The Karl G. Jansky Very Large Array Sky Survey (VLASS)

Steven T. Myers

NRAO – Socorro, New Mexico, USA

VLASS Survey Design Group Lead

Atacama Large Millimeter/submillimeter Array
Karl G. Jansky Very Large Array
Robert C. Byrd Green Bank Telescope
Very Long Baseline Array

The VLA Sky Survey (VLASS) Initiative

- Announced 11 July 2013
- A Community-led Program to define a new radio sky survey using the upgraded Karl G. Jansky Very Large Array (VLA)
- Open *international* participation, public data and products
- SOC to set up AAS workshop and process now started
- We are soliciting White Papers on aspects and science goals for the survey (your input needed!) 21 Papers so far!
- Survey Science Group (SSG) to be formed, starts in Feb 2014
 - SSG Working Groups open to community JOIN US!

This talk is based on results from AAS Workshop 5 Jan 2014

Website: https://science.nrao.edu/science/surveys/vlass

Email: vlass@nrao.edu

The Karl G. Jansky Very Large Array

- Interferometric array of 27 antennas of 25m diameter
 - Resolution of Ikm to 36km aperture, area of 130m aperture

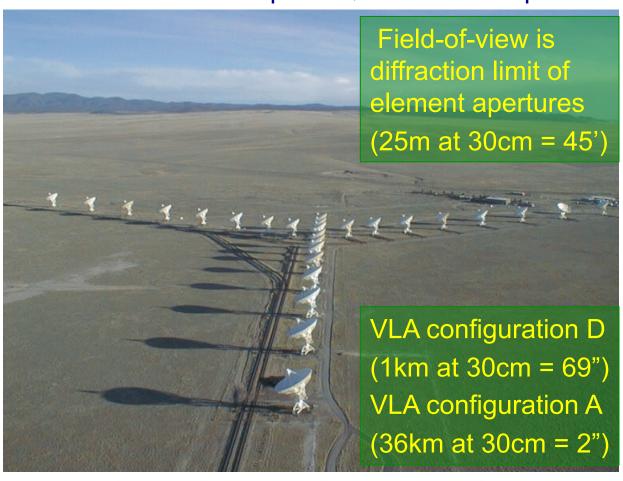
Location:

Plains of San Augustin, New Mexico El. 2100m

VLA c.1980

<u>Upgraded</u> 2001-2012:

Digitized at antenna (3&8-bit)


Bandwidth I-8GHz

Fiber linked

WIDAR correlator (DRAO-NRC)

\$90M total cost

Frequency
Range:
I-50 GHz in 8
bands; also
230-470 MHz and
58-84 MHz

Sensitivity (5GHz): $100 \square^{\circ}$ to 100μ Jy (1σ) in 50ksec (14h) continuum

I mJy ($I\sigma$) I km/sec, 9ksec (2.5h) line

Jansky VLA

Science Definition - Results of Workshop

- Not pre-determined: SSG will define the survey
 - Expect 3000-10000 hours (NVSS+FIRST ~6000h)
- Battle lines from discussion and the 21 White Papers:
 - Wide (1000-30000 deg²) vs. Deep
 - Low (I-4 GHz) vs. Mid/High (>4 GHz)
 - High resolution (<3") or Low Resolution (>3")
 - Monolithic vs. Tiered ("Wedding Cake")
 - Targeted (Deep or Medium-deep) Fields?
 - Multi-epoch with month/year cadence over decade?
 - Complementarity with O/IR (e.g. Pan-STARRS,LSST)

Key Science Cases – Highlights

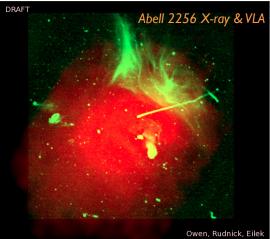
- Medium/Deep Fields for Galaxy Evolution
 - & Cosmology

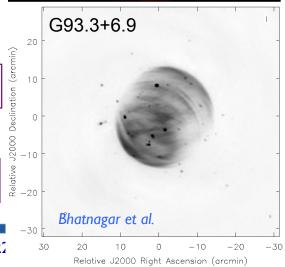
Cosmology & AGN: Brown et al., Mao et al., Spoalor et al.,

- AGN and Clusters of Galaxies, Feedback
- Star-forming Galaxies
- Weak Lensing

Clusters & Polarization: Clarke et al., Edge et al., Mao et al.

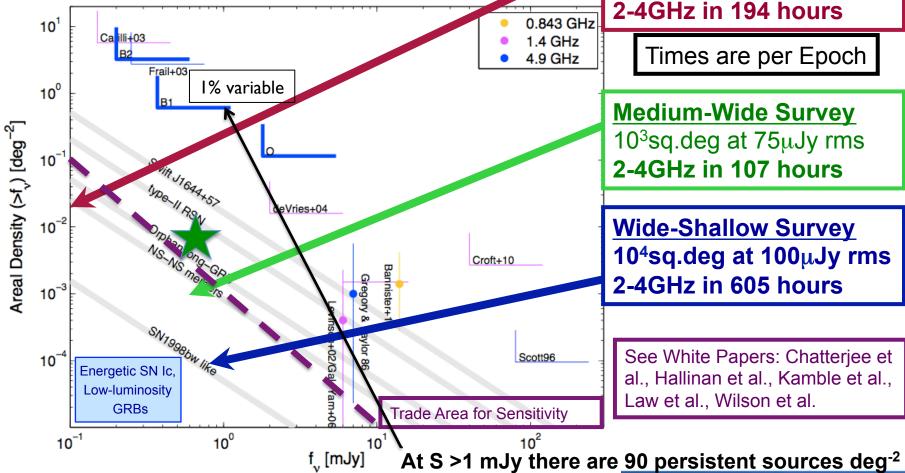
Cosmic Deep Fields: Hales et al., Jarvis et al., Richards et al., Wang et al.


- Large Area Survey for Transients & Faraday
 Tomography
 - Full Polarimetry for B-field Studies
 - EM Counterparts to GW events (LIGO/VIRGO)
 - Radio Bursts on timescales from 1ms to >1 year
- Galactic Plane and Center


Transients: Chatterjee et al., Hallinan et al., Kamble et al., Law et al., Wilson et al.

- Atomic and Molecular Lines from 0.2-50 GHz
- Stars and Stellar Systems

Galactica: Bastian et al., Bhatnagar et al., Sjouwerman et al., Mills et al.



The Dynamic Radio Sky with VLASS

Areal density vs. Flux density (Frail et al. 2011)

 $- N/t = S^{-1.5} / S^{-2} = S^{0.5}$ (shallow wins)

Deeper Narrower Survey 50sq.deg at 12.5μJy rms 2-4GHz in 194 hours

Times are per Epoch

Medium-Wide Survey 10³sq.deg at 75μJy rms

2-4GHz in 107 hours

Wide-Shallow Survey 104sq.deg at 100μJy rms 2-4GHz in 605 hours

See White Papers: Chatterjee et al., Hallinan et al., Kamble et al., Law et al., Wilson et al.

Why a VLASS Now? Capability is Here Now

The Cosmic View:

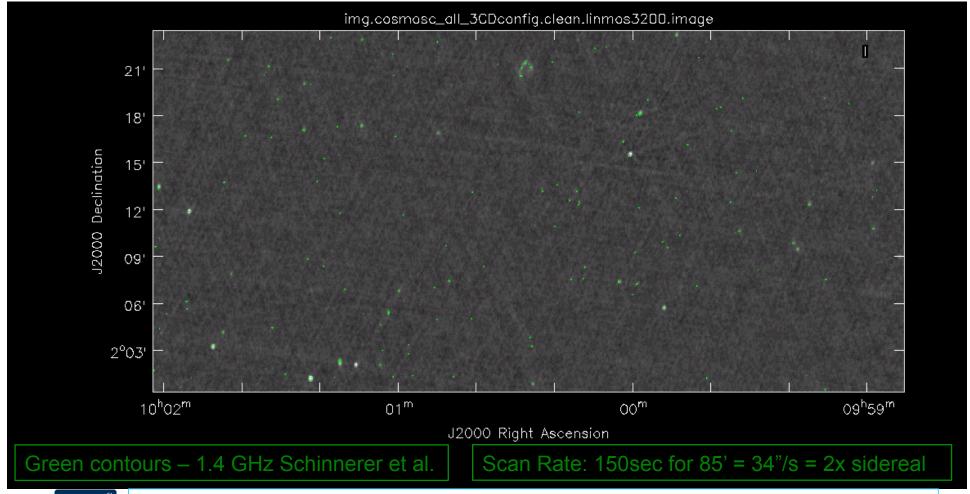
- Radio galaxy surveys need wide areas at substantial depth
- Arc-second or better resolution for identification
- Other multi-wavelength surveys, co-observing opportunities
 - ALMA science in obscured and distant Universe

The Dynamic View:

- Synoptic surveys need time baseline (5+ years)
- Characterize the "null" (static+variable) sky
- Find optimal band to minimize variable "background"
 - Lay groundwork for LIGO & LSST era

Prepare for the Future – Science Proving Ground for SKA

Key Jansky VLA Enabling Technologies


- Tremendous advances in performance since FIRST/NVSS (1993-2002)!
- Wide-bandwidth correlator instantaneous 2GHz to 8GHz
- High Time Resolution 5ms to 1s possible (data rate limited)
- "On-the-Fly" (OTF) mosaicking for efficient coverage of large areas
 - Scan telescopes continuously stepping phase centers
 - Demonstrated with scan rates up to ~6'/s
 - Areal Survey Speeds of 16 deg²/hr at 100μJy (rms) proven
 - Speeds of 160 deg²/hr at 300μJy (rms) or higher plausible
 - Currently available only as part of Resident Shared Risk (RSRO)
 - Currently under extensive development and testing...
 - Image Processing support for OTF Mosaicking (in CASA)

See https://science.nrao.edu/facilities/vla/docs/manuals/obsguide/modes/mosaicking

OTF Now - COSMOS C-band C&Dsky VLA

• C & D-config C-band 3 epochs – OTF 3200² 2" cells – 5 I μJy rms (ZOOM IN)

13A-362 (Myers) C-band 1hr SB (4.2-5.2 + 6.5-7.5GHz) ~ 85μJy rms per epoch 2 square degrees / OTF scans in RA / 432 phase centers / Repeat bi-monthly.

Assembling the Survey – Example

- Multi-Tier Survey (integration/dwell times) Total 5614 (7017) hours
 - Tier I:30000 deg² all-sky
 - SI 2-4GHz in 2 configs to 100μ Jy (1815h)
 - Tier 2 : 10000 deg²
 - S2 2-4GHz in 2 epochs at 100μJy (1210h) [58 μJy S2+S1]
 - C2 4-8GHz in 2 config (B/D 8mos apart) at 100μJy (1400h)
 - Tier 3: 1000 deg² split into Gal Plane, Gal Cap, targets (Virgo? M31?)
 - S3 2-4GHz in 6 epochs at 100μ Jy (363h) [33 μ Jy S3+S2+S1]
 - C3 4-8GHz in 3 epochs at 100μJy (416h) [50 μJy C3+C2]
 - X3 8-12GHz in I epoch at 100μ Jy (338h)
 - L3 I-2GHz in 2 configs (A/C or B/D) at 100μJy (72h)
 - Science Case: multiple, see VLASS White Papers!
 - This "Survey" is intended as an example only, not a proposal.

See White Papers: Hales et al., Jarvis et al., Myers, Richards et al., Wang et al.

Jansky VLA

Maximizing Science Opportunity

- Enabling principles / Cultivating a Multi-wavelength Community View
 - Involve a broad *international* community in the SSG

- Open process, no proprietary data
- Design in opportunities for EPO and Citizen Science

- Range of available data products for science-ready utility
- Coordinate observations of key fields
- Enable co-observing by publishing survey schedules

- Flexible scheduling in response to events and opportunities
- Prompt analysis and publication of transient event alerts
- Quality control and assurance
- Data Products

See White Paper: Spuck et al. (EPO, Citizen Science)

- Calibrated uv data
- Basic images and catalogs, prompt with levels of quality assured
- More advanced products as added value by community

Survey Principles – all we need is "luck"

Legacy

- The VLASS must have science legacy value for decades to come

Uniqueness

 The VLASS must provide an important snapshot of the Universe unique in space and time

Complementarity

 The VLASS should maximize its utility in combination with other multiwavelength surveys current and planned

Quality

The VLASS should be carried out and processed in a manner that will provide to the broadest community the highest quality data and data
 products

Timeline – Stay Tuned!

Notional dates only, this is a draft schedule!

- I Feb 2014 SSG starts science design plan
- Feb Mar 2014 SSG Working Groups "meet" and plan
- 31 Mar 2014 SSG delivers science design plan
- I Apr 2014 SDG starts technical design plan
- ? Technical Design Workshop/CoDR in Socorro NM?
- I Jun 2014 Full Survey Proposal to NRAO director
- I-5 Jun 2014 Splinter Meeting at AAS 224 in Boston?
- Jan 2015 Community Workshop at AAS 225?
- Early 2015 first pilot or production observations in B-array?

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

www.nrao.edu • science.nrao.edu

