

The Radio Synoptic Survey Telescope (RSST)

Steven T. Myers

National Radio Astronomy Observatory

Socorro, NM

Chicago 3 in Washington, DC - 14 Sep 2007

Background

- At Chicago-2 in August 2006, it was proposed that the EOR (SKA-Io) and HI-Machine (SKA-mid) concepts were sufficiently advanced that "White Papers" should be written with the goal of presenting the cases to the upcoming Decadal Review.
- As an example of an HI-Machine proposal, I have written a draft of a case for the Radio Synoptic Survey Telescope.
- Here it is...

What is the RSST?

The Radio Synoptic Survey Telescope

- The RSST concept is for a "SKA-mid" facility
 - it is proposed here as the "SKA-mid" from a US science perspective
- Primary Science Goals
 - <u>Cosmological HI</u>
 - Deep continuum imaging
 - Transient detection and monitoring
- Also
 - other redshifted lines (e.g. OH mega-masers)
 - pulsars, SETI, etc.

The RSST is ...

- NOT my idea
 - came out of discussions at Chicago 2
- NOT a new concept
 - pretty much what is proposed in SKA Science Book
 - is what appears in the DETF report as the "SKA"
- NOT a technology development project
 - pathfinders and technical demonstrators are underway
 - including a TDP in the US
- NOT unconnected to the rest of Astrophysics
 - complementary to big multiwavelength surveys
 - e.g. LSST, PanSTARRS, SDSS-3, JDEM, ...

The RSST is ...

- Radio?
 - core frequency range 0.4-1.4 GHz (z<2.5) "HSST"</p>
 - some science cases may want 0.3-3 GHz (must justify \$\$)
- A Square Kilometer Array
 - square kilometer of something (not white papers)
 - high gain/low noise $A/T_{sys} \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1}$
 - don't throw away all that collecting area!
 - wide field-of-view, target 1 square degree
 - $A\Omega/T \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1} \text{ deg}^2 \sim n_a n_b/T$ "megapix"
- A Survey Telescope

- cover large areas of sky $10^4 \text{ deg}^2 = \frac{1}{4} \text{ sky}$

• survey speed (A Ω /T)(A/T) $\Delta v = n_a n_b A/T^2 \Delta v$

The Synoptic Part

- Revisit the sky regularly
 - if you want to cover 10⁴ deg² with 1deg² FOV
 - can do so in 1 day with 2-8^s per point
 - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
 - many short visits or fewer longer ones?
 - looking for individual "bursts" or "pulses"?
 - looking for groups or trains of pulses?
 - classical variability curves (e.g. microlensing)?
 - also remember, many compact radio sources are variable (both intrinsic and scintillation)

Is the RSST a ...

- National Facility?
 - well, its an international facility, but an National resource for US astronomers
- targeted experiment?
 - the primary science goals & key projects are big surveys
- general observer facility?
 - probably not primarily, but perhaps 10% of time could be made available for proposers (and for TOO)
- an exclusive club?
 - No! RSST must involve and support a large part of the US astronomy community

RSST Key Science Surveys

- Key Projects (example)
 - Cosmological HI Large Deep Survey (CHILDS)
 - billion galaxies to z~1.5 (and beyond)
 - HI redshift survey for cosmology
 - galaxy evolution
 - Deep Continuum Survey (DeCoS)
 - radio photometric and polarimetric survey (static sky)
 - commensal with CHILDS, extracted from spectral data
 - Transient Monitoring Program (TraMP)
 - bursts, variability, pulsars, etc.
 - commensal with other RSST surveys freeloading!

These are part of one big survey (Big Sur)

RSST Science

Science Precursors

- The case for precursor science do not just "stop everything" to build new stuff need science output throughout decade Use "current" facilities – Arecibo, EVLA, GBT, VLBA, ATA e.g. ALFALFA HI survey, large EVLA surveys also mm/sub-mm : ALMA, CARMA, CSO, etc. also other wavebands : O/IR, Xray, Gamma Ray, etc. Use in new (and complementary) ways pilot surveys and special targets
 - also science with SKA demonstrators (ASKAP, meerKAT)

RSST Science Example: HI Cosmology

- "billion galaxy" HI survey
 - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
 - Baryon Acoustic Oscillations (BAO)
 - cosmography of Universe d(z), $V(z) \Leftrightarrow H(z)$
 - growth of structure and Cosmic Web
 - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
 - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
 - mutual interest with the DOE community (JDEM)
 - engage O/IR extragalactic and cosmology communities
 - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

Current State of the Art in BAO

Four published results 1. Eisenstein et al 2005 (spectro-z) 3D map from SDSS 3% 46,000 galaxies in 0.72 (h⁻¹Gpc)³ 2. Cole et al 2005 (spectro-z) 3D map from 2dFGRS at AAO 5% 221,000 galaxies in 0.2 (h⁻¹Gpc)³ 3. Padmanabhan et al 2007 (photo-z) Set of 2D maps from SDSS 5% 600,000 galaxies in 1.5 (h⁻¹Gpc)³ 4. Blake et al 2007 (Same data as above)

SDSS 2.5-m telescope, Apache Point, NM

C Anglo-Australian Observatory

AAO 4-m telescope at Siding Spring, Australia

Chicago 3 in Washington, DC - 14 Sep 2007

RSST Science: A Broad Community

- More on the DOE connection
 - RSST "SKA" is a Phase IV project in the DETF report
 - addresses "Connecting Quarks to the Cosmos" questions
 - active astrophysics and cosmology groups in labs
 - Fermilab (SDSS), LBL+Livermore (Snap,&c), LANL (SDSS,LWA)
 - interest from LANL on LWA & RSST (AstroInformatics)
 - data mining and high-performance computing a lab mission
- Obvious connections to LST & DE projects
 - many of the same galaxies as LSST, PanSTARRS, DES
 - RSST can provide HI redshifts
 - complementary to galaxies seen in O/IR (e.g. HETDEX)
 - complete view of the Universe
 - "whole Universe telescope" sees gas and stars and dark matter

RSST Science Example: Continuum

- Extremely deep (10 nJy) continuum survey
 - "billion" extragalactic radio sources
 - AGN
 - star-forming galaxies
 - SNR and HII regions in galaxies
- Census of "rare" phenomena
 - Gravitational Lenses (e.g. CLASS)
- Polarimetry
 - Rotation Measure (RM) survey
 - galactic and extragalactic magnetic fields

RSST Science Example: Transients

- Bursty phenomena
 - giant pulsar pulses out to Virgo
 - brown dwarf flares
- Variability
 - compact radio sources (IDV, scintillation, etc.)
 - GRB afterglows
- Exotica
 - UHE particles in lunar regolith
 - SETI
- Pulsars
 - provide spigot Pulsar Machine attachment

RSST Roadmap

What really needs to happen

- Need to write a White Paper for DR
 - assemble small "blue team" to write the case
 - need punchy science case
 - solidify numbers (simulations?)
 - remaining technical development? choices?
 - need "Phase A" level costing
 - put in front of "red team" next year
 - present to Decadal Review
- This is time critical if the community wants to participate in a "RSST" project, then must get this into the Decadal Review

Why this really needs to happen

- This is for the future of US Radio Astronomy
 - it is up to us to present our case to the DR
 - the International SKA cannot do this for us
- Must get buy-in
 - from a cross-section of US astronomy community
 - from physics and astrophysics communities
 - from multiple interested agencies (DOE, NASA)
- Not just radio astronomy
 - other galaxy survey projects in same time frame
 - natural partnerships (LSST, JDEM)

Not just another Giga-Dollar Project

- Comprehensive RSST Science Program
 - the road from our current facilities to the RSST frontier
 - science along the way (staged implementation)
 - should be part of the White Paper
- Bring our community along
 - grow the scientific community along with the project
 - find inclusive model for development, construction, ops
 - will need "all hands on board" to handle data
 - data products are for community
- The International Aspect
 - larger community around the world

The Time for Some Hard Questions

- The International Aspect
 - relation to Intl-SKA? do we agree on the concept?
 - are we minor or major partner? timescales? budget?
 - do we have a site preference?
- Technology Issues
 - are we happy with current SKA design decisions?
 - need more technology development?
 - a software telescope: data management focus?
- Operational Models
 - who runs the RSST project? Science Center?
 - what model for inclusive operations?

Final Word

had enough meetings yet?

WTFP!

• countdown to 2009-2010...

For more information...

- RSST Proto-White Paper (draft)
 - on the Arecibo Frontiers conference website: http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book"
 - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
 - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
 - others...