

The Next Generation of Radio Interferometers Principles, Challenges, and Plans for the RSST Square Kilometer Array Concept

Steven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Los Alamos National Laboratory – 13 Nov2007

What I will talk about...

Part I

- Principles of Radio Interferometry
- Techniques of Interferometric Imaging
- Challenges Ahead

Part II

- The Square Kilometer Array / RSST
- The path forward here in NM

Part I: Principles of Radio Interferometry and Image Processing

Interferometric Imaging

- Principles of Interferometry

 Interferometry 101
- Techniques of Interferometric Imaging
 - Imaging algebra
 - Maximum Likelihood (Optimal) Maps
 - Dirty Maps
 - Deconvolution
 - Model Spaces and Multiscale Methods
 - Self-calibration
- Challenges Ahead

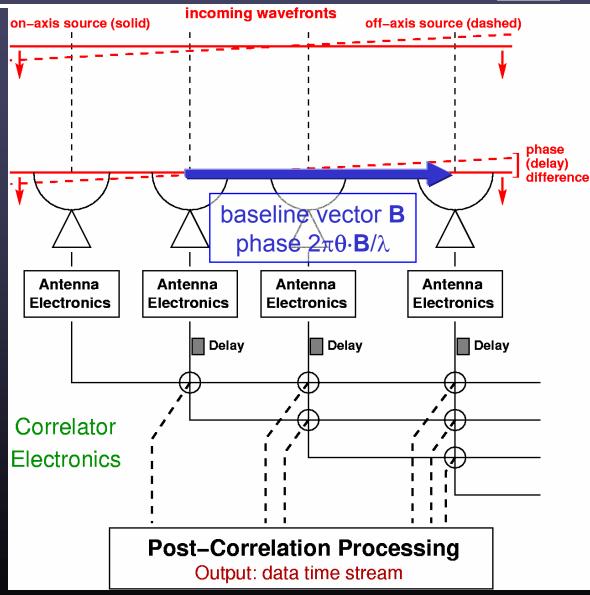
Radio Interferometry

Traditional Inteferometer – The VLA

- The Very Large Array (VLA)
 - 27 elements, 25m antennas, 74 MHz 50 GHz (in bands)
 - independent elements \rightarrow Earth rotation synthesis

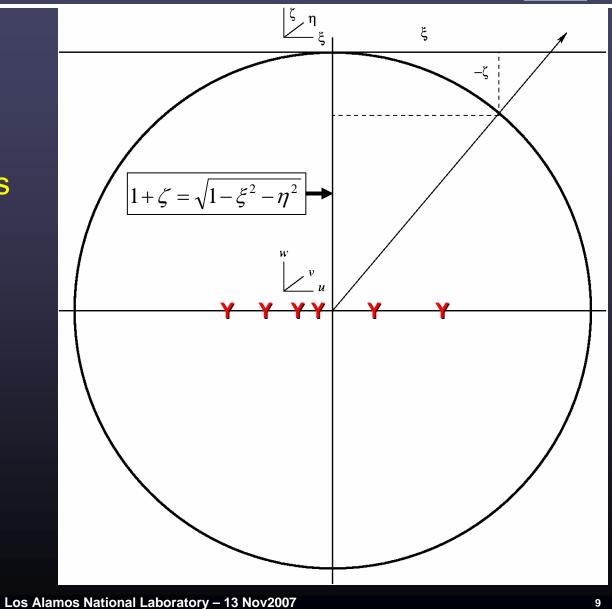
CMB Interferometer – The CBI

- The Cosmic Background Imager (CBI)
 - 13 elements, 90 cm antennas, 26-36 GHz (10 channels)
 - fixed to platform, telescope rotation synthesis!


Cosmic Background Imager

Fundamental Physics with CMBR – March 24, 2006

Radio Interferometer – schematic


- Spatial coherence of radiation
 - wave-front correlations
 - structure of source
- Correlate pairs of antennas
 - "visibility" = correlated fraction of total signal, calibrated as flux density
 - correlate real (cosine) and imaginary (90° shift=sine): amplitude and phase
- Function of baseline **B**
 - measures spatial frequencies *u* = *B* / λ
 - longer baselines = higher resolution
 - similar to double-slit interference and diffraction

Standard sky geometry

- sky:
 - unit sphere
 - tangent plane
 - direction cosines
 - $-\xi = (\xi, \eta, \zeta)$
- interferometer:
 u = B / λ
 - $-\mathbf{u} = (u, v, w)$
- project planewave onto baseline vector
 - phase 2π ξ**-u**

Wavefront correlations

• Sum wavefronts over (incoherent) source distribution

$$V(u, v, w) = \iint \frac{d\xi d\eta}{1+\zeta} I(\xi, \eta) e^{i2\pi\xi \cdot \mathbf{u}}$$

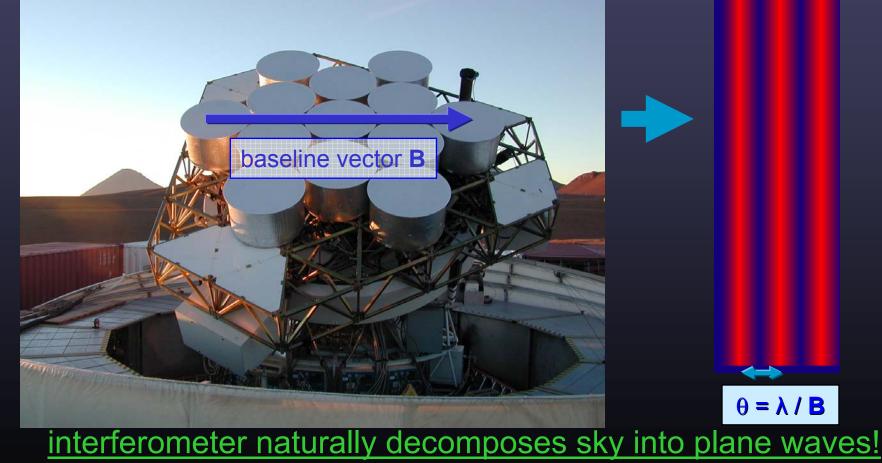
Visibility in *uv*-plane
$$\xi = (\xi, \eta, \zeta) \qquad \mathbf{u} = (u, v, w)$$
$$1+\zeta = \sqrt{1-\xi^2-\eta^2}$$

 for small fields-of-view can ignore w term, treat as 2D Fourier transform pair (Van Cittert-Zernicke theorem)

$$V(u,v) = \int dx dy I(x,y) e^{i2\pi(ux+vy)}$$

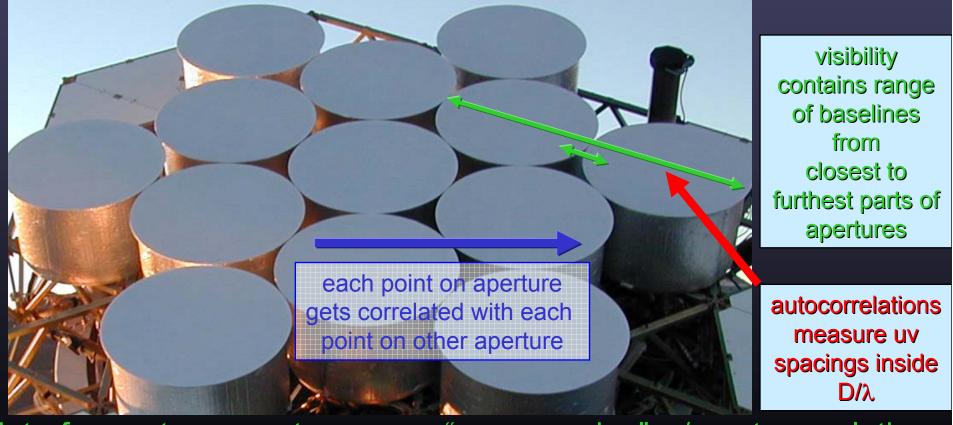
Basic Interferometry

- An interferometer naturally measures the transform of the sky intensity in *uv*-space convolved with aperture
 - cross-correlation of aperture voltage patterns in uv-plane
 - its transform **A** on sky is the primary beam with FWHM ~ λ /D
 - uv-plane convolution restricts field of view

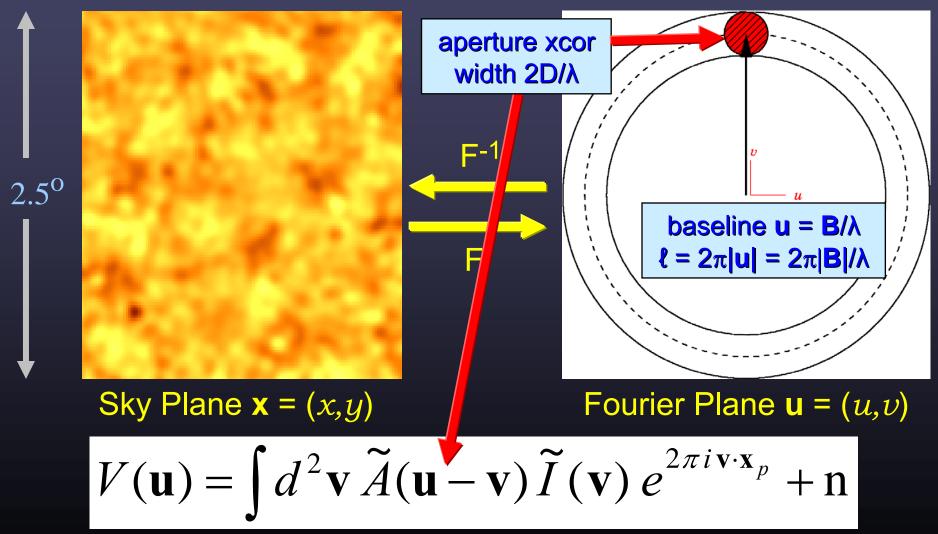

$$V(\mathbf{u}) = \int d^2 \mathbf{x} A(\mathbf{x} - \mathbf{x}_p) I(\mathbf{x}) e^{-2\pi i \mathbf{u} \cdot (\mathbf{x} - \mathbf{x}_p)} + \mathbf{e}$$
$$= \int d^2 \mathbf{v} \widetilde{A}(\mathbf{u} - \mathbf{v}) \widetilde{I}(\mathbf{v}) e^{2\pi i \mathbf{v} \cdot \mathbf{x}_p} + \mathbf{e}$$

- For small (sub-radian) scales the spherical sky can be approximated by the Cartesian tangent plane
 - spherical harmonics can be approximated as a Fourier transform for The conjugate variables are customarily (*u*,*v*) in radio interferometry, with $|\mathbf{u}| = \ell / 2\pi$ for spherical harmonic multipole $\ell >>1$

Interferometer Baselines


- Baseline vector **B** in "aperture plane"
 - coherent signal applied to interferometer would produce plane-wave interference "fringe" on sky with angular period λ /B

The Aperture Plane


- Correlate wavefronts in plane of apertures (Fourier transform of sky)
 - dish optics sum aperture plane at focus
 - visibility is cross-correlation of wavefronts of the 2 apertures

From sky to uv-plane

The *uv*-plane is the Fourier Transform of the <u>tangent plane</u> to the sky

Polarization – Stokes parameters

- CBI or VLA receivers can observe RCP or LCP

 cross-correlate RR, RL, LR, or LL from antenna pair
- Correlation products (RR,LL,RL,LR) to Stokes (I,Q,U,V) :

$$\begin{pmatrix} \left\langle e_{R} \ e_{R}^{*} \right\rangle \\ \left\langle e_{R} \ e_{L}^{*} \right\rangle \\ \left\langle e_{L} \ e_{R}^{*} \right\rangle \\ \left\langle e_{L} \ e_{L}^{*} \right\rangle \end{pmatrix} = \begin{pmatrix} I + V \\ (Q + iU)e^{-i2\theta} \\ (Q - iU)e^{i2\theta} \\ I - V \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & e^{-i2\theta} & ie^{-i2\theta} & 0 \\ 0 & e^{i2\theta} & -ie^{-i2\theta} & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

• note – similar relation for XY feeds

Polarization Interferometry : Q & U

Parallel-hand & Cross-hand correlations
 – for visibility k (antenna pair ij, time, pointing x, and channel v) :

$$V_{k}^{RR}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \,\widetilde{A}_{k}^{RR}(\mathbf{u}_{k} - \mathbf{v}) \,\widetilde{I}_{\nu}(\mathbf{v}) \, e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{e}_{k}^{RR}$$
$$V_{k}^{RL}(\mathbf{u}_{k}) = \int d^{2}\mathbf{v} \,\widetilde{A}_{k}^{RL}(\mathbf{u}_{k} - \mathbf{v}) \,\widetilde{P}_{\nu}(\mathbf{v}) \, e^{-i2\psi_{k}} \, e^{2\pi i \mathbf{v} \cdot \mathbf{x}_{k}} + \mathbf{e}_{k}^{RL}$$

- where kernel A is the aperture cross-correlation function, and

$$\widetilde{P}(\mathbf{v}) = \widetilde{Q}(\mathbf{v}) + i\widetilde{U}(\mathbf{v}) = \left|\widetilde{P}(\mathbf{v})\right| e^{i2\phi(\mathbf{v})}$$

– and ψ the baseline parallactic angle (w.r.t. deck angle 0°)

$$\psi_k = \tan^{-1}(v_k/u_k) - \psi_{ij0}$$

Interferometric Image Processing

From sky to Fourier domain

- The Fourier Transform
 - the sky in the image domain

 $s : s_i = s(\mathbf{x}_i)$

the Fourier domain ("uv-plane")

 \underline{s} : $\underline{s}_l = \underline{s}(\mathbf{u}_l)$

 $\mathbf{x}_{i} = (x_{i}, y_{i})$

 $\mathbf{u}_l = (u_l, v_l)$

- the Fourier kernel

 $s = F \underline{s} \iff \underline{s} = F^{-1} s$

$$F_{il} = e^{2\pi i \mathbf{u}_l \cdot \mathbf{x}_i} \iff F_{li}^{-1} = e^{-2\pi i \mathbf{u}_l \cdot \mathbf{x}_i}$$

Visibilities

• Visibility in the uv-plane

$$\underline{v} = \underline{A} \underline{s} + \underline{n}$$

$$\underline{v}_{k} = \underline{v}(\mathbf{u}_{k})$$

- aperture (cross-correlation) function A
- instrumental noise <u>n</u>
- The Aperture Function
 - the cross-correlation of the voltage pattern of the two apertures forming the baseline

$$\underline{\mathbf{A}}_{kl} = \widetilde{A}(\mathbf{u}_k - \mathbf{u}_l) e^{-2\pi i \mathbf{u}_l \cdot \mathbf{x}_k}$$

Example: VLA observes Jupiter

• A 6cm VLA observation of Jupiter:

Reconstruction of the Sky

Visibilities and the Sky

- however: <u>A</u> is <u>not invertible</u>
- instrumental noise <u>n</u> is a <u>random variable</u>
- The issues:
 - unknown random noise <u>n</u>
 - convolution due to size of <u>A</u> in uv domain
 - incomplete sampling of uv-plane by visibilities
- One approach statistical inference:
 - Maximum Likelihood Estimation

Maximum Likelihood Reconstruction

• The noise and its covariance

$$\underline{n} = \underline{v} - \underline{A} \underline{s} \qquad : \qquad \underline{N} = < \underline{n} \underline{n}^{\mathsf{T}} >$$

– if noise is uncorrelated (Gaussian) then \underline{N} is diagonal

 $\underline{N}_{kk'} = \sigma_k^2 \, \delta_{kk'}$

The likelihood function

$$\mathcal{L}(\underline{\mathbf{s}} \mid \underline{\mathbf{v}}) = \det(2\pi\underline{\mathbf{N}})^{-\frac{1}{2}} \exp\left[-\frac{1}{2}(\underline{\mathbf{v}} - \underline{\mathbf{A}}\underline{\mathbf{s}})^T \underline{\mathbf{N}}^{-1}(\underline{\mathbf{v}} - \underline{\mathbf{A}}\underline{\mathbf{s}})\right]$$

- find map <u>m</u> that maximizes L

 $dL/d\underline{s}|_{\underline{s}=\underline{m}} = 0$ - Maximum Likelihood Estimate (MLE) :

$$m_{\text{MLE}} = (\underline{A}^{\mathsf{T}} \underline{N}^{-1} \underline{A})^{-1} \underline{A}^{\mathsf{T}} \underline{N}^{-1} \underline{V}$$

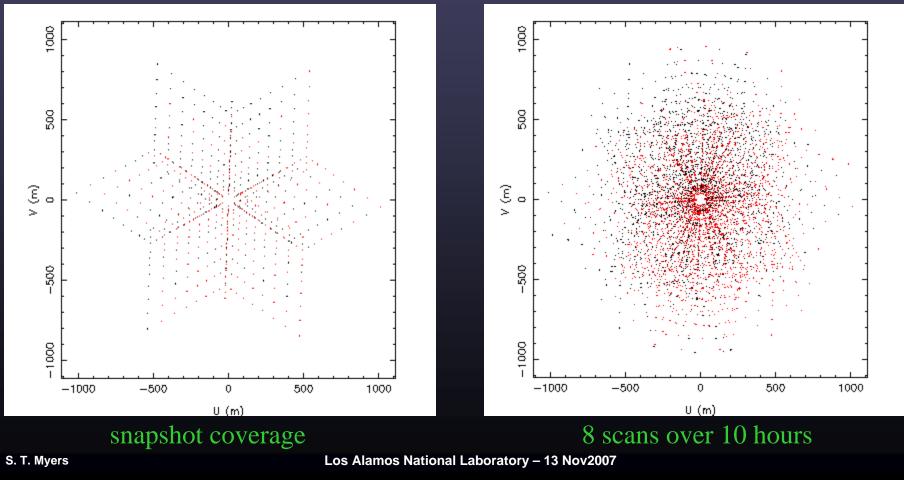
The Optimal Map

• The MLE map

 $m_{\mathsf{MLE}} = (\underline{A}^{\mathsf{T}} \underline{N}^{-1} \underline{A})^{-1} \underline{A}^{\mathsf{T}} \underline{N}^{-1} \underline{V}$ - refactor in terms of gridding and deconvolving $\underline{m} = \underline{R}^{-1} \underline{d} \qquad \underline{d} = \underline{H} \underline{V} = \underline{R} \underline{s} + \underline{n}_{\mathsf{d}}$ - with kernels $\underline{R} = \underline{H} \underline{A} \qquad \underline{H}_{\mathsf{MLE}} = \underline{A}^{\mathsf{T}} \underline{N}^{-1} \qquad \underline{R}_{\mathsf{MLE}} = \underline{A}^{\mathsf{T}} \underline{N}^{-1} \underline{A}$ - noises

- $\underline{n}_{d} = \underline{H} \underline{n} \qquad \underline{N}_{d} = < \underline{n}_{d} \underline{n}_{d}^{\mathsf{T}} > = \underline{H} \underline{N} \underline{H}^{\mathsf{T}}$
- The problem:
 - <u>**R**</u> is singular (or at best ill-conditioned) for fully sampled <u>s</u>

The Dirty Map



- Grid onto sampled uv-plane $\underline{d} = \underline{H} \underline{v} = \underline{H} \underline{s} + \underline{n}_{d}$ - <u>**H**</u> should be close to <u>**H**</u>_{MLE}, e.g. $\underline{H} = \underline{B}^{\mathsf{T}} \underline{N}^{-1} : \underline{B} \sim \underline{A}$ - **B**^T should sample onto suitable grid in uv-plane $d = F d = R s + n_d$ $R = F R F^{-1}$ – image is "dirty" as it contains artifacts convolution by "point spread function" (columns of R)
 - multiplication by response function (diagonal of R)
 - noise

VLA uv coverage

- The VLA is an example of a sparsely filled array
 - there are many unmeasured Fourier modes in uv-plane
 - image reconstruction from incomplete uv-coverage ambiguous

VLA point-spread function (PSF)

- The VLA is an example of a sparsely filled array
 - uv-plane gaps are treated as zeroes, cause "sidelobes" in PSF
 - many solutions for sky that fit data, "dirty image" is principal solution
 - must use "deconvolution" techniques to "clean" image

Example: VLA 30s snapshot discovery data for gravitational lens CLASS B1608+656 (Myers et al. 1995, ApJL, 447, L5-L8)

Image, uv, and Data Spaces

- image plane ⇔ uv-plane ⇔ visibilities
 - operators F , H , A handle these transformations
 - not all operators have inverses (<u>H</u> and <u>A</u> do not)
- example: model image m
 - first transform sky model to uv-plane

<u>m</u> = **F**⁻¹ m

- then project onto the visibilities (data space)

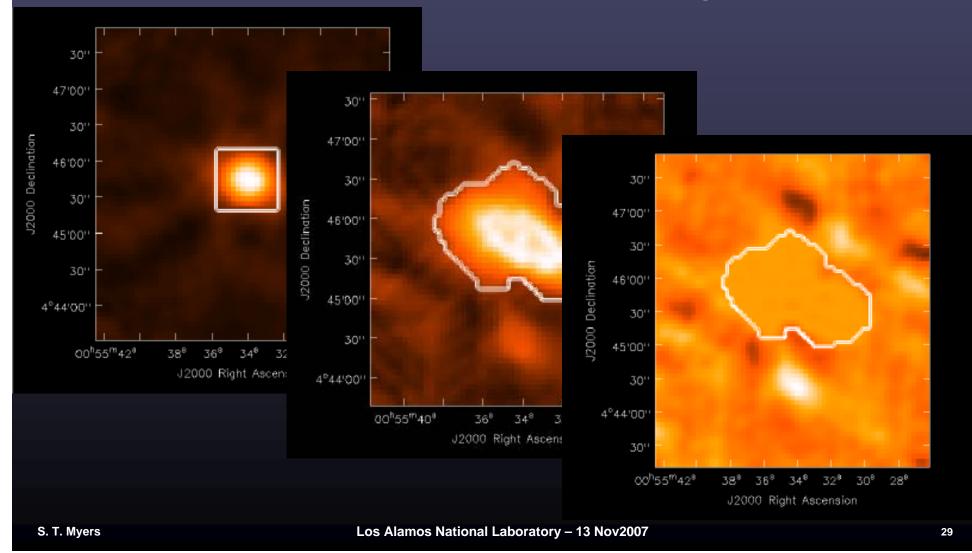
$$\underline{v}_{m} = \underline{A} \underline{m} = A \mathbf{F}^{-1} \mathbf{m}$$

- form residual

$$\underline{\delta v}_{m} = \underline{v} - \underline{v}_{m} = \underline{A} \left(\underline{s} - \underline{m} \right) + \underline{n}$$

- finding "best model" will involve minimizing this residual

Classic Deconvolution


- CLEAN algorithm
 - iterate on dirty residual images removing point models
 - initial residual data, and model: $\delta \underline{v}_0 = \underline{v}$ $m_0 = 0$
 - form dirty image: $d_0 = \mathbf{F} \mathbf{\underline{H}} \delta \mathbf{\underline{\nu}}_0$
 - locate peak and residual and put fraction *f* into model $\delta m_1 = f M d_0$ mask M : 1 at max, else 0
 - increment model: $m_1 = m_0 + \delta m_1$
 - form cumulative visibilities and residual
 - $\underline{v}_1 = \underline{A} \underline{m}_1 = \underline{A} \mathbf{F}^{-1} \mathbf{m}_1 \quad \delta \underline{v}_1 = \underline{v} \underline{v}_1$
 - form new dirty residual image: $\mathbf{d}_1 = \mathbf{F} \mathbf{H} \delta \mathbf{v}_1$
 - and repeat until final residual image d_f is noise-like

CLEAN Example

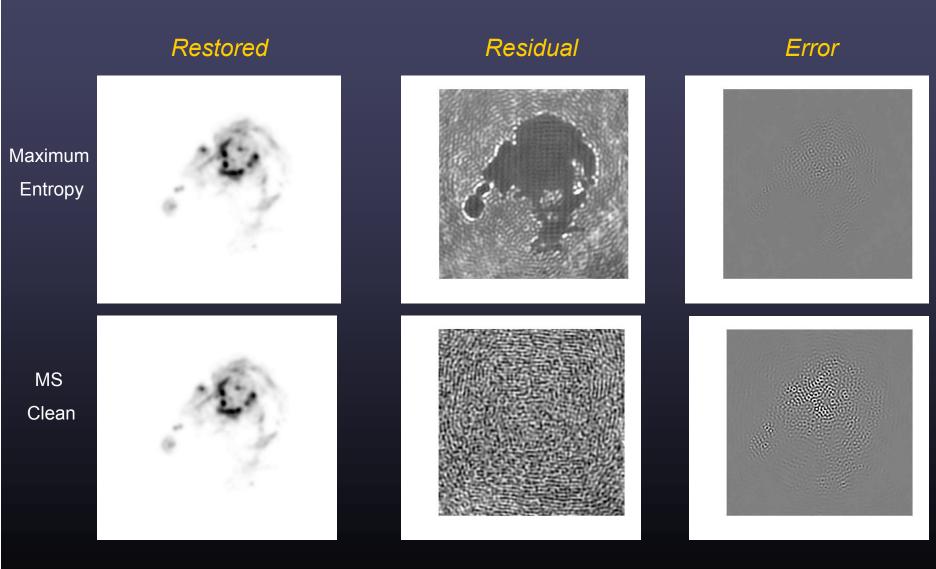
Jupiter 6cm – interactive cleaning in CASA

MEM and CLEAN

CLEAN

- <u>algorithm</u>: find peak in residual image; add fraction to model; form new residual data & residual image; iterate
- <u>performance</u>: good on compact emission, difficult for extended
- Maximum Entropy Method (MEM)
 - <u>algorithm</u>: for pixel values p : maximize entropy - Σ p ln p ; minimize $\chi^2(p)$
 - <u>performance</u>: complicated, suppresses spiky emission, but fast

CLEAN and MEM use point (pixel) basis – complete basis – unique representation of image


Sparse Approximation Imaging

- Problem: find a model to represent the sky as efficiently as possible, subject to the data constraints and within the noise uncertainty, possibly also subject to prior constraints.
 - some problems (like ours) cannot be efficiently reconstructed using orthonormal bases (like pixels or Fourier modes)
 - extensive literature on this!
 - use non-orthogonal bases: multiscale (e.g. Gaussians)
 - choose dictionary of model elements (atoms)
 - efficiency: find a representation that uses the fewest number of atoms

Example: MEM versus CLEAN

Los Alamos National Laboratory – <u>13 Nov2007</u>

The Future of Multiscale Methods

- Algorithms
 - mostly iterative, starting from a blank model
 - "greedy" methods make locally optimal choices at each step
- MS-CLEAN is a greedy algorithm in this class!
 - dictionary of points and Gaussians on different scales
 - is essentially a "Matching Pursuit" (MP) algorithm (e.g. Tropp 2004)
- Key Research Area for next decade
 - new arrays are designed for high dynamic range & fidelity
 - will need efficient, robust, and accurate multiscale methods
 - we are interested in collaboration with groups at LANL!

Challenges to the State of the Art

Challenges in Image Processing

- high data rates and large data volumes
- high dynamic range, high fidelity
- the multiscale problem
- direction-dependent calibration effects
- the ionosphere and atmosphere
- the EVLA and LWA will start to see these issues...

What is the EVLA?

- The Expanded Very Large Array
- retrofit VLA with state-of-the-art electronics
 - high-bandwidth fiber optic transmission
 - digitize signals at antennas
 - new wide-band digital correlator (up to 8GHz)
 - new receivers for full coverage from 1-50 GHz

The EVLA will provide

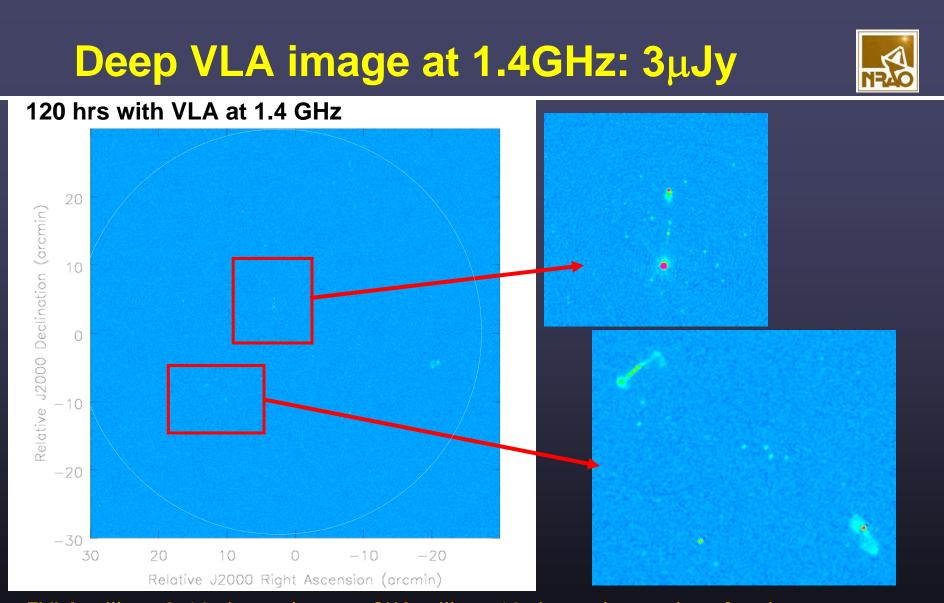
 High Data rates - 2008 spec 25 MB/s max (cf. VLA 0.1 MB/s) - sustained rate spec ramps up with time - WIDAR can produce much higher rates! Large Data Volumes - TeraByte datasets (25 MB/s = 2 TB/day) - thousands to millions of channels (16k - 4M) - will eventually need high-performance computing

How Much When?

Near Term (2008)

10 ant @ 1.5 GHz, commissioning, handle data

Ramp Up (2009-2010)

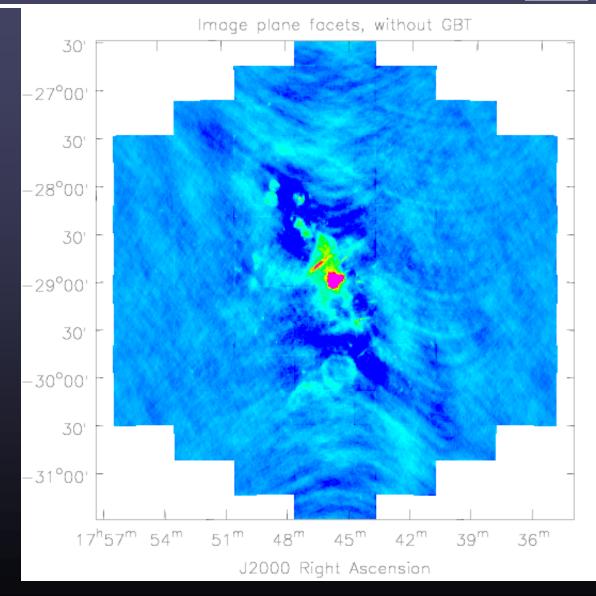

implement and use current best algorithms

Routine Use (2010-2012)

handle high-sensitivity wide-band continuum

Full Operation (2012+)

improve efficiency to handle maximum data rates


EVLA will go 3-10 times deeper, SKA will go 10 times deeper in a few hours We are already limited by calibration effects (e.g. pointing errors)

S. T. Myers

Los Alamos National Laboratory – 13 Nov2007

Galactic plane at 90cm

- Nord *et al.* observations
- AIPS IMAGR program using faceted transforms (Cornwell and Perley 1992)
- Poor deconvolution of extended emission
- Facet boundaries obvious

State of the Art: Wide-field image

- VLA B,C,D configs
- λ90cm
- imaged using wprojection to counter non-coplanar baselines effect
- deconvolved using Multi-scale CLEAN
- still residual errors and artifacts

Calibration and Imaging

- Some effects corrupt the visibilities
 - most are on a per-antenna basis, other per-baseline
 - antenna based effects can be "self-calibrated" out
- The Measurement Equation (ME)

$$V_{ij}^{obs} = \vec{J}_i \vec{s}_i \otimes \vec{J}_j^* \vec{s}_j^* = \left(\vec{J}_i \otimes \vec{J}_j^*\right) \left(\vec{s}_i \otimes \vec{s}_j^*\right)^{ideal}$$

– the Jones matrices \boldsymbol{J} contain the corruptions to V

$$\vec{V}_{ij}^{obs} = \vec{B}_{ij}\vec{G}_{ij}\vec{D}_{ij}\vec{E}_{ij}\vec{P}_{ij}\vec{T}_{ij}\vec{F}_{ij}\vec{V}_{ij}^{ideal}$$

– there are different corruption terms to the \boldsymbol{J}

gain G, pol leakage D, ionosphere F, parallactic angle P

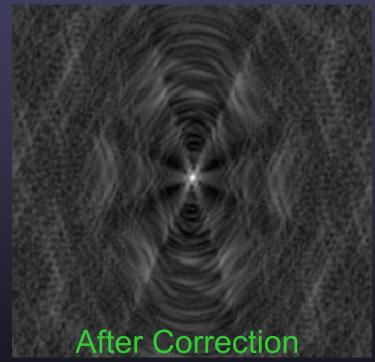
Jones Matrices

• The Jones matrices for the antennas are multiplied:

$$\begin{split} \vec{J}_i \otimes \vec{J}_j &= \vec{B}_i \vec{G}_i \vec{D}_i \vec{E}_i \vec{P}_i \vec{T}_i \vec{F}_i \otimes \vec{B}_j^* \vec{G}_j^* \vec{D}_j^* \vec{E}_j^* \vec{P}_j^* \vec{T}_j^* \vec{F}_j^* \\ &= \left(\vec{B}_i \otimes \vec{B}_j^* \right) \left(\vec{G}_i \otimes \vec{G}_j^* \right) \left(\vec{D}_i \otimes \vec{D}_j^* \right) \left(\vec{E}_i \otimes \vec{E}_j^* \right) \left(\vec{P}_i \otimes \vec{P}_j^* \right) \left(\vec{T}_i \otimes \vec{T}_j^* \right) \left(\vec{F}_i \otimes \vec{F}_j^* \right) \\ &= \vec{B}_{ij} \vec{G}_{ij} \vec{D}_{ij} \vec{E}_{ij} \vec{P}_{ij} \vec{T}_{ij} \vec{F}_{ij} \end{split}$$

• The total *Measurement Equation* has the form:

$$\vec{V}_{ij} = \vec{M}_{ij} \int \vec{B}_{ij} \vec{G}_{ij} \vec{D}_{ij} \vec{E}_{ij} (x, y) \vec{P}_{ij} \vec{T}_{ij} \vec{F}_{ij} S \vec{I}_{v} (x, y) e^{-i2\pi (u_{ij}x + v_{ij}y)} dx dy + \vec{A}_{ij}$$


- S maps the Stokes vector I to the polarization basis of the instrument
- M_{ij} and A_{ij} are multiplicative and additive baseline-based errors
- In general, all J_{ij} may be direction-dependent, so inside the integral....
- Direction-dependent terms must be dealt with in imaging
 - in particular, the polarization primary beam E

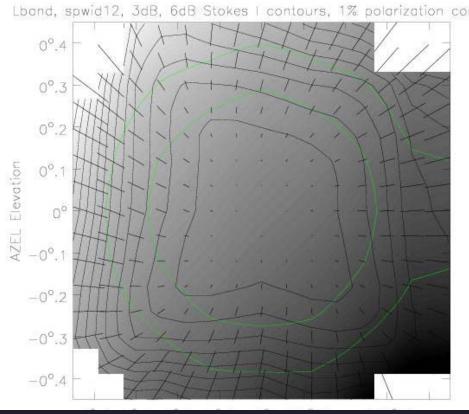
Calibration in Image Plane

Before Correction

 Calibration errors show up as artifacts in image plane:

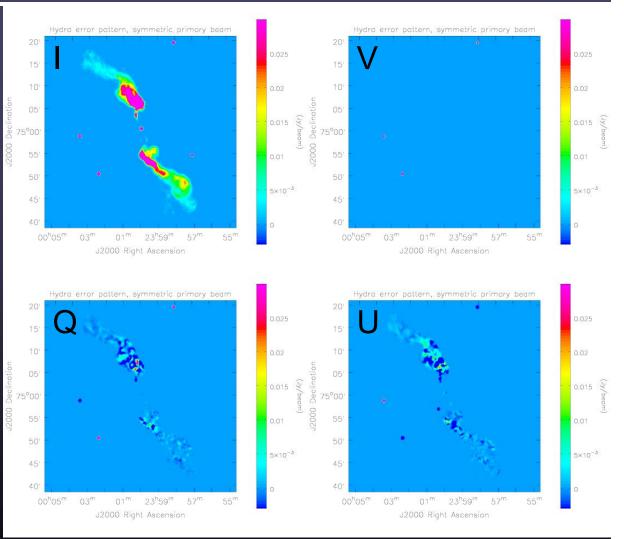
 given an approximate model for the image we can solve for the errors → "self-calibration"

Pointing Corrections


- Example of direction-dependent errors:
 - VLA antennas have ~10" pointing residual
 - affects high-dynamic range imaging
 - also "squint" between R and L beams
- Work by Sanjay Bhatnagar (NRAO)
- Simulation of 1.4GHz EVLA observations
- Residual images
 - Before correction: Peak 250 μ Jy, RMS 15 μ Jy
 - After correction: Peak 5µJy, RMS 1µJy
- Can incorporate into standard self-cal
- Computational cost ok for now
- See EVLA Memos 100 & 84
 - Implementing in CASA, testing underway

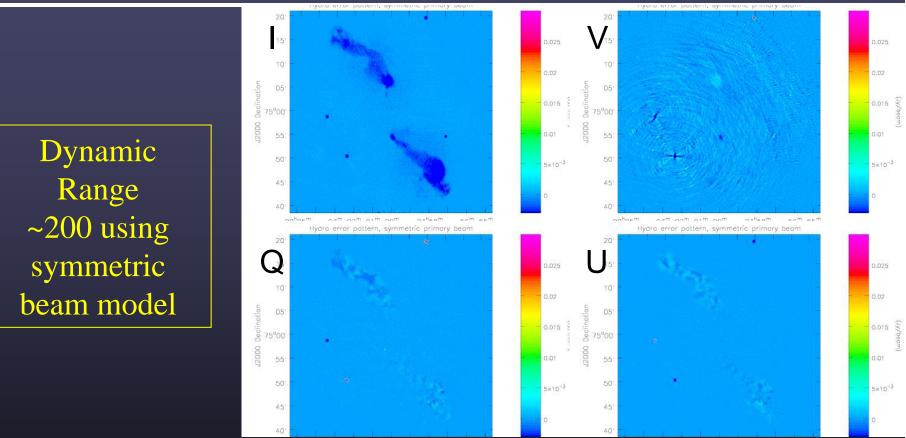
Primary Beam: full field polarization

- VLA primary beams
 - Beam squint due to off-axis system
 - Instrumental polarization offaxis
 - Az-El telescopes
- Instrumental polarization patterns rotate on sky with parallactic angle
 - Limits polarization imaging
 - Limits Stokes I dynamic range (via second order terms)
 - must implement during imaging

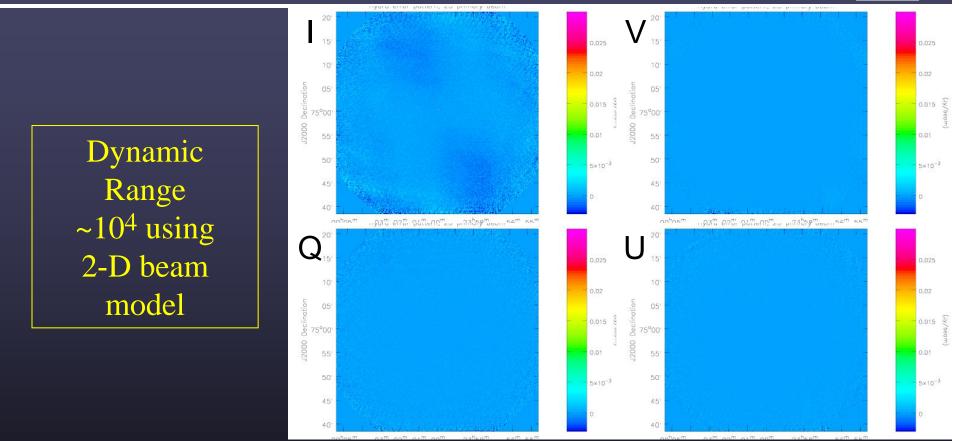


Green contours: Stokes I 3dB, 6dB, black contours: fractional polarization 1% and up, vectors: polarization position angle, raster: Stokes V

Simulations on a complex model

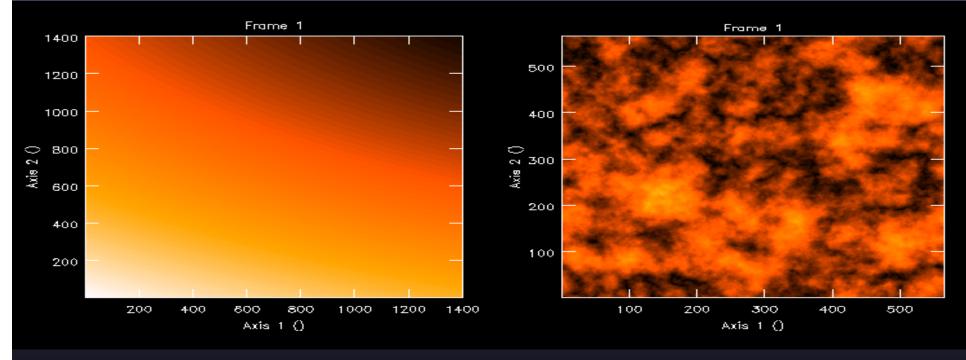


- VLA simulation of ~ 1 Jy point sources + large source with complex polarization ("Hydra A")
- Long integration with full range of parallactic angles
- equivalent to weak
 1.4GHz source observed
 with EVLA
- Antenna primary beam model by W. Brisken
- See EVLA memo 62


1-D Symmetric Beam

 dynamic range limited by errors from incorrect approximate primary beam

2-D Polarized Beam



 need to use accurate polarized beam to reach high fidelity and dynamic range

Simulated Phase Screen

• ionospheric simulation by A. Datta (NMT)

Present:

Single (time-variable) Gradient (dominant) & Curvature – good enough above 1 GHz?

Future:

Typical turbulent screen

Needed for A-config below 1GHz

High Performance Computing Needs

- High-fidelity imaging comes at high cost
 8^h VLA-A/Lband ~10h for 20 GB (1% EVLA)
- Parallel I/O
 - Parallelize gridding by data partitioning
- Parallel Algorithms and Codes
 - focus on parallelizing key bottlenecks
 - both multi-cores and clusters (MPI + OpenMP?)
- Pipeline Processing and Data Mining
 - data sets too large for interactive analysis
- Excellent area for LANL collaboration

Part II: The Future of Radio Interferometry and the Square Kilometer Array (SKA)

The Square Kilometer Array

- The SKA is an international "project" to construct one or more next-generation radio arrays with large collecting area
- SKA-low : 10 MHz 500 MHz
 - epoch of reionoization, ionosphere, relic radio emission
 - pathfinders: LWA, LOFAR, MWA, PAPER, GMRT
- SKA-mid : 300 MHz 3 GHz
 - 21cm neutral hydrogen line (HI), pulsars, AGN
 - pathfinders: ASKAP, MeerKAT
- SKA-high : 1 GHz 50 GHz
 - recombination lines, molecular lines, thermal emission

The Long Wavelength Array (LWA)



- Just got construction funding from ONR
- LWDA "demonstrator array" operating at VLA site:

52 stations of 128 dipoles

Los Alamos National Laboratory – 13 Nov2007

LWDA progress

100

Freq [MHz]

• First Light 2006-10-23: 24 hours 16 dipoles

1.0

0.5

0.0

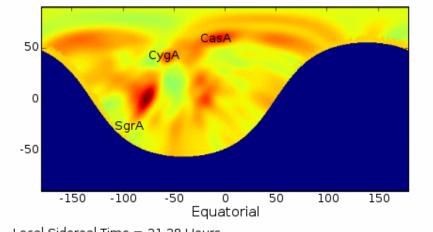
-0.5

-1.0

SgrA

-0.5

CasA


CygA

0.0

Horizontal ARL:UT / October 23, 2006

0.5

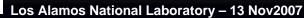
LWDA First Light (Autorange)

-55 60

-65

70

.75


-80 85

17.9 18.0 Time [UTC]

17.8

Type III solar bursts (2006-11-06) with "Big Blade" LWDA prototype

1.0

What is the RSST?

The Radio Synoptic Survey Telescope

- The RSST concept is for a "SKA-mid" facility
 - it is proposed here as the "SKA-mid" from a US science perspective
- Primary Science Goals
 - Cosmological HI
 - Deep continuum imaging of active galaxies and objects
 - Transient detection and monitoring
- Also
 - other redshifted lines (e.g. OH mega-masers)
 - pulsars, SETI, etc.

The RSST is ...

- Radio?
 - core frequency range 0.4-1.4 GHz (z<2.5) "HSST"</p>
 - some science cases may want 0.3-3 GHz (must justify \$\$)
- A Square Kilometer Array
 - square kilometer of something (not white papers)
 - high gain/low noise $A/T_{sys} \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1}$
 - don't throw away all that collecting area!
 - wide field-of-view, target 1 square degree
 - $A\Omega/T \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1} \text{ deg}^2 \sim n_a n_b/T$ "megapix"
- A Survey Telescope

- cover large areas of sky $10^4 \text{ deg}^2 = \frac{1}{4} \text{ sky}$

• survey speed (A Ω /T)(A/T) $\Delta v = n_a n_b A/T^2 \Delta v$

The Synoptic Part

- Revisit the sky regularly
 - if you want to cover 10⁴ deg² with 1deg² FOV
 - can do so in 1 day with 2-8^s per point
 - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
 - many short visits or fewer longer ones?
 - looking for individual "bursts" or "pulses"?
 - looking for groups or trains of pulses?
 - classical variability curves (e.g. microlensing)?
 - also remember, many compact radio sources are variable (both intrinsic and scintillation)

RSST Key Science Surveys

- Key Projects (example)
 - Cosmological HI Large Deep Survey (CHILDS)
 - billion galaxies to z~1.5 (and beyond)
 - HI redshift survey for cosmology
 - galaxy evolution
 - Deep Continuum Survey (DeCoS)
 - radio photometric and polarimetric survey (static sky)
 - commensal with CHILDS, extracted from spectral data
 - Transient Monitoring Program (TraMP)
 - bursts, variability, pulsars, etc.
 - commensal with other RSST surveys freeloading!

These are part of one big survey (Big Sur)

Is the RSST a ...

- National Facility?
 - well, its an international facility, but a National resource for US astronomers
- targeted experiment?
 - the primary science goals & key projects are big surveys
- general observer facility?
 - probably not primarily, but perhaps 10-25% of time could be made available for proposers (and for TOO)
- an exclusive club?
 - No! RSST must involve and support a large part of the US astronomy community

RSST Science

Science Precursors

- The case for precursor science do not just "stop everything" to build new stuff need science output throughout decade Use "current" facilities – Arecibo, EVLA, GBT, VLBA, ATA e.g. ALFALFA HI survey, large EVLA surveys also mm/sub-mm : ALMA, CARMA, CSO, etc. also other wavebands : O/IR, Xray, Gamma Ray, etc. Use in new (and complementary) ways pilot surveys and special targets
 - also science with SKA demonstrators (ASKAP, meerKAT)

RSST Science Example: HI Cosmology

- "billion galaxy" HI survey
 - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
 - Baryon Acoustic Oscillations (BAO)
 - cosmography of Universe d(z), $V(z) \Leftrightarrow H(z)$
 - growth of structure and Cosmic Web
 - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
 - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
 - mutual interest with the DOE community (JDEM)
 - engage O/IR extragalactic and cosmology communities
 - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

Current State of the Art in BAO

Four published results 1. Eisenstein et al 2005 (spectro-z) 3D map from SDSS 3% 46,000 galaxies in 0.72 (h⁻¹Gpc)³ 2. Cole et al 2005 (spectro-z) 3D map from 2dFGRS at AAO 5% 221,000 galaxies in 0.2 (h⁻¹Gpc)³ 3. Padmanabhan et al 2007 (photo-z) Set of 2D maps from SDSS 5% 600,000 galaxies in 1.5 (h⁻¹Gpc)³ 4. Blake et al 2007 (Same data as above)

SDSS 2.5-m telescope, Apache Point, NM

C Anglo-Australian Observatory

HI surveys are woefully behind in numbers of detections

Thanks to Pat McDonald (CITA)

AAO 4-m telescope at Siding Spring, Australia

Los Alamos National Laboratory – 13 Nov2007

RSST Science: A Broad Community

- More on the DOE & LANL connection
 - RSST "SKA" is a Phase IV project in the DETF report
 - addresses "Connecting Quarks to the Cosmos" questions
 - active astrophysics and cosmology groups at LANL
 - involved in SDSS, LWA, high-energy astrophysics
 - "Astro-Informatics" aspects
 - data mining and high-performance computing a lab mission
- Obvious connections to LST & DE projects
 - many of the same galaxies as LSST, PanSTARRS, DES
 - RSST can provide HI redshifts
 - complementary to galaxies seen in O/IR (e.g. HETDEX)
 - complete view of the Universe
 - "whole Universe telescope" sees gas and stars and dark matter

RSST Science Example: Continuum

- Extremely deep (10 nJy) continuum survey
 - "billion" extragalactic radio sources
 - AGN
 - star-forming galaxies
 - SNR and HII regions in galaxies
- Census of "rare" phenomena
 - Gravitational Lenses (e.g. CLASS)
- Polarimetry
 - Rotation Measure (RM) survey
 - galactic and extragalactic magnetic fields

RSST Science Example: Transients

- Bursty phenomena
 - giant pulsar pulses out to Virgo
 - brown dwarf flares
- Variability
 - compact radio sources (IDV, scintillation, etc.)
 - GRB afterglows
- Exotica
 - UHE particles in lunar regolith
 - SETI
- Pulsars
 - provide spigot Pulsar Machine attachment

RSST Roadmap

What really needs to happen

- Need to write a proposal for Decadal Review
 - assemble small "blue team" to write the case
 - need punchy science case
 - solidify numbers (simulations?)
 - remaining technical development? choices?
 - need "Phase A" level costing
 - put in front of "red team" next year
 - present to Decadal Review
- This is time critical if the community wants to participate in a "RSST" project, then must get this into the Decadal Review

The New Mexico connection...

- There is a core community in NM for RSST
 - groups at all NM institutions!
 - interest in HI, AGN, pulsars, transients
 - technology base in computing, informatics, hardware
 - surveys at all wave bands from 10MHz to 10²⁰eV!
- Forum for further NM action: NMC-IAS
 - New Mexico Consortium Institute for Advanced Study
 - LANL, UNM, NMSU, NMT (NRAO)
 - Astrophysics & Cosmology Center (ACCent)
 - RSST could be the subject of a Focus Group
- NM can play a significant role in RSST!
 - can get in now on the ground floor...

Challenges for the RSST Proposal

- Building the Science Case
 - e.g. comology with the RSST in 2020+
- Accurate Costing
 - both hardware and software
 - can we get a square kilometer? what are tradeoffs?
- Data Management component
 - what will it take to handle 1000's of antennas?
 - new algorithms, architectures, real-time processing...
- Research & Development plans
 - Technology Pathfinders
 - Science Precursors

Next Steps

- US-SKA group is leading DR drafting
- Teams being assembled for specific cases
 - HI and Cosmology group (Myers & Henning)
 - Data Mangement group
- Meetings and Workshops
 - "Early Science with SKA" AAS special session
 - AAS Austin, TX meeting Jan 2008
 - Proposed NMCIAS "Great Surveys" workshop July'08?
 - Bring together groups like SKA, SDSS, PanSTARRS, LSST, ...
 - Deal with science and technology issues (data management)
 - NRAO/NAIC workshop on HI Legacy surveys in 2008?
 - Science precursors with EVLA, Arecibo, ATA, others

Conclusion: Connections to LANL

Informatics & Sensing

- interferometric imaging = synthetic apertures (eg. radar)
- 3D ionospheric modeling = 3D radiative transfer
- connecting local and global ionospheric models
- detection of transients: cosmic ray showers, Solar and Jovian bursts, the dynamic ionosphere
- image reconstruction techniques
- statistical methods, maximum entropy, information theory
- high performance computing and data mining
- Beyond the Standard Model
 - next generation radio array: the Radio Synoptic Survey Telescope
 - the RSST is a "SKA" concept for imaging the universe in HI (0.4-1.4GHz)
 - LANL/DOE could play a major role from ground up (in white-paper stage)
 - Cosmic Explosions, Cosmic Magnetic Fields and UHE Cosmic Rays

For more information...

- RSST Proto-White Paper (draft)
 - on the Arecibo Frontiers conference website: http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book"
 - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
 - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
 - others...