Notes on Axis Intersection for MMA Antennas

Bryan J. Butler
National Radio Astronomy Observatory

2003-May-07

1 Introduction

This memo incorporates some notes I wrote down on 1998-Dec-10 when Peter Napier asked me to look into the problem of specifying the axis intersection quantities (two angles and a separation) for the MMA antennas. I provide no further information than what is directly in the notes, but it seemed that the information therein should be retained historically, so I’ve made this electronic version.
Some notes on azimuth & elevation axis non-intersection for MMA

much of this is based on Cam Wade's memo (VLA Test Memo # 104)

first, what if angles are not precisely 90°?
I've drawn on Cam's figure 1 the angles that we are specifying for MMA antennas (θ & θ_e).

If $\theta_e \neq 90^\circ$, this simply mimics an azimuth pointing offset, and can be handled as such, I think.

If $\theta_e \neq 90^\circ$, this changes the vector D which connects P to P' (see figure). If we let $\theta_1 = 90^\circ - \psi$, and assume ψ is small so that $\cos \psi \approx 1$ and $\sin \psi \approx \psi$, then,

$$D = \begin{bmatrix}
(a-b \sinh)(\cos Z + (c-b \psi) \sin Z) \\
-(c-b \psi) \cos Z + (a-b \sinh) \sin Z \\
c \psi + b \cosh
\end{bmatrix}$$

this adds some terms (involving $b \psi$ & $c \psi$) to the fringe phase error:

$$\Delta \phi = \alpha \cosh - \Delta h (\psi \sinh - \beta) - \gamma \Delta Z \cosh + \Delta \phi_0$$

the $\Delta \phi_0$ are the additional terms:

$$\Delta \phi_0 = \beta \psi \Delta h \cosh + \gamma \psi (\sinh + \Delta h \cosh)$$

$$= \psi \Delta h \cosh (\beta + \theta) + \gamma \psi \sinh$$

assuming ψ is small, $\Delta \phi_0$ is negligibly small
Figure 1 from Wade 1974
Now, what if we make no attempt to measure \(a, b, \) and \(c \) on the antennas, and rely on our secondary calibrator to account for \(\Delta \Phi \)?

In the simplest case, assume that at \(t=0 \), we measure phase on a calibrator at elevation \(h_0 \), then after some interval \(\Delta t \), we measure it again (at elevation \(h_c \)). If we use simple linear interpolation of these measured phases, and apply them to the source visibilities, we get an error like:

\[
\Delta \phi_k(t) = \alpha \left(\cos[h_c(t)] - \cos[h_0(t)] \right) \\
= \alpha \left\{ \cos[h_c(t)] - \left[\cos[h_c] + \frac{\cos[h_c] - \cos[h_0]}{\Delta t} \cdot t \right] \right\}
\]

i.e., there is some error due to the calibrator not being at the same elevation as the source, and some due to approximating a cosine by a linear interpolation.

\{ as long as \(\Delta t \) is relatively small (\(\leq 30 \) mins) \}

The error due to the different source and calibrator elevations dominates. In this case,

\[|\Delta \phi_k|_{\text{max}} \leq \alpha \delta h \sin h_{\text{max}}\]

where \(\delta h \) is the elevation difference between source & calibrator.

What to use for \(\delta h \)?

Based on Bob Brown's noise temps (in his SPIE paper) and Scott Foster's derived distances to calibrators at 90 GHz (MMA memo 124), and a scaling for source number counts which goes like:

\[\text{counts} \propto \text{source number} \times \text{distance}^2\]
\[N \propto S^{-1.5} \nu^{3.5} \]

(see Kitayama et al. for \(S \), scaling, and Franceschini et al. for \(\nu \) scaling)

and assume you need 100 per baseline in a 1 min calibration scan, then you might have the following:

<table>
<thead>
<tr>
<th>(\nu) (GHz)</th>
<th>(\delta h) (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>1.5</td>
</tr>
<tr>
<td>230</td>
<td>0.6</td>
</tr>
<tr>
<td>345</td>
<td>0.4</td>
</tr>
<tr>
<td>410</td>
<td>0.4</td>
</tr>
<tr>
<td>675</td>
<td>0.6</td>
</tr>
</tbody>
</table>

this is for 90\% of sources...

these numbers seem a bit small, let's assume that \(\delta h \) might be as large as 3 deg. Let us also assume that we note that this want |\(\Delta \phi |\) to be less than 20°

fundamentally (18 turns), then:

limits

astrometry... \[\frac{1}{18} \geq \alpha \cdot 0.052 \]

(this

error, if left unaccounted for) at MMA's shortest wavelength (850 GHz)

\[-\lambda \sim 350 \mu m, \] so

\[\text{accuracy of } \alpha \leq 200 \mu m \]

REMEMBER THAT THIS IS ONLY NEEDED IF \(\alpha \) is NOT MEASURED/CALIBRATED
what if we measure/calibrate the \(\alpha \cosh \) term, but ignore the rest?

NOTE: this is what the VLA does - this is the so-called \(k \)-term correction. It is measured every year or so, when in C or D-config, and is usually quite stable over time. The measurement of \(\alpha \) (\(a \)) is made possible by being able to go OTT. This makes \(\alpha \) (\(a \)) easily distinguishable from other baseline/pointing terms.

in this case, the residual phase is:

\[
\Delta \phi'' = -\alpha \Delta h \sinh h + \beta \Delta h - \Delta \xi \cosh
\]

use this to constrain \(a, b \) & \(c \) separately...

\[
\Delta \phi_a'' = -\alpha \Delta h \sinh h
\]

let \(h \to 90^\circ \Rightarrow \sinh h \to 1 \)

\[
|\Delta \phi_a''| = \alpha \Delta h
\]

\(\alpha = a/\lambda \), and let \(\Delta h \) be some multiple of HPBW (\(\Delta h = n \lambda/\theta \)), then

\[
|\Delta \phi_a''| \approx a \pi/\theta
\]

let \(D = 10 \) m and \(|\Delta \phi_a''| \leq 20^\circ \) (\(\text{1 turn, } \frac{\pi}{360} \) rad) and \(n \approx 10 \), then

accuracy of \(a \leq 3 \text{ cm} \)

Similar constraint for \(b \) & \(c \), so this is unimportant... (relatively)
what about decorrelation due to \(\alpha \cosh \) term?

Even if you correct for \(\alpha \cosh \), you have to worry about how much it changes over an integration cycle. The change in \(\alpha \cosh \) over 1 integration is roughly:

\[
\Delta (\alpha \cosh) \approx \alpha \Delta h
\]

with the elevation change given by:

\[
\Delta h \approx \frac{2\pi \Delta t}{86400} \mathrm{ rad}
\]

For integration time \(\Delta t \) sec, if we want the error over an integration cycle to be less than 20 deg, then,

\[
\alpha \approx \frac{2\pi \Delta t}{86400} \lesssim \frac{20}{360}
\]

\[\Rightarrow \alpha \approx \frac{760}{\Delta t} \text{ turns} \]

At 350 μm, this corresponds to:

| accuracy of \(\alpha \approx \frac{130}{\Delta t} \) mm | e.g. @ \(\Delta t = 10 \) sec, accuracy of \(\alpha \approx 1.3 \) cm |

If this is not satisfied, given eventual values for \(\alpha \) and \(\Delta t \), then we may need a 2nd order \(\alpha \cosh \) correction (provide \(\alpha \cosh \) and \(\tilde{\alpha} \cosh \) to fringe frequency calculator - this is how VLA - PT will be done).