

The Radio Synoptic Survey Telescope (RSST): a SKA mid-frequency concept

Steven T. Myers

National Radio Astronomy Observatory
Socorro, NM

What is the RSST?

The Radio Synoptic Survey Telescope

- The RSST concept is for a "SKA-mid" facility
 - it is proposed here as the "SKA-mid" from a US science perspective
 - name tentative: possibly RSSKA (say "risque"):)
- Primary Science Goals
 - Cosmological HI
 - Deep continuum imaging
 - Transient detection and monitoring
- Also
 - other redshifted lines (e.g. OH mega-masers)
 - exploring the unknown...

The International "SKA-mid"

- from the Preliminary Specifications document
 - see http://www.skatelescope.org
 - would be located in Southern radio-quiet site
 - Western Australia or South Africa
 - design not settled, still a number of options explored
 - large number of small dishes (LSND)
 - 3000 x 15m dishes, single-pixel feeds
 - or 2000 x 15m dishes, plus phased-array feeds (20deg²)
 - possibly plus dense aperture tile array at 500-800 MHz
 - only 0.25-0.36 square kilometer of effective area
 - preliminary upper frequency limit 10 GHz
 - lower frequency limit in range 300-500 MHz
 - co\$t: spec-ed 950M€ (ph1+2), ~ ALMA

The RSST is

- NOT a new concept
 - pretty much what is proposed in SKA Science Book
 - is what appears in the DETF report as the "SKA"
- NOT a technology development project
 - pathfinders and technical demonstrators are underway
 - builds on the USSKA Technical Development Program
- NOT unconnected to the rest of Astrophysics
 - complementary to other big multi-wavelength surveys
 - e.g. LSST, PanSTARRS, JDEM, ...
 - for the physics and astronomy of 2020

The RSST is

- Radio?
 - core frequency range 0.4-1.4 GHz (z<2.5) "HSST"
 - some science cases may want 0.3-10 GHz (must justify \$\$)
- A Square Kilometer Array
 - square kilometer of something (not white papers)
 - high gain/low noise A/T_{sys} ≈ 2×10⁴ m² K⁻¹
 - don't throw away all that collecting area!
 - wide field-of-view, target 1 square degree
 - $A\Omega/T \approx 2 \times 10^4 \text{ m}^2 \text{ K}^{-1} \text{ deg}^2 \sim n_a n_b/T$ "uv megapixels"
- A Survey Telescope
 - cover large areas of sky $10^4 \text{ deg}^2 = \frac{1}{4} \text{ sky}$
 - survey speed $(A\Omega/T)(A/T)\Delta v = n_a n_b A/T^2 \Delta v$

The Synoptic Part

- Revisit the sky regularly
 - if you want to cover 10⁴ deg² with 1deg² FOV
 - can do so in 1 day with 2-8s per point
 - different parts of survey can have different depths (and thus cadences)
- What cadence? Depends on the science
 - many short visits or fewer longer ones?
 - looking for individual "bursts" or "pulses"?
 - looking for groups or trains of pulses?
 - classical variability curves (e.g. microlensing)?
 - also remember, many compact radio sources are variable (both intrinsic and scintillation)

Is the RSST a ...

- National Facility?
 - well, its an international facility, but an National resource for US astronomers
- targeted experiment?
 - the primary science goals & key projects are big surveys
- general observer facility?
 - probably not primarily, but perhaps 10-25% of time could be made available for proposers (and for TOO)
- an exclusive club?
 - No! RSST must involve and support a large part of the US astronomy community

RSST Key Science Surveys

- Key Projects (example)
 - Cosmological HI Large Deep Survey (CHILDS)
 - billion galaxies to z~1.5 (and beyond)
 - HI redshift survey for cosmology
 - galaxy evolution
 - Deep Continuum Survey (DeCoS)
 - radio photometric and polarimetric survey (static sky)
 - · commensal with CHILDS, extracted from spectral data
 - Transient Monitoring Program (TraMP)
 - bursts, variability, pulsars, etc.
 - commensal with other RSST surveys freeloading!
- These are part of one big survey (Big Sur)

Example: HI Survey Strategies

- Benchmark design (BD): 12m antennas
 - $FOV = 6.28 deg^2$ at z=1.5 (560MHz) "single pixel"
- Wide "Quarter Sky" = 10000 deg²
 - 8.64s per deg² per day = 52.6m per deg² per year
 - BD: 5.5h per FOV per year
 - S_{lim} =1.12 $\mu Jy \Rightarrow M_{lim}$ =2.6x10⁹ M_{sun} at z=1.5 (Δv =0.38MHz)
- Deep region = 500 deg²
 - -173s per deg² per day = 17.1h per deg² per year
 - BD: 110h per FOV per year
 - S_{lim} =0.25 μ Jy \Rightarrow M_{lim} =5.7x10 8 M_{sun} at z=1.5 ($\Delta \nu$ =0.38MHz)
- Duration of Survey: 10 year mission
 - 5 years Wide (0.5μJy) and 5 years Deep (0.1μJy)
 - room for other surveys (Galactic Plane/Center, Virgo deep, other?)

Example: Synoptic Cycle for SKA-RSST

A 10-day total cycle: variable scanning rates

- Fast scan for extragalactic sky (away from Galactic plane)
 - E.g.
 - 1 deg² single pixel FoV
 - Full sky survey (80% of 40,000 deg²)
 - $T_{scan} = 5 days$
 - T ~ 10 sec = time per sky position
 - $S_{min} \sim 15 \mu Jy$ at 10σ with full sensitivity and on axis
 - Multiple pixel systems (PAFs) increase sensitivity (for fixed total time)
 - Subarrays reduce sensitivity but speed up the survey
- Slow scan for deep extragalactic fields and Galactic plane
- Galactic center: staring mode
- Repeat scans many times
- Break out of scanning mode for targeted observations (10%?)
- Break out for targets of opportunity

Issues for pulsars (~steady amplitudes):

- Need <u>minimum contiguous dwell time</u> for Fourier transforms (e.g. 100 1000 s for large-area blind surveys)
- Need frequent re-observation coverage for long-term timing followup

Realizing the RSST

Science Precursors

- The case for precursor science
 - do not just "stop everything" to build new stuff
 - need science output throughout decade
- Use "current" facilities
 - Arecibo, EVLA, GBT, VLBA, ATA
 - e.g. ALFA for HI surveys, large EVLA surveys
 - also mm/sub-mm : ALMA, CARMA, CSO, etc.
 - also other wavebands : O/IR, Xray, Gamma Ray, etc.
- Use in new (and complementary) ways
 - pilot surveys and special targets
 - also science with SKA demonstrators (ASKAP, meerKAT)

SKA Pathfinders

- ATA
- WSRT
- MWA
- **ASKAP**
- MeerKAT
- LOFAR
- LWA
- **PAPER**
- HHA
- **FAST**

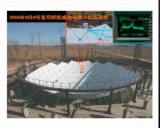
Lister Staveley-Smith (Spineto, 2007)

SKA Pathfinders

Allen Telescope Array (Blitz talk)

Apertif WSRT

Australian SKA Pathfinder (ASKAP=MIRANdA=xN MeerKAT (S.Africa)



Hubble Hydrogen Array (Peterson)

LOFAR (de Bruyn)

FAST (China)

The RSST is part of the SKA Program

- The SKA is an international program to build the next generation of large radio arrays
 - SKA-low: 10-300 MHz
 - Epoch of Reionization (EoR) and Dark Ages Telescope (DAT)
 - Pathfinders/Precursors: MWA, PAPER, LWA, GMRT, LOFAR
 - SKA-mid: 0.3-10 GHz
 - the RSST!
 - Pathfinders/Precursors: ALFA, EVLA, ATA, ASKAP, MeerKAT
 - SKA-high: 5-50 GHz
 - Cosmic Star Formation and the "Cradle of Life"
 - Pathfinders/Precursors: EVLA, ATA
 - eventually SKA-ultra-high: beyond ALMA?

SKA-RSST in Perspective

- A full square kilometer array is
 - 100 times the size of the EVLA (10x Arecibo)
 - would take 2700 VLA 25-m dishes
 - take ~10000 times the processing of the VLA
 - would take 12000 12-m dishes
 - take ~100000 times the processing of the VLA
- Equivalent EVLA data rates ~250 MB/s
 - SKA-RSST would be ~2.5TB/s to 25TB/s
 - data volumes ~200 to 2000 PB per day
 - there are higher rate modes (transients)
 - cannot store all raw data, only products (images)?

RSST Challenges

- Need lots of telescopes (most designs)
 - cost issues, e.g. want < \$500 per square meter
 - maintainance issues
- Huge data volumes and rates
 - fairly aggressive for 2020 (but not forefront)
 - partner with other data-intensive projects
- Likely require real-time processing
 - must have fast and robust pipeline
- Need to estimate cost for Decadal Review
 - ~1/3 of project this is what worries me most right now!

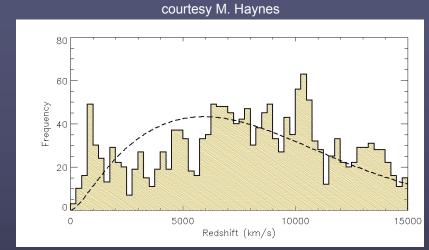
HI Evolution & Cosmology with the RSST

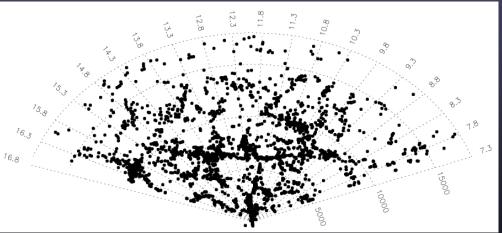
Making a Map of the Universe

The Whole Universe Telescope

- must see all the universal constituents
 - luminous matter stars, HII regions, thermal emissions
 - quiescent gas HI, molecular clouds and cores
 - planetary objects exo-planets, proto-planetary & debris disks
 - energetic particles cosmic rays, "jets", neutrinos
 - magnetic fields galactic, intergalactic, cosmological
 - collapsed objects black holes, AGN, pulsars, gravity waves
 - dark matter galaxy/cluster cores, gravitational lensing, direct
 - dark energy cosmological
 - gravity waves gravitational collapse, GW background
- The SKA-RSST is part of this future

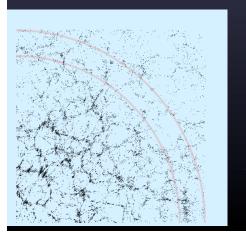
ALFALFA: Local Cone




- The Arecibo ALFALFA survey will see 2000-3000 galaxies with HI mass to 10⁷ M_{sun}
- The SKA pathfinders will improve mapping speeds by 10-25x
- The SKA-RSST will see around 1 billion galaxies to z=1.5

current science precursors can push us out to z~0.2

RSST Science Example: HI Cosmology


- "billion galaxy" cosmological HI survey
 - redshifts for gas-rich galaxies out to z=1.5 (and beyond)
 - cosmography of Universe d(z), $V(z) \Leftrightarrow H(z)$
 - Baryon Acoustic Oscillations (BAO) w/anti-biased tracers
 - growth of structure and Cosmic Web
 - HI is critical window on galaxy formation and evolution
- complementarity with "Dark Energy" surveys
 - e.g. JDEM, LSST, DES, SDSS, DES, LSST, PanSTARRS
 - mutual interest with the DOE community (JDEM)
 - engage O/IR extragalactic and cosmology communities
 - NASA missions (JDEM, Planck, JWST, GLAST, etc.)

Current State of the Art in Surveys

Four published results

- 1. Eisenstein et al 2005 (spectro-z) 3D map from SDSS 3% 46,000 galaxies in 0.72 $(h^{-1}Gpc)^3$
- 2. Cole et al 2005
 3D map from 2dFGRS at AAO (spectro-z)
 221,000 galaxies in 0.2 (h-1Gpc)³
 5%
- 3. Padmanabhan et al 2007 Set of 2D maps from SDSS (photo-z) 600,000 galaxies in 1.5 (h⁻¹Gpc)³
- 4. Blake et al 2007 (Same data as above)

HI surveys are woefully behind in numbers of detections

SDSS 2.5-m telescope, Apache Point, NM

Thanks to Pat McDonald (CITA) AAO 4-m telescope at Siding Spring, Australia

O/IR Spectroscopic BAO Surveys

Surveya	Redshift Range	Sky Area (deg²)	Millions of Galaxies	Effective Volume ^b (Gpc ³) ^c
ADEPT	1 < z < 2	28,600	~100	180
SDSS DR4 Main+2dF	z < 0.3	7,000	0.7	0.50
SDSS LRG	0.16 < z < 0.47	3,800	0.047	0.52
SDSS-II 8-yr LRG	0.16 < z < 0.47	7,600	0.094	1.0
WiggleZ/AAT (220 nights)	0.5 < z < 1.0	1,000	0.4	0.64
APO-LSS	0.2 < z < 0.8	10,000	1.5	10
FMOS/Subaru (200 nights)	1.4 < z < 1.7	300	0.6	0.7
HETDEX	1.8 < z < 3.8	250	1.0	2.0
WFMOS/Subaru (150 nights)	0.5 < z < 1.3	2,000	2.	3.8
WFMOS/Subaru (150 nights)	2.3 < z< 3.3	300	0.6	1.2

Notes to the Table: a. The SDSS surveys in the 2nd and 3rd rows are the only ones completed; the rest are planned or proposed. They are all spectral line surveys. LSST plans a large (\sim 10,000 deg²) photometric redshift survey, perhaps observing >10 9 galaxies at 0.5 < z < 3.5. The photometric redshift errors would degrade the equivalent effective volume of the LSST survey to < 25 Gpc³. **b.** Effective volume accounts for the limited sampling of the survey volume due to the discrete number of galaxies as a function of redshift. It is evaluated at the scale of the BAO, k = 0.15h Mpc $^{-1}$. **c.** Assumes h = 0.7.

<u>Warren Moos: presentation to BEPAC</u>

RSST in context: ~1000 million galaxies z<2.5 in 8-60 Gpc³ comoving!

RSST for Cosmology

- RSST can see HI galaxies out to redshift z > 2
 - > 10⁹ galaxies for 10⁴ deg2
 - counts are HIMF dependent
 - needs sensitivity of SKA
- Survey Strategy
 - tradeoff between wide and deep
 - $1 \text{ Gpc}^3 \text{ comov} = 250 \text{ deg}^2 \text{ z} = 1.5$
- Cosmology
 - HI galaxies will have different bias to O/IR galaxies
 - we are working on simulations to see results of BAO and correlation function studies

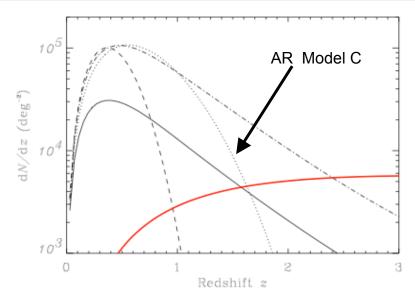
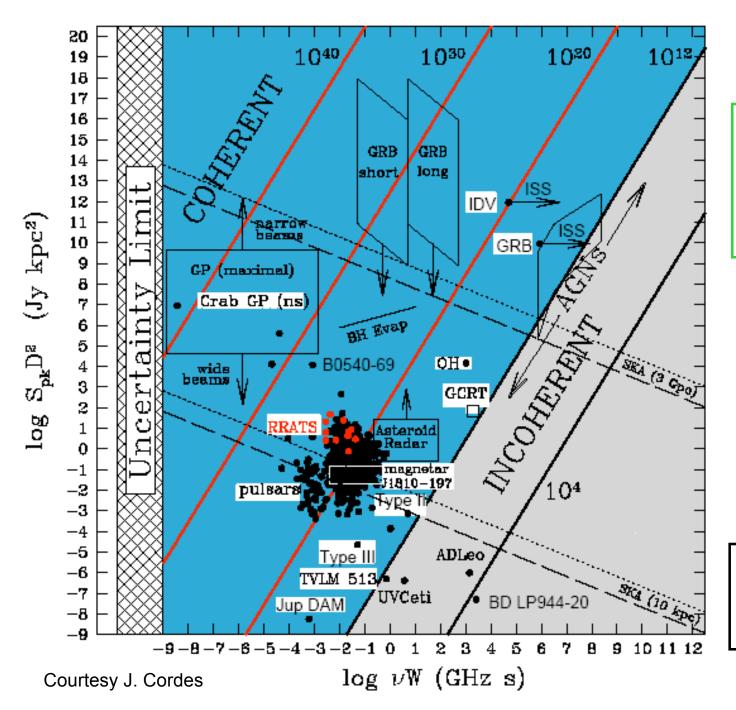


Figure 3. Predictions of dN/dz per deg² for an SKA survey with an exposure time of 4 hours, a signal-to-noise detection limit of 10 and assumptions about the properties of the HI-emitting galaxies and the SKA detailed in Sec. 2. The same linestyles are used as in Fig. 1 to discriminate between the different AR2004 models; the prediction of a 'no-evolution' model is shown by the solid (black) line. Also shown (thicker red line) is the surface density of galaxies needed for a survey to be limited by cosmic variance rather than shot noise (AR2004).

Rawlings et al. SKA Science Book

RSST Science Example: Continuum



- Extremely deep (10 nJy) continuum survey
 - "billion" extragalactic radio sources
 - locate counterparts to HI detections
 - AGN
 - star-forming galaxies
 - SNR and HII regions in galaxies
- Census of "rare" phenomena
 - Gravitational Lenses (e.g. CLASS)
- Polarimetry
 - Rotation Measure (RM) survey
 - galactic and extragalactic magnetic fields

RSST Science Example: Transients

- Bursty phenomena a new frontier
 - giant pulsar pulses out to Virgo
 - brown dwarf flares
- Variability
 - compact radio sources (IDV, scintillation, etc.)
 - GRB afterglows
- Exotica
 - UHE particles in lunar regolith
 - SETI
- Pulsars
 - provide spigot Pulsar Machine attachment

Phase Space for Transients:

Detection limit for SKA:

 $S_{pk}D^2 > threshold$

← Prompt GRBs and GRB afterglows easily seen to cosmological distances

Giant pulses detectable to Virgo cluster

Radio magnetars detectable to Virgo

ET radar across Galaxy

$$kT_b = \frac{2S_{\rm pk}D^2}{(\nu W)^2}$$

W = pulse width or characteristic time scale

Great Surveys

Great Surveys for a "2020 Vision"

- The SKA is part of a grand vision for the coming decades, including:
 - Large Synoptic Telescope (LST: LSST, Pan-STARRS)
 - Giant Segmented Mirror Telescope (GSMT: TMT, GMT)
 - Square Kilometer Array (RSST, EoR/DAT)
 - Great Space Surveys (JDEM, LISA, ConX, CMBPol)
- These next-generation telescopes are not just great observatories, but are parts of a Great Survey of the Universe
 - These are the instruments that we want to have available to do our science in 2015+

Common Cause

- All these next-generation surveys and telescopes have challenges
 - in particular in the Data Management and Mining areas!
- A wide array of capabilities
 - large general purpose observatories
 - smaller more agile telescopes
 - targeted experiments
- The Science is cross-cutting
 - multi-wavelength (or particle) and multi-instrument
 - interest is multi-agency (NSF, DOE, NASA, other)
 - realize the Whole Universe Telescope

Astronomical Great Surveys

- 2015-2030 Era of "Great Surveys"?
 - all-sky and deep surveys in multiple wave-bands
 - billions of objects catalogued
 - extensive follow-up using big telescopes
 - data mining, virtual observatories, the wired world
- Astronomical "Great Surveys" Workshop
 - bring together workers from the next-gen projects and the current cutting-edge
 - science drivers and technical issues
 - hold in Santa Fe in July/Aug 2008
 - funded by LANL IAS & NRAO
 - scientific organization underway

Provocation: Discussion Topics

Open Questions for Discussion

- Key Science Drivers & Core Capability
 - what is it that forces you to build the RSST as a SKA?
 - HI Cosmology
 - must have SK area with high survey speed to see enough galaxies at z>1.5
 - must have good enough (1"?) resolution to identify with galaxies seen in O/IR surveys
 - Pulsar Gravity Probes
 - higher frequencies (5 GHz?) but low resolution
 - Deep Continuum Surveys
 - resolution to beat confusion limit and make IDs (see SF?)
 - high-quality polarimetry for RM "cosmic magnetism" surveys
 - co\$ting: what do we keep and what do we drop?

Some tough questions

- Are there other (less expensive) ways?
 - targeted experiments (e.g. a HI Structure Experiment)?
 - is radio/HI the right waveband?
- How do you want to use the RSST?
 - focus on surveys? or more time for GO projects?
 - what sort of data products?
 - does the RSST need to be outfitted uniformly?
 - all frequency bands at start? or upgrade later?
 - all bands on all telescopes? core to higher frequency?
 - configurations: low-res core vs. high-res long baselines?
 - is the current "design" adequate?
 - what are the co\$t impact of these issues?

More Questions

HI Cosmology Simulations

- need good enough models to make credible projections
- where are we now and what do we need to get there?
- $-\phi(M,z)$ and $f(M_H/M \mid M,z,\rho,...)$ link to halos
- semi-analytics vs. N-body/hydro

Science Precursors

- what can we do NOW to pave the way?
- can we learn anything about HI in galaxies at z=0.5?
- should we change the way we use existing facilities?
 - big EVLA surveys (commensal?) beyond ALFALFA? ATA?
- what about the pathfinders?
- are there intermediate stages to full RSST?

... and finally

- Landscape 2012-2020+
 - radio is not all there is!
 - what other instruments will be there (first)?
 - LST = very large deep photometric surveys + transients
 - GSMT = deep spectroscopy
 - JWST = high-quality IR imaging
 - others (Planck &beyond, Herschel, GLAST, GAIA, Ligo2/LISA, ConX/Xray?, JDEM, other surveys)
 - what makes a RSST (or other SKA) compelling?
 - what things are unique?
 - what important things are complementary & supplementary?
 - does this have to be a competition (e.g. w/LST,GSMT)?
 - or part of a coherent vision for Astronomy in 2020?

For more information on RSST....

- RSST Proto-White Paper (draft)
 - on the Arecibo Frontiers conference website:
 http://www.naic.edu/~astro/frontiers/RSST-Whitepaper-20070910.txt
- RSST Web Page
 - http://www.aoc.nrao.edu/~smyers/rsst
- SKA Info
 - http://www.skatelescope.org
 - particularly see the "Science Book"
 - "The Dynamic Radio Sky" by Cordes, Lazio & McLaughlin
 - "Galaxy Evolution, Cosmology, and Dark Energy with the SKA" by Rawlings et al.
 - others...
- stay tuned for Great Surveys workshop