Measures of Antenna Performance

Source and System Temperatures

- What is received power P?
- Write P as equivalent temperature of matched termination at receiver input
 - Rayleigh-Jeans limit to Planck law $P = k_B T \times \Delta v$
 - Boltzmann constant k_B
 - Observing bandwidth Δv
- Amplify P by g^2 where g is voltage gain
- Separate powers from source, system noise
 - Source antenna temperature T_s => source power $P_s = g^2 \times k_B \times T_s \times \Delta v$
 - System temperature T_{sys} => noise power $P_n = g^2 \times k_B \times T_{sys} \times \Delta v$

System Equivalent Flux Density

- Antenna temperature $T_s = K \times S$
 - Source power $P_s = g^2 \times k_B \times K \times S \times \Delta v$
- Express system temperature analogously
 - Let $T_{sys} = K \times SEFD$
 - $SEFD$ is system equivalent flux density, unit Jy
 - System noise power $P_n = g^2 \times k_B \times K \times SEFD \times \Delta v$
- $SEFD$ measures overall antenna performance
 - $SEFD = T_{sys} / K$
 - Depends on T_{sys} and $K = (\eta_s \times A) / (2 \times k_B)$
 - Examples in Table 9.1

What is Sensitivity & Why Should You Care?

- Measure of weakest detectable radio emission
- Important throughout research program
 - Technically sound observing proposal
 - Sensible error analysis in publication
- Expressed in units involving Janskys
 - Unit for interferometer is Jansky (Jy)
 - Unit for synthesis image is Jy beam2
- $1 \text{ Jy} = 10^{-20} \text{ W m}^{-2} \text{ Hz}^{-1} = 10^{-21} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}$
- Common to use milliJy or microJy

Outline

- What is Sensitivity & Why Should You Care?
- What Are Measures of Antenna Performance?
- What is the Sensitivity of a Synthesis Image?

Summary

SEFD

- Source and System Temperatures
- Measures of Antenna Performance
- Gain
 - Source power $P_s = g^2 \times k_B \times T_s \times \Delta v$
 - Let $T_s = K \times S$, constant K
 - Then $P_s = g^2 \times k_B \times K \times S \times \Delta v$
- But source power also $P_s = \int g^2 \times k_B \times A \times S \times \Delta v$
 - Antenna area A, efficiency η_a
 - Receiver accepts 1/2 radiation from unpolarized source
- Equate (1), (2) and solve for K
 - $K = (\eta_s \times A) / (2 \times k_B) = T_s / S$
 - K is antenna’s gain or “sensitivity”, unit degree Jy$^{-1}$
 - K measures antenna performance but no T_{sys}

Interferometer Sensitivity

Real Correlator - 1

- Simple correlator with single real output that is product of voltages from antennas j,i
 - $SEFD_i = T_{int} / K_i$ and $SEFD_j = T_{int} / K_j$
 - Each antenna collects bandwidth Δv
- Interferometer built from these antennas has
 - Accumulation time τ_{acc}, system efficiency η_i
 - Source, system noise powers imply sensitivity ΔS:
- Weak source limit
 - $S \ll SEFD_i$
 - $\Delta S = \frac{1}{\eta_i} \times \sqrt{\frac{SEFD_i \times SEFD_j}{2 \times \Delta v \times \tau_{acc}}}$
Interferometer Sensitivity

Real Correlator - 2
- For $SEFD_i = SEFD_o = SEFD$ drop subscripts
 $$\Delta S = \frac{1}{\eta_s} \frac{SEFD}{\sqrt{2\times\Delta V \times \tau_{acc}}}$$
- Units Jy
- Interferometer system efficiency η_s
- Accounts for electronics, digital losses
- Eg: VLA continuum
 - Digitize in 3 levels, collect data 96.2% of time
 - Effective $\eta_s = 0.81 \times \sqrt{0.962} = 0.79$

Complex Correlator
- Delivers two channels
 - Real S_r, sensitivity ΔS
 - Imaginary S_i, sensitivity ΔS
- Eg: VLBA continuum
 - Figure 9-1 at 8.4 GHz
 - Observed scatter $S_d(t), S_f(t)$
 - Predicted $\Delta S = 69$ mJy
 - $\Delta S = \frac{1}{\eta_s} \frac{SEFD}{\sqrt{2\times\Delta V \times \tau_{acc}}}$
 - Resembles observed scatter

Interferometer Sensitivity

Measured Amplitude
- Measured visibility amplitude $S_m = \sqrt{S_a^2 + S_i^2}$
 - Standard deviation (sd) of S_a or S_i is ΔS
- True visibility amplitude ΔS
- Probability $Pr(S_m / \Delta S)$
 - Figure 9-2
 - Behavior with true $S / \Delta S$
 - High: Gaussian, sd ΔS
 - Zero: Rayleigh, sd $\Delta S / (2^{1/2})$
 - Low: Rice, S_m gives biased estimate of S. Use unbias method.

Measured Phase
- Measured visibility phase $\theta_m = \arctan (S_i / S_a)$
- True visibility phase θ
- Probability $Pr(\theta - \theta_m)$
 - Figure 9-2
 - Behavior with true $S / \Delta S$
 - High: Gaussian
 - Zero: Uniform
- Seek weak detection in phase, not amplitude

Image Sensitivity

Single Polarization
- Simplest weighting case where visibility samples
 - Have same interferometer sensitivities $\Delta S = \frac{1}{\eta_s} \frac{SEFD}{\sqrt{2\times\Delta V \times \tau_{acc}}}$
 - Have same signal-to-noise ratios σ
 - Combined with natural weight (W=1), no taper (T=1)
- Image sensitivity is sd of mean of L samples, each with sd ΔS, i.e., $\Delta S = \Delta S / \sqrt{L}$
 - No. of interferometers $\frac{1}{2}N(N-1)$
 - No. of accumulation times t_{acc} / τ_{sec}
 - So $\Delta S = \frac{1}{\eta_s} \frac{SEFD}{\sqrt{2\times\Delta V \times \tau_{sec}}} \times \sqrt{N(N-1)\times\tau_{sec}}$

Dual Polarizations - 1
- Single-polarization image sensitivity ΔI
- Dual-polarization data \Rightarrow image Stokes I,Q,U,V
 - Gaussian noise in each image
 - Mean zero, $\Delta I = \Delta Q = \Delta U = \Delta V = 0$
- Polarized flux density $P = \sqrt{Q^2 + U^2}$
 - Rayleigh noise, sd $\Delta Q = \Delta U = \Delta V = \Delta I / \sqrt{2}$
 - Cf. visibility amplitude, Figure 9-2
- Polarization position angle $\chi = \frac{1}{2} \arctan (Q/U)$
 - Uniform noise between $\pm \pi / 2$
 - Cf. visibility phase, Figure 9-2
Image Sensitivity

Dual Polarizations – 2

- Eg: VLBA continuum
 - Figure 9-3 at 8.4 GHz
 - Observed
 - T: Stokes I, simplest weighting
 - B: Gaussian noise \(\Delta I = 90 \text{ microJy beam}^{-1} \)
 - Predicted
 \[
 \Delta I = I_{\text{sys}} \sqrt{\frac{1}{E}} = \Delta S \sqrt{\frac{1}{F}}
 \]
 \[
 I_{\text{sys}} = \frac{1}{N} \times (1/N) \times (I_{\text{sys}})
 \]
 - Previous eq \(\Delta S \)
 - Plus here \(I = 77,200 \)
 - So: \(\Delta I = 88 \text{ microJy beam} \)

Image Sensitivity

Dual Polarizations – 3

- Eg: VLBA continuum
 - Figure 9-3 at 8.4 GHz
 - Observed
 - T: I_{\text{sys}} = 2 \text{ milliJy beam}^{-1}
 - B: Gaussian noise \(\Delta I = 90 \text{ microJy beam}^{-1} \)
 - Position error from sensitivity?
 \[
 \Delta I \ll \frac{1}{2} \times (I_{\text{sys}}) \times \frac{1}{I_{\text{sys}}} \]
 - Gaussian beam \(\theta_{\text{beam}} = 1.5 \text{ milliarcsec} \)
 - Then \(\Delta I = 34 \text{ microarcsec} \)
 - Other position errors dominate

Image Sensitivity

Dual Polarizations – 4

- Eg: VLA continuum
 - Figure 9-4 at 1.4 GHz
 - Observed
 - Q, U images, simplest weighting
 - Gaussian noise \(\Delta Q = \Delta U = 17 \text{ microJy beam}^{-1} \)
 - Predicted
 \[
 \Delta Q = \Delta U = \frac{1}{E} \times \frac{1}{\sqrt{F}} = \Delta I \sqrt{\frac{1}{F}}
 \]
 \[
 I_{\text{sys}} = \frac{1}{N} \times (1/N) \times (I_{\text{sys}})
 \]
 - So: \(\Delta Q = \Delta U = 16 \text{ microJy beam} \)

Image Sensitivity

Dual Polarizations – 5

- Eg: VLA continuum
 - Figure 9-4 at 1.4 GHz
 - Observed
 - Q, U images, simplest weighting
 - Gaussian noise \(\Delta Q = \Delta U = 17 \text{ microJy beam}^{-1} \)
 - Form image of \(P = \sqrt{Q^2 + U^2} \)
 - Rayleigh noise in \(P \)
 - \(\Delta P = 31 \text{ microJy beam}^{-1} \)
 - Predicted
 \[
 \Delta Q \times \Delta U = \sqrt{(Q^2 + U^2)} \approx \Delta P \times \Delta P
 \]
 - So: \(\Delta Q = \Delta U = 17 \text{ microJy beam}^{-1} \)

Image Sensitivity

Dual Polarizations – 6

- Eg: VLA continuum
 - Figure 9-4 at 1.4 GHz
 - Observed
 - Q, U images, simplest weighting
 - Gaussian noise \(\Delta Q = \Delta U = \Delta I = \Delta I_{\text{sys}} \)
 - I, Q, U will have same \(\Delta \) if each is limited by sensitivity
 - Recall \(\Delta I = \Delta Q = \Delta U = \Delta I_{\text{sys}} \times \frac{1}{E} \)
 - Other factors can increase \(\Delta I \)
 - Suspect dynamic range as \(\Delta I_{\text{sys}} = 10,000 \)
 - Lesson: Use sensitivity as tool to diagnose problems

Sensitivity

Summary – 1

- One antenna
 - System temperature \(T_{\text{sys}} \)
 - Gain \(K \)
 - Overall antenna performance is measured by system equivalent flux density \(SEFD \)
 \[
 SEFD = \frac{T_{\text{sys}}}{K}
 \]
 - Units ly
Sensitivity

Summary - 2

- Connect two antennas to form interferometer
 - Antennas have same SEFD, observing bandwidth Δv
 - Interferometer system efficiency η_i
 - Interferometer accumulation time τ_{acc}
- Sensitivity of interferometer
 \[
 \Delta S = \frac{1}{\eta_i} \times \frac{\text{SEFD}}{\sqrt{2 \times \Delta v \times \tau_{acc}}}
 \]
 - Units Jy

Summary - 3

- Connect N antennas to form array
 - Antennas have same SEFD, observing bandwidth Δv
 - Array has system efficiency η_r
 - Array integrates for time t_{int}
 - Form synthesis image of single polarization
- Sensitivity of synthesis image
 \[
 \Delta I_{int} = \frac{1}{\eta_r} \times \frac{\text{SEFD}}{\sqrt{N \times (N-1) \times \Delta v \times t_{int}}}
 \]
 - Units Jy beam$^{-1}$