

Cosmology with the Radio Synoptic SKA (RSSKA)

Steven T. Myers

National Radio Astronomy Observatory
Socorro, NM

The RSSKA is part of the SKA Program

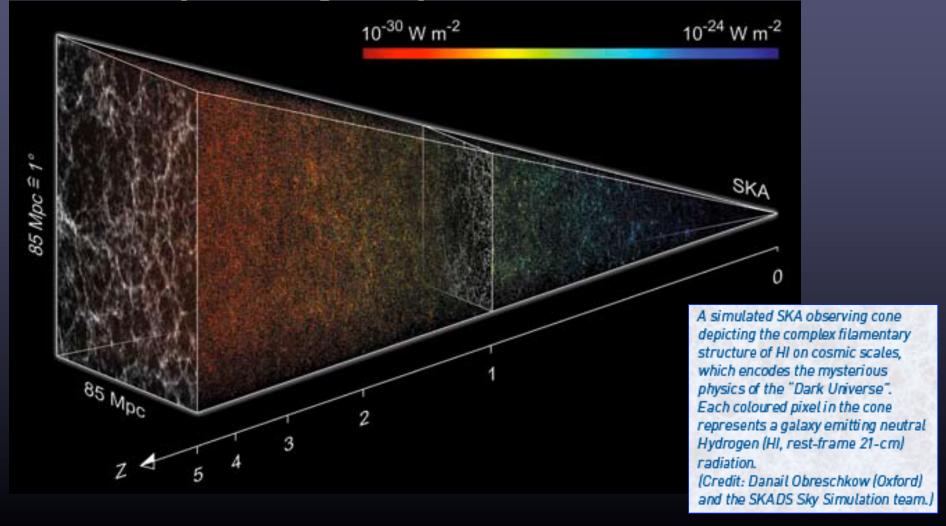
- The SKA is an international program to build the next generation of large radio arrays
 - SKA-low: 10-300 MHz
 - Epoch of Reionization (EoR) and Dark Ages Telescope (DAT)
 - Pathfinders/Precursors: MWA, PAPER, LWA, GMRT, LOFAR
 - SKA-mid : 0.3-10 GHz
 - the RSSKA!
 - Pathfinders/Precursors: ALFA, EVLA, ATA, ASKAP, MeerKAT
 - SKA-high: 1-50 GHz
 - Cosmic Star Formation and the "Cradle of Life"
 - Pathfinders/Precursors: EVLA, ATA, ALMA
 - Plan for 2025+?

The Radio Synoptic SKA (RSSKA)

- SKA as Radio Synoptic Survey Telescope (RSST)
 - say "risque"
- The RSSKA is ...
 - radio: HI core 0.4-1.4 GHz (0.3-10 GHz goal)
 - square kilometer: large collecting area for sensitivity
 - high gain/low noise A/T_{sys} > 10⁴ m² K⁻¹
 - survey telescope: wide-field for survey speed
 - survey speed FOM $\Omega(A/T_{svs})^2 > 4 \times 10^9 \text{ deg}^2 \text{ m}^4 \text{ K}^{-2}$
- Built for the Primary Science Goals
 - HI for Cosmology and Galaxy Evolution
 - Deep continuum imaging
 - Transient detection and monitoring

The Synoptic Part

- Revisit the sky regularly
 - if you want to cover 10⁴ deg² with 1deg² FOV
 - can do so in 1 day with 8s per deg²
 - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
 - many short visits or fewer longer ones?
 - looking for individual "bursts" or "pulses"?
 - looking for groups or trains of pulses?
 - classical variability curves (e.g. microlensing)?
 - also remember, many compact radio sources are variable (both intrinsic and scintillation)



RSSKA Science Key science drivers

Cosmology with the RSSKA

Survey of HI galaxy emission to z > 1

RSSKA Science: HI Cosmology

- "billion galaxy" HI survey
 - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
 - Baryon Acoustic Oscillations (BAO) $[\sigma_w \sim 0.01]$
 - cosmography of Universe d(z), $V(z) \Leftrightarrow H(z)$
 - growth of structure and Cosmic Web
 - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
 - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
 - RSSKA is in the DETF as a "Stage IV" project = SKA
 - mutual interest with the DOE community
 - engage O/IR extragalactic and cosmology communities
 - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

RSSKA for Cosmology

- RSSKA can see HI galaxies out to redshift z > 2
 - > 10^9 galaxies for 10^4 deg2
 - counts are HIMF dependent
 - needs sensitivity of SK area
- Survey Strategy
 - tradeoff between wide and deep
 - $1 \text{ Gpc}^3 \text{ comov} = 250 \text{ deg}^2 \text{ z} = 1.5$
- Cosmology
 - HI galaxies will have different bias to O/IR galaxies
 - we are working on simulations to see results of BAO and galaxy distribution function studies
 - redshifts are limited only by galaxy HI profile

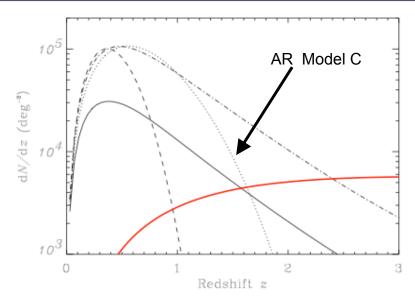
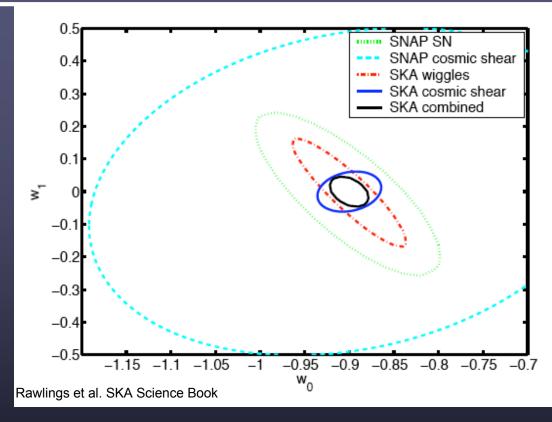


Figure 3. Predictions of dN/dz per deg² for an SKA survey with an exposure time of 4 hours, a signal-to-noise detection limit of 10 and assumptions about the properties of the HI-emitting galaxies and the SKA detailed in Sec. 2. The same linestyles are used as in Fig. 1 to discriminate between the different AR2004 models; the prediction of a 'no-evolution' model is shown by the solid (black) line. Also shown (thicker red line) is the surface density of galaxies needed for a survey to be limited by cosmic variance rather than shot noise (AR2004).

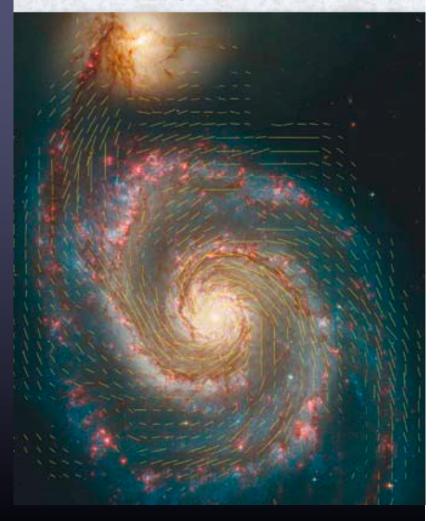
Rawlings et al. SKA Science Book


RSSKA for Dark Energy

- RSSKA as w-machine
 - 10⁹ galaxy BAO survey
 - also weak lensing (continuum)
 - target 0.01 in w
- Design Driver
 - target precision requires survey speed of 4-6 x 10⁹ m⁴K⁻²deg²
 - this is a SK area with 10 deg²
 FOV
 - would also like to identify individual galaxies (need arcsecond resolution)
 - survey database for other science

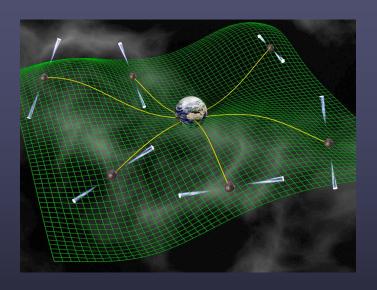
Options

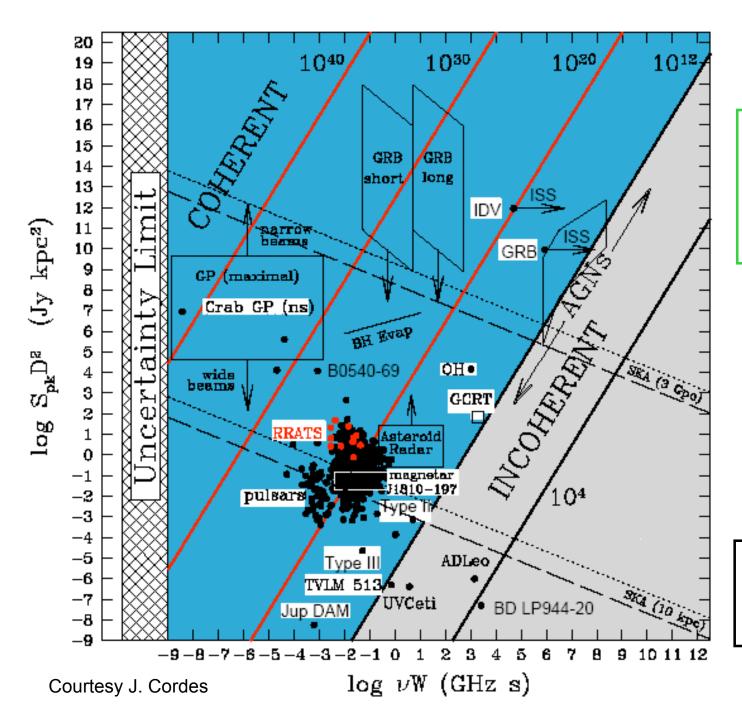
- might be able to do BAO power spectrum with ultra-compact Hydrogen array/telescope
- but will not be of general use...


Rawlings et al. SKA Science Book

RSSKA Science: Continuum

- Extremely deep (10 nJy) continuum survey
 - "billion" extragalactic radio sources
 - AGN
 - star-forming galaxies
 - SNR and HII regions in galaxies
 - weak lensing
- Census of rare phenomena
 - Gravitational Lenses (e.g. CLASS)
- Polarimetry
 - Rotation Measure (RM) survey
 - galactic and extragalactic magnetic fields


Optical image of the spiral galaxy M51 with the magnetic field determined from radio observations superimposed (Credit: Hubble Heritage/NASA/STSci, R.BECK/MPIfR)


RSSKA Science: Pulsars & Transients

- Bursty phenomena a new frontier
 - giant pulsar pulses out to Virgo
 - brown dwarf flares
- Variability
 - compact radio sources
 - intrinsic, IDV, scintillation, etc.
 - flares
 - GRB afterglows
- Exotica
 - UHE particles in lunar regolith
 - SETI
- Pulsars
 - provide spigot Pulsar Machine attachment

Pulsars discovered and monitored with the SKA will act like a cosmic gravitational wave detector, allowing the study of ripples in the fabric of spacetime that propagate at ultra-low frequencies. (Credit: D.Champion, M.Kramer/JBO)

Phase Space for Transients:

Detection limit for SKA:

 $S_{nk}D^2 > threshold$

← Prompt GRBs and GRB afterglows easily seen to cosmological distances

Giant pulses detectable to Virgo cluster

Radio magnetars detectable to Virgo

ET radar across Galaxy

$$kT_b = \frac{2S_{\rm pk}D^2}{(\nu W)^2}$$

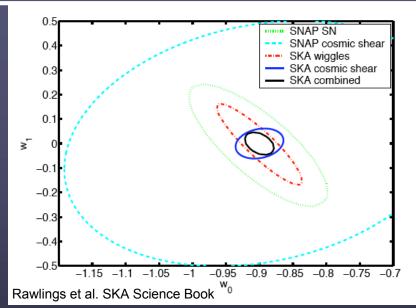
W = pulse width or characteristic time scale

RSSKA Key Science Surveys

- Key Projects (example)
 - Cosmological HI Large Deep Survey (CHILDS)
 - billion galaxies to z~1.5 (and beyond)
 - HI redshift survey for cosmology
 - galaxy evolution
 - Deep Continuum Imaging Survey (DeColS)
 - radio photometric and polarimetric survey (static sky)
 - commensal with CHILDS, extracted from spectral data
 - Transient Monitoring Program (TraMP)
 - bursts, variability, pulsars, etc.
 - commensal with other RSSKA surveys freeloading!
- These are part of one big survey (Big Sur)

Realizing the RSSKA

The RSSKA Roadmap



- RSSKA planning
 - US-SKA and International consortia drafting for Decadal Review
- Science Precursors
 - use EVLA, Arecibo, ATA, etc. to pioneer science areas
- Technology Demonstrators & Pathfinders
 - US-SKA TDP, ATA, EVLA, EOR projects, 1% SKA pathfinders)
- Staged Construction
 - milestones for construction and limited operation
 - e.g. a "10% RSSKA" for HI power-spectra?
- Operations and Staged Upgrade
 - Science Operations (20+ years)
 - US RSSKA Science Center? what is model for community involvement?
 - Upgrade Plan (10 years)
 - build into project (e.g. add multi-beam capabilities, computing upgrades)

Precursors: What we can do Now

- HI Cosmology Simulations
 - models to make credible projections
 - $\phi(M,z)$ and $f(M_H/M \mid M,z,\rho,...)$
 - link to halos
 - semi-analytics vs. N-body/hydro
 - galaxy counts vs. emission power spectrum
 - as in CMB (Wyithe & Loeb 2008)

- Science Precursors
 - what can we do NOW to pave the way?
 - HI in galaxies at z=0.5?
 - how to best use existing facilities?
 - big EVLA surveys (commensal?)
 - beyond ALFA?
 - ATA?

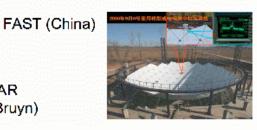
SKA Pathfinders

- ATA
- WSRT
- MWA
- **ASKAP**
- MeerKAT
- LOFAR
- LWA
- **PAPER**
- HHA
- **FAST**

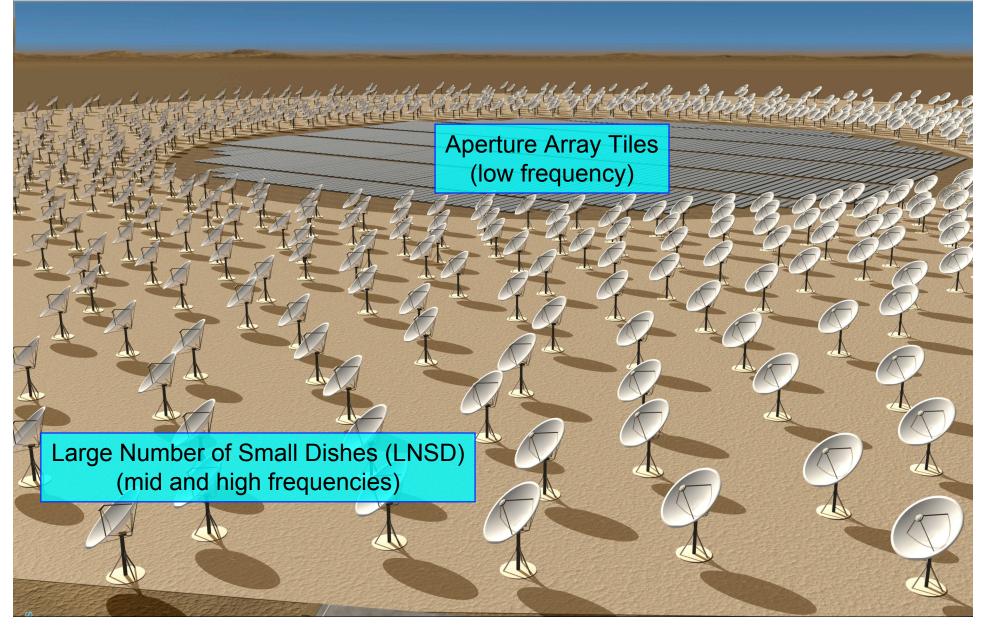
Lister Staveley-Smith (Spineto, 2007)

SKA Pathfinders

Allen Telescope Array (Blitz talk)



Hubble Hydrogen Array (Peterson)


LOFAR (de Bruyn)

Apertif WSRT

The SKA Artist's Concept

RSSKA HI: Descoping Issues

Draft Preliminary Specs v2.7.1

- 3000 x 15m single-pix survey speed
- 40x slower than SKA of AR2005
- could get back w/multi-feed upgrade
- or implement as separate Aperture Array
 - e.g. 4x scaled-up EOR array
- also configuration issues (core vs. res)

HI mass function

- z=2 HIMF steep above 10¹⁰ M_{sun}
- if M_{lim} x2 then N x 10⁻³ to 10⁻⁴ or worse!
 - in danger of getting < 10 million galaxies at z>1

Dark Energy not do-able with PS

- need SSFoM > $4-6 \times 10^9 \text{ m}^4\text{K}^{-2}\text{deg}^2$
- · is this important enough?
- this is a critical issue to deal with in RSSKA DR planning

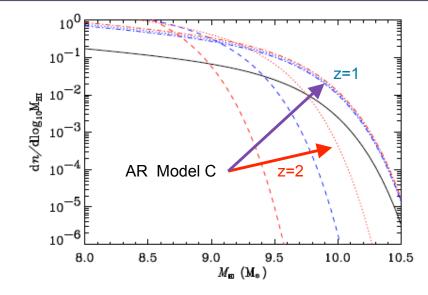


Figure 1. Predictions of the evolution in the HI mass function from AR2004. The dot-dashed lines show their 'Model A' at z=1 (lower, blue) and z=2 (upper, red) with the solid (black) line showing the measured local HI mass function (Zwaan et al. 2003). The dashed lines show their 'Model B' at z=1 (rightmost, blue) and z=2 (leftmost, red), and the dotted lines their 'Model C' at z=1 (upper, blue) and z=2 (lower, red).

How do we get to precision "DE" sensitivity?

Example: HI Survey Strategies

- Reference design (RD): 3000 15m antennas
 - only 0.36 of SKA (7500 m²/K vs. 20000 m²/K)
 - 40x slower than SKA for precision BAO (Abdalla & Rawlings 2005)
 - FOV = 0.73deg² at z=0 (1.4GHz) and 4.54deg² at z=1.5 (560MHz) "single pixel"
 - target: 10 deg² or more at z=0 (1.4GHz) need upgrade!
- Duration of Survey: 20 year mission
 - 5 years Wide, 5 years Deep, 3 years med-deep Galactic plane
 - 2 x 1 year ultra-deep fields (Galactic Center, Virgo deep, other?)
 - 5 years GO or TOO and follow-up (25%)
- Wide "Quarter Sky" = 10000 deg²
 - 8.64s per deg² per day = 4.38 hours per deg² in 5 years
 - RD: 19.9h per z=1.5 FOV per year
 - S_{lim} =1.75 μ Jy \Rightarrow M_{lim} =4.1x10⁹ M_{sun} at z=1.5 (Δv =0.38MHz)

Example: more HI Survey Strategies

- Deep region = 200 deg²
 - -432s per deg² per day = 219 hours per deg² in 5 years
 - RD: 110h per z=1.5 FOV per year
 - $S_{lim} = 0.39 \mu Jy \Rightarrow M_{lim} = 8.8 \times 10^8 M_{sun} \text{ at } z = 1.5 \ (\Delta v = 0.38 MHz)$
- Medium-deep Gal Plane Survey = 750 deg²
 - 115.2s per deg² per day = 35 hours per deg² in 3 years
 - RD: 25 hours per z=0 FOV
- Ultra-Deep field = 4.5 deg²
 - 173s per deg² per day = 1931 hours per deg² per year
 - RD: 1931 hours per z=1.5 FOV per year
 - S_{lim} =0.13 μ Jy \Rightarrow M_{lim} =3x10⁸ M_{sun} at z=1.5 (Δv =0.38MHz)

RSSKA in Perspective

- A square kilometer array is
 - 100 times the size of the EVLA (10x Arecibo)
 - would take 2700 VLA 25-m dishes
 - take ~10⁴ times the processing of the VLA
 - would take 12000 12-m dishes
 - take ~10⁵ times the processing of the VLA
- Equivalent EVLA data rates ~250 MB/s
 - RSSKA would be ~2.5TB/s to 25TB/s
 - data volumes ~200 to 2000 PB per day
 - there are higher rate modes (transients)
 - cannot store all raw data, only products (images)
 - it will come down to "real time" imaging & processing

Challenges

- Scope of RSSKA
 - current design is as "general purpose" radio array
 - could cut costs by:
 - relaxing upper frequency (10GHz) to 3 GHz
 - possibly by focusing on low-resolution power spectra
 - aperture (dipole) arrays like EOR-SKA (but 1/4 wavelength)
- Costing of RSSKA
 - technology choices, wide-field upgrades, computing
- Data Management
 - is >1/3 the capital cost, and thus must be designed
 - how much processing is "real-time"?

Great Surveys and the RSSKA

Making a Map of the Universe

The Whole Universe Telescope

- must see all the universal constituents
 - luminous matter stars, HII regions, thermal emissions
 - quiescent gas HI, molecular clouds and cores
 - planetary objects exo-planets, proto-planetary & debris disks
 - energetic particles cosmic rays, "jets", neutrinos
 - magnetic fields galactic, intergalactic, cosmological
 - collapsed objects black holes, AGN, pulsars, gravity waves
 - dark matter galaxy/cluster cores, gravitational lensing, direct
 - dark energy cosmological
 - gravity waves gravitational collapse, GW background
- The RSSKA is part of this future

Great Surveys for a "2020 Vision"

- The SKA is part of a grand vision for the coming decades, including:
 - Large Synoptic Telescope (LSST, Pan-STARRS)
 - Giant Segmented Mirror Telescope (GSMT)
 - Square Kilometer Array (RSSKA, EoR/DAT)
 - Great Space Surveys (JDEM, LISA, ConX, CMBPol)
- These next-generation telescopes are not just great observatories, but are parts of a Great Survey of the Universe
 - These are the instruments that we want to have available to do our science in 2015+

Common Cause

- All these next-generation surveys and telescopes have challenges
 - in particular in the Data Management area!
- The Science is cross-cutting
 - multi-wavelength (or particle) and multi-instrument
 - interest is multi-agency (NSF, DOE, NASA, other)
 - realize the Whole Universe Telescope
- "Great Surveys" Workshop
 - bring together workers from the next-gen projects
 - hold in Santa Fe in November 20-22 2008
 - organization underway

For more information...

- RSST Proto-White Paper (draft)
 - on the Arecibo Frontiers conference website:
 http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- my RSST/RSSKA page
 - http://www.aoc.nrao.edu/~smyers/rsst
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book"
 - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
 - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
 - others...