After the 3K cosmic background, millimeter/submillimeter photons are 1 cm to 0.3 mm. An instance of this is the Milky Way Galaxy. The most abundant photons in the universe are in the radio, and 40% of that in for photons carry most of the energy in radiation. Millimeter/submillimeter spiral galaxies, and in the cosmic microwave background, the most abundant photons in the universe.

Complete Frequency Access

The Atacama Large Millimeter Array

Alwyn Wootten
National Radio Astronomy Observatory
Charlottesville, Virginia

The Atacama Large Millimeter Array, or ALMA, is an array of precision engineered antennas each 12 meters in diameter which will work together to make detailed images of astronomical objects. The scope of the ALMA Project is an array of 64 antennas that can be positioned as needed over an area up to 14 kilometers in diameter so as to give the array a zoom-lens capability, with resolution reaching 10 milliarcseconds. The furthest millimeter/submillimeter source yet detected is at about 1 nA. ALMA will reach this sensitivity in seconds. ALMA’s great sensitivity and resolution make it ideal for medium scale deep investigations of the structure of the submillimeter sky.

ALMA has been endorsed as the highest priority project for the next decade by the astronomical communities of the United States, Canada, the United Kingdom, France, the Netherlands and Japan (the latter as LMSA). The Atacama Large Millimeter Array, or ALMA, is an array of precision engineered antennas each 12 meters in diameter which will work together to make detailed images of astronomical objects. The scope of the ALMA Project is an array of 64 antennas that can be positioned as needed over an area up to 14 kilometers in diameter so as to give the array a zoom-lens capability, with resolution reaching 10 milliarcseconds. The furthest millimeter/submillimeter source yet detected is at about 1 nA. ALMA will reach this sensitivity in seconds. ALMA’s great sensitivity and resolution make it ideal for medium scale deep investigations of the structure of the submillimeter sky.

Contributors to the Millimeter Spectrum

- Millimeter/submillimeter photons are the most abundant photons in the spectrum of the Milky Way and most spatial galaxies, and in the cosmic background.
- After the 3K cosmic background radiation, millimeter/submillimeter photons carry most of the energy in the Universe, and 40% of that in for instance the Milky Way Galaxy.
- ALMA range—wavelengths from 1 cm to 0.3 mm.

South America

Where can such transparent skies be found??
Summer School, Socorro N. M. 7

Northern Chile

Site must be high to make the best use of the atmospheric windows. Site should also be accessible, supported by reasonably close support facilities. Site should be dry for transparency. Chajnantor lies relatively close to the ancient town of San Pedro de Atacama, inhabited for more than two millennia. San Pedro is relatively near the Calama airport, and not far from the ESO site at Paranal. Chajnantor lies astride the paved Paso de Jama road to Argentina.

Summer School, Socorro N. M. 8

Salar de Atacama

Site must be high to make the best use of the atmospheric windows. Site should also be accessible, supported by reasonably close support facilities. Site should be dry for transparency. Chajnantor lies relatively close to the ancient town of San Pedro de Atacama, inhabited for more than two millennia. San Pedro is relatively near the Calama airport, and not far from the ESO site at Paranal. Chajnantor lies astride the paved Paso de Jama road to Argentina.

Summer School, Socorro N. M. 9

Chajnantor

Clarity of atmosphere: superior to Mauna Kea; at best better than South Pole
Source accessibility: superior to South Pole
Site monitoring continues
- Comparison with first year of Caltech CBI operations
 - Eruption of Lascar caused no discernable problems
- Evaluation
 - Transparency monitoring extended to supraTHz windows
 - Radiosonde campaign extended to cover all seasons
 - Installation and upgrade of monitoring equipment, communications
 - Array center site chosen

Summer School, Socorro N. M. 10

ALMA at Chajnantor

ALMA Specifications

- Antennae: 64 x 12 m
- Collecting area: > 7000 m²
- Configurations: 150 m – 14 km
- Resolution (300 GHz): 1.4 – 0.015" (300 GHz)
- Frequency range: 30 – 950 GHz
- Wavelength: 10 – 0.3 mm
- Receiver sensitivity: close to quantum limit
- Correlator: 16 GHz / 4096 chan.
- Site: excellent
- Result: A leap of over two orders of magnitude in both spatial resolution and sensitivity
ALMA Technologies
Enable the Sensitivity Leap

- Antenna -- Mechanical Engineering, Materials
- Correlator -- Special purpose IC for high speed signal processing
- Computing -- Non-linear imaging algorithms
- Detectors -- Improving the best in the world
- Remote Access -- Bringing the telescope from the 16500 Chajnantor site into the observer’s control
- Photonics -- Light waves to radio waves

Vertex Antenna Concept

The ALMA prototype antenna makes extensive use of carbon fiber reinforced plastic (CFRP) technology in order for the antenna to maintain a stable parabolic shape in the harsh thermal and wind environment characteristic of the ALMA site at 16,500 feet elevation in the Andes mountains of northern Chile.

Science with ALMA

- Formation of Galaxies and Clusters
- Formation of Stars
- Formation of Planets
- Creation of the Elements
 - Old stellar atmospheres
 - Supernova ejecta
- Low temperature thermal science
 - Planetary composition and weather
 - Structure of interstellar gas and dust
 - Astrochemistry and the origins of life

Cosmology

- Sunyaev-Zel’dovich Imaging
 - Independent estimate of \(H_0 \) to beyond \(z = 1 \)
 - Estimate of mean gas fraction on cluster scales
 - Greater field of view than VLA
 - Southern hemisphere

Formation of Galaxies

Energy distribution of dusty star-forming galaxies peaks in far-infrared, near 200 microns. This is also the peak of the energy distribution in the post-reionization Universe; much of the photons and energy in the Universe lie within the ALMA bands. Expansion of the Universe redshifts radiation from distant galaxies into ALMA bands. The greater brightness of galaxies at shorter wavelength compensates for the dimming due to greater distance. ALMA’s sensitive 850 micron band is optimal for detection of continuum radiation from dust by galaxies at \(z > 4 \). The kinematics of galaxies at this epoch can be probed with their gas content; the most abundant detectable gas will be CO. The star-forming epoch of galaxies peaked during this epoch. ALMA is an ideal instrument for study of the star forming history of the Universe and the creation of galaxies.
As galaxies get redshifted into the ALMA bands, dimming due to distance is offset by the brighter part of the spectrum being redshifted in. Hence, galaxies remain at relatively similar brightness out to high distances.

Owing to the redshifts, galaxies which are redshifted into ALMA’s view vanish from view optically. ALMA shows us the distant Universe preferentially.

Galaxies at \(z > 2 \) are multiple with evidence of merging. Assembly of large Galaxies was evidently completed at \(z < 1 \).

Some of the highest redshift objects known today are very luminous sources at millimeter wavelengths:

- About a dozen objects have been observed in one or more lines of CO
- The direction in BRI 205-0725 (z=7) at a look-back time of 92% of the age of the Universe suggests early enrichment of the interstellar medium with CNO.
- Even in the nearby Antennae, the strongest infrared emitting region, and that of most active star formation, is obscured in optical/near infrared light.

Current Observations:

- A continuum survey at 300 GHz, duration 3 hours, required 140 pointings, each with 30 minutes of observation, for a total of 3 days. Such a survey should find about 100-300 sources, of which 30-100 sources will be brighter than 0.4 mJy.
- A continuum and line survey in the 3 mm band down to a sensitivity of 7.5 mJy (5 sigma) requires 16 pointings, each with 12 hours of observation, for a total of 8 days. The survey is done with 4 tunings covering the 84-116 GHz frequency range.
- The 300 to 100 GHz flux density ratio gives the photometric redshift distribution for redshifts \(z > 3 - 4 \). For expected line widths of 300 km/s, the line sensitivity of this survey is 0.02 Jy km/s at 5 sigma. Using the typical SED presented earlier, this should detect CO lines in all sources detected in Step 1.

At least one CO line would be detected for all sources above \(z = 2 \), and two lines for redshifts greater than 2.
The Distribution of (invisible) Dark Matter can be mapped using the (Gravitational Lens) Distortion of the Images of Background Galaxies.

Simulated ALMA image at a frequency of 350 GHz at a relatively low resolution of 3 arcsec (below right). Also shown: a simulation of the same field in the optical/R-band (top right). The images are 100" square. Red: galaxies that are members of the cluster and the diffuse emission from the Sunyaev-Zeldovich effect. Blue: represents background galaxies magnified by the cluster. The submillimeter image is much more sensitive to the high-redshift background galaxies. A survey of the whole field with ALMA (about 30 ALMA pointings) would reveal the brightest sources, while the faintest sources (with fluxes of 0.01 mJy) in the 350-GHz image could be detected in about 70 hours per field.

Gas in Normal Galaxies

Protoplanetary Disks

Proper Motion and Structure of Shocks in Dense Clouds

Water masers observed over four epochs encompassing 50 days. Several of the masers define an arc structure about 5 AU in length. This consistently moved at a rate of 0.023 mas/day, or 13.6 km/s. Including the radial velocity offset, a space velocity of 13.7 km/s is calculated at an inclination of 6 degrees from the plane of the sky.

These structures apparently represent water emission from interstellar shocks.
ALMA and Exoplanetary Systems

- After the formation of the star, planets form from the remnant disk. Planets forming from accretion will be directly imaged by ALMA in nearer star-forming regions.
- In later stages, planets mature, becoming cooler and smaller. Currently suspected exoplanets will emit only a few microJy of flux in the submillimeter, requiring weeks of ALMA observing time and are essentially not directly detectable.
- Reflex motions can be easily measured by ALMA. All accessible stellar hosts of exoplanetary systems can be imaged in seconds by ALMA which can measure positions to ~0.1 mas accuracy.
- Debris disks can easily be detected and imaged by ALMA. ALMA’s accurate imaging will reveal debris disk patterns suggesting the presence of planets.

Protoplanet Formation

- Disks are observed about young stars, but with poor resolution.
- ALMA will provide the resolution and the sensitivity to detect condensations, the cores of future giant planets.
- As the planets grow, they clear gaps and inner holes in the disks.
- On the right are models of this process, and on the left simulations of ALMA’s view showing that condensations, gaps and holes are readily distinguished.

Indirect Detection of Planets

- A planet orbiting its central star causes the star to undergo reflexive motion about the barycenter.
- ALMA would measure this motion accurately in its long configuration at submm wavelengths.
- ALMA could detect photospheres of e.g. 1000 stars well enough to detect a 5Jovian mass planet at 5AU.
- Inclination ambiguities for companions now known could be resolved.

Present mm-wave cameras provide only a few pixels, ALMA imaging will rival HST.
Debris Disks

• These provide a challenge to ALMA imaging because:
 – They are faint about nearby stars – 1 mJy is about half a lunar mass at 12 pc
 – They are extended about nearby stars—several fields of view at 12 pc for instance
 – They emit most strongly in the submillimeter, where imaging is the greatest challenge.
• But they can provide best evidence for planetary systems

Elemental Enrichment of the ISM

• Enriched stars and supernovae eject newly created elements into the interstellar medium where they are incorporated into molecules as gas cools
• Rotational lines of molecular isotopomers are well-separated in frequency in the millimeter and submillimeter regimes, allowing detailed study of the isotopic distribution of the elements near the site of their creation.
• ALMA will study for the first time dust formation at distances of a few stellar radii around evolved stars, and trace the evolution of molecules from the stellar surface. Together with measurements of elemental abundance profiles at high spatial resolution, it will be possible to directly observe the precipitous drop in the abundance of refractory molecules when they condense into dust grains.

ALMA on the WWW

http://www.alma.nrao.edu

Instrument description
Project book
Memo series
Workshop reports
Newsletter
Meeting minutes
Links to partners

Science Case: http://iram.fr/guillote (construction proposal to ESO) and PASP Conference Series Vol. No. 235, a conference held at the Carnegie Institution

ALMA Schedule

1996 – 2001 Design and Development
1999 International partnership established
2002 Construction begins for US partner, and ESO Prototype antennae—an end product of design and development
2000 February contracts awarded (US, Europe)
2002 3Q delivery to VLA site of Vertex Antenna
2003 3Q delivery of EIE, Japanese prototype antennas
2004 Prototype interferometer: Japanese entry?
2002 – 2010 Construction
2004 contract award
2005 4Q initial delivery to Chajnantor
4Q 2006 Early Operations
4Q 2011 Completion of construction phase

ALMA Median Sensitivity

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>Continuum (mJy)</th>
<th>Line 1 km s⁻¹ (mJy)</th>
<th>Line 25 km s⁻¹ (mJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.02</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>10*</td>
<td>0.027</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>40</td>
<td>0.039</td>
<td>1.1</td>
<td>0.1</td>
</tr>
<tr>
<td>230*</td>
<td>0.074</td>
<td>1.2</td>
<td>0.44</td>
</tr>
<tr>
<td>345*</td>
<td>0.12</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>675*</td>
<td>0.45</td>
<td>4.1</td>
<td>0.2</td>
</tr>
<tr>
<td>850</td>
<td>1.26</td>
<td>6.6</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Frequency Brightness Temperature Sensitivity

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>B_{min} 0.2 km</th>
<th>B_{min} 0.2 km</th>
<th>B_{max} 10 km</th>
<th>B_{max} 10 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>0.002</td>
<td>0.049</td>
<td>0.048</td>
<td>1.0</td>
</tr>
<tr>
<td>110</td>
<td>0.003</td>
<td>0.049</td>
<td>0.84</td>
<td>1.0</td>
</tr>
<tr>
<td>230</td>
<td>0.0005</td>
<td>0.054</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>345</td>
<td>0.0004</td>
<td>0.12</td>
<td>3.6</td>
<td>3.0</td>
</tr>
<tr>
<td>409</td>
<td>0.0000</td>
<td>0.23</td>
<td>7.6</td>
<td>5.0</td>
</tr>
<tr>
<td>675*</td>
<td>0.0046</td>
<td>0.28</td>
<td>12</td>
<td>6.0</td>
</tr>
<tr>
<td>850*</td>
<td>0.014</td>
<td>0.58</td>
<td>27</td>
<td>14.0</td>
</tr>
<tr>
<td>1500*</td>
<td>1.4</td>
<td>5.7</td>
<td>360</td>
<td>14,000</td>
</tr>
</tbody>
</table>

* Indicates measurements at different conditions

San Pedro de Atacama

100-meter Green Bank Telescope

GBT

Dedicated in 2000

The Very Large Array - VLA

Dedicated in 1980

Installation at the Very Large Array in New Mexico, USA

Construction of the Vertex antenna’s concrete pad is nearly complete, antenna acceptance scheduled for April 2002. Three prototypes to be tested side-by-side for selection of a final design in 2004.
The ALMA Antenna
Mechanical Engineering at the Heart of the Array

- Must maintain accuracy at 16,500 feet Llano de Chajnantor
 - Surface accuracy better than 20 microns
 - Pointing accuracy better than 0.6 arcseconds
- Despite:
 - High winds (50 percentile 6.5 m/s)
 - No vegetation - windblown grit and dust
 - Annual median temperature -2.5 °C (range -20 to +20 °C)
 - Pressure 55% of sea level --UV radiation (170% of sea level)
- Three designs:
 - ALMA/NA Vertex, of Santa Clara, CA using carbon fiber
 - ALMA/EU EIE, of Venice, Italy with Castamasagna and Alcatel Space considerable carbon fiber
 - ALMA/Japanese refinement of ASTE pre-prototype soon to be open bid
- Final design after 1.5 yrs of tests in New Mexico

The ALMA Correlator
High Speed Signal Processing

- Analog input at 64 x 8 x 2 GHz per second digitized and transmitted at 96 Giga bits per second from each antenna
- Fiber optic transmission to digital filters, then to correlator
- Correlator Achieving 1.7 x 10^{16} multiply and add operations per second! cross-correlates signals from 32/64/16/32 pairs of antennas on 16 msec timescales; autocorrelates signals from 64 antennas on 1 msec timescales, 32 Gbyte output
- Design offers flexibility of selection of
 - Bandwidth
 - Spectral window placement
- Power requirement 150 kW.
- Under construction NRAO-CDL Charlottesville for delivery to New Mexico and Chajnantor

Detectors
Many Laboratories Worldwide

- Radio receivers amplify weak signals, usually after mixing with a locally generated signal (LO)
- Receivers will cover the entire observable submillimeter spectrum observable from Earth's best site
- Superconducting tunnel junction receivers (4K) mix and HEMT amplifiers at e.g. 4-12 GHz amplify for frequencies above ~90 GHz
- 8 on each of 64 antennas—the most extensive superconducting electronic receiving system in astronomy

Front End Specifications

- Frequencies from 31 to 950 GHz covered in 10 bands
 - Requires RF bandwidth up to 30%
- All bands dual polarization
- 8 bands use SIS mixers at 4K
- Mixers separate sidebands where possible, and balanced
- Highest possible sensitivity and stability
 - Receiver noise close to quantum limit
 - Wide detection bandwidth (IF 4-12 GHz recommended)
- Highest reliability (1280 systems)

Front End Concept

- Ten bands, one 1 m diameter dewar with 70K, 15K and 4K stages
- Each band a modular ‘cartridge’ held by flexible thermal links
- All bands share focal plane, cartridges plug in from bottom, optics atop
Preliminary Cartridge Design

- Optics
- Two mixers
- IF amplifiers
- Local oscillator
- Cables
- Mount

Remote Access

- Astronomers anywhere can interact with the system, and receive interim images in real time
- Requires high speed communication

Photonics

- LO - IR lasers beat together produce reference frequency for mixing, distributed to all antennas over fiber optics
- Key technology is high frequency (>100 GHz) photodiodes—developed by NTT Japan to 300 GHz
- After mixing and amplification, signal is digitized and transmitted over fiber optics to correlator

Complementarity to OIR Observations at Similar Resolution

- Multicolor optical image of galaxy cluster Abell 1835—Hale Telescope image shows bright cD elliptical well
- Submillimeter 850 micron SCUBA image shows spirals strongly which are very weak in the optical image, while the elliptical is weak
- ALMA’s spatial resolution will improve on SCUBA by orders of magnitude accompanied by a similar increase in sensitivity—what SCUBA achieves in tens of hours, ALMA achieves in tens of minutes.

ALMA and High Redshift Galaxies

Current estimates suggest a background of about 10000 galaxies per square degree brighter than 1 mJy at 850 µm. For a luminosity function based on IRAS counts of nearby galaxies (Sanders et al.), this suggests the distant Universe has about 10000 more submm-bright galaxies at the local Universe, implying exponential evolution. Predictions using an exponential evolution model (Blain et al., 1998) suggest ALMA will see a density of distant galaxies equal to the density of relatively nearby galaxies (roughly the Hubble Deep Field). Because ALMA is intrinsically a spectroscopic instrument, it will serendipitously measure CO lines, hence allowing redshift determinations, for about 25% of the distant population.

Formation of Stars

Paradigm: material falls through a rotating circumstellar disk onto a forming star from more extensive envelope, fueling a bipolar flow which allows loss of angular momentum

Without sufficient resolution, separation of these motions is difficult
Formation of Stars

A key observation, not currently achievable, would be to observe the infalling gas in absorption against the background protostar. ALMA will provide adequate sensitivity in the bipolar flow, shock waves process envelope molecules, providing a rich chemistry. ALMA will be able to observe the progress of these shocks in real time and study how their composition changes.