

Surveying the Cosmic Web with the Radio Synoptic SKA (RSSKA)

## Steven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Cosmic Web, Socorro NM – 17 May 2008

#### The Radio Synoptic SKA



- SKA as Radio Synoptic Survey Telescope (RSST)
  say "risque"
  - there may be other RSST concepts out there (ATA?)
- The RSSKA is a "SKA-mid" facility
  - the "SKA-mid" from a US science perspective (for the Decadal Review)
  - this IS the International SKA! not a new project
- Built for the Primary Science Goals
  - HI for Cosmology and Galaxy Evolution
  - Deep continuum imaging
  - Transient detection and monitoring

### The RSSKA is part of the SKA Program



- The SKA is an international program to build the next generation of large radio arrays
  - SKA-low : 10-300 MHz
    - Epoch of Reionization (EoR) and Dark Ages Telescope (DAT)
    - Pathfinders/Precursors: MWA, PAPER, LWA, GMRT, LOFAR
  - SKA-mid : 0.3-10 GHz
    - the RSSKA!
    - Pathfinders/Precursors: ALFALFA, EVLA, ATA, ASKAP, MeerKAT
  - SKA-high: 1-25 GHz
    - Cosmic Star Formation and the "Cradle of Life"
    - Pathfinders/Precursors: EVLA, ATA
    - Plan for 2025+?

#### The RSSKA is ...



- Radio?
  - core frequency range 0.4-1.4 GHz (z<2.5) "HSST"</li>
    - some science cases may want 0.3-10 GHz (must justify \$\$)
- A Square Kilometer Array
  - square kilometer of something (not white papers)
  - high gain/low noise  $A/T_{sys} \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1}$

don't throw away all that collecting area!

- wide field-of-view, target 1 square degree
  - $A\Omega/T \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1} \text{ deg}^2 \sim n_a n_b/T$  "uv megapixels"
- A Survey Telescope

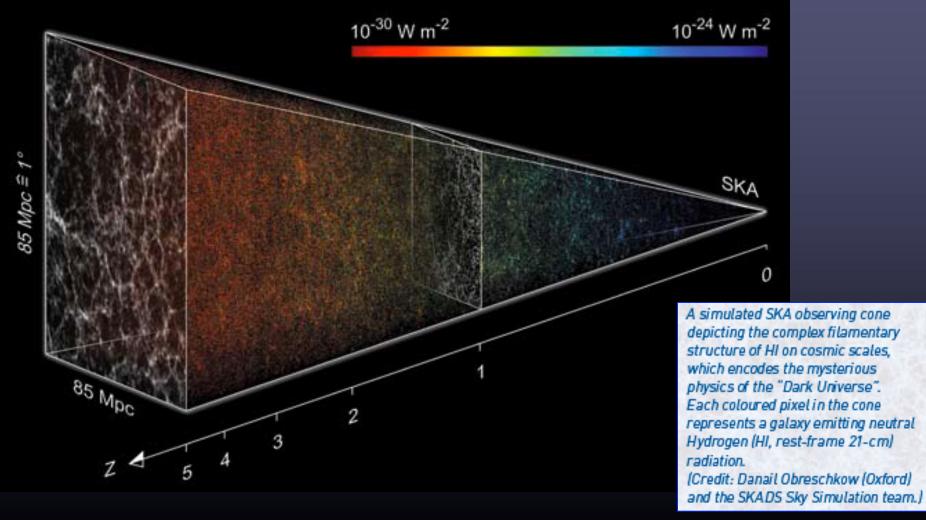
- cover large areas of sky  $10^4 \text{ deg}^2 = \frac{1}{4} \text{ sky}$ 

• survey speed (A $\Omega$  /T)(A/T) $\Delta v = n_a n_b A/T^2 \Delta v$ 

#### The Synoptic Part



- Revisit the sky regularly
  - if you want to cover 10<sup>4</sup> deg<sup>2</sup> with 1deg<sup>2</sup> FOV
  - can do so in 1 day with 8<sup>s</sup> per deg<sup>2</sup>
  - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
  - many short visits or fewer longer ones?
  - looking for individual "bursts" or "pulses"?
  - looking for groups or trains of pulses?
  - classical variability curves (e.g. microlensing)?
  - also remember, many compact radio sources are variable (both intrinsic and scintillation)




# RSSKA Science Key science drivers

#### The Cosmic Web with the RSSKA



#### Survey of HI galaxy emission to z > 1



#### **RSSKA Science: HI Cosmology**



- "billion galaxy" HI survey
  - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
  - Baryon Acoustic Oscillations (BAO)
  - cosmography of Universe d(z),  $V(z) \Leftrightarrow H(z)$
  - growth of structure and Cosmic Web
  - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
  - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
    - RSSKA is in the DETF as a "Stage IV" project
  - mutual interest with the DOE community (JDEM)
  - engage O/IR extragalactic and cosmology communities
  - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

#### **RSSKA for Cosmology**



- RSST can see HI galaxies out to redshift z > 2
  - > 10<sup>9</sup> galaxies for 10<sup>4</sup> deg2
  - <u>counts are HIMF dependent</u>
  - needs sensitivity of SK area
- Survey Strategy
  - tradeoff between wide and deep
  - 1 Gpc<sup>3</sup> comov = 250 deg<sup>2</sup> z=1.5
- Cosmology
  - HI galaxies will have different bias to O/IR galaxies
  - we are working on simulations to see results of BAO and correlation function studies
  - target precision requires survey speed of 4-6 x 10<sup>9</sup> m<sup>4</sup>K<sup>-2</sup>deg<sup>2</sup>

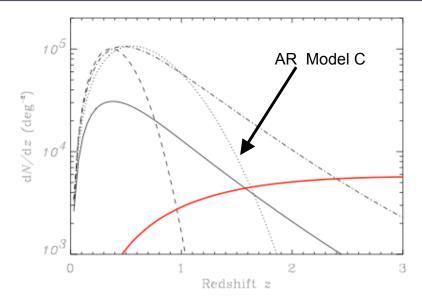



Figure 3. Predictions of dN/dz per deg<sup>2</sup> for an SKA survey with an exposure time of 4 hours, a signal-tonoise detection limit of 10 and assumptions about the properties of the HI-emitting galaxies and the SKA detailed in Sec. 2. The same linestyles are used as in Fig. 1 to discriminate between the different AR2004 models; the prediction of a 'no-evolution' model is shown by the solid (black) line. Also shown (thicker red line) is the surface density of galaxies needed for a survey to be limited by cosmic variance rather than shot noise (AR2004). Rawlings et al. SKA Science Book

#### **O/IR Spectroscopic BAO Surveys**

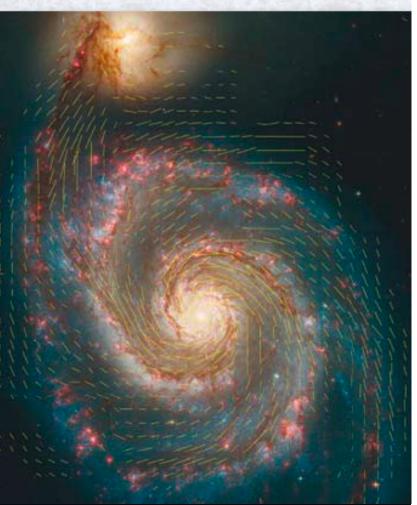


| Survey <sup>a</sup>          | Redshift<br>Range      | Sky Area<br>(deg²) | Millions of<br>Galaxies | Effective<br>Volume <sup>b</sup><br>(Gpc <sup>3</sup> ) <sup>c</sup> |
|------------------------------|------------------------|--------------------|-------------------------|----------------------------------------------------------------------|
| ADEPT                        | 1 < <i>z</i> < 2       | 28,600             | ~100                    | 180                                                                  |
| SDSS<br>DR4 Main+2dF         | z < 0.3                | 7,000              | 0.7                     | 0.50                                                                 |
| SDSS<br>LRG                  | 0.16 < <i>z</i> < 0.47 | 3,800              | 0.047                   | 0.52                                                                 |
| SDSS-II<br>8-yr LRG          | 0.16 < <i>z</i> < 0.47 | 7,600              | 0.094                   | 1.0                                                                  |
| WiggleZ/AAT<br>(220 nights)  | 0.5 < <i>z</i> < 1.0   | 1,000              | 0.4                     | 0.64                                                                 |
| APO-LSS                      | 0.2 < <i>z</i> < 0.8   | 10,000             | 1.5                     | 10                                                                   |
| FMOS/Subaru<br>(200 nights)  | 1.4 < <i>z</i> < 1.7   | 300                | 0.6                     | 0.7                                                                  |
| HETDEX                       | 1.8 < <i>z</i> < 3.8   | 250                | 1.0                     | 2.0                                                                  |
| WFMOS/Subaru<br>(150 nights) | 0.5 < <i>z</i> < 1.3   | 2,000              | 2.                      | 3.8                                                                  |
| WFMOS/Subaru<br>(150 nights) | 2.3 < <i>z</i> < 3.3   | 300                | 0.6                     | 1.2                                                                  |

**Notes to the Table: a.** The SDSS surveys in the 2nd and 3rd rows are the only ones completed; the rest are planned or proposed. They are all spectral line surveys. LSST plans a large (~10,000 deg<sup>2</sup>) photometric redshift survey, perhaps observing >10<sup>9</sup> galaxies at 0.5 < z < 3.5. The photometric redshift errors would degrade the equivalent effective volume of the LSST survey to < 25 Gpc<sup>3</sup>. **b.** Effective volume accounts for the limited sampling of the survey volume due to the discrete number of galaxies as a function of redshift. It is evaluated at the scale of the BAO, k = 0.15h Mpc<sup>-1</sup>. **c.** Assumes h = 0.7.

Warren Moos: presentation to BEPAC

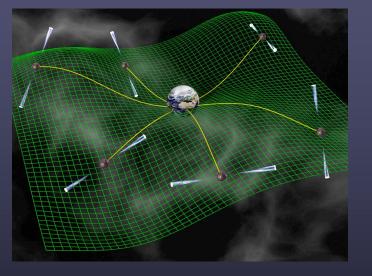
RSSKA in context: ~1000 million galaxies z<2.5 in 8-60 Gpc<sup>3</sup> comoving!


Cosmic Web, Socorro NM – 17 May 2008

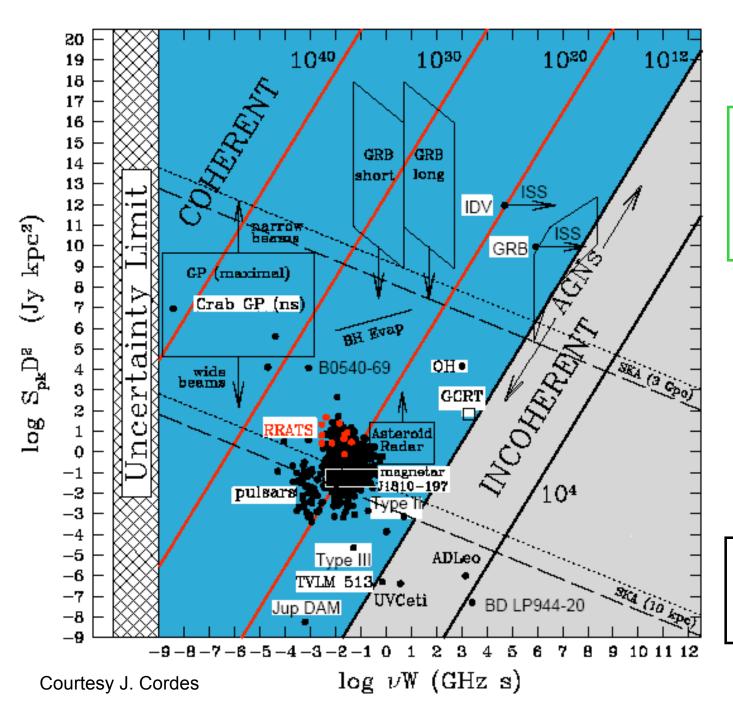
#### **RSSKA Science Example: Continuum**



- Extremely deep (10 nJy) continuum survey
  - "billion" extragalactic radio sources
  - AGN
  - star-forming galaxies
  - SNR and HII regions in galaxies
- Census of rare phenomena
  - Gravitational Lenses (e.g. CLASS)
- Polarimetry
  - Rotation Measure (RM) survey
  - galactic and extragalactic magnetic fields


Optical image of the spiral galaxy M51 with the magnetic field determined from radio observations superimposed (Credit: Hubble Heritage/NASA/STSci, R.BECK/MPIfR)




#### **RSSKA Science Example: Transients**



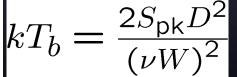
- Bursty phenomena a new frontier
  - giant pulsar pulses out to Virgo
  - brown dwarf flares
- Variability
  - compact radio sources
    - intrinsic, IDV, scintillation, etc.
  - flares
  - GRB afterglows
- Exotica
  - UHE particles in lunar regolith
  - SETI
- Pulsars
  - provide spigot Pulsar Machine attachment



Pulsars discovered and monitored with the SKA will act like a cosmic gravitational wave detector, allowing the study of ripples in the fabric of spacetime that propagate at ultra-low frequencies. (Credit: D.Champion, M.Kramer/JBO)






<u>Phase Space for</u> <u>Transients:</u> Detection limit for SKA: S<sub>pk</sub>D<sup>2</sup> >threshold

← Prompt GRBs and GRB afterglows easily seen to cosmological distances

Giant pulses detectable to Virgo cluster

Radio magnetars detectable to Virgo

ET radar across Galaxy



W = pulse width or characteristic time scale

#### **RSSKA Key Science Surveys**



- Key Projects (example)
  - Cosmological HI Large Deep Survey (CHILDS)
    - billion galaxies to z~1.5 (and beyond)
    - HI redshift survey for cosmology
    - galaxy evolution
  - Deep Continuum Imaging Survey (DeCoIS)
    - radio photometric and polarimetric survey (static sky)
    - commensal with CHILDS, extracted from spectral data
  - Transient Monitoring Program (TraMP)
    - bursts, variability, pulsars, etc.
    - commensal with other RSSKA surveys freeloading!
- These are part of one big survey (Big Sur)



# Realizing the RSSKA

#### The RSSKA Roadmap

- RSSKA planning
  - US-SKA and International consortia drafting for Decadal Review
- Science Precursors
  - use EVLA, Arecibo, ATA, etc. to pioneer science areas
- Technology Demonstrators & Pathfinders
  - US-SKA TechDev program, ATA, EVLA, EOR projects, ...
  - International: ASKAP, MeerKat (1% SKA pathfinders)
- Staged Construction
  - milestones for construction and limited operation
    - e.g. proposed "10% RSSKA"
- Operations
  - Science Operations (20+ years)
    - US RSSKA Science Center?
    - what is model for community involvement?
  - Upgrade Plan (10 years)
    - build into project (e.g. add multi-beam capabilities, computing upgrades)



#### Precursors: What we can do Now

- HI Cosmology Simulations
  - need good enough models to make credible projections
  - where are we now and what do we need to get there?
  - $\phi(M,z)$  and f(M<sub>HI</sub>/M | M,z,\rho,...) link to halos
  - semi-analytics vs. N-body/hydro
  - techniques: galaxy counts vs. emission power spectrum
    - as in CMB (Wyithe & Loeb 2008)
- Science Precursors
  - what can we do NOW to pave the way?
  - can we learn anything about HI in galaxies at z=0.5?
  - should we change the way we use existing facilities?
    - big EVLA surveys (commensal?)
    - beyond ALFA? ATA?
  - what about the pathfinders? NRAO involvement?
  - are there intermediate stages to full RSST?





#### **SKA Pathfinders**



• ATA

•

•

ullet

•

•

٠

٠

•

• WSRT

MWA

ASKAP

LOFAR

PAPER

LWA

HHA

FAST

MeerKAT



Lister Staveley-Smith (Spineto, 2007)

#### SKA Pathfinders



Allen Telescope Array (Blitz talk)

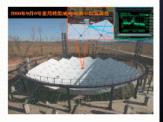


Australian SKA Pathfinder (ASKAP=MIRANdA=xN MeerKAT (S.Africa)

FAST (China)

LOFAR (de Bruyn)



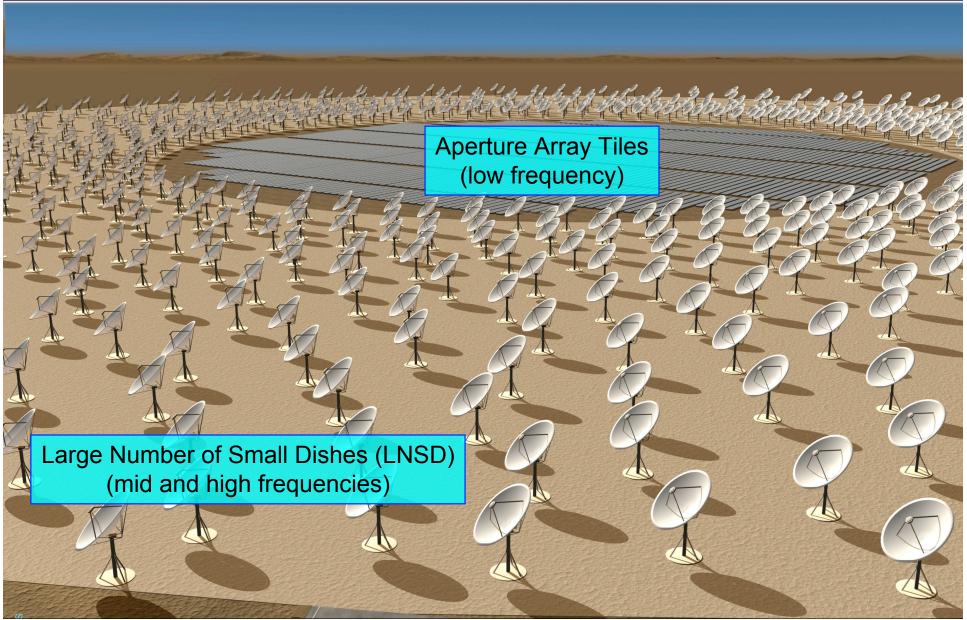



MWA (Lonsdale)





Hubble Hydrogen Array (Peterson)




S. T. Myers-SKA

Cosmic Web, Socorro NM – 17 May 2008

#### The SKA Artist's Concept





#### **RSSKA HI: Descoping Issues**



#### • Draft Preliminary Specs v2.7.1

- 3000 x 15m single-pix survey speed
- 40x slower than SKA of AR2005
- could get back w/multi-feed upgrade
- or implement as separate Aperture Array
  - e.g. 4x scaled-up EOR array
- also configuration issues (core vs. res)

#### • HI mass function

- z=2 HIMF steep above 10<sup>10</sup> M<sub>sun</sub>
- if  $M_{lim} x2$  then N x 10<sup>-3</sup> to 10<sup>-4</sup> or worse!
  - in danger of getting < 10 million galaxies at z>1
- Dark Energy not do-able with PS
  - need SSFoM > 4-6 x 10<sup>9</sup> m<sup>4</sup>K<sup>-2</sup>deg<sup>2</sup>
  - is this important enough?
- this is a critical issue to deal with in RSSKA DR planning

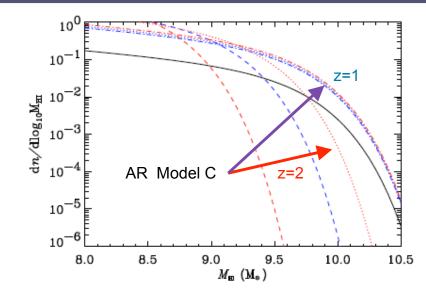



Figure 1. Predictions of the evolution in the HI mass function from AR2004. The dot-dashed lines show their 'Model A' at z = 1 (lower, blue) and z = 2(upper, red) with the solid (black) line showing the measured local HI mass function (Zwaan et al. 2003). The dashed lines show their 'Model B' at z = 1 (rightmost, blue) and z = 2 (leftmost, red), and the dotted lines their 'Model C' at z = 1 (upper, blue) and z = 2(lower, red).

#### Rawlings et al. SKA Science Book

Do we accept the Preliminary Specs? What up-scoping do we advocate?

#### **Example: HI Survey Strategies**



- Benchmark design (BD): 3000 15m antennas
  - only 0.36 of SKA (7500 m<sup>2</sup>/K vs. 20000 m<sup>2</sup>/K)
  - 40x slower than SKA for precision BAO (Abdalla & Rawlings 2005)
  - FOV = 0.73deg<sup>2</sup> at z=0 (1.4GHz) and 4.54deg<sup>2</sup> at z=1.5 (560MHz) "single pixel"
  - target: 10 deg<sup>2</sup> or more at z=0 (1.4GHz) need upgrade!
- Duration of Survey: 20 year mission
  - 5 years Wide, 5 years Deep, 3 years med-deep Galactic plane
  - 2 x 1 year ultra-deep fields (Galactic Center, Virgo deep, other?)
  - 5 years GO or TOO and follow-up (25%)
- Wide "Quarter Sky" = 10000 deg<sup>2</sup>
  - 8.64s per deg<sup>2</sup> per day = 4.38 hours per deg<sup>2</sup> in 5 years
  - BD: 19.9h per z=1.5 FOV per year
    - $S_{lim}$ =1.75 µJy  $\Rightarrow$   $M_{lim}$ =4.1x10<sup>9</sup>  $M_{sun}$  at z=1.5 ( $\Delta v$ =0.38MHz)

#### Example: more HI Survey Strategies



- Deep region =  $200 \text{ deg}^2$ 
  - 432s per deg<sup>2</sup> per day = 219 hours per deg<sup>2</sup> in 5 years
  - BD: 110h per z=1.5 FOV per year
    - $S_{lim}=0.39 \ \mu Jy \Rightarrow M_{lim}=8.8 \times 10^8 \ M_{sun} \ at z=1.5 \ (\Delta v=0.38 MHz)$
- Medium-deep Gal Plane Survey = 750 deg<sup>2</sup>
  - 115.2s per deg<sup>2</sup> per day = 35 hours per deg<sup>2</sup> in 3 years
  - BD: 25 hours per z=0 FOV
- Ultra-Deep field =  $4.5 \text{ deg}^2$ 
  - 173s per deg<sup>2</sup> per day = 1931 hours per deg<sup>2</sup> per year
  - BD: 1931 hours per z=1.5 FOV per year
    - $S_{lim}=0.13 \ \mu Jy \Rightarrow M_{lim}=3x10^8 \ M_{sun} \ at z=1.5 \ (\Delta v=0.38 MHz)$

#### **RSSKA in Perspective**



- A square kilometer array is
  - 100 times the size of the EVLA (10x Arecibo)
  - would take 2700 VLA 25-m dishes
    - take ~10000 times the processing of the VLA
  - would take 12000 12-m dishes
    - take ~100000 times the processing of the VLA
- Equivalent EVLA data rates ~250 MB/s
  - RSSKA would be ~2.5TB/s to 25TB/s
  - data volumes ~200 to 2000 PB per day
  - there are higher rate modes (transients)
  - cannot store all raw data, only products (images)
    - it will come down to "real time" imaging & processing



## Great Surveys and the New Mexico Connection

#### Making a Map of the Universe



- The Whole Universe Telescope
  - must see all the universal constituents
    - luminous matter stars, HII regions, thermal emissions
    - quiescent gas HI, molecular clouds and cores
    - planetary objects exo-planets, proto-planetary & debris disks
    - energetic particles cosmic rays, "jets", neutrinos
    - magnetic fields galactic, intergalactic, cosmological
    - collapsed objects black holes, AGN, pulsars, gravity waves
    - dark matter galaxy/cluster cores, gravitational lensing, direct
    - dark energy cosmological
    - gravity waves gravitational collapse, GW background
- The RSSKA is part of this future

#### Great Surveys for a "2020 Vision"



- The SKA is part of a grand vision for the coming decades, including:
  - Large Synoptic Telescope (LSST, Pan-STARRS)
  - Giant Segmented Mirror Telescope (GSMT)
  - Square Kilometer Array (RSSKA, EoR/DAT)
  - Great Space Surveys (JDEM, LISA, ConX, CMBPol)
- These next-generation telescopes are not just great observatories, but are parts of a Great Survey of the Universe
  - These are the instruments that we want to have available to do our science in 2015+

#### **Common Cause**



- All these next-generation surveys and telescopes have challenges
  - in particular in the Data Management area!
- The Science is cross-cutting
  - multi-wavelength (or particle) and multi-instrument
  - interest is multi-agency (NSF, DOE, NASA, other)
  - realize the Whole Universe Telescope
- Proposal: "Great Surveys" Workshop
  - bring together workers from the next-gen projects
  - plannng to hold in Santa Fe in Fall 2008

#### **RSSKA & Great Surveys in New Mexico**



- Infrastructure
  - (E)VLA, VLBA, LWA, AP/SDSS, MRO
  - Universities, Observatories, and Labs
  - Supercomputing
  - Lambda Rail
- Expertise
  - observational and theoretical community
    - LANL, NMSU, NMT, NRAO, UNM
  - HPC and data mining (e.g. LANL, SDSS)
- Networking
  - use ACCent as vehicle for collaborations
  - connections to rest of community (UC, FNAL, ...)
  - collaborations for RSSKA science (observing & theory) precursors

#### The RSSKA Data Challenge



- Large numbers of antennas
  - operations, maintainance and data networking issues
  - full capital costs need to be ~\$1000 per square meter!
- Data management
  - this is a "software telescope", with ~1/3 of cost in DM
  - huge data rates and volumes possible
  - high dynamic range imaging
    - reach < 100nJy in wide fields with 1-10Jy sources (>10<sup>7</sup>:1)
    - will need new algorithms (and must be efficient to handle rates)
  - likely will require real-time imaging
    - how long can we afford to archive visibility data (200PB/day)?
    - can we make a robust interferometric imaging pipeline?

#### Complications

 radio interference (RFI), ionosphere, antenna polarization, data transmission, survey scheduling, uniform calibration, data mining, prompt transient detection

#### For more information...



- RSST Proto-White Paper (draft)
  - on the Arecibo Frontiers conference website: http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- my RSST/RSSKA page
  - http://www.aoc.nrao.edu/~smyers/rsst
- SKA Info
  - http://www.skatelescope.org
  - particularly see the "Science Book"
    - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
    - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
    - others...