

The Radio Synoptic Survey Telescope (RSST): a SKA mid-frequency concept

Steven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Cosmic Cartography in Chicago – 6 Dec 2007

What is the RSST?

The Radio Synoptic Survey Telescope

- The RSST concept is for a "SKA-mid" facility
 - it is proposed here as the "SKA-mid" from a US science perspective
- Primary Science Goals
 - <u>Cosmological HI</u>
 - Deep continuum imaging
 - Transient detection and monitoring
- Also
 - other redshifted lines (e.g. OH mega-masers)
 - pulsars, SETI, etc.

The RSST is ...

- NOT a new concept
 - pretty much what is proposed in SKA Science Book
 - is what appears in the DETF report as the "SKA"
- NOT a technology development project
 - pathfinders and technical demonstrators are underway
 - builds on the USSKA Technical Development Program
- NOT unconnected to the rest of Astrophysics
 - complementary to other big multi-wavelength surveys
 - e.g. LSST, PanSTARRS, JDEM, ...
 - for the physics and astronomy of 2020

The RSST is ...

- Radio?
 - core frequency range 0.4-1.4 GHz (z<2.5) "HSST"
 - some science cases may want 0.3-10 GHz (must justify \$\$)
- A Square Kilometer Array
 - square kilometer of something (not white papers)
 - high gain/low noise $A/T_{sys} \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1}$

don't throw away all that collecting area!

- wide field-of-view, target 1 square degree
 - $A\Omega/T \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1} \text{ deg}^2 \sim n_a n_b/T$ "uv megapixels"
- A Survey Telescope

- cover large areas of sky $10^4 \text{ deg}^2 = \frac{1}{4} \text{ sky}$

• survey speed (A Ω /T)(A/T) $\Delta v = n_a n_b A/T^2 \Delta v$

The Synoptic Part

- Revisit the sky regularly
 - if you want to cover 10⁴ deg² with 1deg² FOV
 - can do so in 1 day with 2-8^s per point
 - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
 - many short visits or fewer longer ones?
 - looking for individual "bursts" or "pulses"?
 - looking for groups or trains of pulses?
 - classical variability curves (e.g. microlensing)?
 - also remember, many compact radio sources are variable (both intrinsic and scintillation)

Is the RSST a ...

- National Facility?
 - well, its an international facility, but an National resource for US astronomers
- targeted experiment?
 - the primary science goals & key projects are big surveys
- general observer facility?
 - probably not primarily, but perhaps 10-25% of time could be made available for proposers (and for TOO)
- an exclusive club?
 - No! RSST must involve and support a large part of the US astronomy community

RSST Key Science Surveys

- Key Projects (example)
 - Cosmological HI Large Deep Survey (CHILDS)
 - billion galaxies to z~1.5 (and beyond)
 - HI redshift survey for cosmology
 - galaxy evolution
 - Deep Continuum Survey (DeCoS)
 - radio photometric and polarimetric survey (static sky)
 - commensal with CHILDS, extracted from spectral data
 - Transient Monitoring Program (TraMP)
 - bursts, variability, pulsars, etc.
 - commensal with other RSST surveys freeloading!
- These are part of one big survey (Big Sur)

Example: HI Survey Strategies

- Benchmark design (BD): 12m antennas
 FOV = 6.28deg² at z=1.5 (560MHz) "single pixel"
- Wide "Quarter Sky" = 10000 deg²
 - 8.64s per deg² per day = 52.6m per deg² per year
 - BD: 5.5h per FOV per year
 - S_{lim} =1.12 µJy $\Rightarrow M_{lim}$ =2.6x10⁹ M_{sun} at z=1.5 (Δv =0.38MHz)
- Deep region = 500 deg^2
 - 173s per deg² per day = 17.1h per deg² per year
 - BD: 110h per FOV per year
 - S_{lim} =0.25 µJy \Rightarrow M_{lim} =5.7x10⁸ M_{sun} at z=1.5 (Δv =0.38MHz)
- Duration of Survey: 10 year mission
 - 5 years Wide (0.5µJy) and 5 years Deep (0.1µJy)
 - room for other surveys (Galactic Plane/Center, Virgo deep, other?)

Example: Synoptic Cycle for SKA-RSST

A 10-day total cycle: variable scanning rates

- Fast scan for extragalactic sky (away from Galactic plane)
 E.g.
 - 1 deg² single pixel FoV
 - Full sky survey (80% of 40,000 deg²)
 - T_{scan} = 5 days
 - $T \sim 10$ sec = time per sky position
 - $S_{min} \sim 15 \ \mu$ Jy at 10σ with full sensitivity and on axis
 - Multiple pixel systems (PAFs) increase sensitivity (for fixed total time)
 - · Subarrays reduce sensitivity but speed up the survey
- Slow scan for deep extragalactic fields and Galactic plane
- Galactic center: staring mode
- Repeat scans many times
- Break out of scanning mode for targeted observations (10%?)
- Break out for targets of opportunity
- Issues for pulsars (~steady amplitudes):
 - Need <u>minimum contiguous dwell time</u> for Fourier transforms (e.g. 100 1000 s for large-area blind surveys)
 - Need frequent re-observation coverage for long-term timing followup

Realizing the RSST

Science Precursors

 The case for precursor science do not just "stop everything" to build new stuff need science output throughout decade Use "current" facilities Arecibo, EVLA, GBT, VLBA, ATA • e.g. ALFALFA HI survey, large EVLA surveys also mm/sub-mm : ALMA, CARMA, CSO, etc. also other wavebands : O/IR, Xray, Gamma Ray, etc. Use in new (and complementary) ways pilot surveys and special targets also science with SKA demonstrators (ASKAP, meerKAT)

SKA Pathfinders

• ATA

•

•

ullet

•

•

٠

٠

•

• WSRT

MWA

ASKAP

LOFAR

PAPER

LWA

HHA

FAST

MeerKAT

Lister Staveley-Smith (Spineto, 2007)

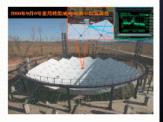
SKA Pathfinders

Allen Telescope Array (Blitz talk)

Australian SKA Pathfinder (ASKAP=MIRANdA=xN MeerKAT (S.Africa)

FAST (China)

LOFAR (de Bruyn)

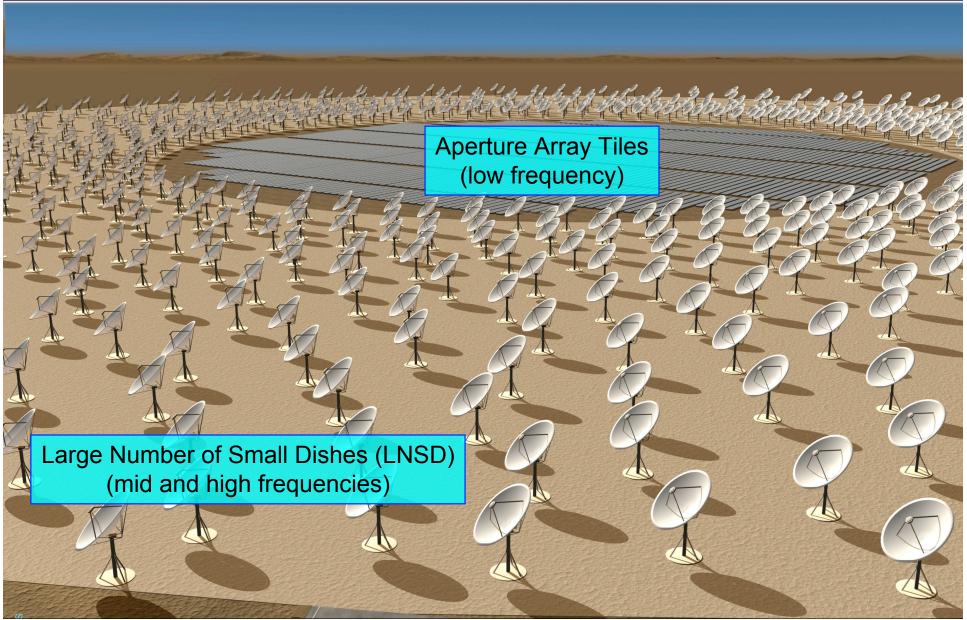


MWA (Lonsdale)

Hubble Hydrogen Array (Peterson)

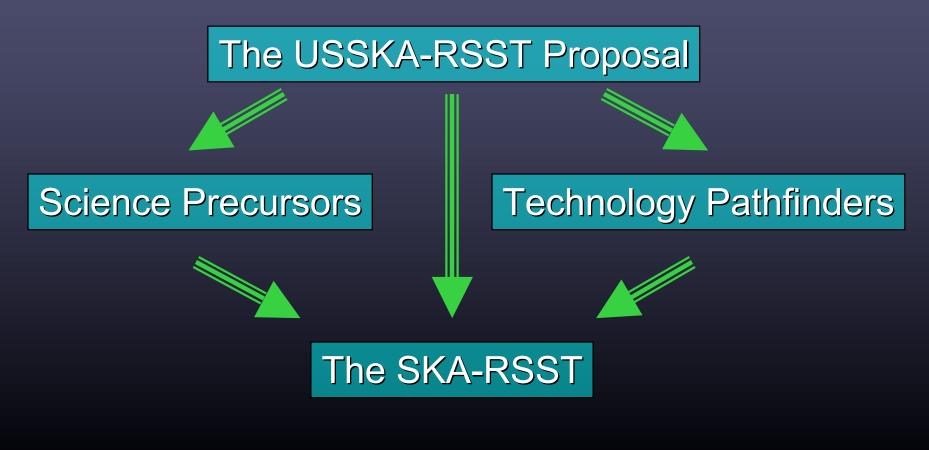
S. T. Myers-SKA

Cosmic Cartography in Chicago – 6 Dec 2007


The RSST is part of the SKA Program

- The SKA is an international program to build the next generation of large radio arrays
 - SKA-low : 10-300 MHz
 - Epoch of Reionization (EoR) and Dark Ages Telescope (DAT)
 - Pathfinders/Precursors: MWA, PAPER, LWA, GMRT, LOFAR
 - SKA-mid : 0.3-10 GHz
 - the RSST!
 - Pathfinders/Precursors: ALFALFA, EVLA, ATA, ASKAP, MeerKAT
 - SKA-high: 1-25 GHz
 - Cosmic Star Formation and the "Cradle of Life"
 - Pathfinders/Precursors: EVLA, ATA

The SKA Artist's Concept



The Roadmap to the SKA-RSST

 From the Decadal Review proposal to the Telescope

Cosmic Cartography in Chicago - 6 Dec 2007

SKA-RSST in Perspective

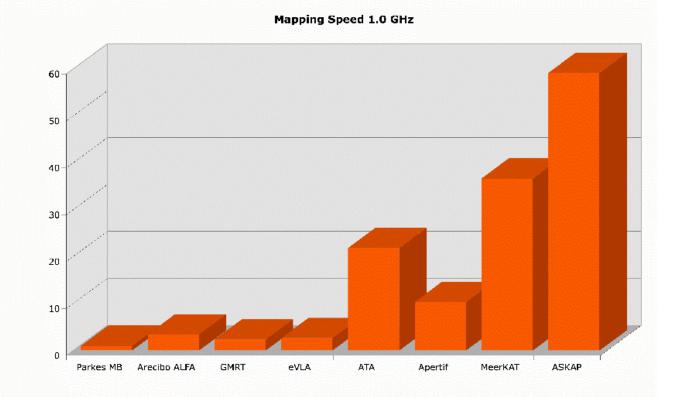
- A square kilometer array is
 - 100 times the size of the EVLA (10x Arecibo)
 - would take 2700 VLA 25-m dishes
 - take ~10000 times the processing of the VLA
 - would take 12000 12-m dishes
 - take ~100000 times the processing of the VLA
- Equivalent EVLA data rates ~250 MB/s
 - SKA-RSST would be ~2.5TB/s to 25TB/s
 - data volumes ~200 to 2000 PB per day
 - there are higher rate modes (transients)
 - cannot store all raw data, only products (images)
 - it will come down to Cartography!

What does SKA-RSST add?

- Square Kilometer of collecting area
 - 100x EVLA but only 10x Arecibo
- Survey Speed!
 - time to reach a given limit over a given area
 - Arecibo ALFA is FOV limited

Mapping speed for a radio teles

Parkes multibeam (1 GHz)


S=1

SKA (1 GHz)

S=5x10⁶

but mapping speed comes at a cost for processing!

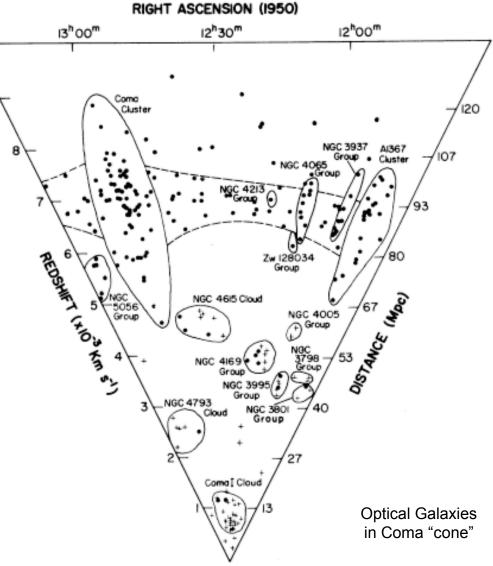
Effect of observing frequency (z=0.4)

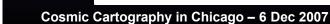
RSST Challenges

- Need lots of telescopes (most designs)
 - cost issues, e.g. want < \$500 per square meter
 - maintainance issues
- Huge data volumes and rates
 - fairly aggressive for 2020 (but not forefront)
 - partner with other data-intensive projects
- Likely require real-time processing
 - must have fast and robust pipeline
- Need to estimate cost for Decadal Review
 ~1/3 of project this is what worries me most right now!

Cosmic Cartography with the RSST

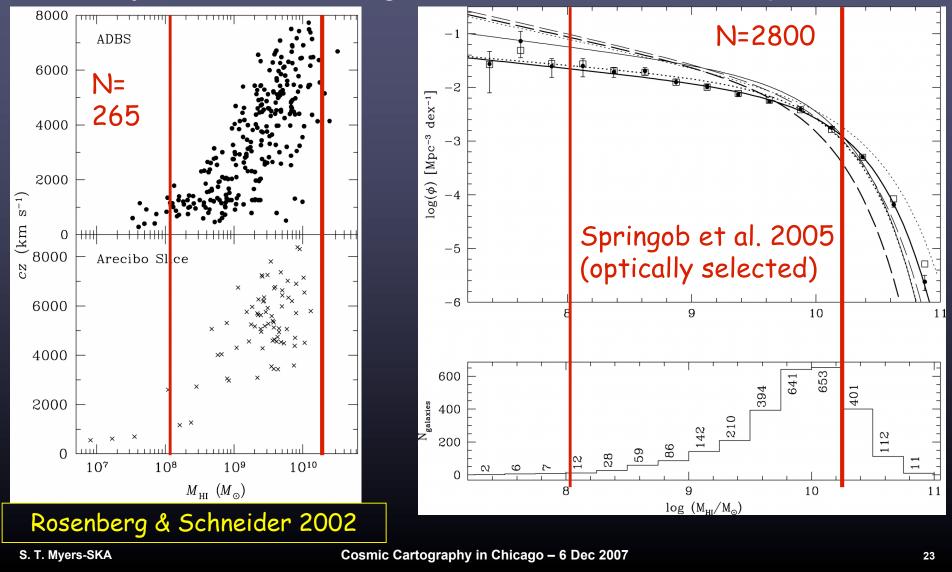
Making a Map of the Universe


- The Whole Universe Telescope
 - must see all the universal constituents
 - luminous matter stars, HII regions, thermal emissions
 - quiescent gas HI, molecular clouds and cores
 - planetary objects exo-planets, proto-planetary & debris disks
 - energetic particles cosmic rays, "jets", neutrinos
 - magnetic fields galactic, intergalactic, cosmological
 - collapsed objects black holes, AGN, pulsars, gravity waves
 - dark matter galaxy/cluster cores, gravitational lensing, direct
 - dark energy cosmological
 - gravity waves gravitational collapse, GW background
- The SKA-RSST is part of this future

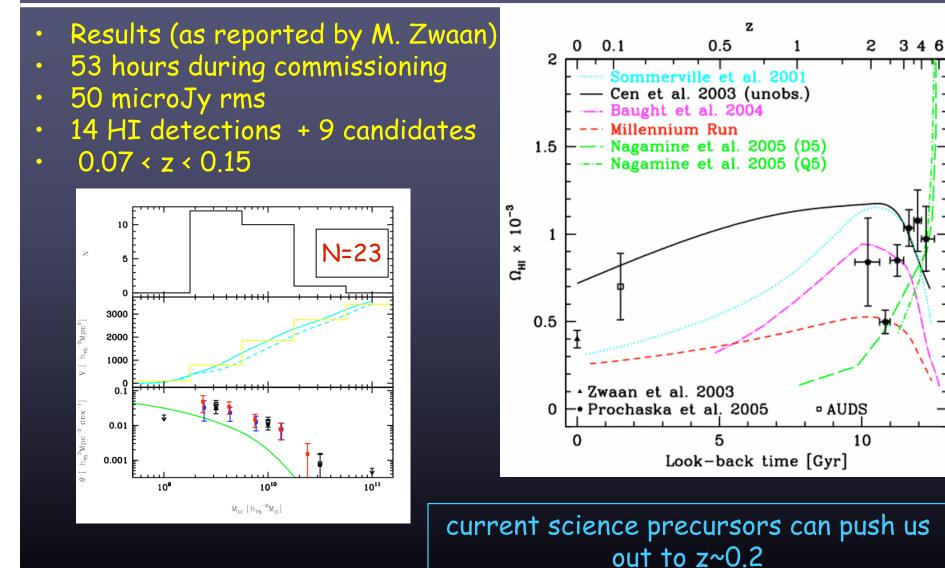

ALFALFA: Local Cone

- The Arecibo ALFALFA survey will see 2000-3000 galaxies with HI mass to 10⁷ M_{sun}
- The SKA pathfinders will improve mapping speeds by 10-25x
- The SKA-RSST will see around 1 billion galaxies to z=1.5

CORNELL

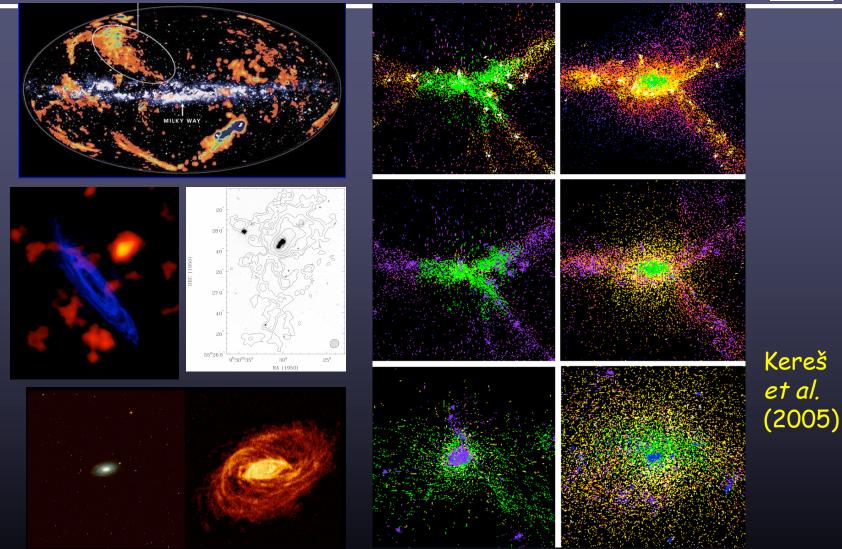


The HI Mass Function from ALFALFA



many more low-mass galaxies - address satellite problem?

Arecibo Ultra Deep Survey



Cosmic Cartography in Chicago - 6 Dec 2007

Evolution of HI Galaxies

How and when do galaxies acquire/lose their gas?

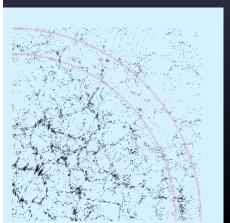
Cosmic Cartography in Chicago – 6 Dec 2007

RSST Science Example: HI Cosmology

- "billion galaxy" HI survey
 - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
 - Baryon Acoustic Oscillations (BAO)
 - cosmography of Universe d(z), $V(z) \Leftrightarrow H(z)$
 - growth of structure and Cosmic Web
 - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
 - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
 - mutual interest with the DOE community (JDEM)
 - engage O/IR extragalactic and cosmology communities
 - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

Current State of the Art in BAO

Four published results 1. Eisenstein et al 2005 (spectro-z) 3D map from SDSS 3% 46,000 galaxies in 0.72 (h⁻¹Gpc)³ 2. Cole et al 2005 (spectro-z) 3D map from 2dFGRS at AAO 5% 221,000 galaxies in 0.2 (h⁻¹Gpc)³ 3. Padmanabhan et al 2007 (photo-z) Set of 2D maps from SDSS 5%


600,000 galaxies in 1.5 (h⁻¹Gpc)³ 4. Blake et al 2007

(Same data as above)

SDSS 2.5-m telescope, Apache Point, NM

© Anglo-Australian Observatory

HI surveys are woefully behind in numbers of detections

Thanks to Pat McDonald (CITA) AAO 4-m telescope at Siding Spring, Australia

Cosmic Cartography in Chicago - 6 Dec 2007

O/IR Spectroscopic BAO Surveys

Survey ^a	Redshift Range	Sky Area (deg²)	Millions of Galaxies	Effective Volume ^b (Gpc ³) ^c
ADEPT	1 < <i>z</i> < 2	28,600	~100	180
SDSS DR4 Main+2dF	z < 0.3	7,000	0.7	0.50
SDSS LRG	0.16 < <i>z</i> < 0.47	3,800	0.047	0.52
SDSS-II 8-yr LRG	0.16 < <i>z</i> < 0.47	7,600	0.094	1.0
WiggleZ/AAT (220 nights)	0.5 < <i>z</i> < 1.0	1,000	0.4	0.64
APO-LSS	0.2 < <i>z</i> < 0.8	10,000	1.5	10
FMOS/Subaru (200 nights)	1.4 < <i>z</i> < 1.7	300	0.6	0.7
HETDEX	1.8 < <i>z</i> < 3.8	250	1.0	2.0
WFMOS/Subaru (150 nights)	0.5 < <i>z</i> < 1.3	2,000	2.	3.8
WFMOS/Subaru (150 nights)	2.3 < <i>z</i> < 3.3	300	0.6	1.2

Notes to the Table: a. The SDSS surveys in the 2nd and 3rd rows are the only ones completed; the rest are planned or proposed. They are all spectral line surveys. LSST plans a large (~10,000 deg²) photometric redshift survey, perhaps observing >10⁹ galaxies at $0.5 \le z \le 3.5$. The photometric redshift errors would degrade the equivalent effective volume of the LSST survey to ≤ 25 Gpc³. **b.** Effective volume accounts for the limited sampling of the survey volume due to the discrete number of galaxies as a function of redshift. It is evaluated at the scale of the BAO, k = 0.15h Mpc⁻¹. **c.** Assumes h = 0.7.

Warren Moos: presentation to BEPAC

• RSST in context: ~1000 million galaxies z<2.5 in 8-60 Gpc³ comoving!

RSST for Cosmology

- RSST can see HI galaxies out to redshift z > 2
 - > 10⁹ galaxies for 10⁴ deg2
 - counts are HIMF dependent
 - needs sensitivity of SKA
- Survey Strategy
 - tradeoff between wide and deep
 - $1 \text{ Gpc}^3 \text{ comov} = 250 \text{ deg}^2 \text{ z} = 1.5$
- Cosmology
 - HI galaxies will have different bias to O/IR galaxies
 - we are working on simulations to see results of BAO and correlation function studies

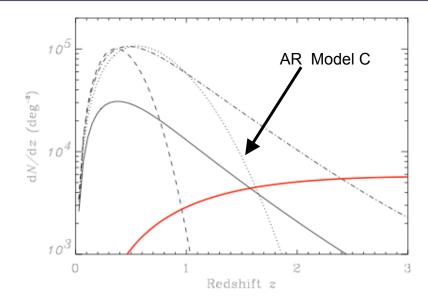
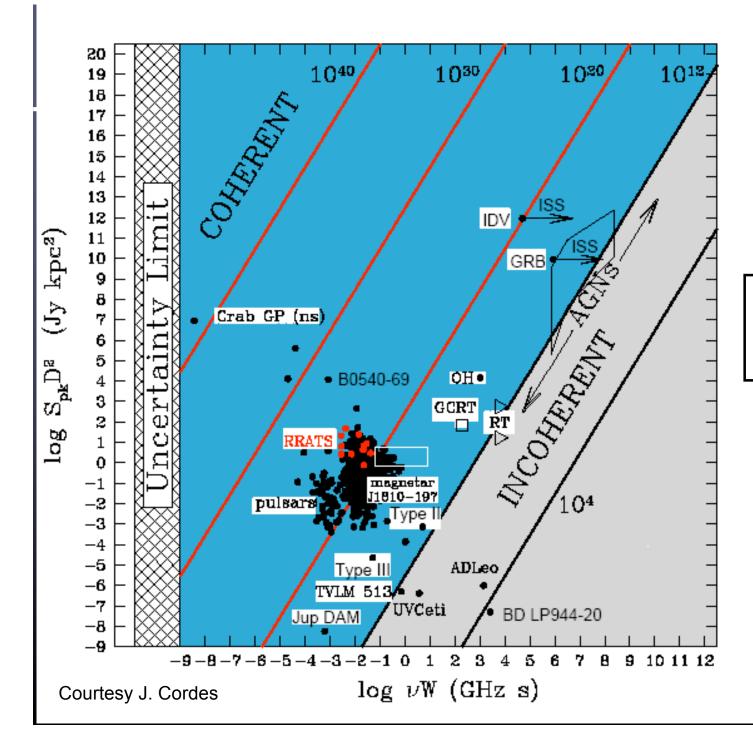


Figure 3. Predictions of dN/dz per deg² for an SKA survey with an exposure time of 4 hours, a signal-tonoise detection limit of 10 and assumptions about the properties of the HI-emitting galaxies and the SKA detailed in Sec. 2. The same linestyles are used as in Fig. 1 to discriminate between the different AR2004 models; the prediction of a 'no-evolution' model is shown by the solid (black) line. Also shown (thicker red line) is the surface density of galaxies needed for a survey to be limited by cosmic variance rather than shot noise (AR2004). Rawlings et al. SKA Science Book

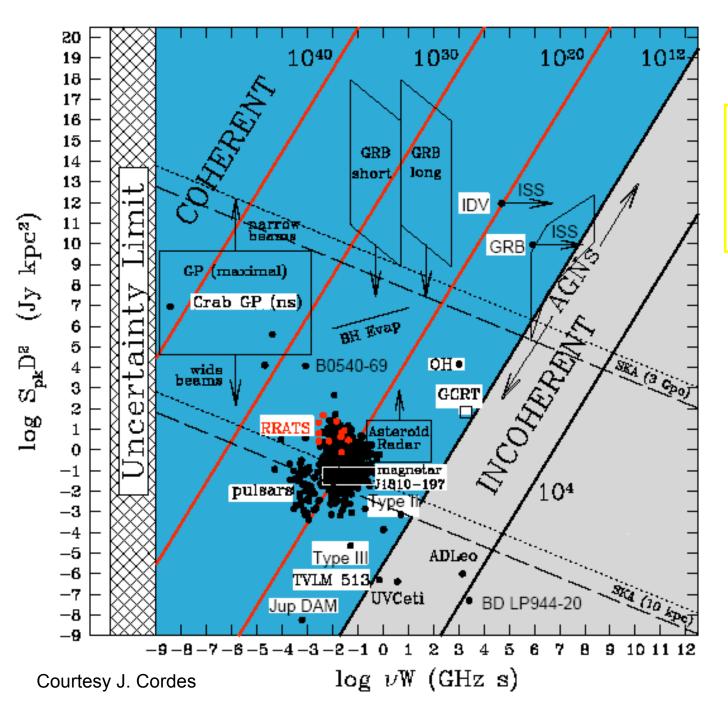
RSST Science Example: Continuum


- Extremely deep (10 nJy) continuum survey
 - "billion" extragalactic radio sources
 - AGN
 - star-forming galaxies
 - SNR and HII regions in galaxies
- Census of "rare" phenomena
 - Gravitational Lenses (e.g. CLASS)
- Polarimetry
 - Rotation Measure (RM) survey
 - galactic and extragalactic magnetic fields

RSST Science Example: Transients

- Bursty phenomena a new frontier
 - giant pulsar pulses out to Virgo
 - brown dwarf flares
- Variability
 - compact radio sources (IDV, scintillation, etc.)
 - GRB afterglows
- Exotica
 - UHE particles in lunar regolith
 - SETI
- Pulsars

- provide spigot Pulsar Machine attachment



Phase Space for Transients:

$$S_{pk}D^2$$
 vs. vW

$$kT_b = \frac{2S_{\rm pk}D^2}{\left(\nu W\right)^2}$$

W = pulse width or characteristic time scale

Detection limits for the SKA:

S_{pk}D² >threshold

← Prompt GRBs and GRB afterglows easily seen to cosmological distances

Giant pulses detectable to Virgo cluster

Radio magnetars detectable to Virgo

ET radar across Galaxy

Great Surveys

Great Surveys for a "2020 Vision"

- The SKA is part of a grand vision for the coming decades, including:
 - Large Synoptic Telescope (LSST, Pan-STARRS)
 - Giant Segmented Mirror Telescope (GSMT)
 - Square Kilometer Array (RSST, EoR/DAT)
 - Great Space Surveys (JDEM, LISA, ConX, CMBPol)
- These next-generation telescopes are not just great observatories, but are parts of a Great Survey of the Universe
 - These are the instruments that we want to have available to do our science in 2015+

Common Cause

- All these next-generation surveys and telescopes have challenges
 - in particular in the Data Management area!
- The Science is cross-cutting
 - multi-wavelength (or particle) and multi-instrument
 - interest is multi-agency (NSF, DOE, NASA, other)
 - realize the Whole Universe Telescope
- Proposal: "Great Surveys" Workshop
 - bring together workers from the next-gen projects
 - possibly hold in Santa Fe in July 2008

For more information...

- RSST Proto-White Paper (draft)
 - on the Arecibo Frontiers conference website: http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book"
 - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
 - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
 - others...