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ABSTRACT

We compare hierarchical peak-patch catalogs with groups and clusters constructed using Couchman’s adaptive
P3M simulations of a “standard” CDM model with amplitude parameter o5 ~ 1. The N-body groups are found
using an identification algorithm based on average cluster overdensity and the peak-patch properties were deter-
mined using algorithms from Paper I. We show that the best agreement is obtained if we use (1) density peaks
rather than shear eigenvalue peaks as candidate points, (2) ellipsoidal rather than spherical collapse dynamics,
thereby including external tidal effects, and (3) a binary reduction method as opposed to a full exclusion method
for solving the cloud-in-cloud problem of peak theory. These are also the best choices physically. The mass and
internal energy distributions of the peaks and groups are quite similar, but the group kinetic energy distribution
is offset by ~12% in velocity dispersion, reflecting our finding that the N-body clusters are invariably out of
isolated virial equilibrium. Individual peak-to-group comparisons show good agreement for high-mass, tightly
bound groups, with growing scatter for lower masses and looser binding. The final state (Eulerian) spatial distri-
bution of peak patches and N-body clusters are shown to be satisfyingly close. There is indication for the necessity
of a small nonlinear correction to the Zeldovich peak velocities.

Subject headings: catalogs — cosmology: theory — galaxies: clusters: general — galaxies: formation —
methods: numerical

1. INTRODUCTION

The hierarchical peak-patch picture is a way to generate point processes associated with deep gravitational potential wells which
is more physically correct than the original single-filter snapshot of density peaks (Bardeen et al. 1986, hereafter BBKS). Not only
can one now obtain cosmic mass and velocity functions, unlike the single-filter peaks theory, but the spatial correlation structure is
also automatically included, including both statistical clustering of the peak patches as well as dynamical clustering via an adaptive
Zeldovich approximation. The peak-patch picture can also be thought of as the physically logical development of the excursion set
(Press-Schechter) approach: objects are treated as coherent extended entities rather than as disconnected bits of space. Algorithms
for implementing hierarchical peak-patch simulations were described in Bond & Myers (1995a, hereafter BM1). We show how far
one can go analytically and semi-analytically in calculating peak-patch mass and velocity functions and two-point correlation
functions in Bond & Myers (1995c, hereafter BM4).

But does the technique work? If so, is it useful? In this paper we address the first question by making a detailed comparison of a
peak-patch catalog with an N-body group catalog, both constructed from the same realization of initial conditions (§ 2). The theory
is a (standard) adiabatic cold dark matter model with Gaussian scale-invariant initial conditions (density spectrum index n; = 1),
Hubble parameter & = 0.5, where Hy = 100 4 km s~ Mpc™!, and Qum = 1. The parameter defining the overall normalization
amplitude for the model, o3, is needed to complete the specification of the theory. It is the relative rms fluctuation level of the mass
enclosed within a sphere of radius 8 A~! Mpc, calculated in linear perturbation theory, and evaluated at the current time. Our
comparison N-body simulation, kindly provided by Hugh Couchman (Couchman 1991), was an adaptive P>M simulation of a
periodic box of comoving volume (200 #~! Mpc)?, using 1283 particles perturbed from an initial 1283 grid. The amplitude of the
simulation was a3 = 0.97. The objects in the N-body catalog are therefore clusters and groups. In § 2.1, we describe the group-finding
algorithm we use to identify the clusters based on truncating the particle content of a group once a volume-averaged density
threshold has been reached. We contrast this with the more standard friends-of-friends algorithm, which may be interpreted as
truncating particle content once a smoothed surface density threshold has been reached.

The overall “bias factor” for the CDM spectrum we use for comparison, b= o5’ = 1.03 is a relatively low one, hence a substantial
amount of nonlinear dynamics is expected within the simulation volume. To match the cluster distribution will therefore be quite
a challenge for a theory based upon simplified dynamical models acting on the initial conditions: higher biasing factors are much
easier for us to match. We compare mass and velocity dispersion functions of the groups and the peaks in §§ 3.1-3.2. We make a
direct peak-to-group comparison in § 3.3 and show visually how close the clustering patterns match in § 3.4.
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We believe the reader will find the matching sufficiently impressive—especially for high-mass peak patches—to feel that the
results we derive from the construction of catalogs of clusters which cover much larger volumes of space are as quantitatively
accurate as could be obtained with a low-resolution N-body code if it could cover such huge volumes. This includes the reproduction
of clustering patterns. Indeed perhaps we are more accurate since we automatically include the often important effect of evolution
of the clusters across the simulation volume which is most often ignored in N-body simulations of clusters. These aspects of our
method are described in Bond & Myers (1995b), hereafter BM3.

2. COMPARISON OF N-BODY GROUPS WITH HIERARCHICAL PEAK PATCHES

To establish whether the peak-patch method can accurately locate and measure the regions of collapsed structures, we compare
a catalog of groups and clusters that we construct using the hierarchical peaks method with a catalog constructed from an N-body
simulation. We start from exactly the same realization of initial conditions in a 128° box of length 200 ~2~' Mpc. The N-body
solution was computed by Hugh Couchman with his adaptive P>M algorithm (Couchman 1991), using 128 particles. His calcu-
lation began with Zeldovich approximation displacements from the lattice sites at a redshift of 16 and evolved to zy., = 0. The peaks
were found on the 1283 lattice. Since the P3M output is for a uniform redshift, we set Zpk = Zbox} 1.€., €volution across the box for
this comparison is turned off. The theoretical model was a “standard” adiabatic cold dark matter model with Q.,, = 1 and Hubble
parameter 4 = 0.5. The transfer function for the density power-spectrum is the one given in Appendix G of BBKS. The normalizing
amplitude was og = 0.97 (bias factor bg = 1.03). Such a low bias is quite a challenge for our method since the amount of dynamics
is quite large compared with higher bias models.

The Couchman P>M simulation was analyzed using a novel group finding algorithm based on average overdensities described
belowin § 2.1 and in Appendix A. The implementation of the hierarchical peaks method was described in BM 1. One-point number
density distributions for mass and internal binding energy of the peaks and P>M groups are compared in § 3 to show how the various
options in the peak algorithm fare. For masses M > 4 X 10'* h~' M, we find excellent agreement for the options we prefer on
physical grounds, homogeneous ellipsoid dynamics and binary exclusion. This corresponds to peaks with density height relative to
the rms of vy = 1.7. We show we are somewhat resolution limited in a 200 4~' Mpc box in the peaks method for lower masses to
allow accurate determination of the distributions. Direct spatial comparisons between the P>M groups and the corresponding peaks
also show good agreement (§ 3.3). All P>M groups with more than 400 particles (Mg, > 4.2 X 10" ™! M) can be matched to
peaks that are quite nearby, and the masses and internal energies are well correlated. Further, we find the matched peaks and groups
obey nearly the same relationship between mass and internal binding energy.

2.1. Group Finding Based on Average Interior Density

The most popular cluster-finding method is the percolation or “friends-of-friends” algorithm. Particles are joined together in a
group if they belong to a percolation chain, overlapping with at least one neighbor at most a distance pn '/ away. Here 7 is the
average particle density within the simulation volume and p is the percolation parameter. Percolation group finding can be viewed
in a different way which is better suited to us. The overdensity field,

L+o(x,0)=p(x,1)/p, (2.1)

is smoothed with a “top hat” filter of radius p#~'/? and the groups are identified with connected volumes of space lying above the
threshold,

1+65Cut=2%p3; ie,n/n=2. (2.2)

This assumes that the mass per particle #1, is constant, and p = myxn. Thus the percolation method tries to define an outer contour
of density as the grouping criterion (hence S for surface). With a percolation parameter p = 0.2, we have 1 + 6g. = 60. Our
hierarchical peaks method was designed to mimic a cut, 6y, at a specific volume-averaged overdensity < §)y, not an outer density
contour. If the density profile within a cluster has a spherical power-law form, §(7) oc r~7, then we would have

3
6cht = 3_ 5Scut . (23)
-

For v = 2, this gives dy. =~ 176, which is why p = 0.2 has been a common choice among N-body simulators, since § = 179 is what
a spherical top hat collapse would give for the virialized volume-averaged overdensity. Choosing p = 0.3 gives 65, = 18 and
dvem =~ 54. However, the contour interiors are often not spherical and the sphericalized profile may not have v = 2. In particular,
percolation groups cut at the same threshold may be quite different dynamical entities, with some being long and stringy and some
being compact.

Our goal is to identify virialized objects, since these are what our peak patches purport to find. To virialize, a number of orbital
crossing times across the group are required. For a spherical region, the crossing time oc (1 + (8)y)~"/ 2, Thus, although volume-
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averaged overdensity is not a perfect indicator of crossing time for nonspherical shapes, it is much better than outer contour level.
We therefore developed a new efficient group finding method that does select on {8)y..

In any group finder, there are three basic ingredients: finding a starting particle or location, choosing the next candidate particle
to add to the group, and stopping the group building once some criterion such as a density cut is met. Before describing ours, we
review how these steps are taken in the minimal spanning tree implementation of the friends-of-friends algorithm (e.g., Carlberg &
Couchman 1989). The minimal spanning tree uniquely links the particles together based on neighbor distances. One identifies the
groups by severing the links at a maximum allowed link length, /.., = pn~'/3. In this case, the starting particle for a group is any
particle not already in a group. The next particle as a candidate for group membership is any one that is linked to a particle already
in the group. It is accepted if the link length is below /,,.x. The stopping criterion is that all links to the group have been checked.
Groups found with this method are clearly percolated patches of particles, with outer number density contour 7 ~ /o .

We have developed a group finder that calculates a “smooth-particle overdensity” (SPO) for a cluster of particles. The algorithm
is presented in Appendix A. The SPH-style smoothing kernel is used to interpolate smoothed field quantities—such as density,
velocity, and temperature (velocity dispersion )—onto the particles. Particles having a high smoothed density p, are tagged as cluster
“seeds,” and a group is grown radially around the seed until a volume-averaged overdensity 1 + {6)y = (Mg,/ Vip)/ pur» Telative to
the cosmological background density p,,, reaches the critical value dy.,;. Because the group is grown radially from a center, all the
group-member particles are contained within some sphere, although of course the particles will have in general some nonspherical
distribution. The SPO group-finder is akin in philosophy to the peak-patch picture of averaged fields within spherical Lagrangian
volumes; in some sense this is the discretized analog.

A summary of the numbers of groups found using the overdensity method for different 6,.,; and percolation method for different
p is given in Table 1. In Figure 1, we compare the mass function determined with our group-finder with that determined with
the percolation method. The mass function is defined to be the average density in objects above mass M (in units of the critical
density pc),

1 o dn 1
(>M) ), mdlnm g = MEM & (24)

where Vi is the simulation volume (2003 273 Mpc?). We show results for overdensity cuts 8y, = 180 and 8y, = 100. The value
of 180 is the fiducial one we use throughout this paper, since it is the virial equilibrium overdensity that a spherical top-hat collapse
model gives (for a @ = Q.. = 1 universe like the CDM model used here). For the percolation method, we show results for p = 0.2
and p = 0.3, for which group membership is determined from Carlberg & Couchman’s minimal spanning tree. These results show
that the p = 0.2 mass function is reasonably close to the 6, = 180 one, as one expects based upon the argument for spherical
isothermal halos with ¥ ~ 2 given above. A combination of slightly steeper profiles than v ~ 2 and siightly fuzzier distributions for
the smooth-particle overdensity groups seem to explain why it is a little less. That the two methods do not give exactly the same
group membership is illustrated in Figure 2, where a projection onto the x — y plane of the inner (150 #~! Mpc)? volume of the
(200 A" Mpc)? cube shows that percolation groups are not as rounded as those cut using the mean interior density and there are
dyeut = 180 groups that do not appear among the p = 0.2 groups, while all é,.,, = 180 groups appear in the p = 0.3 catalog.
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F . _ SPO 6=100
w___ SPO 5=180
Qeeenenene Perc p=0.2

Q(>M)

5 —— Perc p=0.3
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[ P3M group-finders
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FIG. 1.—The mass functions of the Couchman P>M groups in the 200 4~ Mpc box for different group-finding algorithms: our “smoothed-particle
overdensity” method which truncates group membership once a threshold volume-averaged interior overdensity is reached (filled circles, for 8yc, = 180
and 8y, = 100); the percolation friends-of-friends method using link lengths of p = 0.2 (open circles) and p = 0.3 (open squares).
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TABLE 1
VARYING THE GROUP-FINDER FOR THE P*M SIMULATION

Group-finder Cut Nago+® 004> Ni00+°
Overdensity .......... Syeur = 100 483 1146 2403
Overdensity .... Syeur = 180 381 1005 2157
Overdensity .... Syeur = 500 244 698 1710
Percolation .. .. p=03 457 1049 2173
Percolation ........... p=02 308 807 1822
2 Groups with 400 or more particles; Mg, = 4.212 X 10"h™' Mo,
® Groups with 200 or more particles; Mg, = 2.106 X 10"*h™'M,,.
¢ Groups with 100 or more particles; Mg, = 1.053 X 10"h™' M.
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FIG. 2.—A comparison of the projected (x, y) particle content of our dy, = 180 groups (a) with that of p = 0.2 percolation groups (b) and p = 0.3
percolation groups (c), for the inner (25-175) h~' Mpc region of the 200 #~' Mpc box. The groups in this plot have more than 400 particles, M, >
4.21 X 10" h~! M. Note that some of our groups are not among the p = 0.2 groups and the particle distributions differ at the outer edges.
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2.2. Interior Group Energies and Virialization

We also compute the kinetic, potential, and internal energies of the groups. To put the comparison of these energies on the same
footing, we express them in terms of three-dimensional velocities:

K 1 &
vk=2-, K== — 0,
X M, 20=lmplvp ve]%,
|2 12 Gm,m,
U%VE_ mt, u/in = = — P "°q , (2.5)
M, Y20 allx, — x|t + e2h?)'
2 Eint__ 2 2 =
V= 2M = UK+2'Uw, Eim=K+ W/int'

14

Thus v is the group velocity dispersion. In the expression for the internal gravitational potential ¥, we include a softening ek to
avoid divergences; here, h = h, is the smoothing scale for the central particle in the group, and we take ¢ = 0.03, which results in a
smaller softening than that actually used by Couchman for his P>M run.

In isolated virial equilibrium, all three velocities would be equal. The general case has correction terms which cannot be deter-
mined very well from P3M output at a single simulation time step. Let us consider the terms that can modify the equality in the
case in which the group interior has a spherical boundary. The trace of the tensor virial theorem (e.g., Binney & Tremaine 1987)
can be written in terms of an asymmetry Ay in the isolated virial velocity relations:

vi=v%—2A%, (2.6a)

vl =vk— AL, (2.6b)
g 2

AL=3 Prs W“‘—‘*“+11Trace(Q). (2.6¢)

<p>’y_ Mg 2dt2

Here, P, s is a radial surface pressure, Trace (Q) is the trace of the moment of inertia (or mass quadrupole) tensor Q;; and Wini—ext
is the interaction potential energy between the interior of the group and the exterior (more precisely, the contribution to the virial
of the interior from the gravitational field of exterior particles). External gravitational forces can help or hinder the binding of the
interior particles depending upon how they are arrayed compared with sublumps in the group. The surface pressure correction in a
dark matter distribution arises if we think of the medium as continuous and described by a one-particle distribution function, rather
than in terms of discrete particles. It arises because there may be an asymmetry at a “microscopic” level between particles whose
orbits take them outward through the boundary and those coming in. This term will invariably lower the v relative to vg. Consider
the case of a group that has had a recent merger, a very common possibility in hierarchical scenarios. The particles get overcom-
pressed relative to the virial equilibrium, overshoot, then have damped oscillations as they settle into a true isolated equilibrium.
The changing spherical moment of inertia “stores” some of this energy mismatch.
We also calculate the “circular velocity™:

02 = GM,/R,, (2.7)

which is one of the conventional ways of characterizing the potential well depth of a group. For a spherical 6(r) oc ™ profile, well
beyond the core radius, we have v2,. ~ [(5 — 2v)/(3 — ¥)]v%. For the v = 2 isothermal halo, we have v3, ~ v}. We shall show
that the circular velocity does in fact come close to vy for the Couchman groups.

Which P3M group energy should we use to compare our peak internal energy to? Clearly it is v} that v% ok is designed to measure.
On the other hand, when we wish to predict observables for group catalogs, it may be vk which is more appropriate. (See BM3 for a
discussion.)

We show in Figure 3 how close the P3M clusters found using our group-finder are to isolated virial equilibrium (i.e., Az = 0).
The three panels show three choices for the mean interior density threshold, 6y, = 100, 180, and 500 for (a), (b), and (c),
respectively. A measure of the substantial average departure from equilibrium is v,/ vx ~ 0.92, which translates to a 15% deviation
of | Win|/(2K) from unity. The overdensity cut does not affect this very much. If we use Couchman’s softening of the gravitational
force, which is the correct one to use to determine whether virial equilibrium prevails, the vy,/ v discrepancy will be only slightly
larger.

3. EVALUATION OF THE HIERARCHICAL PEAK-PATCH ALGORITHM

In the following two subsections, we compare the hierarchical peaks method with the P3M simulation using volume averaged
one-point distribution functions for the mass and velocity dispersion. In the subsequent two subsections, we directly compare the
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FiG. 3.—The virial ratios (v%/v% = — Wy /2K) for the Couchman P3M groups found using the smoothed particle overdensity algorithm. The three

panels show the ratios versus group mass for the three overdensities dy.,; = 100, 180, and 500. In isolated virial equilibrium this ratio is unity, hence
equilibrium is not the norm. Note that there is little difference between the three overdensities, except for a slight trend of decreasing ratio with increasing
overdensity.

peak patches and the P3M groups. For the P3M data, we use the groups found with our overdensity algorithm described above, with
an overdensity cut 6, = 180 (because it is the virial equilibrium overdensity that a spherical top-hat collapse model gives). The
hierarchical peaks are implemented as described in BM1, using a hierarchy of 25 Gaussian filters, spaced logarithmically from
Rg=2.0 h~! Mpcto R = 8.0 h~! Mpc. The relationship between enclosed mass and Lagrangian spherical top-hat radius is

4—”5,,,R%H= 1.156 X 10"*(Rra/h ™" Mpc)* h™' Mo . (3.1)

My = 3

The lattice size was a;. = 1.5625 h~' Mpc, and the corresponding P*M particle mass was M, = 1.053 X 102 2™! M.

3.1. The Mass Function

The mass function is defined by equation (2.4). In Figure 4, we show how the mass functions Q(> M) for the peaks found using
the ellipsoidal and spherical approximations to internal dynamics fare with respect to the mass function of the P>M groups. Binary
reduction was used to deal with Lagrangian overlaps for the peaks. The mass function for the ellipsoidal peaks agrees quite well with
that for the N-body groups for masses M > 3 X 10'* h~! My; below that, the peaks’ function falls below the P3M function. The
peaks mass function with spherical dynamics is offset upward in mass by ~20% at the high-mass end. The average offset for masses
above 4 X 10" h™' M is 23%. Note that this is only a 7% correction in R, , which is the quantity we measure; at 4 X 10" A™' M,
(Rpx = 7.02 h~' Mpc) this corresponds to AR = 0.5 A~' Mpc which is only 0.3a; . It certainly appears from this one-point function
that the N-body data prefers the more physically correct ellipsoidal model over the spherical one.

A useful comparison mass is Mty 5 (€q. [3.1]), the mass associated with the top-hat filter scale 77y 4 at which the linear rms
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FIG. 4.—The mass function (fraction of the closure density found in objects above a given mass M) for peak-patches compared with that for P3M groups,
for the g = 0.97 CDM model. The N-body clusters have 40 or more particles (M, > 4.21 X 10'3 ™! Mo) and a volume-averaged density contrast above
dyew = 180. Analytic functions for peaks that just pierce the density threshold f; for spherical dynamics (long-dashed curve, f, = 1.686) and for ellipsoidal
dynamics [solid, f;(¢e,)], and for the Press-Schechter formula (short-dashed curve, f. = 1.58) are shown. The peak mass function with ellipsoidal dynamics
and the PS curve matches the P>M group mass function; for spherical peak-dynamics to match, about a 20% mass reduction is needed. ( The PS formula
with f; = 1.686 is offset to lower masses [BM1].)

density fluctuations are equal to 1.686, i.e., 6o( Rt «) = f-. The maximum of the differential Press-Schechter mass function occurs
at My «. This scale corresponds to » = 1 fluctuations, very far from the rare-event regime. For the ¢3 = 0.97 CDM model, M1y 4 =
0.9 X 10" A~ M. We draw attention to Figure 12 of BM 1, which compares the PS mass function with that for hierarchical peaks.
We also show the PS curve with density threshold f. = 1.58, which fits the data on the “rare-event” side. (For the standard value
f.=1.686, the curve is too low.) The good agreement between the Press-Schechter mass function and that for N-body groups around
My 4« was shown by Bond et al. (1991) for a set of rather small power-law N-body simulations, but we have now extended this
comparison to the extreme Gaussian tail of the mass function and shown that only small modifications are necessary to justify
continued application of the easy-to-use Press-Schechter formula.

Superposed on the Monte Carlo points are analytic curves using only the peak points which are just piercing upward through the
linear density threshold f. (upcrossing peaks). Two curves are shown. The higher one has no extra exclusion beyond the (powerful)
one associated with the restriction to those peaks with F = f.. The second is an attempt to approximate the half-exclusion case. At
least for object counting, half-exclusion and binary exclusion are the same. Formulae for the curves are given in Bond (1989) and,
with a more refined mass estimator and f;, in BM4. The analytic curves were derived using the same CDM power spectrum
normalized to a3 = 0.97 as in the simulations, but of course the result shown is an ensemble-average rather than a volume average
over the box. The analytic peak functions are in excellent agreement with the Monte Carlo peak points for both the spherical
approximation to dynamics which has a constant f, = 1.686 and for homogeneous ellipsoid dynamics, for which f.(e,) is a function
of the mean ellipticity e,, and, through this, a function of mass. An approximate expression for f.( e,) is given in BM4.

The ellipsoidal collapse model significantly improves agreement with the N-body data relative to that with the spherical top-hat
collapse model. We emphasize that we were led to the extra complication of ellipsoidal dynamics because we felt it was essential on
physical grounds to include the influence of shear upon the internal patch evolution. It was not to tweak the agreement with the V-
body data. That was a bonus.

In Figure 5, we compare mass functions with some of the other choices for candidate peak points with that for Gaussian-filtered
density peaks with threshold f; = 1.686, our standard method. (The reason we do not directly use top-hat filtering to create the
candidate point list was discussed in BM1, § 3.3). We use homogeneous ellipsoid dynamics and binary reduction for our exclusion
algorithm in all cases. Out of the 1283 grid cells in the entire 200 #~! Mpc box, we find a total of 7647 peaks above f, = 1.686; of
these peak patches, 7615 successfully collapse using the ellipsoid model. After half-exclusion and binary reduction, we are left with
3530 peaks (on all filter scales). We also consider density peaks with a lowered threshold, f; = 0.01 (nonzero to allow e, and p, to be
defined). The mass function for these peaks is very similar to that of the standard density peaks and that of the \,; peaks (described
below), so we do not show it in Figure 5. The counts of peaks found in our box, at various stages of the process, are listed for the
different peak-finding methods in Table 2. Above a mass cut of4.21 X 10'* 4~! M (corresponding to 400 or more grid cells or P*M
particles), there are only 3.4% more f; = 0.01 final peaks than for those chosen with f; = 1.686; using f; = 1.686 results in a saving of
34% in number of candidate points to consider.
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FIG. 5.—Comparison with the N-body data ( filled circles, solid line) of the mass function for F-peaks above a threshold f; = 1.686 (open circles, dotted
line) and for A, peaks above a threshold f; = 0.01 (open squares, dashed line). Both used ellipsoidal dynamics and binary reduction. The analytic upcrossing
formula with ellipsoidal dynamics is the long-dashed curve. The density peak mass function fits the P3M function best. The \,;-peak and F-peak functions
with f; = 0.01 are quite similar to the f; = 1.686 F-peak shown (BM1).

In BM1, we introduce the strain eigenvalues A3 = A, = A,;, which we parameterized in terms of F = A3 + A,z + A1, and the
shear ellipticity e, and prolacticity p,. Since the pancake picture of structure formation has the first objects forming at peaks of A,3,
it is natural to see what difference it makes if we use those points as candidate points. The Zeldovich approximation to dynamics
shows that initially the flow in comoving space is convergent upon a point if A,; > 0. It may thus seem natural to consider points at
which the convergence is maximized. However, the homogeneous ellipsoidal dynamics shows that the nonlinear tidal forces which
the Zeldovich approximation neglects can cause patches with A,; < 0 to collapse along all three axes. Nonetheless, it is interesting
to see what would happen if these points are chosen as candidate points.

Using grid points which are peaks in \,; which also have the filtered density field F in excess of f; = 0.01 (again to allow ¢, and p,
to be defined), we obtain the mass function shown in Figure 5. This curve tracks the standard density-peak mass function well
throughout most of the mass range, extending a bit to higher masses, and saturating at low masses because there are not as many
small-scale filter A\,; peaks. The A,; peak mass function (not shown in Figure 5, but see BM1 Figure 13, is very close to that for the
F peaks. From Table 2 we see that there are significantly more candidate \,,-peaks, although after collapse and exclusion the
numbers are more similar, especially when a mass cut is imposed. The reason there are also slightly more A 3-peaks than F peaks
with the same f; = 0.01 threshold on F is because there will be some uncounted F peaks with Fy,, < 0, but since \,; must exceed F'/3
always, there will be fewer uncounted A,; < 0 peaks.

From Figure 5, we see that our “preferred” choice of f, = 1.686 density peaks is also preferred by the P>M data. A direct peak-to-
group comparison using the N-body groups (§ 3.4) also shows this. It is also much more efficient to compute candidate points based

TABLE 2
VARYING THE CANDIDATE PEAK FINDER IN THE COUCHMAN BOX

Peaks A Npis” Peott® Texs” Papo+* n200+° Mioo+”
1.686 7647 7615 3530 350 830 1614
0.01 11598 10710 4324 362 843 1582
0.01 12378 7840 3291 301 680 1262
0.01 19784 14406 5267 363 901 1742

2 All peaks, all filters.

b After ellipsoidal collapse.

¢ After half-exclusion and binary reduction.
4 My = 4.212 X 10"h™" Mo (400+ cells).

€ My = 2.106 X 10"*h™' M (200+ cells).

f My = 1.053 X 10"*A7' Mo (100+ cells).
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on Fthan on \,;, especially if we can also add a f; = 1.686 threshold to reduce the number; accordingly, we adopt this choice as our
standard.

In Figure 6, we explore the effect of the exclusion or mass-reduction method on the mass function. We compare full exclusion
and binary reduction results for the Monte Carlo peaks (using ellipsoidal dynamics) to the mass function for the P3M groups. The
curve for the full exclusion falls away from the binary-reduced curve for peak masses M, < 5 X 10'* h~! Mo, since smaller peaks on
the outskirts of the larger peaks are eliminated by full exclusion but not by binary reduction. We also show the mass function if we
take no exclusion into account (except of course we do not count points at the same site more than once). This curve does not
correct the cloud-in-cloud problem and so is expected to liec well above the other curves and not agree with the P>M results, and that
is indeed the case.

We adopted binary reduction as opposed to full exclusion because we were worried about an overmerging problem. Once again,
an improvement in the physics has led to a better match with the N-body data. Although one could make the reduction method
more refined still, we feel that binary reduction is a reasonable option for Lagrangian mass allocation and is the one we adopt as
standard. Note that the Monte Carlo peak points with binary reduction lies between the two up-crossing analytic curves, one with
and one without an approximate half-exclusion correction. Thus, we can also conclude that the analytic mass function will be
sufficiently accurate for many applications, when ease of calculation is a priority.

The drop in the peak density relative to the P>M mass function, for M S 4 X 10" h~! M, is most likely due to loss of short-
wavelength information on the large grid. We have checked this hypothesis by simulating two boxes from a og = 0.97 CDM power
spectrum with random initial conditions, one box of size L = 200 4~' Mpc, and a box of one-half this length, L = 100 2~! Mpc.
The mass functions are shown in Figure 7 and compared with the Couchman P>M function, which had initial conditions derived
from the same power spectrum but with now a different realization. We see that the peak mass function in the smaller box now
matches that of the P> M, in the mass range from M < 2 X 10'> h™! M, all the way down to the 40 particle limit of the simulation
M, =4.21X 10" h~' M,, below which the group finding becomes prohibitively unreliable. In the 200 2~' Mpc box, the lattice size
is a; = 1.56 h~! Mpc, and the Lagrangian top-hat radius corresponding to the divergent mass is 7 #~! Mpc. Note that the Monte
Carlo peaks mass function as extended by the smaller box now follows the analytic peak curve for upcrossings without statistical
exclusion. Since the P>M calculation in the 200 £~! Mpc box began with the same initial conditions as our calculation, it might be
argued that adding a factor of 2 higher frequency waves is incorrect. There are two reasons why we believe this is reasonable for
comparing with the Couchman simulation: first, we use a Gaussian filter with Rg = 0.5a; on the initial density field when we
determine candidate point survival (as a collapsed object) and compute masses. Second, the P3M calculation has an unavoidable
noise associated with particle discreteness (shot noise) that can begin the clustering process, which will affect the small mass object
count. We (fortunately) have no such spurious effect. Notice that, as expected, the mass function of the 100 4~! Mpc box does not
extend to as large a mass as that for the 200 4! Mpc box. To remedy this, we would add a long-wavelength component, as described
in BM1, § 4, and BM1, Appendix D.

e,
L P ‘*«“ ]
" ]
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z : nnp :
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FIG. 6.—The mass functions for F peaks with full exclusion (large squares), binary reduction (small open circles), and for no Lagrangian exclusion
(small triangles) are compared with that for the P>M groups (small filled circles). The analytic curve for number of “upcrossings” peaks, #y,, just piercing
the critical density contour Fpy = f; is the solid curve, and the long-dashed and short-dashed curves add a further reduction designed to approximate half-
exclusion and full exclusion, respectively. The candidate threshold f; = 1.686 and ellipsoidal dynamics were adopted for the F peaks. The no-exclusion case
(except no pixel redundancy is allowed) grossly overcounts overlapping peaks. The full exclusion and binary reduction methods differ at low masses since
smaller peaks on the periphery of larger ones are destroyed in the full exclusion operation.
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FiG. 7.—The mass functions for Monte Carlo hierarchical peaks in two boxes, with random initial conditions drawn from a ¢z = 0.97 CDM power
spectrum, vs. the Couchman P3M simulation. The two peak simulations were realized in a boxes of size L = 200 »~! Mpc (open circles)and L = 100 h~!
Mpc (open squares). The peak mass function in the smaller box now matches that of the P>M in the mass range where the larger box results diverge, all the
way down to the 40 particle limit of the simulation, M, = 4.21 X 10" h™! M. Also shown are the analytic peaks curves. Note that the upcrossing formula
follows the smaller box’s small mass rise and the larger box’s high-mass tail.

3.2. Velocity Dispersion Function and Energy-Mass Relations

We show the number density of objects as a function of the “velocities” associated with group kinetic energies (vx) and internal
energies for the groups (vg) and peak patches (vg ) in Figure 8. These show that v p, falls between the P*>M group internal energy
and the dark matter velocity dispersion vx of the groups: as we will see in the next subsection, the vy, are on average 4.3% higher
than the group internal vgg,, and 12.8% lower than the group kinetic vk g,. Although E;,, for the groups is the closest analog to
Eiipx, we noted in BM1, § 2.1.4, and BM1, Appendix B, that even in the homogeneous ellipsoid model there are tidal heating and
cooling effects which cause the internal energy to change as collapse proceeds. We showed that the correction in quadratic order
was to add heat to the region, thereby raising the (negative) internal energy, and hence lowering v%, which is just the trend we see.
In the spherical approximation to dynamics, one would get no difference.

Note that the internal energy curve for peaks found with ellipsoidal dynamics is the same as that for spherical dynamics. This
may appear puzzling because the mass functions differ by ~20%. However, it is simple to understand by considering the linear
density profiles around the peaks. Let us recall from BM 1, equations (2.27a)-(2.27b):

—_ Rsk —_
v%,pkE [H(zpk)apk-Rpk]ZFkapka Spk = (FkaSk)" A ’ F(<RTH)dR‘51'H s (3.2)

where @y, = (1 + zy) ' is the expansion factor when the peak collapses, Ry is the peak radius and F = H <Ryy) is the volume-
averaged overdensity within Ry, . Consider a spherically averaged profile with a power law falloff, F(r) oc F,(r./r)", where F,is the
central density, . is a “core radius,” and we assume r is far beyond r.. With this form, we have

5

__3 ¥ -
Fp = Fc(rc/Rpk) s Spk (5_,),)’ (3.3)

3-7v)

15
GB=7)5-7)

[H(Zpk)apkrc]2Fc(Rpk/rc)2_7

2
VEpk =

This is Ry-independent for ¥ = 2. Now, for a density power spectrum with local power-law index nJ Pp(k) oc k™], we have v = 3
+ n,. Thus n; = —1 should give about the same internal energies whether ellipsoidal or spherical dynamics is used, even though
there is about a 7% discrepancy in their radii. Of course, this is about the local index for the standard CDM model in the cluster
regime. (In the analytic theory, we find that for this CDM spectrum S, ranges from 1.29 to 1.45 over the relevant filter range.)

For the Press-Schechter case, to form a velocity function most people adopt a phenomenological velocity-mass relation. We show
in Figure 8 what form that relation would take in order to fit reasonably well the P>M internal and kinetic energy curves. If we apply
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F1G. 8.—The number density of objects with three-dimensional velocity dispersion above o,, with ¢, given by vk, the velocity dispersion determined
from the group’s internal kinetic energy (filled circles; “KE”) and by vg, estimated from the group’s internal total energy (filled circles; “BE”). These are
contrasted with the Monte Carlo estimation vg , calculated from the peak patch’s internal (binding) energy (open circles). The analytic result (solid curve)
for f.(e,) barrier-penetrating peak-patch points, using the mean-field calculation of the internal energy and ellipsoidal dynamics, agrees very well with the
Monte Carlo curve. We also show how the Press-Schechter (PS) function fares when we use the phenomenological relation of mass to internal group energy
and group kinetic energy that we have found (M;s = M/10'® h~' Ms). The peak curve lies on average 5% in v above the group internal energy curve and
~12% in vg below the kinetic energy curve.

the spherical dynamics model to determine the E;,, — M relation, and assuming an isothermal (y = 2) profile so Sy ~ %, we get an
internal energy law vy ps ~ 1540(Mps/ 10" h™' Ms)'/* km s™'. (Using the smaller values that the peaks give for Sy, gives a value
closer to the internal energy we get for groups below.) The phenomenological law most often used is based upon the temperature in
the low-resolution smooth particle hydrodynamics calculations of Evrard (1990), which we also discussed in BM1 § 4.2.2, vy =~
1730(M/ 10" h~' M)/ km s™'. If one uses the temperature to v% ratio actually measured in the Evrard simulations (e.g., Frenk
etal. 1990), one gets vx ~ 1900 (M/10" A~ M5)'/* km s~'. The higher and lower PS curves plotted in Figure 8 have coefficients
in the v — M'/3 relationship determined by our measured kinetic and internal energy relations (1755 and 1465 km s™!,
respectively). The P*M data is fitted very well by the Press-Schechter form for v g, and reasonably well for vk g, (with a deviation
at the high velocity-dispersion end).

We now discuss the direct determination of the relationship between the various velocities and the mass of the groups. BM1
Figure 11 depicted vg p versus mass for the same initial conditions as for the P3M simulation we are focusing on here. We found
that vg =~ 1560 (M /10" h™"' Mo)'/? km s~ fits the data reasonably well, although a flatter power of mass (0.29) is preferred.
The dispersion about the mean was ~5%. We may also recall from BM1 that the analytic counterpart to the hierarchical peaks
theory for ellipsoidal dynamics gives vg o = 1530 (M, /10" h™' M5)*? km s, which also accurately fits the mean of the Monte
Carlo results.

In Figure 9a, the velocity dispersion of the groups v, (i.e., the “kinetic energy velocity™) is plotted versus mass Mp, for the
Couchman P>M groups. The relation follows the power-law M !/ expected phenomenologically for virialized clusters. To test this,
we calculate the mean relation versus M5 = M/10" h™! M,

log vo = (10g (Vk.gp/ M143p) Yeps> 6 = {10g (Vk,gp/ M143) — 108 Vo Yeps
to find the best fit v, M43 law and the deviation 8, about it. We find

M,

ok = 1755 g

1/3
) kms™!, 0, = 6.5%, for My =2.5X 10" h™' Mo . (34)

This relation is the solid line in Figure 9a. In Figure 95, we show the velocity estimate from the internal gravitational energy vy g,
for the P3M groups versus My,. For groups M, > 2.5 X 10'* A~' M, we obtain the best fit

M,

own = 1620

1/3
) kms™,  §,=52%, forMg,=25X10"r"Mo. (3.5)
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FIG. 9.—(a) The three-dimensional velocity dispersion vk calculated fronr the Couchman group’s kinetic energy is plotted against group mass M,, along
with the best-fit power law vg = 1755 (M/ 10" h™! Mg)"/3. (b) The velocity vp = | Win/M,|'/? estimated from the internal gravitational energy Wiy, of the
groups, along with the power-law fit vy, = 1620 (M/ 10" h™' M)'/3. (¢) vg = |2 Eim/ M| /? estimated from the internal (binding) energy of the groups,
along with a best-fit power-law v; = 1464 (M/10'° h~' My)'/>. (A flatter M®? law is preferred). Analytic curves showing the peak-patch relationships for
ellipsoidal (short-dashed) and spherical (long-dashed) dynamics are in good agreement. (¢) should be compared with the vg ,, — My plot for Monte Carlo
peak points shown in BM1.

The circular velocity, equation (2.7), (not shown ) has a best-fit A!/3 power law given by

M,

L= "8
Veire 1600(10‘5h"Mo

1/3
) kms™, 8,=02%, forMg,=25X10"hr"Ms. (3.6)

The relationship is remarkably scatter free. We have noted that a spherically symmetric isothermal halo profile will lead to Vg =~
vy This is apparently a reasonable approximation to this P>M data.

In Figure 9c¢, the velocity v g, associated with the internal energy is plotted against M, for the Couchman P>*M groups. Our
average M'/3 power-law fit is

M,

vran = 1465 {577 e

1/3
)kms", 8,=7.8%, for Mp=25X10"h""M,. (3.7)

There is a somewhat larger dispersion in vg g, about the M'/? curve than for vk g,. Note that at the lower mass end, there are some
marginally bound groups in Figure 9c¢. If we do not fix the M'/? power, the actual vy, follows a velocity-mass relation that is
somewhat flatter: a least-squares fit gives

M,

v = 1420(

0.29
) kms™, 8,=74%, forMg,=25X10"h"M,. (3.8)

The rms scatter in v g, is only slightly improved over the M/ fit, but the M law fits the shape better, just as it does for the peaks.
The velocities vg p for peaks assuming ellipsoidal dynamics are 6.6% higher on average than those for the P>M groups, although
the deviation is less for high masses. Curiously, the peak relation assuming spherical dynamics seems to fit rather well. The analytic
lines shown in Figure 9 ¢ demonstrate these points.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103...41B&amp;db_key=AST

JS. D103 - _A1B0

]

rT99BA

No. 1, 1996 PEAK-PATCH PICTURE OF COSMIC CATALOG. IIL 53

For groups, the velocity dispersion, v g, is 19.8% higher than v ,, and 12.5% higher than the peaks vg 4, at the fiducial mass
10" h~' My. However, that is not to say that they do not satisfy the virial theorem when surface pressure, external gravitational
field, and moment of interia dynamics are taken into account. In § 2.1, we characterized these extra terms in equation (2.6¢) by a
mismatch quantity Az with the dimensions of velocity. Using the fits given above, and the vz — v or vy — Vi virial criterion (egs.
[2.6a]-[2.6b]), we get A%/v% ~ 0.15. This is a measure of the amount by which the P>M groups are out of isolated virial equilib-
rium in the Couchman simulation.

We note that groups found in the tree and multigrid calculations of constrained fields described in BM1 did have vy =~ vy ~ vg
if they were relatively isolated at z = 0.5 or so. However, in the crowded final cluster state, especially at z = 0.04 just after a major
merger, the disequilibrium was similar to the magnitude found here, ~7% in vy,/ vk for the multigrid Gauss-Seidel calculation.
During and after mergers, the dark matter splashes through the cluster and undergoes a few oscillations before it settles down.
Changing the density contour level can capture different aspects of this. At the moment we think the mismatch is a combination of
all three effects included in the Az expression. The basic point with the pressure is that there is too much kinetic energy for the
internal gravitational attraction within the region, so the particles would expand. This can be compensated by other particles whose
orbits take them through the boundary at the same rate as interior particles flow out. If one is interested in the long time evolution
of the region, the internal energy may be a better estimator than the instantaneous kinetic energy of the dark matter particles.

3.3. Direct Comparison of Peak and Group Properties

We now directly compare the properties of a peak patch associated with a given group with the group’s properties. We first need
to identify a peak patch with a P*M group. Our approach is to locate the peak closest in position and mass to each group, within
some allowed tolerance on differences in position, mass, and/or internal energies of the two. We characterize the level of agreement
between the group “gp” and the associated peak “pk” by the following quantities measuring differences in comoving Eulerian
position, mass, and velocity dispersions:

Orpk—gp = | Xpk — Xgpl, 6 log My g, = log My — log My, ,
0108 Ve pi—gp = l0g Vg o — 108 Ve gy, 6108 Vg pic—gp = 10g Vg pk — 108 Vg gy -

The statistic we use to regulate the matching between the peaks and the groups is

_ Brpk_gp + |6 lOg Mpk—gpl

= 39
k- ) 5 log My (39)

where 67y and & log M, are normalizing scales for the allowed distance error and log-mass error, respectively. The peak for which
€pk—gp 1S @ Minimum is paired with each group. We limit the matching to peaks less than a maximum distance 67, away and with
log-mass errors less than 6 log M,,,. Note that a given peak may be associated with more than one group. (We could, conversely,
find the groups matched to each peak, in which case there could be more than one group associated with a given peak.)

3.3.1. Internal Properties

For groups with M, = 2.106 X 10'* ™! My, (i.e., having 200 particles or more for this simulation), we find 1005 total 6 = 180
groups in the volume, of which 1003 are bound ( E;,/ M < 0). A summary of the various groups and peaks above a given mass are
listed in Tables 1 and 2. There are only 830 peaks above the same mass cutoff, but since the masses may not be the same, we search
over a larger mass range, down to the maximum allowed deviation for the search. We take 6 log M., = 0.7, thus matching peaks
within a factor of 5 in mass. We also require that the matching peak be within 87y, = 8 A~! Mpc of the group. This distance is 40%
of the mean separation of the 1003 groups above the mass cut, 77 ~'/3 = 20.0 ™' Mpc. For the normalization factors, we choose
6ro =3 h~' Mpcand 6 log M, = 0.3.

We restrict our comparison to the inner 150 2! Mpc of the box to avoid edge effects. In this volume, we have a total of 435 P°*M
groups that have 200 or more particles (Mg, = 2.106 X 10" h™' My), for which we are able to match 431 to 391 distinct peaks (thus
some peaks have been associated with more than one group). We compute the mean errors and the standard deviations about the
means,

{Orp—gpy=2.0h""Mpc+ 1.2 h7" Mpc,
(5log My_g) = —0.021 20176 (—4.7% + 50.0%) ,
(5108 Vepgp) = 0.020 £ 0.047  (+4.7% + 11.4%),

(5108 Vg pie_gp) = —0.050 £ 0.060  (—10.9% + 12.2%).
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Note that the o[  log M] is 3 times that for & log v, as would be expected for vx oc M'/3. The o[ 6 log vz] is lower than o[ 6 log vk],
which suggests a slightly tighter relation for the binding energies.

Different peak selection methods, f; = 0.01 density peaks or \ peaks, lead to somewhat larger errors when compared to the
standard f; = 1.686 density peaks. For example, choosing peaks in A,; results in mean errors of { g, » = 2.5 A~ Mpc and (4 log
Mgy = —0.074 = 0.230 (—15.7% + 69.8%), while A, peaks give { §7p—g » = 2.2 h ™' Mpc and (6 log Mg, » = —0.023 £ 0.186
(—5.2% =+ 53.5%). The reduced threshold f, = 0.01 density peaks are nearly as good as the standard f; = 1.686 peaks, with
(Orpk—gpy = 2.1 h~' Mpc and {8 log Mg, » = 0.0011 £ 0.179 (+0.25% + 51.0%).

In Figure 10, we plot the masses for the paired peaks against those for the groups. For this plot, the groups have mass M, =
1.053 X 10" A~ M, (100 or more particles), and the maximum tolerances chosen for pairing peaks were drma = 5 ™' Mpc
and 6 log M. = 0.6. A total of 905 P>M groups were found above this mass cutoff in the inner 150 £~! Mpc region, with a mean
separation 7 ~'/3 = 15.6 h~' Mpc—the distance limit was lowered to 7. = 0.32 77 ~!/3 to damp down spurious associations. Of the
905 groups, 836 were matched with 745 distinct peaks satisfying the criteria. Note that the points lie in a fairly wide distribution
about the line of equality, with the core of the distribution following the line more tightly. Of course, some of this may just be
because we got the wrong peak for the group in question. After all, Zeldovich dynamics was used to determine the final position for
the peaks. As well, some of the upper extension may be due to merging of peaks that are not merged in the group catalog, and
vice versa.

In Figure 11 we show the corresponding group and peak velocity dispersions, Vg px Versus vg ,,, derived from the internal energy,
for the matched peaks and groups above the velocity shown. On average, v lies 4.8% above the corresponding P*M Vg gp, With a
dispersion of +13.5%. (The dispersion is slightly higher than for those matched with groups with M, = 2.106 X 10" A~ Mo, as
given above.)

3.3.2. Position and Bulk Velocity Correspondence

We now investigate the correspondence between the peculiar velocities of the peaks and groups, and the position errors relative
to the peak displacements. To the extent that we accept the one-to-one correspondence between the groups and the peaks, for the
velocities we can think of this as providing measures of importance of nonlinearities in the flow, since the Zeldovich approximation
assumes linear perturbation results for the velocities. As we discussed in BM4, the nonlinear correction should be dependent upon
the power spectrum. For the CDM model used here, the nonlinear corrections should be larger than for current popular hybrid
models of structure formation, both because the amplitude of the power spectrum on cluster scales is higher here (o3 =~ 1, not gg ~
0.7), and because there is not as much relatively long wavelength power, which makes the linear velocities more accurate estimates.

Consider the direction cosines between the peak and group vectors

- Voo Vegp o oke = (Vrok — Veg): Vepx “ _ (Xpk — Xgp)*Spk
Viok-g0 = Ty T 1 5V,pk—gp — sSpk—gp = T o 1. 1 -
peTER | Ve okl |Vp,gp| e | Veok = Vegl | Ve ol ’ peTee | Xpk — Xgp | Spk|
10t —— T
[ i
)
= 1018 -
T z . ]
& F ]
n . -
gL -
T ™ .
2 3. J
o .3
1014 o - Mass HPeaks vs. P3M E
'3{ Groups 6=180 ]
i Inner 150 h-! Mpc box 1
IOM lold lolﬂ

Mass PM (h-! M)

FIG. 10.—Mass of the peak that is paired with a nearby P3M group against the group mass. The peak-patch catalog was constructed for F-peaks with
threshold f; = 1.686, using ellipsoidal dynamics and binary reduction. The groups were found using the SPO method with 6y, = 180. The peak paired with
a given group is the nearest one in mass and position to the group, as described in the text. There are 745 distinct peaks matched with 836 groups, with a
mass deviation of ( § log Mpx—g, » = —0.034 + 0.186 (—7.5% + 53.5%).
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FIG. 11.—The velocity dispersion vg p estimated from peak-patch internal energy for the paired peak is plotted against vg g, of the corresponding group.
There are 745 distinct peaks matched with 836 groups, with a velocity deviation {8 10g vg pr—gp » = 0.020 £ 0.055 (+4.7% + 13.5%).
For peaks matched with Mg, = 2.106 X 10" A~! M, groups, we find
<py,pk_gp> =0.873+0.213, <uay,pk_gp> =0.040 + 0.600, <n.;s,pk_gp> =0.041 £0.574 .

Thus, the velocity vectors are aligned to cos ™' () = 29° on average. However, we find that the velocity and position residuals are
roughly randomly distributed with respect to the peak velocity and displacement vector: the projected components are

{(Xpk — Xgp)- Spk/ 1Sk | Y = 0.016 £ 0.333,
(Vo= Vo) Vool | Vepcl) = —0.037 +0.449

i.e., a small correction in the mean for both positions and velocities along the peak displacement vector direction. For these peaks
the mean linear displacement and standard deviation about the mean was (| sy | = 5.2 + 2.3 ™! Mpc and the mean linear speed
was (| Vppil ) =525 +227 kms™".

The magnitudes of the position, peculiar velocity and speed residuals relative to the peak values are

(| xpk = Xgp| /| S ) = 0.472 + 0.406 ,
<| Vp’pk - Vp,gp|/| Vp,pk|> =0.599 + 0.544 s
<(| Vp’pkl - l VP,gp')/I Vp’pk|> =—0.208 £ 0.517 .
Another way of expressing this is to compare the absolute residuals
<| Vp’pk - Vp,gp|> =266 + 185 km S_l .
UVepkl = |Vegl)=—74+190km s~
with 525 + 227 km s ' or with the rms velocity for the o5 = 0.97 CDM model, 730 km s~ for a sharp k-space filter of k™' ~ 4 h~!
Mpc. Thus, the peak speeds are ~21% lower than the corresponding group speeds, and the mean velocity and position differences
are around 60% and 50% of the peak peculiar velocity and displacement, respectively.
To get a better feel for the correspondences for the best matches and highest masses, we repeat the exercise with higher mass
groups: Mg, = 5 X 10" h~! M and matching peaks with 87, = 2 A~ Mpc, 6 log M. = 0.3 normalized at ér, = 0.5 2~ Mpc and

6 log My = 0.1. In the inner 150 2! Mpc of the box we match 79 peaks to 79 groups out of the total of 125 groups meeting the
selection criteria. There will be no problem with duplicate matching. For these matches,

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103...41B&amp;db_key=AST

JS. D103 - _A1B0

]

rT99BA

56 BOND & MYERS Vol. 103
(vpes) =0900+0.177,  (povprog) = 0220+ 0.558,  (uaspugoy = 0.031 £0.524 .

Although there is still no orientation preference between the position differences and the peak displacement vector, there is a small
component of the velocity difference along the peak velocity,

{(Xpk — Xgp)*Spic/ |5k |y = —0.011 £ 0.255 ,
((Vrox— Vrgp)- l}P,pk/ | Vppxl) =—0.148 +0.463,

(U Vel = | Vegl)/ | Vel ) =—0.292 +0.523 .

The velocity correction in the peak velocity direction is 15% while the mean difference in peak and group speeds is nearly twice
that. For these higher mass peaks, (|sp|) =4.3+ 1.8 7' Mpcand (| Vpp|) =433 £ 177kms™".

We conclude that for this CDM model, peak positions using linear displacements give quite reasonable agreement with the group
positions. This is what one also infers visually from the direct-comparison figures. For the velocities, a correction in both direction
and amplitude to the linear velocity is necessary. Although for this CDM model, the correction vector has, on average, a significant
projection along the direction of the linear velocity, there is also a sizable perpendicular component. Both contribute to the dis-
crepency in the speeds, which conspires to make the linear velocities ~20% too low relative to the true group velocities. In BM4,
we adopted a rough correction factor to the linear velocities based upon assuming quadratic nonlinearities dominate:

f™=F/(1-3el—-p3)/14, (3.10a)
s™ = s, VEok=2/"Vrox, (3.10b)
§T =5+ 5™, Ve =Vep+ V3. (3.10¢)

Although we showed that the nature of the correction was not a simple amplification of the linear displacement and velocity vectors,
that assumption is the simplest to implement and gives an idea of the magnitude of the nonlinear correction we should expect. For
our matched high-mass peaks, we have

(1™ =0.121 +£0.004,
{Is™)=0.52+0.20 ' Mpc,
(VEm|>=103+40kms™",

in line with the 29% difference in speeds found from the linear peaks versus P*M groups. However, we find that the alignment
assumption gives a net component of the relative Eulerian positions along the displacement direction, which is not seen if we just
use the linear displacements for the peaks.

Thus, if we are to use peak patches in catalog construction, provided we are interested only in locations, we can just use the
Zeldovich approximation. However, if bulk velocities are of direct interest, they should be corrected. The statistics of the residuals
do not reveal a simple prescription for this nonlinear correction. Our rough quadratic approximation does give the correct speed
distribution on average. For example, the top 100, 400, and 2000 groups (in mass) have rms velocities of 638, 693, and 717 kms ™!,
respectively; for peaks with linear velocities, we get 508, 550, and 619 km s ™!, and when the aligned quadratic correction (with § =
1) is included, we get 630, 682, and 765 km s™'. A nonlinear correction to the peak peculiar velocities along the velocity vector is
therefore mandated by the detailed comparison with N-body, although there is no such indication for a displacement correction.

3.4. Spatial Distribution of Groups and Peak Patches

In § 3.3, we saw that the mean distance from a group to its paired peak is 2.0 A" Mpc for groups with M, > 2.1 X 10" h™' Mo,
We now examine in more detail the spatial correspondence between the P>M groups and peaks. For example, Figures 12 and 13
show the (x, y) projections of the positions of the P*M particles belonging to the groups (with E;,, < 0, i.e., internally bound) above
a mass cut corresponding to 400 P°M particles, M, > 4.21 X 10" h~! Me. There were 380 P>*M groups above this cut. Only the inner
(150 A~ Mpc)® region of the box is shown, in which there are 163 groups.

The peaks are shown at their final Eulerian positions after the Zeldovich approximation transport. A Lagrangian sphere of radius
R« would compact into one of size Rg , = 0.3R,/Fyy if its density were constant (top-hat profile). For F,; = 1.686, this is 0.177
Ry, which is just Ry /(1 + dycu)'/?, with 8y, =~ 180. This is the radius of the spheres shown in the figure. The arrows show where
the peak patch originated in Lagrangian space. The figures illustrate how the different ways of selecting candidate peaks affects the
spatial comparison: In Figure 12, 163 groups are plotted, along with their 153 paired peak partners. In Figure 134, we add a few
more lower mass peaks (rank-ordered in mass) to bring the number in the full box up to 380, the same as the number of groups in
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FIG. 12.—x, y projection of the peaks and P3M groups in the inner 150 2~! Mpc of the 200 42~ Mpc box. One in 5 particles from the (dy = 180) P*M
groups with M, > 4.21 X 10" h™' M,, are shown. A threshold f; = 1.686, ellipsoidal dynamics and binary reduction was used for the peaks. The peaks
matched to the P> M groups are those nearest in space and mass, as described in the text; this paired 357 peaks to the 380 groups in the full 200 /™! Mpc box.
The peaks are shown in their Eulerian positions as circles, with radii equal to the Eulerian “final” top-hat radius Rg y = 0.177ay, Ry, and the vectors show
the displacements from the initial Lagrangian positions.

the entire box, which extended the mass range down to M, = 4.00 X 10" h~' M, for the peaks. In Figure 135, we plot the top F
peaks for the threshold f; = 0.01. In Figure 13¢ and 13d, the \,; peaks and \,; peaks (with F threshold f; = 0.01) are shown,
respectively. Once again, the F peaks seem to do a little better compared with the N-body groups than the shear tensor eigenvalues,
although they all seem to get the high masses right.

Visually, the spatial correspondence of the paired peaks with the N-body groups is very good, in spite of the Zeldovich moving.
The most noticeable differences are in the merging of close groups and peaks, for which we might expect counting problems; these
also lead to problems in matching peak-patch properties with those of the groups. The peaks with the same mass cut or same
number also show good visual correspondence to groups, even though there are errors due to the scatter in the peaks P>M mass
relation at the cutoff.

In Figures 14a-14b, we give a three-dimensional impression of the Eulerian-space correspondence, by showing the (x, y, z)
comoving positions of the groups and peaks with the same 4 X 10'* A~! M, mass cut, within the inner (100 A~! Mpc)® of the box.
Showing the three-dimensional correspondence in (initial) Lagrangian space is more awkward because so much of the space is taken
up by the higher mass objects. We attempt to do this in Figures 15a-15b. We show a very narrow 10% mass range centered around
5 X 10" h™" M,, for the groups (those with 450-500 particles). The paired peak patches have spheres of radius Ry plotted. Even
though Eulerian space matching was done, the visual correspondence in Lagrangian space is good. Note that the Lagrangian patches
that collapse to form the groups are quite compact and relatively spherical.

We conclude that the correspondence between the hierarchical peaks and the P>M groups is remarkably good, considering the
number of simplifying approximations made during the formulation of the algorithm. There is a larger than desirable scatter in the
individual mass and velocity dispersions of the peaks with respect to the N-body groups, but the spatial correspondence between
peak and group is really very good at the high-mass end. Also, the agreement between the peak and group mass functions and
number-velocity dispersion counts is very good. We also showed that the Press-Schechter mass function can be simply adjusted to
fit the P>M data, which gives renewed confidence in the viability of that vast array of papers that use it.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have validated the peak-patch code with an N-body code. We find our hierarchical peaks method accords
extremely well with Couchman N-body groups in position, mass, internal energy, and number density for high-mass peaks, but
with growing scatter for lower mass objects.

We decided that the standard friends-of-friends approach to group finding was inadequate, since the translation of the percolation
parameter p into a volume-averaged overdensity is very rough. Our new group finder is based upon (1) adaptive smoothing to define
continuous fields which the particles sample, (2) searches that begin with high smoothed density peaks of the fields, but with
corrector steps to center the group at the center of mass, and (3) truncation once interior overdensity falls below some threshold
defined by a group crossing-time criterion. We believe our group membership lists are more physically meaningful than percolation,
will be more stable to variation in particle number in the simulations and, when more than one threshold is used, will do better than
percolation with multiple linking-parameters in dealing with substructure of recently merged entities.
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FIG. 13.—x, y projection of the peaks and P3M groups in the inner 150 2~' Mpc of the 200 #~! Mpc box. One in 5 particles from groups with
M,=421X10 4 =1 M, are shown (380 groups in the full 200 2~' Mpc box ). The peak masses were calculated using ellipsoidal dynamics, overlaps were
removed using binary reduction, and the peak mass limit was chosen to give the same number of peaks as P3M groups in the full volume (380). The peaks
are shown in their Eulerian positions as circles, with radii equal to the Eulerian “final” top-hat radius Rgn = 0.177a, Rk, and the vectors show the
displacements from the initial Lagrangian positions. (a) F-peaks above f; = 1.686; (b) F-peaks above f; = 0.01; (¢) \,3 peaks above f; = 0.01; (d) )\, peaks
above f; = 0.01.

However, there is no substitute for using more local physics information to define the groups better. Thus, there are a number of
alternatives to our basic approach which may be more appropriate, depending upon what we wish our groups to be. For example,
we have also tried gravitational potential minima to define the rank-ordered candidate points rather than density, but because of
the corrector steps this did not prove to be superior. Instead of volume-average overdensity, defining membership based upon
particles which are bound to the group may be superior (e.g., Gelb 1992). However, we find that the groups are often not in isolated
virial equilibrium.

Although we showed that infall, external tidal forces, and dynamical activity following recent mergers will modify the virial
equation, we have been quite surprised that isolated equilibrium is such a poor approximation for so many of the P>M groups,
irrespective of overdensity cut (Fig. 3). We note that P°M codes currently use a spatially uniform time step. The compromise
between accurate treatment of internal group dynamics and timely advancement of the entire simulation is usually made by
judiciously softening the gravitational force. However, even within the softened gravity theory, computed particle orbits may have
little to do with real particle orbits, instead leaping about the group with giant strides because the ticking of the global clock is so
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FIG. 14a FiG. 14b

FIG. 14.—The direct comparison (in Eulerian space) of the N-body clusters (determined with our group finder) and the peaks from our simulation.
These three-dimensional representations of the cubical simulations cover the central (100 2~ Mpc)? of the total (200 ™' Mpc)? volume. (a) All P3M
clusters above 4 X 10 h~! M, whose centers of mass lie within the volume are included. (5) Density peak-patches above 4 X 10'* A~ M, found using f; =
1.686, ellipsoidal dynamics, and binary reduction. The correspondence between the most massive peaks and clusters is excellent. Lower mass peaks and
groups suffer from merging and overlap problems, but retain reasonable correspondence as the agreement between the mass functions reveals.

mismatched to the desired ticking of the local clock. A very worthwhile exercise for future work is to thoroughly explore which local
group properties are robust and which are not in these big simulations which are invaluable for building large statistical samples.
We believe that emphasizing the measurement of conserved or approximately conserved quantities is ideal. (We note that a non-
adaptive PM calculation of a region the size of the P*M calculation kindly provided by Jens Villumsen at an early stage of this work
had groups that had smaller kinetic energies and that were less compact than the P>M groups, both not surprising. We also note that
both the tree and multigrid Gauss-Seidel calculations of the constrained field for a single low-mass cluster described in BM 1, which

FIG. 15a FiG. 15b

FI1G. 15.—(a) 3D positions in Lagrangian (initial) space of particles belonging to N-body clusters in the mass range (4.75-5.25) X 10" h~! M, (found
with our group finder using a volume-averaged overdensity cut of 180). The three-dimensional cube covers the full (200 #~! Mpc)? of the simulation. (b)
Hierarchical peak-patches nearest in Eulerian (final) space to the clusters in (a) (and of comparable mass) are shown. ( The apparently nonassociated points
are joined through the periodic boundary conditions.) This shows that the regions of Lagrangian space that form the interior of these clusters (which are not
that rare in a g3 = 0.97 model) are not very aspherical.
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were of higher resolution than the P3M simulation described here, gave better isolated equilibrium results, although the major
merger just prior to the predicted cluster assembling time did upset equilibrium.)

A by-product of our analysis is another demonstration that the Press-Schechter mass function, if treated phenomenologically,
gives a remarkably accurate representation of the N-body group mass function, if we treat /. as a parameter to be fit. Prior testing of
the Press-Schechter paradigm with N-body results was done by Efstathiou et al. (1988), Narayan & White (1987), Efstathiou & Rees
(1988), Carlberg & Couchman (1989), Bond et al. (1991), and Gelb (1992). White et al. (1992) have also recently tested the mass
function for a simulation as large as the one used here. Our results confirm the remarkable success story of the Press-Schechter
formula, except that we should either lower the density threshold f. by ~6% or increase the masses by ~30%. A slightly smaller
decrease in f, would be needed to fit p = 0.2 percolation groups (which is what Bond et al. [1991] used to test the PS and other
excursion set mass functions). We also showed that the internal energy function can be reproduced with a relation vg ~
1.59HaR (1 + z.)'?, where z, is the redshift in question, for Q,, = 1 models. The kinetic energy function requires vg ~
1.9HaRu(1 + z.)"2. However, we recall from Bond et al. (1991) that the Press-Schechter mass function calculation really has no
theoretical justification. To defend its use, we would now say: use of the PS formula is justified because it fits the hierarchical peak-
patch function with ellipsoidal dynamics so well. Certainly why the rare-event tail does well can be understood in this context. The
reader may judge whether this is better than: use of the PS formula is justified because it fits N-body groups so well. Neither
justification extends to the low-mass slope, however.

Prior testing of the peaks paradigm was very limited, and, in any case, used single-filter peaks. Gelb, Katz, & Quinn (1993)
announced that peaks are not the sites of galaxy formation, using a large N-body simulation for testing, but they also only used
single-filter peaks. We would certainly like to compare the hierarchical peaks method in detail with the results of a large N-body
simulation for a flatter spectrum than the CDM model in the group-to-cluster waveband gives (spectral slope varying from about
—1.5 up to 0). For flatter spectra, e.g., the CDM model over the wavebands appropriate for galaxy formation (spectral slope varying
from about —2.5 up to —1.5), there is a larger mismatch between the coherence of the displacement field and the structure in the
density field. Thus one may get large Zeldovich transport, since the adaptive smoothing associated with the peak’s radius would not
diminish much the power in the bulk velocity spectrum. This is not a problem, however, because the flow is very coherent, and it is
the deviations from smooth flow which determines how objects come together. However, the deviations often lead to the formation
of large-scale filamentary structure. Through such anisotropies, it may be possible for long-wavelength components of the fields to
bring two distant peaks together without having a large-scale spherical peak with an overdensity above threshold encompassing the
two sublumps. It could therefore be that the spherical peak-patch description might need some modifications: for example, one
might consider ellipsoids in Lagrangian space instead of spheres; final state merging, which we have implemented but found to be
unimportant so far, might also be useful in such cases. We do not know yet if the success of the peak-patch approach in reproducing
the spatial distribution will be as great for galaxy formation. We have little doubt that the high-mass rare halos will be adequately
described. In BM4, we show that the peak-patch mass functions for power low initial conditions with » = 0, —1, —2 are in good
accord with the group mass functions.

What is essential to the hierarchical peak-patch picture is that the patches be just collapsed to ensure that the region outside of
the patches is not too dynamically active. What it cannot answer in detail is galaxy merging within groups long after the galaxies
have formed and issues associated with how baryonic dissipation breaks the hierarchy. External criteria for these would have to be
added to the theory just like they have to be added to N-body simulations. What one can use for merging within a hierarchical peak
patch identified at redshift O, say, is the peak patches within it that are excluded at z = 0, but which survive as hierarchical peaks at
higher redshift. That is, we would determine radii and internal properties as a function of a sequence of collapse redshifts. This adds
almost no extra computational cost, just a little extra storage. In this sense, having clouds in clouds is advantageous.

A much more sophisticated treatment of the left over bits of Lagrangian space is needed to develop a theory of small-mass objects,
and, in particular, the faint-end slope of the mass function. Tiny peaks are very sensitive to local tidal fields: we showed in § 2 thata
number of the small peaks do not lead to collapses when we include the effects of shear fields even though their density contrast is
above the threshold f; = 1.686. Of course, N-body groups with only tens of particles are also quite sensitive to the specific algorithm
used to find them.

The hierarchical peak-patch paradigm has an analytic counterpart which is almost as easy to implement as the single filter peak
model of BBKS, but is much more physical and richer, because now the mass hierarchy can be described. Throughout BM1 and
this paper, we have plotted analytic curves for mass, velocity dispersion, and bulk velocity distribution functions, and for the mass-
radius and mass-velocity relations and shown that they give highly accurate results compared with our Monte Carlo catalogs. Just
as the Monte Carlo method is a few orders of magnitude faster than P>M calculations, so the analytic methods gain similar speedup
factors over the Monte Carlo calculations. We present the analytic and semi-analytic aspects in BM4.

The ability to calculate statistical correlations induced by biasing was one of the most important successes of the BBKS theory.
In the BBKS theory, this can be done directly or by means of a “peak-background split,” in which intermediate waves define the
structure of the peaks and long waves determine a modulating background. Bond & Couchman (1987, 1989) showed how to include
Zeldovich dynamics within the peak-background split semi-analytically. In this paper, our comparisons have focussed on one-point
functions and detailed peak-to-group correspondences, but the latter suggests that two-point correlation functions should also
compare favorably, with the caveat that overmerging or undermerging can affect the correlations. We report on correlations in
BM4, where we show that analytical calculations using a modification of the “peak-background split” still works. The Bond &
Couchman method for including Zeldovich dynamics also works. However, we show in BM4 that the bias factors one computes
based upon a cut in density of clusters differ from those obtained in single filter theory.
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APPENDIX
SMOOTHED-PARTICLE OVERDENSITY GROUP-FINDING

For our group-finding algorithm, we need to calculate a volume-averaged overdensity, 1 + {6)y = (Mgy/Vyp)/ Pnr, Where now py,
denotes the cosmological background density (in nonrelativistic particles) rather than the mean density in the simulation volume.
We therefore need to calculate the volume for regions that may have funny shape. We also need to find a particle that lies within
one of these high-density contrast regions. We first calculate a smoothed density for each particle. To do this, we use an adaptive
spherical spline to do the smoothing. In particular, we choose the window function W, (given in BM1 § 2.2.1), with a different
filter scale 4, for each particle p. To get h,, we require that N, particles are contained within a sphere of radius 24, centered at particle
p. We choose N, = 32 for the results shown here.

The smoothing kernel W, is used to interpolate the smooth density field onto the particles. We assign a density

N
Pp = Z mp’ I/Vsph(xp - Xp5 hp) (Al)
=1

to each particle. To estimate the volume V, we write

- f dm _ f PxWnx —xi )~ 3 2. (A2)
p p= 1 Pp

for p inside Pp

The final sum is over particles that are inside the region. Thus, in effect, each particle is carrying with it a smoothed volume element
V, = my,/p,. We store the quantities 4, and p, in the particle file along with the particle information x,, v,, and m,. Because the group
overdensity is determined using locally adaptive smoothing, we also refer to this method as the “smoothed particle overdensity”
(SPO) group-finder.

To make a candidate list of group starting points, we begin by making a target list of those particles with 6, = 6y c... We rank these
in decreasing order of density. The first group begins with the highest density particle (the test particle). From the full list of particles
not already in groups, neighboring particles within some chosen outer distance are selected using a tree-search algorithm, and
ranked in increasing distance from the central test particle. Particles are added to the group in distance order. The volume-averaged
overdensity for the volume out to the position of the most recent particle p included is tallied:

> my, where V(<p)= >, My (A3)

Py

1
) V i e—
D=

p’ inside p P’ inside p

When the group overdensity (6){<p) reaches the desired critical overdensity yc.., the search is ended and the ranked particles up
to p are assigned to the group. However, the highest density point we began with is not necessarily the best center for the membership
determination. To remedy this we take a sequence of corrector steps. We determine the center of mass x, for the group. We then
repeat the group procedure with x.,, the new center of the search. We continue to loop through group membership determination
until the shift in the center stabilizes below some chosen tolerance. The iterations are stopped and the final group membership list
is written out.

We now go to the next highest density particle in the target list not already spoken for by a prior group and repeat the procedure.
And of course we do not allow particles to belong to more than one group. We repeat until the target list is exhausted.

Note that although we go out from the center in distance order, this does not mean that we are making a spherical approximation.
The group can be arbitrarily lumpy in density. There can be directions with few or no particles. The corrector steps are designed to
ensure that the high-density clump we begin with does not just happen to be on the outskirts of most of the mass in the group. We
can also imagine many modifications of the algorithm which fold in directional asymmetry in the steps. The crucial thing to ensure
is that when a particle is added, the “smooth-particle” volume it adds is connected to the growing volume. The easiest way to ensure
that is to work out in distance order from a center. We have checked that the sizes we get by this volume determination method
agree with those obtained by simpler ellipsoid fitting methods as the group grows.

For the n, particles p in each group g we compute the total mass M, the center of mass position x,, the top-hat equivalent radius
R,, the mass quadrupole tensor Oy, the average group peculiar velocity ¥p,, and the angular momentum vector J:
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"g 1 %
Mg = p§l mp, Xg = EFI mpXp,
1% - 1 x
Ve = EFI myVpp, J= ﬁg,,ﬂ mya(x, — Xg) X (v, — v,) .

where v = Hax + Vpis the total velocity. The background scale factor a enters because the positions are comoving ones.
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