Large-scale Jets in DRAGNs

J. P. Leahy
Jodrell Bank Observatory,
University of Manchester
(Thanks to NRAO for financial support)

- Radio sources powered by jets from AGN:
 - Radio Galaxies,
 - Quasars
 - Seyfert galaxies etc.
- Relativistic (initial) flow speeds:
 - Lorentz factor $\gamma \sim 3-10$

DRAGNs in theory (FR II)

DRAGN in reality (Cygnus A)

Chandra X-ray contours: Wilson et al. (2001)
VLA radio image: Perley et al. (1984)

Questions
- How are DRAGNs born?
- How stable are the jets?
- How long do DRAGNs live?
- How do they die?
- Is there an after-life?

Activity Power Spectrum
Switch-on

- Smallest DRAGNs have dynamical ages $D/v \sim 500$ yrs from measured hotspot advance
 - Owsianik & Conway (1998a,b)
- Start-up time ~ 1 Million times shorter than galaxy merger timescale, $O(10^9)$ yrs

(Courtesy G. Taylor)

Pointing Stability

- Orientation can be stable for $0(10^9)$ yr:
 - Straightness of some Giant DRAGNs
 - Expansion speed $\sim 0.1c$ from symmetry statistics (Scheuer 1995)
- BH spin aligns with accreted material in $10^8 - 10^7$ yrs: \rightarrow stability due to stable accretion
 - (Natarajan & Pringle 1998)

Precessing Jets

- Orientation remains stable for $0(10^9)$ yr:
 - Straightness of some Giant DRAGNs
 - Expansion speed $< 0.1c$ from symmetry statistics (Scheuer 1995)

Winged DRAGNs

- Multiple outbursts revealed by change of jet axis.
- Few % of powerful DRAGNs
- What happens if axis does not change?

Bottleneck Lobes

- At $\approx 26^\circ$ to line of sight
 - Twin-peak Balmer lines (Grachvogel & Aipen 1994)
 - Superluminal motion (Alef et al. 1998)
- Overlapping lobes
- Extends ≈ 0.5 Mpc along line of sight
- Near side (NW) seen 1.8 Myrs more developed:
 - Bottleneck
 - More expanded hotspot

3C390.3

- At $\approx 26^\circ$ to line of sight
 - Twin-peak Balmer lines (Grachvogel & Aipen 1994)
 - Superluminal motion (Alef et al. 1998)
- Overlapping lobes
- Extends ≈ 0.5 Mpc along line of sight
- Near side (NW) seen 1.8 Myrs more developed:
 - Bottleneck
 - More expanded hotspot

(Courtesy Leahy & Perley 1995)
Power Stability

- Hotspots in 80-90% of lobes in powerful DRAGNs → jets nearly always "on".
- Hotspot:lobe flux ratio:
 - Median 0.22
 - IQR 0.11 - 0.54
- Jets could fluctuate in power by factors of several.

From Atlas of DRAGNs (Leahy, Bridle & Strom 1996)

Re-invigorated Jets: 3C 33.1

VLA A+B+C+D
125 cm
1.5"
200 kpc

VLA B+C+D
1.36 cm
0.74'' beam

Hercules A

- Powerful DRAGN in cluster-dominating galaxy at z=0.154.
- X-ray parameters typical of Abell clusters.
- Cluster elongated along radio axis.

Gizani & Leahy (in preparation)

VLA A+B+C+D
1.1 cm
0.36"

J. Morse, STScI

Understanding the “Rings”

- **Rings:**
 - Present in both lobes
 - Surround jet features
 - Spectrally young
 - Brighter on outer side
 - Brighter in West lobe

- **Jets:**
 - Brighter jet is nearer, from depolarization.
 - Inclination $i \approx 50^\circ$

- **Model:**
 - Jet asymmetry due to beaming: $\beta \cos i \approx 0.5$
 - Observed timescales 3x different in the two lobes, from light-travel effect.
 - Rings are shocks in old lobes caused by new outburst
 - Fluctuations on many timescales

Double-Double DRAGNs

- Saripalli et al. (2002)
- Schoenmakers et al. (2000)

PKS 1637-77

- ATCA
 - λ12 cm
 - 2.9"
 - 200 kpc
- ATCA
 - λ22 cm
 - 6.4"

Leahy & Killeen (in preparation)

Crossing the F-R Divide

- Plume best explained as a remnant of previous FR I phase.
- Luminosity of PKS1637-77:
 - $P_{178} \approx 10^{25}$ W Hz$^{-1}$sr$^{-1}$ (near FR divide).
- Luminosity of plume: $\sim 10^{23}$ W Hz$^{-1}$sr$^{-1}$
 - Characteristic of fainter FR I sources.
- NB: remnant would be hard to see, if new FRII phase was much brighter.
Crossing the F-R Divide

- Another case: PKS2104-25N
 - Cameron et al. (1988)
 - Bicknell, Cameron & Gingold (1990)
- High resolution:
 - Clear FR II
 - With plume

Death of DRAGNs

- Powerful DRAGNs have synchrotron age ≈ 10 Myr
 - Typical lifetime ~20 Myr
- Few DRAGNs are bigger than 1 Mpc:
 - Expansion speed ~0.1c → Max age ~16 Myr?
- Jet shutdown:
 - Hotspots expand, fade
 - Should leave diffuse lobes intact
 - Fade by synchrotron ageing on ~10^8 yr timescale.

Dying DRAGNs?

- Relaxed steep-spectrum DRAGNs should be more common than "Classical" Doubles.
- Actually <10%
- Van der Laan (1969):
 - Age ∝ (Break frequency)^-1/2
 - Detectable if v ≤ ν_B
 - Survey at ν should mostly find DRAGNs with ν ~ ν_B
 - Not so!

Ghost DRAGNs?

- If radio-quiet cavities in clusters are aged relic lobes (e.g. Enßlin 1999), where are the cases visible only in low-frequency images?

Conclusions

- Jets show large-amplitude variability on many timescales.
- With light-travel effects, will disguise intrinsic symmetry.
- Multiple outbursts can dramatically affect large-scale structure of DRAGNs.
- End-point of DRAGN lifecycles poorly understood.