almost flat panels
• 150 MHz to 22 GHz
• DRAO, U Calgary

Large Adaptive Reflector

Cylindrical reflector
• 111x15 m elements
• 600 elements
• 100 MHz - >9 GHz
• multifielding possible

Luneberg lenses
• 7 m spheres
• in patches 180 m in diameter
• 300 patches
• CSIRO/ATNF

Large N small D:
the Allen Telescope Array
• SETI Institute
• UC Berkeley
• 100m equivalent
• 350 x 6.1 m parabolas
• 0.5-11 GHz (simultaneously)
• 2.3° FOV at 1.4 GHz
• 4 simultaneous beams
• 206 antennas in 2005

Phased array concept
Basic idea: replace mechanical pointing & beam forming by electronic means
SKA

- Initial site analyses submitted by Australia, China, South Africa, and USA in May 2003
- Initial site analysis by Brazil in preparation
- RFI and tropospheric stability testing at candidate sites in 2004-5
- Technology decision – 2007/2008
- Construction – 2012+

Summary

- Future: Radio astronomy ↔ Interferometry
- Current arrays going strong, new arrays under development (mm)
- Importance of any field can grow rapidly, multiple routes to knowledge valuable...
- Challenges – cheap collecting area, data transport & processing, public outreach, international collaboration (mho)
- Understanding of techniques, limitations, possibilities important – summer school

Thanks to

John Hibbard
Richard Schilizzi
Stuart Vogel
Al Wooten
Douglas Bock
Peter Napier
+ countless others for info, overheads...