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ABSTRACT

We develop a picture of cosmic structure formation that identifies virialized cosmological objects with a point
process of “peak patches™ in the initial (Lagrangian) space. The strongly nonlinear internal dynamics of the
collapsing patch is largely decoupled from the weakly nonlinear dynamics describing peak-patch flow. A modest
set of local field measurements on the patch region suffices to approximately determine the fate of the peak. The
candidate peak points are identified using a hierarchy of smoothing operations on the density field. Patch size and
mass are found by requiring complete collapse of a homogeneous ellipsoid model for internal patch dynamics
which includes the important influence of the external tidal field. Exclusion algorithms that prevent peak-patch
overlaps trim the candidate list into the final “hierarchical peak™ list. The Zeldovich approximation with locally
adaptive filtering of the displacement field is used for external dynamics to move the surviving patches to their
final state (Eulerian) positions, augmented by a quadratic nonlinear correction where necessary. Thus both sta-
tistical and dynamical clustering of the peaks are included. Our technique is the natural generalization of both the
Press-Schechter method (to include nonlocal effects) and the BBKS single-filter peaks theory (to allow a mass
spectrum and solve the cloud-in-cloud problem). It allows efficient Monte Carlo constructions of three-dimen-
sional catalogs of objects such as groups and clusters of galaxies, and, with more selection criteria, of galaxies in
their formation phases.

Subject headings: cosmology: theory — galaxies: clusters: general— galaxies: formation — methods: numerical

1. INTRODUCTION

One might wonder why we put effort into approximate descriptions of cosmic structure formation given the tremendous recent
and promised advances in computing power. Surely the not very distant future will bring computations of arbitrarily large simula-
tion volumes with arbitrarily high resolution using arbitrarily adaptive hydrodynamical and N-body techniques. That will be so.
But even so, we need a physical language to discuss the outcomes.

For the all important rare events in the medium, such as massive clusters now and bright galaxies at high redshift, the appropriate
idiom is the flowing peak patch at which grand constructive interferences in density and velocity waves mark out the sites of
collapse. And radiating outward from the peak-patch core are filaments and sheets that too are rare. The structure may finally fade
into the root-mean-square fluctuations in the medium as coherence in the phases fades into randomness. Or the structure may
blend into another peak patch, for rare constructive interferences tend to be clustered. No image from the cosmology of the 1980s
was as powerful as the CfA picture of Coma and its Great Wall, the paradigm for a peak patch and its environs.

Because most observables rely on luminosity, the root-mean-square fluctuation is not the typical catalog member. We catalog
from the bright end downward. Thus we are most sensitive to intermittency in the medium, the rare fluctuations where the observ-
able action happens. The goal of cosmological N-body or gas-dynamical computations is to identify structures in the simulation
volume, measure their internal and external properties, and compare these with observational catalogs. It is a delicate art to con-
struct a point process that can serve as a Monte Carlo realization of a given observational catalog—even with the most ambitious
simulations. This is because the physics which defines the observational point process is typically far beyond what can be simulated.
Certainly anything to do with stars forming and exploding in cosmology has this unfortunate feature. It is very useful to have a
variety of techniques for constructing catalogs, with simplifying assumptions being offset by computational speed.

In this paper, we describe a rapid Monte Carlo method for identifying collapsed structures based on the peak-patch picture. In a
second paper in this series, Bond & Myers (1995a, hereafter BM2), we show that our approximate catalogs compare well with those
of N-body groups and cost only a small fraction of the N-body computer time to construct. We believe this gives solid proof that the
peak-patch picture works, especially for rare events. In a Bond & Myers (1995b, hereafter BM3), we apply the technique to clusters
of galaxies. In a fourth paper, Bond & Myers (1995¢, BM4), we describe an analytical counterpart to the peak-patch picture which
allows even more rapid calculations of catalogue properties. An early version of the hierarchical peaks algorithm was described in
Bond & Myers (1991).
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Developing or applying semi-analytic approaches to catalog statistics has been one of the main source of cosmological papers for
the past two decades. There have been two main streams that purport to determine these statistics from the initial structure of the
cosmological fields defining the theoretical structure formation model. These are the density excursion set or Press-Schechter ap-
proach (Press & Schechter 1974, hereafter PS) and the density peaks approach (Bardeen et al. 1986, hereafter BBKS). Although
much used for the construction of “one-point statistics™ such as mean number density functions for mass, X-ray temperature, and
velocity dispersion, almost all users now treat the PS function as a fitting formula that has been shown to fit mass functions for N-
body groups reasonably well. That is because there is little physical justification for the original PS formula. The main difficulty is
that points in the medium that collapse together to form a virialized object of a given mass will actually be counted as belonging to
objects of different mass, as Bond et al. (1991, hereafter BCEK) showed graphically by comparing with N-body calculations.
Another unappealing aspect is that the derivation of the PS formula requires a rather unphysical form of density smoothing which
uses an oscillatory window function ( associated with a “top hat” filter in Fourier transform space ) and an arbitrary mass assignment
scheme (BCEK ). More natural window functions such as top hats in position space, or Gaussians, lead to different formulae which
are not quite as phenomenologically successful as the PS one (Peacock & Heavens 1990; BCEK ). Although we call our technique
the hierarchical peak-patch picture, we could equally well call it the nonlocal Press-Schechter picture, since it is the natural gener-
alization of the PS method which ensures that nearby points which collapse together are counted in the same object and that natural
top-hat filtering is used for mass assignment (§ 3.3). An early nonlocal prescription using the basic PS framework was the “brick”
model used by Cole & Kaiser (1988).

Peak theory applied to cosmological models was first developed by Doroshkevich (1970) and Doroshkevich & Shandarin (1978a,
b) for models with a natural filter such as adiabatic hot dark matter models in which large structures from first, and for hierarchical
models such as the cold dark matter model by Peacock & Heavens (1985) and BBKS. The BBKS theory gave a calculational
framework for constructing clustered points in the initial conditions (in Lagrangian space) for an N-body simulation that were
identified with galaxies or clusters and which could then be moved along via N-body algorithms to give an evolved final clustering
pattern (in Eulerian space). This was essential before the recent expansion of computational capabilities (e.g., Davis et al. 1985)
and is still being used to good effect for very large scale structure simulations (e.g., Park 1990). More importantly, it gave us a way
to determine correlation functions in the linear regime by simply computing a bias factor by which the long wavelength object-
density field is amplified over the long-wavelength mass-density field. But, in our estimation, the most significant contribution was
the language it gave us to discuss cosmic evolution sensibly rather than resorting to “this is what the N-body code tells us.” This
paper and its companions correct the grammar and modify the syntax, but essentially confirm the vocabulary.

The BBKS picture used a single-filter snapshot of the medium, identified the density peaks in the snapshot, and assigned them all
the same mass, identified as the mean density times the volume associated with the smoothing window. A necessary ingredient for
comparison with catalogues are differential mass functions, but no dny, (M)/d In M could be constructed. A first attempt using
multiple filter snapshots and a better estimation of mass using peak profiles was made in Bond (1988), but was only moderately
successful because it did not solve the “cloud-in-cloud” problem that BBKS emphasized: within large-sized peaks there will be
smaller ones whose inclusion could lead to overcounting of objects. Thus an exclusion criterion for removing peaks is essential.
Bond (1989a) gave an analytic formula for the differential number density which was shown to be the high peak limit of a more
general formula (Bond 1989b). The Bond (1989b) mass function formula counted only those density peaks on a given filter scale
which were just crossing through a density threshold whose height was chosen to correspond to a spherical approximation for
dynamical evolution of the peak. This requirement that the density height be a precise value solved most of the cloud-in-cloud
problem. An approximate formula describing further exclusion was also given. Much analytic development has occurred since then
and is described in BM4.

We sketched an early version of our peak-patch simulation method for constructing catalogues in Bond & Myers (1991). There
we assumed a spherical model for the collapse dynamics. Our method has undergone many refinements since then, which we
describe in detail in this paper.

In § 2, we introduce the peak-patch picture and the density, displacement, and strain fields of relevance for peak-patch measure-
ments. The dynamical equations for the homogeneous ellipsoidal collapse are presented in § 2.1.3 and derived in Appendix A. We
present the expressions for the internal energy of the collapsed patch § 2.1.4 (derived in Appendix B) which we use for estimations
of virial velocities. The makeup of a peak patch and the effect of the background and fluctuation fields upon its fate are discussed in
§ 2.2, where realizations of constrained Gaussian random fields are used to illustrate the importance of the external tidal fields,
subclumping and bulk peak velocity for defining the nature of the peak-patch. The methods used to make the constrained field
simulations are discussed in Appendix C.

The point process used to define our “cosmic” catalogs is introduced in § 3, along with the important topics of Lagrangian
exclusion and Eulerian merging. In § 3.3, the hierarchical peaks formulation of the peak-patch picture is put in the context of a
generalized Press-Schechter method.

In § 4, we present and discuss in detail our numerical algorithms for realizing density and displacement fields in very large regions
that cover the catalog volume, finding candidate peak points, measuring their mass, initial energy, and bulk velocity, excluding or
modifying candidate patches which overlap, and finally mapping from Lagrangian (initial state) space to Eulerian (final state) space
using the Zeldovich approximation for the external dynamics. We show some of the basic internal properties we measure and
compare the hierarchical peak mass function with the PS mass function in § 4.2. We present many more results in the companion
Paper II, where they are directly confronted with the results of N-body simulations.
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2. PEAK PATCHES IN THE DENSITY AND DISPLACEMENT FIELDS

What we wish to develop is a method that differentiates fast (nonlinear ) internal dynamics from slower (hopefully linear ) external
dynamics of collapsing structures. The conceptual picture is that of a local “peak patch” collapsing to form the object in question,
with the entire patch moving with a bulk peculiar velocity, and acted upon by external tidal fields, determined by long-wavelength
components of the fields. The locations of the peak-patches define a point process. Of course the split between what is external and
what is internal is necessarily time dependent to take into account, for example, matter accreting or objects merging. Apart from
the dipole (bulk velocity) and quadrupole (tidal field ), there will generally be external octupole and higher multipole fields that can
only be ignored with some error.

Much theoretical work is going into designing spatially and temporally adaptive algorithms to allow fully coupled interior and
exterior evolution for very large simulation volumes, and there is little doubt that this represents the long-range future of the subject.
Consider some of the N-body methods currently being used. Typically tree codes have a fixed softening length but can have spatially
adaptive time stepping implemented (Barnes & Hut 1986, 1989; Hernquist & Katz 1989). The adaptive P*M method of Couchman
(1991) uses extra local meshes for determining the gravitational force around active dynamical regions; it has a fixed softening
length and a spatially constant time step. The adaptive PM method of Villumsen (1989) also uses extra local meshes to determine
the gravitational potential. With current computing limitations, the price one pays for trying to get enough members for a full
catalog from a simulation is that the internal resolution of the members is not very good.

A general method more akin to the philosophy we adopt here is to follow the evolution of single members with high resolution to
determine internal properties by setting up constrained initial fields which condition the simulation volume to have the structure
forming within it. The locations and peculiar velocities of catalog members are determined by other lower. resolution techniques.
The simplest way to set up a constrained field is to cut out dynamically interesting patches from a low resolution realization, add
higher spatial frequency components to the fields, as much as the resolution permits, then spawn a separate calculation. Another
approach useful for fields which are initially Gaussian is to directly make constrained realizations for the patch (e.g., Bertschinger
1987). Proper treatment of boundary conditions and external fields is essential if this constrained method is to accurately give
internal properties.

Although the details of collapse and virialization depend upon all aspects of the local field associated with the peak patch, and
thus on an infinite number of degrees of freedom, the gross features are sensitive to a much smaller number of degrees of freedom.
That is why lower resolution simulations often reproduce the main features of higher resolution ones, such as correlation functions
and mass functions, although details of the collapsed objects such as merging times, substructure, and orbital dynamics may be
poorly reproduced. (Of course, gas-dynamical computations can be quite sensitive to very high spatial frequencies, through feed-
back from supernovae, etc.) What is difficult to determine is an optimal and minimal set of degrees of freedom that largely determine
a specific property we are interested in measuring. However, we can adopt the main lessons from a study of the evolution of
constrained fields around density peaks to guide us to some of the necessary, if not sufficient, local measurements needed. As we
shall see, the constraints of most relevance here are the bulk velocity, the external tidal field and the average overdensity.

2.1. Internal and External Fields for Peak Patches

The nonlinear gravitational evolution of a medium is a highly complex phenomenon—even without complications arising from
gas dynamics or primordial velocity dispersions in the dark matter. In many circumstances in cosmology, gravitational forces are
sufficiently dominant over pressure forces that the pressure can be ignored, at least to get the main features of the evolution of the
medium. This is true, of course, for the cold dark matter model. In that case, the gravitational evolution is a mapping from an
unperturbed Lagrangian space in which the cold particles are labeled by their initial positions  to a highly perturbed Eulerian space
with the particles at physical (expanding) Eulerian positions X (r, t) = a(t)x(r, t) at time ¢, where the comoving Eulerian coordi-
nate x has the average (background) expansion factor of the universe, a(¢) factored out. The mapping can quite generally be written
in terms of a displacement field s(r, ¢) describing the deviation of the particle from its initial site:

x(r,t)y=r—s(r,t) (2.1)

The peculiar velocity is
; .0
Ve=X—-HX= —a(t)&s(r, t), (2.2)

where H = a/a is the Hubble parameter. (In the case in which the particles have a primordial velocity dispersion, the initial
(thermal) velocity of the particles is, of course, also needed to label the particles.)

In the early evolution of a cold medium, linear perturbation theory holds, and the displacement and peculiar velocity fields are
separable (Zeldovich 1970):

Zeldovich approximation: s(r, t) = D(t)s(r), Vp(r,t) = —a(t)Hps(r), with Hp = D/D. (2.3)
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D(¢) is a function describing the linear growing mode of fluctuations (Peebles 1980, § 2.3). We normalize D(t) to be unity at the
present. In a @ = 1 cold dark matter universe, D(¢) = a(t) and its logarithmic time derivative H), is just the Hubble parameter H,
but in the general case the evolution is more complex. The initial displacement field is denoted by s(r). It is normalized at D = 1,
hence corresponds to extrapolating linear growth until the current time.

The mapping from Lagrangian to Eulerian space is initially invertible for small D, remaining so until caustics appear, at which
point the medium becomes multistream, and the map x develops many branches. One must resort to N-body simulations to obtain
s(r, t) accurately. Obviously we would like to find simplifications to avoid always resorting to N-body studies.

The Zeldovich approximation describes the broad textural features of a cold medium, provided one smooths the displacement
field sufficiently so that the deviation from linearity is not too great. It has had its greatest success in the adhesion approximation
(Gurbatov, Saichev, & Shandarin 1989; Shandarin & Zeldovich 1989), in which particles are free to follow the Zeldovich dis-
placement field, except an artificial viscosity does not allow them to stream through each other, but rather to stick at caustics.
However, in three dimensions the Zeldovich approximation for s(r, ¢) does not give an accurate description of even relatively weak
nonlinearity. This is because the places where structure first forms in the medium are around the rarest high peaks of the density
field, which are relatively spherical (BBKS; Bernardeau 1994). The nonlinear evolution is then approximately that of a spherical
cold collapse, which turns around and reaches zero radius much faster than the Zeldovich approximation would predict. Thus,
although the Zeldovich approximation and its adhesion variant may be adequate for gross large-scale features of the flow, it cannot
be used by itself to build a catalogue. In particular, it is hopeless for describing internal properties of collapsed structures.

1. Smoothing Kernels for Fields

We first introduce the smoothing operations we use on the fields. We denote the (unsmoothed) linear density field by F(r, t), its
Fourier transform by F, and its power spectrum by the ensemble average Pr(k) = {I Fo|? ». The smoothed field is a convolution,

F(r,t;Rf)Efd%'W}(r—r’;RﬂF(r’, 1)
dsk xkr
-l o )3Fka(k :R))e f=G,TH, k,sph, .. ., (2.4)

where W,(r; R;) is a window function, Wf(k; R;) is its Fourier transform, a filter function, and R denotes the filter scale character-
izing the falloff of W(k) at high k. For Gaussian filtering on scale R the window and filter functions are

sexp[—r?/(2R%)],  Wolk; Rg) = exp [~ (kRg)?/2], (2.5)

Wes(r; Rg) = m

while for “top hat” filtering on scale Ry,

Wriu(r; Rru) = MT—/;YRTTHMRTH —= |r]), WTH(k; Rru) = 3j1(kRtu)/(kKRtn) , (2.6)

where j; is the spherical Bessel function of order 1. Here, ¢ is the Heaviside unit function. A third type of smoothing is top-hat
filtering in k-space:

Wi(r; Ri) = 3ji(r/R)/(r/R),  Wilk; R) = (R — |kl). (2.7)

1
(67%)R}

We shall also have occasion to use a filter which is a good approximation to the Gaussian for small k, but whose smoothing function
is a piecewise polynomial of compact support, yet is continuous in its first and second derivatives:

1
I/Vsph(r;lzh)=1‘__1{;;' Wnsph(r/Rh)9 (28)
1—3/2)u’+3/Mu?, O<u<l,
Wnsph(u)E (1/4)[2_14]3, 1 susZ,

0, u=2.
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Wsph(k; Ry = % {—2sin (kR;) + sin (2kR;) + k~'[6 — 8 cos (kR;) + 2 cos (2kR,)1},
h
13 2
ml—8—4'(kR;,) ask—0. (29)

This smoothing function is widely used in smooth particle hydrodynamics, following Monaghan (1985) and Monaghan & Lattan-
2i0 (1985). Out to 3R} in k, a Gaussian fit to the Fourier transform is excellent: matching W, to W in the neighborhood of k =
gives R = 0.556 R, while matching where W, falls by 1 /e gives the almost identical 0.561 Rj,.
Following BBKS, we introduce the variances

&k -
HR) = | Gk PHIOWi( R, =G, TH,k,sph, - - (2.10)
2 2
yr=—le =, Rf'(Rf)Evgaﬂ, (2.11)
010012 0f-1011 [fp]

which are, of course, dependent upon the type of filtering. For example, we normalize linear density spectra by parameterizing its
overall amplitude by the value of o5 = o110(84 ! Mpc). The “biasing” factor is bg = o3 '. We shall also have occasion to use mixed-
filtering (top hat plus Gaussian) and half-filtering quantities:

&’k

o2 (Ry, Ry) = PR k¥ P(kYW, (ks ROW (ks Ry),  f.f'=G, TH, k, sph, (2.12)
”}’ﬂl Uf'fo
V= > Vrife = —, (2.14)
0770012 0f'—10f1
2 _ d3k 2j g
o (Ry) = )’ k> Pe(k)W(k;R;),  f=G,TH, k,sph,.... (2.13)

Thus ayf,j = 0fj.

2.1.2. Linear Displacements and Tides

The field quantities that must be specified at a point ry for it to be the site of a peak of the smoothed density field F(r, £; R) are
the gradient V, F, which must vanish, and the second derivative tensor V,V,F, which must be negative definite. BBKS considered
properties of peaks as a function of the height F(ry, ¢; R/) and these derivatives. However, although V; F and V,V,F do play a role
in determining the core properties of the peak, it should not be surprising that it is the expansion of the smoothed displacement field
s(r) about the peak which is more fundamental to the dynamics than is the local expansion of F, since it is s that defines the initial
flow pattern for the region about the peak through the Zeldovich approximation.

We write the displacement as s = s, + s, where s, is smoothed over a large-scale R, = Ry and s;is the residual. It is convenient to
consider the “fluctuating” field to be statistically independent of the “background” field, which occurs if the filter is a sharp k-space
one, kj". It should be some factor times Ry, but exactly which factor depends upon the application we have in mind. The choice
of filter also depends upon the application. For example, we use Gaussian filtering on the density field to do peak finding in § 4, but
use top-hat filtering with Ry = R, to evaluate the smoothed displacement field and internal peak-patch properties. In the imme-
diate neighborhood of the peak, the “background” field s, is completely specified by a bulk peak displacement s, and a peak strain,
Epk,ij-

Spi(F) =~ Spi — 2 €piif(F— Fo)i + -+ - . (2.15)
J

where the “background” (perturbed) strain field is

1 (3sp; , 08y
s=— | 24 2.1
€b,ij 2 ( or; dr; )(r) (2.16)

and e,y ; = €p,(rpk). The residual fluctuating field s;, predominantly made up of spatial wavenumber components higher than
R} ,isimportant for determining substructure and merging times and will influence the overall collapse time. Even so, sy and ey ;
should be fundamental for determining gross features of the evolution.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103....1B&amp;db_key=AST

JS. CI03 . _.ABO

]

rT99BA

BOND & MYERS Vol. 103

(o)

In linear theory, the smoothed peculiar velocity of the peak is ¥V« = —aHpsy. It obeys Vpk + HVy = gpL, Where the smoothed
peculiar gravitational acceleration is gpr. = —47Gp o a(t)s,c. Here p,, is the mean background density of nonrelativistic particles
(the matter which can cluster). We separate the peak strain into its trace, the smoothed linear (relative ) overdensity of the peak,

Fo = —€hii = [Ve551(rox) (2.17)
and its anisotropic part,

€ = €pkis + 5Fpids - (2.18)
The anisotropic shear tensor is just the time derivative of the anisotropic strain, €} ;, and the relative volume dilation rate is
epx; = — Hp Fy. In linear theory, the smoothed peculiar tidal field acting on the peak patch is also proportional to ey ;:

TL,ij = —47I'G[_)mepk,,'j . (2.19)

(The peculiar tidal field is defined by T} = 9%®p/dX 'dX’, where ®pis the peculiar gravitational potential [see Appendix A]. In the
linear regime, s = [47G poea] ' 0%p/3r7.)
The strain tensor e, ; can be expanded in eigenvalues \,4 and unit vectors 7,4 which specify the principal axes of the tensor:

3

eh == 2 Nallvaliia, (2.20a)
A=1

)‘v3= (Fpk/3)(1 +3ev +pv), (220]:))

A2 = (Fpi/3)(1 = 2py), (2.20c)

Aot = (Foi/3)(1 — 3e,+p,) . (2.20d)

The eigenvalues are arranged so that A3 = A,; = \,;. Thus it is along the 3-axis that collapse will first occur. The \,; can be
parameterized in terms of the height of the peak v, = Fpx/ 0o(Rpk) and the shear ellipticity e, and prolaticity p, as indicated. The
ordering constraint restricts e, = 0 and — e, < p, < ¢,. The remaining three coordinates required to fix the symmetric tensor e ; are
the Euler angles which describe the orientation of the orthonormal triad 7,4. The anisotropic strain tensor e}, ; has eigenvalues
Nui = Ay — Fp/ 3 which sum to zero.

In the principal axis system, the smoothed linear evolution in the neighborhood of the peak point is X4 — X4 ~ a(?)[1 —
Noa(2)1(74 — rpea). Therefore, the local effect of the long-wavelength fields upon an initially spherical region of Lagrangian space
will be to distort it into a collapsing homogeneous ellipsoid, whose principal axes are those of e,y ;;, as the patch moves with velocity
Vox. Of course, the dynamics of a peak patch is much more complex because of the spatial variation of s, and the complex structure
of s.. The homogeneous ellipsoid picture may be thought of as a tensor virial theorem approach to the average interior dynamics.
The first approach we took to the dynamics in Bond & Myers (1991) was a spherical approximation (e.g., Gunn & Gott 1972; Gott
& Rees 1975), which has the advantage of allowing inhomogeneous radial distributions to be explicitly treated. Although the
ellipsoid approach is obviously imperfect, we feel it is very important to at least crudely take into account the long range shear field
within which the peak-patch resides.

2.1.3. Homogeneous Ellipsoidal Collapse of a Patch

We derive the dynamical equations for the ellipsoid in a cosmological setting in detail in Appendix A. We show that one must be
very careful with the external tidal fields to ensure that linear theory is reproduced. For illustration, we give the results for the case
when the Universe has only nonrelativistic matter present, with background mass density p,,, and no mean curvature, so @ = Qp, =
1. (In Appendix A, we pay special attention to the corrections necessary if there is mean curvature or if there is a nonzero cosmo-
logical constant.) The boundary of the Lagrangian sphere of radius Ry evolves as X; (¢) = a;(t) Ry, where the g, are the scale factors
for the three principal axes of the ellipsoid. The equations we solve for X;(¢) are

d’ — 1.9 !
_/Yi=—4 nr/Yi—+£ _xar :: .
pT 7Gp [3 3 T3 dort i) (2.21)
Here the relative overdensity of the nonrelativistic matter is
=3

Onr = 0pnc/ por = -1, (2.22)

a,a,as
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where 6pnr = pnr — Pnr. The factors

dr
(1) + 711 113.-1 [az(2) + 71"

bi(1) = by(1) — % , where b(1) = ay(£)ax(1)as (1) fow = (2.23)

are familiar from the potential theory for homogeneous ellipsoids (e.g., Chandrasekhar 1969; Binney & Tremaine 1987). The
initial conditions at time Z,, for these equations are obtained using a Zeldovich approximation setup:

X;(t0) = a(to) Rud 1 = (o)1, Xi(to) = Vi(to) = H(20) X; (£0) — @(t0) Hp(t0) Nui(to) - (2.24)

We stop collapse along axis i by simply freezing a; once a critical radius @.,; = f,a is reached during the infall phase. The redshift
Z.., at which the last axis of the ellipsoid ( 1-axis) freezes out, which we take as our indicator of “virialization,” is quite insensitive to
the specific value of f;. The radial freezeout factor f; = 0.18 was chosen, since it turns out to reproduce the ““virial” density contrast
of 179 familiar from spherical top-hat calculations. We describe this in much more detail in Appendix A. We tabulate 1 + z.; asa
function of the parameters e, and p, for a given F,. For ,, = 1, 1 + z,, scales with Fy, (since D = a), hence in that case we only
need an e, — p, table. One of the main features is that once the 3-axis collapses, the nonlinear density contrast causes the other two
axes to collapse much more rapidly than linear theory would predict. Indeed, collapse along all three axes is possible even if A,; <O0.
For illustration, the redshifts of collapse for a perturbation with current linear overdensity F = 2 are plotted in Figure 1 as a function
of shear ellipticity e, for a CDM model. The collapse redshifts scale as (1 + z) oc F as F changes for this Q,, = 1 Einstein—de Sitter
case. These results are compared with the predicted collapse redshift in the Zeldovich approximation, which does not fare well at
all. Only in the limit of very large e, does the collapse redshift along the 3-axis approach that given by the Zeldovich approximation.
And once one axis goes to nearly zero size, the gravitational attraction on the other axes becomes so large that collapse occurs very
shortly after on the other two axes. The Zeldovich approximation does not come close to describing this accelerated evolution,
whose origin is from nonlinear internal tidal effects that it ignores. If e, > 0.33, A, is negative, but full collapse can still occur.

In the spherical approximation to dynamics, the exterior anisotropic tidal force is taken to be zero and bj(¢) = 0, so equation
(2.21)reduces to X; = —(47G/3) pnc(1 + 8,:) X;, giving the usual cycloid solution for a closed universe. The equation is, of course,
valid for an arbitrary interior radial profile provided spherical symmetry holds. The usual practice is to integrate each shell until it
reaches zero radius, then to say that the mass is redistributed at that point into a virial structure. For the Q,, = 1 model, this occurs
when the linear overdensity F(t) reaches the familiar critical value f, = 1.686. The value of f; must be computed for more
complicated cosmologies. The homogeneous ellipsoid solutions with e, # 0 require larger values for F () than f;.

To put the ellipsoidal collapse approximation into effect in the calculation of R, we need to calculate the mass-averaged strain
in the peak patch. Consider integration over a Lagrangian volume ¥ with bounding surface element dS with unit normal 7;. The
mass average of ¢; is just

(e [ a3 Lsr)iy + 5. (2.25)

For example, for a Lagrangian sphere, the magnitude of R = r — r,, on the surface is fixed at R, the area is R?dQ = R*dud ¢, and
the unit normal is R. Since the angle average of R is zero for a sphere, we can subtract an arbitrary constant term from s; in the
above expression. We choose this to be the “bulk” displacement 5y ; to explicitly show that it is relative displacement which is
relevant:

e<R) = - = f dudg 3 185,(, 6)R (1 6) + A5, 6)Ri (1 9)] (2.26)

where

Asi(p, ¢)=1[5:(R, p, &) — Spii ] -

2.1.4. Internal Energy of a Patch
The initial internal energy of the peak-patch (for @ = 1)is given by

1 1 F,
i <Rpie) = =5 0 = — 5 (HoRpi)*Qor =2 S(Ryi.) , (2.27a)
2 2 D
where we introduce a dimensionless shape factor (Bond 1988),

Rpk —_
S(Ry) = (FyR3)™ L F(<Run)dR%, (2.27b)
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FIG. 1.—The collapse redshifts for the three ellipsoidal axes as a function of the initial ellipticity e, = (A,3 — \,;)/(2F), assuming zero prolaticity p,,
linear overdensity now F = 2, and our standard linear external tide approximation (solid line). We also show when the analytic spherical model reaches
overdensity 170 (upper dotted line) and complete collapse (lower dotted line). The dashed curve shows how poorly the Zeldovich approximation fares: only
for extreme elongations does it get the collapse redshift along the 3-axis right, and is very far off for the other two directions.

and F(<Rty) is the volume-average of the unsmoothed F(r, t) within the Lagrangian sphere of radius Ry from the peak center,
i.e., F(rpk, t; Rru). This first-order perturbation theory result for e, is exact irrespective of the inhomogeneity of the peak’s density
profile and since Fy oc D, it is conserved, irrespective of cosmology.

Further, in the spherical approximation to the dynamics, &, will be conserved throughout the nonlinear evolution. However,
nonlinear tidal effects cause the internal energy to change somewhat for an ellipsoid, so &;,; can only serve as an estimate of the
binding energy of the final state of the interior. The derivation of this formula, with the effects of curvature and cosmological
constant included, and a discussion of the tidal heating/cooling effects are given in Appendix B.

2.2. Anatomy of a Peak Patch

In this subsection, we show how varying the density, displacement, and strain field and other constraints affects the linear struc-
ture of a peak patch, and illustrate with a simulation of a large cluster how well the gross features of the final collapsed structure are
reproduced by ellipsoidal and spherical dynamics. We concentrate on variations of a v, = 2.45 peak (Rg = 5 ' Mpc)ina oz = 1
cold dark matter model (Qm = 1, 2 = 0.5) cosmology. This v, value was chosen so that peaks of this mass or above would have an
abundance of 10™°/(h~! Mpc)?3, slightly more than for Abell richness 1 clusters.

The constrained field techniques used are given in Appendix C. The displacement and density fields described are realizations of
a Gaussian process with 18 constraints, nine associated with the density, displacement, and anisotropic strain, and nine more
associated with V; F and V;V;F. The peak constraint is V; F = 0 and V,V,F negative definite. On average, the principal axes for
V.V, F align with those for egk,,j, but considerable misalignment is statistically probable. The analogs of vy, e,, p, for the tensor
V,V,F are x,, where x = —V°F/ g, is a measure of the angle-averaged curvature of the smoothed peak profile, and e, and p,, which
together measure how oblate or prolate it is (BBKS). For the simulation, statistically averaged values were given for the constraint
quantities: e, = 0.136, p, = 0.0085, x,,x = 2.56, ¢, = 0.175, p, = 0.011, which gives a flavor for the expected magnitudes. Principal
axis alignment was also chosen. In addition, the peak was chosen to be moving with the one-dimensional rms velocity of peaks.

We have used an SPH code with a multigrid Gauss-Seidel potential solver to evolve 17,077 gas particles and 17,077 dark particles
(with Q4m = 0.95 and a baryon density of @5 = 0.05). We have also used a tree code to perform a purely collisionless simulation of
just the 17,077 dark particles (with Qc4, = 1). The two simulations of the same constrained field initial conditions give very similar
results for the gross features, as expected since the dynamical evolution is dominated by the dark matter.

For this peak patch, the spherical model predicts a collapse redshift of z = 0.1, while the ellipsoidal model predicts collapse occurs
along the 3-axis at z;; = 0.3, along the 2-axis at z.; = 0.14, along the 1-axis at z.; = 0.04. The simulations show a major merger
between redshift 0.2 and 0.04: two groups of 3.5 X 10'* 47! Mg and 4 X 10'* h~' M, at z = 0.2 formed a single cluster with 1.2 X
10" h™' Mo at z = 0.04. The spherical and ellipsoidal models predict masses of 1.34 X 10" A~' M, and 1.07 X 10" h~' Mo,
respectively, using the empirical relationships between R, and R (see Fig. 10 below). The internal energy (as measured by vg, eq.
[2.27a]) for both the spherical and ellipsoidal collapse models is predicted to be 1540 km s ™!, while the tree code gives 1550 km s ™!
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at z = 0.04. (We also find that the velocity dispersion as estimated from the cluster kinetic energy is 17% higher, whereas isolated
virial equilibrium would suggest equality, a point we return to in BM2.) Overall, the agreement between the collapse characteristics
of the simulations and the predicted time, mass, and energy from the peak patch approximation are encouraging. However, other
realizations of the initial conditions with the same constraints could lead to earlier mergers or a delay in merging of subclusters:
identifying the bulk Gaussian peak properties can obviously not fully specify the fate.

We now take the 2.450 density peak example and show what happens to the linear density and displacement field in and around
a peak patch when we vary the shear eigenvalues and velocities and also the realizations that define the substructure. The results of
this exercise are shown graphically in Figures 2, 3, 4, and 5.

We find it conceptually useful to separate the construction into three pieces, s = s, + As,, + s;. s, is a fluctuating field which con-
sists of unconstrained wavenumber components of the field with high wavenumber. The longer wavelength background field s, =
5, + As, is naturally split into two parts, a mean background displacement s, and a random field deviation from the mean As,.
Similarly F has F,, AF,, and Fypieces. So that the long-wavelength influence could be seen clearly in the density contours in the
figures shown here, waves were only added to the fluctuating field down to k™! = 1 A~! Mpc; otherwise the contours become quite
jumbled through uncorrelated short distance power.

Figure 2 isolates the individual components that contribute to the total peak-patch fields shown in Figure 2d. The linear density
is the contour map and the peculiar velocity field is denoted by arrows. ( The standard convention for the displacement field makes

z (h”'Mpc)

F1G. 2.—The first three panels show the individual elements that make up peak-patch linear density (contours) and peculiar velocity (arrows) fields: (a)
the background mean-field, (b) the background variance field, which is extremely quiescent in the neighborhood of the peak, and (c) the short-distance
fluctuating field responsible for subclumps within the medium. (d) is the sum total peak-patch field. In (a) and (b), the contours increase by factors of 2
from the minimum contour at f./2, where f. = 1.686 is the critical contour for spherical “top-hat” collapse. The light lines denote negative contours. The
displacement field arrows are scaled for appearance, and only one in 12 are sampled. Panels (¢) and (d) start at the f. contour level for positive (dark)
densities and at 2 f; for negative ones. The peak was constrained to have vy = 2.45, e,px = 0.14, v, = 0.46 o, when Gaussian-smoothed over 5A~' Mpc.
The circle at 10A~! Mpc is the average Ry associated with Gaussian-peaks at this filter scale, but substantial variance is expected.
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FIG. 3.—Panels (a) and (b) show the mean background and total constrained fields for a case with shear ellipticity e, = 0.27, near the outside range for
peaks of this height. (Contouring choices are the same as in the previous figure.) Increasing the shear further deepens the holes on either side of the “pancake”
plane. The peak has a velocity of 0.8 ¢, the rms for peaks of this scale, but it is moving in the 2-direction so one cannot see its influence. Panels (¢) and (d)
illustrate the effect of giving the peak a high velocity. It is moving at a speed of 2.26 ¢, toward the upper right at 45°. This is a 2.8 ¢ fluctuation for peaks
(which have lower velocities than field points do, by 20% in this case ). Note the stretching of the density contours in that direction as well. Although the flow
pattern of (d) looks quite different than in (b), once the mean flow for the box is subtracted, the pattern is actually reasonably similar, emphasizing that it is
the strain which dominates the local dynamics.

it of opposite sign to the peculiar velocity field.) Figure 2a shows the background mean-field; Figure 25, the background variance
field; and Figure 2c¢, the uncorrelated fluctuating field. The short-distance fluctuating field is responsible for the formation of
subclumps. The background field lifts them up or down. The background-variance field is essentially flat without flows within the
radius of the circle at 2 Rs. This is because we have specified enough constraints that the field is essentially fully specified over a
smoothing scale, and that field is given by the mean-field. The background-variance field is also, of course, a total background
field—one for the constraints of no smoothed density contrast, no velocity, no shear, no density gradient, vanishing V,V;F. That is
why it is so quiescent in the neighborhood of the peak.

The contours are in units of f; = 1.686, the linear overdensity required for complete collapse in the spherical model. The mini-
mum positive contour is f; in all figures except those that show the mean background or background-variance field, where a f./2
contour is also included. The fluctuating field adds a relatively large amplitude, so to make the pictures that include it less confusing,
we chose 2 f; to be the first negative contour. This still shows where the deep voids are. The first negative contour for the background-
only cases is f./ 2. It is apparent from this figure that the mean field gives an adequate representation if one is interested in phenom-
ena in the immediate neighborhood of the peak, provided enough constraints are imposed. ( The realization shown here is not the
same as for the simulation, which had fewer grid points but went out to 30 2~' Mpc.) The circle at 10 ™' Mpc is the average Ry«
associated with Gaussian peaks at this filter scale.

The strong role that values of the anisotropic shear and the bulk flow have on the surroundings of peaks had not been emphasized
very much before this work. (Bond (1987b) described the effects of shear on peaks, but within the Zeldovich approximation, and
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FiG. 4.—Panels (a), (¢), and (d) show three realizations with the same mean peak constraints, demonstrating how sensitive merger history will be to
variations in the fluctuating field. Contours increase by factors of 2 from f; = 1.686 for positive (dark) densities and from 2 f; for negative ones. Panel (¢) has
the same background-variance field as in Fig. 1, but a different fluctuating field realization. Panel (b) has the peak moving at 2.26 ¢, as in Fig. 3d, but for a
different realization, the same as for panel (a). There is still a strong resemblence to the Fig. 3d realization. Note that the displacement field can look rather
different from what one would infer from local density contours, because long wavelengths must conspire to give both the anisotropic shear and mean flow
of the Gaussian-smoothed fields.

Dubinski & Carlberg (1991) included linear “external” tides in their N-body study of forming galaxy halos, but did not impose self-
consistency with the internal strain.) The effects are shown in Figure 3. Figures 3a and 3b show the mean background and total
constrained fields, respectively, for a peak with large ellipticity, e, = 0.27. about twice the statistically averaged value, and a rms
bulk velocity for peaks of 0.8¢,. The principal axes of V,V,F are rotated relative to those for e;, to show the effect of slight mis-
alignment. Figures 3 ¢ and 3d show the effect of greatly increasing the speed, to 2.26,, while dropping e, back to 0.14. The velocity
field shows large scale coherence, as expected. However, when we remove the box-averaged flow the remainder looks relatively
similar to Figure 2d. Thus, in the frame of the bulk flow, the ellipsoidal approximation should work reascnably well.

Figure 4 confirms the very strong influence that the “short-distance” fluctuating field has in creating a large range of possibilities
even given the specification of the average peak-patch parameters. Figures 44, 4c, and 4d are three different realizations of the case
shown in Figure 2d. Figure 4b is a different realization of the high-speed peak of Figure 3d. It is primarily scales not too far below
that of the Gaussian filter that determine the major pieces of substructure. It is a statistical question whether these subclumps will
add to the background field to enhance the likelihood of collapse, or whether subvoids can destructively interfere enough to delay
collapse. The density lumps outside the cluster are the candidates for groups that merge with the forming cluster. For example, the
fluctuating field in Figure 4 ¢ happened to have three clumps near the edge of the circle. Upping the density enhancement within
the peak-circle bridged the sumlump contours. The expectation is that the three sublumps will form smallish clusters as will the
central enhancement and these will all merge at some future point. Thus, although we have imposed a specific peak constraint at
the origin, a larger scale peak at a slightly different location is the more “dynamically correct” entity which subsumes our original
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FiG. 5.—Panels (2) and (b) show the mean background field and the total constrained field for the standard realization and standard parameters, except
instead of the peak constraint, V; F was given a 1 ¢ value directed along the z = x line. Panels (¢) and (d) are for a rare peak of height v, = 3.43 in a model
with o3 = 0.71, which suppresses the background variance and fluctuating fields relative to the mean background field shown in (c¢). Except for this
suppression, the standard realization of Fig. 1 has been adopted.

peak and the neighboring subclumps. Finding these dynamically correct peaks among all the peaks is what our hierarchical method
is designed to do.

In Figures 5a-5b, we show the significance of the peak constraint, V F;,, = 0 by constraining V F to have a nonzero value at the
origin. Not surprisingly, the flow is away from the origin, converging to where V F,, = 0. Figures 5 ¢ and 5d show what a rare vy, =
3.43 peak looks like. The higher peak leads to a more extended profile and the background variance and fluctuating fields are
suppressed, so the mean background field has a larger control over the nature of the contours and flow field.

3. THE PEAK PATCH CATALOG

The state at time ¢ of the objects (groups) in a catalog at positions x, with peculiar velocities V, is fully characterized by a
distribution function:

Jeo (X, 0, M, i, 1) = 2 0P (x — x,)8 P(V — ¥,)(In M — In My)d(eint — €inty) - (3.1)

4

As sample internal properties we take the mass M, and the internal (binding) energy per unit mass &, , of the individual groups,
since these are the ones we focus on in this paper. The associated point process integrates over the peculiar velocities:

ngp(xa M, &, t) = 2 5(3)(x - xg)a(ln M—In Mg)a(eint - sint,g) - (32)

-4
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One generally compares catalogs through their low-order statistics. Examples of these are various “one-point” functions, including
the mass function of bound groups

(M, 1)dIn M = dIn M r e (Mg (X, M, 10, 1)) (3.3)

and the integrated internal binding energy distribution,

_ —vi./Z
ao(>0,1) = [ din f e gy, M, i, 1)) (3.4)

We have translated the internal binding energy distribution into one for a velocity v defined by &, = —v%/2. This will indeed be
the velocity dispersion of the group provided it is relatively isolated and in virial equilibrium.

The detailed implementation of our approach is described in the next section. Here we put the approach into a more formal
context. Our goal in the hierarchical peaks method is to determine from the initial conditions only an (Eulerian space) distribution
function

Senok(X, Vo M, e, 1) = 2 83 (x — x0p)8 P(F — Vi) 8(In M — 1In M) 8 (€ine — €inepkc) » (3.5)

hpk

which should be a reasonable approximation to the group distribution function that an N-body simulation would find and relatively
easy and fast to calculate. Critical to solving the cloud-in-cloud problem is to develop a merging algorithm in which (Lagrangian
space) clouds enveloped by other (Lagrangian space) clouds are excluded from the final hierarchical peaks list, and those that are
overlapping are in some way merged. Such an operation on a set of candidate points will be highly nonlocal. The candidate points,
however they are selected, must, at the very least, include all of the peaks that survive exclusion and merging, and may include
many more points besides.

3.1. Selection and Exclusion of Lagrangian Peaks

Our standard algorithm is to choose a large number of Gaussian filter scales, and, for each Gaussian filter in turn, find all peaks
of the smoothed density field F(r; R;) (evaluated at the present time) that lie above some chosen threshold, F(ry; Ry) > f. For
Q = Q. = 1 cold dark matter models, we usually take f; = 1.686/D(z,), where D(z) is the linear growth factor for the fluctuations
and z,, is the redshift of the peak, determined by how far away the peak is from “here and now,” the global origin of the catalog we
wish to construct. The factor 1.686 is the linear factor required for a spherical top-hat perturbation to have collapsed to a point.

The patch around each peak of the unfiltered density field is then measured to determine the largest radius Ry of a spherical
region in Lagrangian space that will have collapsed by the redshift of the peak. For the spherical approximation to dynamics, this
involves measuring the average linear overdensity at a variety of radii, Rty, and converging upon the largest one for which F(<Rry)
= fo/ D(2px), where f. = 1.686 (for @ = Q. = 1 models). In the homogeneous ellipsoid approximation to the dynamics, we measure
the average strain tensor [and hence F(<Ryy), €,, P»], within an estimated Lagrangian radius Ryy, use a table to check whether
the ellipsoid with these parameters will have collapsed by the redshift in question, then increase or decrease Ry until the measured
shear is such that collapse just occurs, and so define R,. The mass of the peak (in nonrelativistic particles, that is, those which
cluster) is then

My, = 4700 @ R (3.6)

The binding energy estimation ¢;,, and the mass-averaged displacement field s, within the patch of radius R, are then calculated.
The result is a distribution function for the candidate point process determined in “Lagrangian space”:

1
(Hpa)?

2 8(r—ry)d (s — spu)6(In R — In R3) 8 (eint — €inepk) - (3.7)

pk

ﬁ-.pk(r7 S, -R, €int» t) =

We have chosen the normalization so that equation (3.7) has the same “dimensions” as equation (3.5). (Recall that in linear
theory, the peculiar velocity is just ¥, = —Hpas, hence the displacement field serves the same purpose as velocity in the distribution
function.) Note that although we have found the peaks with Gaussian filtering, the averages are over the Lagrangian volume. That
is, the local properties are found with top-hat filtering centered on the peak, with the top-hat radius being adjusted until one predicts
that the region has just finished its collapse along the 1-axis.

To describe simple exclusion criteria mathematically, it is convenient to transform the final distribution function fz npx back into
Lagrangian space (using Xpx = Fox — Spi, Vp(Xpk) = —aHpspy),
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(HIE)3 2 6 — Popi)8 (5 — Shpi)3(In R> — 1n R33)8 (8int — Eimtnok) - (3.8)
D hpk

ﬁ..hpk(ra s, R, €int> [) =
The Lagrangian-space number density is the integral of fi ,,,x over velocities and internal energies

AL pok(r, R, 1) = f(Hpa)3d3sdeime,hpk(r,s,R,eim,t) = 2 80(r—rp)d(In R? — In Ripy) - (3.9)

hpk

In § 4.1.3, we describe a number of merging operations that transform f; p, into f{ npx. In the simplest version, points of small
mass whose Lagrangian regions overlap with the Lagrangian regions associated with points of large mass are excluded and the big
ones are left with the same mass. We term this full exclusion. In half-exclusion, only if the small mass point lies within the large
mass patch is it excluded; otherwise both points survive and retain their same masses. Half-exclusion can obviously lead to some
double-counting of mass. We currently prefer a more complicated binary merging algorithm which divides the Lagrangian volume
between two overlapping peaks on the intersection plane between them. This is not so extreme as full exclusion and yet does not
overcount mass as the half exclusion prescription can. The full and half-exclusion operations can be described by a simple mathe-
matical expression—the binary algorithm cannot.

We first derive the equation for half-exclusion. If we choose the peak radius increment d R to be small enough, then the quantity

—AR.ﬁ..pk Eﬁ.pk(r, s, R’ €int» t) _fi,,pk(ra s, R+ dRs €int» t) (3‘10)

either has one peak contributing to it or none. That peak will be included in the hierarchical list if it is not located within the
Lagrangian regions “belonging” to any of the hierarchical peaks with larger radius; that is, if the action of

1= &x(r,RH)=1— 2 Xv@Ryo(r— o)
hpk,Rppi>R
=1 —fd3r’ dlnR’xV(Rf)(r—r’)nL,hpk(r’, R’, t) (3.11)
In R+

upon Ag fi o« gives a nonzero value. Here, x,(z-)(r) is unity if r is within a sphere of radius R’ and zero otherwise, hence &} is a half-
exclusion operator describing the space occupied by higher mass peaks. A peak that survives its action will be part of the hierarchical
list and contribute to the distribution function the term

_ARﬁ_.,hpk E.fl‘_,hpk(r’ s, -R, Eint» t) —ﬁ_,hpk(ra s, R+ dR, €int t) . (3'12)

We therefore have the multiplicative equation Agfi ok = [1 — &4(r, R+)]1Arfi ok, which looks simple except that &4[ny npk] is a
linear functional of 7y, hence of /i ppx .

We can solve this “stochastic” equation to get an even simpler form. We assume that we do not count the same point twice in the
candidate point distribution function, equation (3.7), since, even if we find the point to be a peak on two filtering scales, the masses
we find will be the same so it would appear in the distribution only once. Thus at the point r with f; ,(r, 5, R, &, t) nonzero that
we are deciding to include or not, fi (7, s, R + dR, &, t) Will be zero, as will fi po (7, s, R + dR, &, t). Therefore a succinct
version of the stochastic equation is

fi_,hpk(rQ S,R, €int» t) =.fi.,pk(r, S,R, Eint» t)[l - gh(”’ R+)] ’ (3'13)

which shows that the exclusion operator is entirely responsible for the mapping from candidate to final point process. Equation
(3.13) is easily seen by multiplying each -function term in equation (3.7) by zero if it is to be excluded, one if it is to be kept. The
ability to rank-order from large to small R, with &,(r, R+) dependent only upon those above the current R is crucial for this
derivation. Although simple to write, equation (3.13) is not simple to solve fully, except numerically.

Full exclusion satisfies the same kind of functional equation, except with the full-exclusion operator

1 - &(r,R)=1— f d%r j A R Xy (r = F) (P, R 1), (3.14)

where V' (R’ + R) imposes the requirement that the candidate point at r,, whose Lagrangian patch has radius R, does not lie within
the radius Ry, + Ry of any of the previously selected hierarchical peak points. In the binary technique, if the point lies within Ry
and Ry + Ry, we may retain it, but reduce its mass, and also reduce My, thereby allowing modifications to go upward in the
hierarchy.
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3.2. Practical Lagrangian Exclusion

A major obstacle in the Bond (1988) extension of the BBKS formalism to a mass hierarchy was the overcounting of smaller mass
objects that would have merged into higher mass ones. In the hierarchical peaks method, the “cloud-in-cloud problem” is solved
by having peaks of larger extent annihilate some fraction, if not all, of the volume included in the overlapping peaks of smaller
extent. The problem of merging of peaks can be broken into two parts: the partitioning of Lagrangian space so that the same mass
elements are not assigned to more than a single peak (exclusion), and the combination of distinct peaks that have moved into
superposition in the final state (merging). The Lagrangian exclusion of overlapping peaks is essential in the method, otherwise mass
is overcounted and not conserved. The final-state merging, on the other hand, is not crucial to the method, but has observational
consequences in clustering and subclustering of objects.

The assignment of overlapping mass elements to individual peaks is a complex one, as the full solution requires knowledge of the
evolution well into the nonlinear regime. This, in effect, is what N-body simulations do: parcel the universe into finite mass elements
and evolve the configuration. Because we are treating the problem as a local linear process, we can only approximate the mass
assignment. There are several simple methods that we consider for the peak Lagrangian merging algorithm.

We break the question into the problem of a single largest (primary) peak overlapping with a number of smaller (secondary)
peaks, which all overlap with the primary peak and may or may not be mutually overlapping. For two peaks with centers at ry; and
Foi2, if

Irpkl - rpk2| S-Rpkl +Rpk2 >

then the two peaks overlap and one must be rejected or a partitioning of mass must occur. We will assume in all merging methods
that if the center of the smaller of the two peaks lies within the larger of the two,

Irpkl - rpk2| < max (Rpkla RPkZ) 5

then the smaller will be discarded in entirety. For more than two overlapping peaks, care must be taken to do the overlap tests and
reduction in some sensible order. In general, the situation of chains of overlapping peaks can be dealt with in stages. We consider a
rank-ordered list of peaks with centers at Lagrangian positions { rpy, fo2, - - - }, Where all subsequent peaks overlap with the first
peak. At this stage we will order the list in decreasing order of (initial) peak mass, My, = My, etc. Thus ryy, is the location of the
primary peak, and the rest are secondary peaks. We consider three options:

1. Full exclusion.—Throw away all but the primary peak, and assign the full mass as calculated for it as an isolated peak.

2. Half-exclusion.—Throw away all secondary peaks whose center lies within the primary peak-patch, and assign it the full mass
as calculated for it as an isolated peak. Keep secondary peaks whose center lies outside with their full mass.

3. Binary exclusion /reduction.—Form all pairs of overlapping peaks (primary and secondary). For each pair, throw away the
smaller of the two if its center lies within the larger peak. Otherwise, reduce the volume of each of the two peaks by partitioning
using a plane that contains the circle formed by intersection of the surfaces of the two Lagrangian spheres; i.e., the plane of separa-
tion between the spheres. When all pairs have been considered, reduce the Lagrangian radii of all remaining peaks to conform to
the reduced masses. This procedure will ensure that no mass element is assigned to more than one peak, but because the reduction
is done by pairs, it will overcount regions that are mutual elements of three or more peaks, and thus in this case overestimate the
excluded volume. This is calculationally much simpler than finding the exclusion considering the full intersection and is unlikely
to make a large difference.

Of these methods, “full exclusion” is the most extreme in annihilating mass, ‘“‘half-exclusion” overcounts mass, which “‘binary
reduction” remedies. After extensive exploration and comparison between these methods, we have chosen binary reduction as our
standard (see BM2). To partition the mass between two peaks with Lagrangian radii R, = R,, separated by a distance d, we wish to
cut on a plane perpendicular to the vector d at a distance d, from the center of peak 1, and d, from the center of peak 2,

di+d=d, R+d>=R3+d3,

and such that peak 2 center is not within peak 1,

dlZdz, d>R1—R2.

We then have

di=5(@+RI-RY, d=d—d. (3.15)
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The change in spherical volume of the two peaks is given by

R, 2 2 27 3 2 T 3 .
AV, = i dzn(R} -z )=?Rj—1rdej +§dj, Jj=12. (3.16)
j

The fractional change in mass of the peaks is given by

AM; 1 34, 1d}
= —_-— — +— .
M; 2 4R; 4R}’ (.17)

where d, and d, are calculated from equation (3.15). After all pairs of peaks are checked, then for each peak the fractional reductions
from all its pairings are summed to obtain a total reduction. If the peak is reduced to zero mass, then it is eliminated. Although the
mass reduction is strictly occurring on the overlaps between peaks, it is treated as a reduction in radius retaining sphericity of
the patch.

3.3. A Generalized Press-Schechter Method with Volume Exclusion

If our method for identifying candidate points is efficient, we should get virtually the same result from a candidate point process
which is much more highly oversampled. In § 3, we gave our standard threshold choice for density peaks, f; = 1.686. We have found
that choosing f; = 0, which includes many more candidates, gives quite similar results to f; = 1.686 after exclusion and merging.
Instead of finding peaks in the density field, we might consider the points that are peaks in the strain eigenvalues. The picture of
evolution of the medium suggested by the Zeldovich approximation is that the first regions to collapse are peaks of the largest
eigenvalue \,; of the strain tensor. We have tried those points as candidates as well (with zero threshold) and find similar results to
density peaks with f, = 1.686. The Zeldovich approximation would also suggest peaks of the smallest eigenvalue A,; may be impor-
tant for object formation, since the linear flow in the neighborhood of the candidate point will be converging upon the point in all
three dimensions. (However, we find nonlinear internal tides in the ellipsoidal approximation allow initially nonconvergent flows
to collapse.) We have tested these points as well (with zero threshold) and again find similar results to density peaks. These tests are
described in § 4.2.3, and the mass functions for the various methods are shown below in Figure 13.

Although it is extremely inefficient to do so, one could choose all of the points in the volume. We believe that the result would be
almost identical to that obtained with the \,; peak points, which sample a large fraction of the points in the simulation. The reason
that choosing all of the ““field points™ and allowing exclusion to do all of the work is interesting is that this is precisely what a natural
nonlocal generalization of the Press-Schechter approach to mass formulae would do.

Let us review what the Press-Schechter (PS) or excursion set approach does, following BCEK. Consider the set of candidate
points to be the set of grid points in a lattice. Just as for our candidate peak points, PS methods again use the largest smoothing
radius at which the density field equals the threshold f. to define a Lagrangian radius and a mass. ( The spherical approximation to
dynamics is used to determine f;.) Unlike the hierarchical peaks method, the PS method has #no exclusion of points with small mass
if they lie within the patches associated with points of large mass. Instead there is a binary “merging” algorithm of a strange sort: the
two grid points contribute the fraction of space in their grid cells to the total (Lagrangian space) volume count of objects with their
respective masses. Thus cells that are side-by-side invariably are counted as belonging to different mass objects, a decidedly un-
physical vision. Obviously one can get no spatial information from this excursion set approach, and it is rather a miracle that the
PS mass functions can come so close to those determined from N-body studies.

The natural smoothing to use for the PS formalism is top-hat filtering, but BCEK showed that only sharp k-space filtering gives
the original Press-Schechter formula for the mass function. Top-hat and Gaussian filtering give a high-mass end that is the same as
the original PS formula, but without the famous factor of two “fudge factor.” To have the fraction of space in objects of any mass
sum to unity, the mass functions for these filters have an extended low-mass tail less steep than the PS formula one (Peacock &
Heavens 1990; BCEK). Although the PS formula with the factor of 2 does arise naturally for the sharp k space filter, how mass is
assigned to the Lagrangian radius R, at which the smoothed overdensity equals f; is not well justified. R, cannot be used by itself
since the smoothing function associated with it is highly oscillatory, o j,(r/Ry)/(r/Ri). The method BCEK used was to construct
the mass through a “top hat radius” function of Ry by requiring the variance in the density fluctuations smoothed with the two
filters agrees:

M= (47"/3)5nr¢73R'3rH, where U'ZI‘HO(RTH) = U%O(Rk) . (3.18)

What the PS method should do is this: take all points. For each point, start at a large radius and come inwards until the volume-
averaged linear overdensity = f;. If so, assign that point the top-hat mass associated with the critical radius. Take the candidate
points to be those which have pierced the f; line. Now apply to the candidate points the full exclusion algorithm of the last subsection.
Most candidate points are excluded and the surviving points with their nonoverlapping spherical Lagrangian patches about them
are precisely our hierarchical peaks. We shall see that the end result for the mass function is not very different from the standard
Press-Schechter result, with a slightly modified mass assignment, but there are no fudges, the mass assignment is natural and one
can do spatial structure, including correlations. More important, the peaks picture is physically correct.
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4. IMPLEMENTATION OF THE HIERARCHICAL PEAKS METHOD

We described the physical and mathematical underpinnings of the peak-patch picture in § 2. We now present the detailed imple-
mentation of the algorithm used to realize catalogs of virialized objects—the Hierarchical Peaks Method for Peak-Patch Catalog
Generation.

The basic procedure consists of three stages: identify candidate peaks in a simulation volume, measure internal peak-patch
parameters, and perform the displacements to the final Eulerian positions.

Let us suppose we have a catalog covering some cosmological comoving volume we wish to simulate. We first need to cover the
volume with cubic boxes in comoving space. The size of each box is the largest we can manage subject to accurately realizing the
smallest scale we think we need to identify the internal properties of the peak-patches of interest. For cluster catalogs, we have found
that if 128° lattices are the size limitation, then a box size of (200 £~ Mpc)? gives sufficient short distance resolution. For galactic
halos at high redshift, the boxes would be much smaller. The standard configurations are a single box (for checking with N-body
results), many boxes in a cubical configuration, for all-sky catalogs, and, for catalogs covering a limited area on the sky, an inverted
pyramid of boxes which contains within it a “cone” or “wedge,” of given angular size. In this paper, we illustrate the situation for a
single box, and in BM3 we show results for an all-sky cluster catalog out to z = 0.1 that uses 27 boxes, and a 5° X 5° wedge that goes
out to redshift 1.5 that uses 11 boxes.

Cubical boxes are chosen to get the advantages of the speed of FFTs, but the FFT restrictions of allowed wavelengths to the modes
of the box are circumvented by the direct addition of ultralong wavelength modes as needed. The situation is reminiscent of the
split between background and fluctuating fields described in the last section, and we adopt that notation. That part of the linear
density field F that can be obtained by FFT is denoted by Frand that part built from the ultralong wavelength modes by F,; similarly
for the displacement field s,and s;. The cut between the waves which build Frand those that build F, is taken to be a sharp one in
k-space, with boundary k. That is, the Fourier components F,(k, t) have |k| < k;, and the Fourier components F,(k, t) have

|k| > k.

We describe the version of the algorithm in which the candidate points are density peaks above a threshold f;.

I. Choose a pattern of contiguous boxes which completely covers the catalog volume.
I1. Ifthere is significant power beyond the fundamental mode of the boxes:

A. Choose a sampling strategy for the ultralong wavelength modes, e.g., a combination of logarithmic and power-law sam-
pling in |k|, and uniform in k-space solid angle. Choose the number of wavelengths, typically S5000. Determine k; as
that wavenumber at which the k-space volume of the long-wavelength sampling strategy equals the cell volume in the
reciprocal k space of the box. A detailed discussion of this procedure is given in Appendix D.

B. Construct a realization of the Fourier components of the background linear density field, F;,(k, Zo), for the chosen k-space
sampling. The power spectrum Pr(k) and F;,(k, t,) are normalized with the linear growth factor D = 1 at the present time
to(z=0).

C. Evaluate o, for the waves with k < k;,. Lower the threshold f; to allow for very rare ultralong wavelength excursions (e.g.,
Jf:=1.686 — 5a¢;).

III. For each box, centered at redshift zpoy, We _

A. Realize discrete Fourier components F{k, t,) of the linear Gaussian random density field on the reciprocal lattice
wavevectors of the grid, using Pr( k), and normalized with D = 1 at ¢,. [We set F((k, to) = 0if | k| < k;.]

B. Determine the linear growth factor D(fpox) at time fox = £( Zpox ) for the chosen cosmology. If evolution of D(t) across the
box should be included, this is the largest D within the box. Form the modified threshold f;(#vox) = fi(20)/ D (foox)-

C. Form the Fourier components of the displacement field §{(k, Z,) of s on the grid, s, = —i(k/k*)Fy, and do an FFT to get
s(r,to).

D. For each Gaussian filter scale R, working downward from largest to smallest,

1. Filter the density field in Fourier space F/(k, to; Rg) = F{k, t,v0x) €xp (—k*R%/2). Transform to real space, to form
the filtered F(r; Rg), using a three-dimensional real Fast Fourier Transform (FFT). (The ultralong modes are not
included, but would be lost by the FFT anyway).

2. Find the peaks of Fin the F/(r, to; Rg) realization above the threshold f;(#,, ). In the implementation on a grid, a peak
pixel is required to be larger (or equal to) each of its 26 nearest lattice neighbors. Construct a list of peak positions
{ro}. (Do not include peaks that have been listed at a larger filter.) Provided k; is small enough, F,(r, to; Rg) will
have no impact on whether a pixel is a peak or not.

IV. Fast Fourier transform the unfiltered density field F(k, o) to get F((r, to). (Or weakly filter it to ensure smoothness at the
shortest distances.)
V. For each peak at position rpy,

A. Ifevolution over the region of the box is to be included, evaluate D(#,), where ¢, = t(z) is the cosmological time and
zpk is the redshift at the comoving distance of the peak from the global origin of coordinates. Otherwise, take #,x = tyox and
D(t) = D(tvox)-

B. Determine R by numerical integrations of F(r, t,) and s(r, o) on the lattice in spherical steps outward from the peak
center. Evaluate, by direct summation over the ultra-long wavelength modes, F,(r, to) and s,(r, o) for the points r swept
over as needed, if they have not already been calculated for an earlier peak [If &, R < 1, these vary slowly enough that only
Fy(row, to), S6(px, 1), €si (ks Zo) need be evaluated.]. Keep track of F(<R, t,), sS(<R, t,), and (possibly) e;(<R, to). See
Appendix E.
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1. In the spherical approximation, at each radius step R: adjust the average overdensity to be the value at zy,, F(<R,
to) = D(tx ) F(<R, t,); determine whether a spherically symmetric region with linear overdensity F(<R, f;) will
have collapsed by z,. For @ = Q,, = 1, just compare with the “critical” value f;; for A # 0 models, a look-up table of
collapse redshifts, z.(F), is used. Truncate the outward search with Ry = R. [€;(<R, t,) is not calculated.]

2. Inthe homogeneous ellipsoid approximation, at each radius step R, form the mean strain tensor at redshift z,x, €;( <R,
to) = D(tp) €;(<R, t). Calculate the eigenvalues \,;, and hence the peak ellipticity e, and prolaticity p, (eq. [2.20d]).
Determine if a region with F(<R, 1), €,, and p, would have collapsed by z, using a look-up table for the redshift of
“collapse” along the final axis z.. Truncate the outward search with R, = R when z, = z.

C. Evaluate the peak-patch averages My = (47/3)pndc Rk, Spx = S(<Ryy, to) = D(to)s(< Ry, o), and the internal
energy Einepk.

V1. The list of candidate points is now trimmed by a Lagrangian-space exclusion and merging algorithm, to avoid mass over-

counting and the “cloud-in-cloud” problem.

A. Infull exclusion, the most massive peak in a set of mutually overlapping peaks is retained, while the others are discarded.

B. In binary exclusion/reduction, for each pair of overlapping peaks, the mass of each is reduced to the value obtained by
partitioning with a plane defined by the intersection of the spherical surfaces of the two Lagrangian spheres. For pairs of
peaks with center separations less than the radius of the larger of the two, the less massive peak is discarded with no
reduction of the survivor.

We now have the hierarchical peak patches in Lagrangian space.

V 1I. The Lagrangian space peak patches are moved to their final Eulerian positions using the Zeldovich approximation (possibly

augmented by a quadratic correction). We either

A. Use the spherically averaged displacement calculated during the integration stage s, to move the peak to its final Eulerian
position Xpx = Fpk — Spk-

B. Use the displacement field evaluated at r,y at ¢, Gaussian filtered over a fixed smoothing scale R,. We have used the value
R, = D(tyox)os/ V3, the one-dimensional rms displacement at redshift Zpo,, With o, = or-1(Ry) for a judiciously chosen
filter R;. We strongly prefer the top-hat smoothing strategy (A.), which has a spatially varying smoothing filter.

C. Make further mergers of the final state patches, if desired. (Lagrangian-space exclusion rarely makes this important, at
least for the cases we have treated so far.)

VIII. We ascribe final-state profiles to the patch, using the Lagrangian space quantities Ry, Fpx, €, Dy, Strain tensor orientations,
internal energy, and bulk velocity to scale them. The bulk velocity is Vo = —ap Hp(apk)$px- Sample internal properties are
the mass, M, ; the mass-averaged interior three-dimensional (isolated virial) velocity, vg = (=2 Ejnepx/ Mpx) 1/2. an Eulerian
“top-hat” radius for the final-state patch, Rg , = 0.3a, Rpx/ Fpx- The internal properties and profiles depend upon detailed
knowledge from N-body/hydrodynamical calculations of individual peak-patch collapses, or from observations. This transla-
tion from Lagrangian to Eulerian properties is accompanied by statistical dispersion—more information is needed than the
limited number of Lagrangian space properties we measure to define the profiles—and by uncertainties in our knowledge of
the fate of peak patches. The latter uncertainties enter like systematic errors and currently dominate over statistical errors
associated with a dispersion of final fates. BM3 addresses this for clusters.

The computational requirements for implementation of this method are actually rather modest. Each filter scale R uses an FFT,
the computation of the displacement uses three FFTs, and after the peak finding, each spherical or ellipsoidal collapse calculation
requires a grid search and integration ( the ellipsoidal dynamics uses an eigenvalue computation also). Because the fields are real, so
only the complex Fourier components are needed for the upper half of k-space, we use appropriately packed real FFTs to decrease
the storage requirements by a factor of 2. The CPU speed of most workstations is sufficiently fast for 1283 or even 256> grids. The
storage for the F and s arrays requires 32.8 MB (4 bytes X 128 X 4 components). In practice, we retain the unfiltered Fourier
components F(k, ty), an extra 8.2 MB of storage, to avoid recalculating them for each filter scale.

For a density peak calculation using the ellipsoidal approximation to internal dynamics, for a single box with a 128 grid, and 26
filter scales, 5 hours were used on a Silicon Graphics IRIS 4D /280 (CPU 25 MHz). The same calculation required only 20 minutes
on a DEC Alpha 400 workstation.

If, instead of peaks in the linear density field, we use peaks in a chosen eigenvalue of the strain field to get the candidate points
(e.g., A3 Or A,y peaks), we need storage for the strain e;. We construct at each Gaussian-filter R, the filtered Fourier components
é;/k, to) = —k;k;F{(k, to)e~*Ra)"/? perform a Fast Fourier Transform upon it, and evaluate the eigenvalues at each grid point of
the lattice for each box. This procedure adds five more 8.2 MB arrays of storage (because storage for F = —; ¢; has already been
counted), and, the extra computer cycles associated with the five extra FFTs and the eigenvalue determinations at each filter.

In BM2, we compare the results of this algorithm and variations of it with N-body simulations to check the performance of the
method. With assumptions about the baryonic content of the galaxies and cluster intergalactic medium of the clusters, this catalog
can be used to compare with observational data. So far we have applied this Monte Carlo method to construct submillimeter and
millimeter maps of emission from dusty primeval galaxies and to construct X-ray and Sunyaev-Zeldovich maps of emission and
scattering by clusters (Bond & Myers 1991, 1993a, b). We describe how the cluster applications are done in BM3.

We now investigate the performance of various of the options described above.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103....1B&amp;db_key=AST

JS. CI03 . _.ABO

]

rT99BA

No. 1, 1996 PEAK-PATCH PICTURE OF COSMIC CATALOGS. L 19

4.1. Performance of the Hierarchical Peaks Algorithm

Figure 6 shows a slice of width 6 A~! Mpc in a 200 ~~! Mpc box which illustrates the various stages that a hierarchical peak
calculation passes through. The first panel shows the original peaks (cut by the threshold f; = 1.686), with the size of the Lagrangian
spheres chosen by Rty = 2 Rg, where Rg is the Gaussian filter used to find the filter. This shows the cloud-in-cloud problem, with
small filter peaks inside large ones. The second panel shows the transformation in the radius that occurs when measurements are
made in Lagrangian space. On average for the large peaks, the radius increases. The third panel shows the remaining peaks after the
operation of binary exclusion. The last panel shows the transformation into Eulerian space. The circle size is Rg px = 0.3a@pc Rpx/ Fpx-
For Fy; = 1.686, this is Rg o = ap Ry /(179)'/3, taking the Lagrangian sphere and compactifying it into a sphere with overdensity
1 4 6ycur = 179. The lines show either where the peak is going, in the case of Figures 6a—6 ¢ or where the peaks have come from in
the case of Figure 6d.

4.1.1. Peak-Finding for the Candidate Point Process

There are many possible strategies for identifying the candidate points—we choose the practical approach of finding peaks of the
linear density field F smoothed on a set of Gaussian filtering scales. Since we are calculating our dynamics for a spherical top-hat
filtered field, it would be natural to use a set of top-hat filters for peak selection. However, a top-hat-filtered CDM density field tends
to be quite choppy at small scales, since the high k limit of the filter equation (2.6) only damps as a k2 power, and higher derivatives
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of the field are only differentiable by virtue of the Nyquist cutoff on the modes allowed in the box. In particular, peaks are sensitive
to the second derivative of the density field, and this field has most of its power at these short scales. Although we add a Gaussian
filter on the scale a; /2, which would smooth the edges of any top-hat filter (called bowler-hat filtering in BCEK), we feel that the
candidate points we would find with top-hat filtering would not be as optimally placed as those we find with Gaussian filtering, and
there would be more of them to check. The added complication of k-space filtering with j, also leads us to use the Gaussian filters
instead.

An important step is to determine the number of filters needed to ensure there are enough points sampled while minimizing the
computational effort. For our standard example of the simulation of clusters in a (128)3 200 £~ Mpc box with scale-invariant
CDM initial conditions (2 = Qegm = 1, £ = 0.5 and o5 = 0.97), we find a range of Gaussian filter radii from2 A'Mpc < Rg <8 h™!
Mpc to be adequate. The mass associated with the filter scale can be estimated from R, ~ 2 R and thus the typical cluster-building
wavenumberis k' ~ 4 A~ Mpcas ¢,(4 A~ Mpc) = 0.9505. The lower limit is determined by the lattice scale (1.56 2~ Mpc). For
the CDM model, ¢,(2 A~' Mpc) = 1.754%, hence 1o peaks at this scale can reach f; = 1.686. Choosing such a low cut for the filters
helps to saturate the medium with candidate points. The upper limit is determined by the most massive peak patch to be found in
the volume. For the CDM spectrum o,(8 2~ Mpc) = 0.4505 and thus for o5 = 0.97 it would take a » ~ 3.7 peak at Rg = 8 A~ Mpc
to reach f. = 1.686, and these are very rare indeed.

The number of filters we use between an identified minimum and maximum is a matter of debate. Because the runs are not that
computationally demanding, we tend to err on the large number side: for our cluster simulations, we use a hierarchy of 25 filters,
spaced logarithmically from Rg = 2.0 /™' Mpc to Rg = 8.0 2~! Mpc; we could halve the number of filters and still get excellent
results.

Peak finding on the lattice is a simple operation, consisting of checking F at each grid position against the value at the 26
immediate neighboring sites. A preliminary culling of the peak candidates can be made by placing a lower cutoff f;(,x) on the
filtered field F(r; Rg) at each pixel. For example, we can limit our search to those above f;(#y) = f, = 1.686, which is the critical
value for a spherical top-hat perturbation to have collapsed by the time of interest (see § 3.3). The difference in peaks found with
the density threshold f; = 1.686 are compared with those found with no threshold (f; = 0) in Figures 7 and 8. They are essentially
the same.

4.1.2. Strain Eigenvalue Peak Finding

In the homogeneous ellipsoidal approximation to dynamics, the eigenvalues \,; of the strain tensor are required to determine the
fate of the region. Thus, instead of looking for peaks in the density field F, one might, for example, look for peaks in the A 3 or A,;
“field”. This provides a different list of candidate points about which the internal properties are measured.

In Figure 7, we show that the candidate lists consisting of A\,; and A,; peaks do differ somewhat from those found using an F-peak
candidate list, with A,;-peaks sampling the Lagrangian space more densely and A, ;-peaks more sparsely. In Figure 8, we show that
this effect causes the final hierarchical peak patches found after binary exclusion to also differ from F peak patches. These were
obtained with a threshold on the density field F of f; = 0.01. The high-mass objects remain more or less the same, but it is the low
masses that are affected. We also show that using f; = 0.01 for the F-peak candidate list does not give a very different spatial structure
than using our standard f; = 1.686 threshold. During the evaluation of the hierarchical peaks method (BM2), we shall show how
these different options fare with N-body data. We conclude there that the F-peak candidate point algorithm with the f, = 1.686
choice does somewhat better than using the shear eigenvalues, although all do reasonably well.

4.1.3. Exclusion and Merging Performance

In Figure 9, we show how the three exclusion methods affect the distribution in Lagrangian space. Since binary reduction begins
with those peaks remaining after half-exclusion and proceeds to reduce the masses until overlaps are removed, the two show similar
results, except for the slightly smaller masses for the binary algorithm (manifested by the radii in the figure). Note the significant
overmerging in the case of full exclusion.

4.2. Statistical Measures of Peak-Patch Properties

We now describe some of the properties of the final list of peaks. We defer the treatment of the distribution of strain ellipticities,
prolaticities, and the top-hat averaged linear overdensity (i.e., the threshold for collapse) for the ellipsoid dynamics to BM4, where
we show how the features can be well understood by analytic means. We also defer the treatment of peak bulk velocities to BM4.

4.2.1. Filter Radius versus Mass
We first investigate the relationship between the hierarchical filter scale and the mass of the peaks that are found under it. In
Figures 10a-10b, we plot the peak mass M, versus the filter radius Rg, where the peak masses were determined using the spherical
collapse model. We see that for masses 24 X 10'* ™! M, the relationship roughly follows the proportionality
RTH=2clRG- (41)

In this plot, the peak masses were reduced for overlaps using the binary reduction method. A very similar result is obtained if full
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FIG. 7.—We show the effect of varying peak-finding algorithms on the candidate points before exclusion. (a) Standard F peaks, f; = 1.686; () F peaks,
£,=0.01;(c) A, peaks, f; = 0.01; (d) A3 peaks, f; = 0.01. The plots are x, y projections of a 64" Mpc thick slice in the inner 150A~! Mpc of the 200~ Mpc
box. The peaks are shown as circles of radius Ry, plotted in their initial Lagrangian positions, with the vector showing the Zeldovich displacements to the
final Eulerian coordinates.

exclusion is used. In Figure 10b the mass My versus filter Rg is shown for the homogeneous ellipsoid model. The peak mass using
the ellipsoidal collapse roughly follows

Ry =195R;, (4.2)

consistent with a 20% reduction in mass with respect to the spherical model (see § 4.2.3). (The analytic theory of BM4 gives Rry/
R in the range 1.940-1.976.) Notice that the spherical and ellipsoidal models have very different distributions of Ry for a given
Rg, with the tail of the former extending upward past the best-fit line, and of the latter extending downward. The large scatter in
peak mass at the smaller filter scales demonstrates the inaccuracy that arises if masses were determined solely based upon Gaussian
filter, the first strategy we tried.

4.2.2. Internal Energy versus Mass

The internal binding energy vg versus My, for the peaks is shown in Figure 11. For peaks with mass My, = 2.5 X 10" h™' Mo, we
fitted to a vg i oc Rk power-law relation and find

M. 1/3
Vg pk = 1560(m) kms™'. (4.3)
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The data points actually prefer a slightly flatter relation than the M'/3 oc R, power law we imposed. A least-squares fit yields

M. N 0.29 4
VEpk = 1510(0—15}1—5—111—4,;) kms (4.4)

with an rms residual in vg of 5.1%. The analytic counterpart to the hierarchical peaks theory gives a mean relationship between v
and M, which for ellipsoid dynamics gives a superb fit; i.e., the analytic and Monte Carlo results agree.

As we shall discuss in detail in BM2, to translate to observed velocities or gas temperatures will generally involve a correction
factor multiplying this internal energy that should be calibrated with detailed internal evolution calculations. The amount of the
correction will depend in detail upon the observation to be compared with. Here, we shall just compare our result with the standard
temperature-mass relation that most groups using the Press-Schechter approach have adopted. This is from Evrard’s (1990) (rather
small 16%) smooth particle hydrodynamics simulations of cluster collapse:

Ty =6.2(M/10" h™' Mp)*>keV .

To translate this to a velocity-mass relation, we assume that Ty = m, N( v3/3Y7), where Yris the total number of particles per baryon
contributing to the internal energy, myy is the nucleon mass, and v is the three-dimensional velocity dispersion:
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FIG. 9.—We show how the three Lagrangian exclusion methods affect the x, y projection in Lagrangian space, for the same slice of width 62~! Mpc in
the inner 150A~! Mpc of the 200h~! Mpc box. (a) No exclusion. (b) Full exclusion. (¢) Half-exclusion. (d) Half-exclusion with binary reduction, our
preferred method. Masses of some groups in (d) are slightly reduced over the values in (c). These all use the standard F-peaks with f; = 1.686.
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vy~ 1730(M/105 A~ Mo) 3 kms™!.

This is 11% higher than our internal energy estimation of vg. In BM2, we shall show that the kinetic energy of N-body groups has
about an 11% correction over our internal binding energy estimates, in agreement with the Evrard number, while a velocity esti-
mated from the internal energy of the groups, assuming an isolated virial equilibrium, is ~6% lower than our internal energy
estimate. These numbers are also consistent with the trend seen in the single constrained collapse calculation of § 2.2.

4.2.3. Peak-Patch Mass Functions

The average density in objects above mass M (in units of the critical density p.,) is given by

dan 1
mdIn m ——2% > My, (4.5
PerVoox fM dlnm pchboxM M P )

U>M) =
where Vi, is the simulation volume (2003 4~ Mpc?). The mass function comparison between Monte Carlo hierarchical peaks,
analytic peaks, and the Press-Schechter approximation is summarized in Figure 12. Binary reduction was used to deal with La-
grangian overlaps. The mass function assuming spherical dynamics is shifted upward in mass by ~20% at the high-mass end
(average 23% for My, > 4 X 10" h™' M) relative to that for the ellipsoidal approximation to dynamics.

The standard Press-Schechter method determines mass from a top-hat filtering radius for the rms density fluctuations that enter
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FIG. 10.—The Lagrangian top-hat radius Ryy vs. Gaussian filter radius R for peaks using the spherical (a) and ellipsoidal (5) models for interior peak-
patch dynamics. The solid line in (a) and (b), Rty = 2.1 Rg, is an empirical fit to the spherical-peak data. The dashed line in (b) corresponds to Ry =
1.95 R, which analytic calculations also give. This reduction over the spherical case is an average of ~20% in mass.

the formula. With this mass, the PS method falls short of reproducing the peaks mass function. It matches quite well on the rare
event side when the masses are corrected by a factor ~1.3. A better way to correct the PS formula is to work within the top-hat
framework, but let £, vary. In the figure, we have decreased f; to 1.58, a 6% drop from the canonical 1.686 value. If all other things
are equal, this changes the v;- — M relation only by a factor of (f./1.686)/2 = 0.97. In any case, the people who do Press-Schechter
studies of X-ray and optical clusters take the v;- — M relation using the estimate of mass from the rms fluctuations. We show in BM2
that the relation vy =~ 1755(M,/ 10" h™' My)"/? km s™" actually fits N-body group kinetic energy data up to ~1400 km s~! for a
a3 = 0.97 CDM model. If we use this in the PS formula with f, = 1.58, we get a reasonable fit to the group kinetic energy data. Of
course, there is no dynamical justification for a lower f;.
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FIG. 11.—The velocity dispersion vg g = |2ein:| /2, where ey is the internal energy per mass of the peaks, is plotted against peak mass M. The solid
curve is the best-fit M'/3 power law: vg o = 1560 (M, /10°h™! M) '/3. The dashed curve is the analytic relation for ellipsoidal dynamics, which fits better.
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FIG. 12.—Cumulative mass functions @ (>M) for the hierarchical peak-patch and Press-Schechter techniques, calculated in the 2004 ~! Mpc box for a
g = 0.97 CDM model. The Monte Carlo peak-patch results are shown for homogeneous ellipsoid internal dynamics (open circles) and for spherical
dynamics ( filled circles). The corresponding analytic curve (using the upcrossing formula) is shown for spherical (long-dashed curve) and ellipsoidal ( solid
curve) dynamics. The light solid line adds a further analytic approximation to half-exclusion. The Press-Schechter (PS) prediction (lower short-dashed
curve), falls below the peaks relation, but agrees if the critical density threshold f. is lowered from 1.686 to 1.58 (upper short-dashed curve). Note that the
peak mass function determined by Monte Carlo simulations is incomplete below 4 X 10"~ M,

Superposed on the Monte Carlo points are the analytic curves using peaks upcrossing through the threshold F = f;, with f, fixed
at 1.686 for spherical dynamics, but with a threshold dependent upon e, to treat ellipsoidal dynamics, f.(e,), as described in BM4.
Both the spherical and ellipsoidal analytic functions are in very good agreement with the Monte Carlo peak points. For the ellipsoid
case, we also show a curve that approximates half-exclusion (Bond 1989b; BM4), the best analytic analog of binary exclusion.

In Figure 13, we compare the calculated mass functions if we use peaks of the largest eigenvalue A,; and the smallest eigenvalue
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F1G. 13.—Cumulative mass functions @ (>M) for different peak-finding algorithms, calculated for a realization of a o5 = 0.97 CDM model in a 2004 ™!
Mpc box. The curves shown are for peaks in the filtered density field F above f; = 1.686 ( filled circles, solid line), peaks of the largest eigenvalue A3 of the
strain tensor e; for f; = 0.01 (open squares, dashed line), and peaks of the smallest eigenvalue A, (open circles, dotted line). The mass function for F peaks
with f; = 0.01 is indistinguishable from the f; = 1.686 F-peaks curve. Ellipsoidal dynamics and binary reduction were used in all cases. The \,3 peak function
is significantly depleted at the low-mass end.
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A1 (both with f; = 0.01 applied to F). As a general comment, we note that at a given point a given threshold is reached at a larger
filter radius for A, than for A,, (similar to F/3), which in turn is larger than for A,,—just because of the eigenvalue ordering. The
Mot peaks have a mass function much like that of F peaks in spite of this because, although there are many more small filter points,
as is evident by comparing Figure 7 ¢ with Figures 7a or 7b, exclusion drastically reduces the number to one not very different from
that given by postexclusion F peaks (compare Figure 8¢ with Figures 8a-8b). However, the \,; candidate peaks do not cover
Lagrangian space densely enough so that exclusion can be relied upon to recover the balance, so that the postreduction A3 peak
curve falls below the F-peaks curve at the low-mass end.

In BM2, we compare the various mass functions with those determined for N-body calculations, and show that the F peaks seem
to be slightly preferred. The mass function for F peaks with f; = 0.01 is very similar to that of the A, peaks curve.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have described the logical development of the peaks paradigm for how collapsed cosmic objects form. Although
BBKS presented a pretty picture of structure formation based on peaks identified via a single-filter snapshot of the medium, there
was really very little evidence that it worked. It just made sense physically that peaks had to be associated with the sites of structure
formation. The flaws in the BBKS picture were clear from the beginning: peaks could reside within peaks, leading to overcounting
of mass, the cloud-in-cloud problem (Bond 1989b; § 4.1.3). The single filter assumption gave all the peaks the same mass so no
one-point differential mass function could be constructed (Bond 1989a, b). It also turned out that to the extent one could approxi-
mately use a single filter, the BBKS mass assignment was a factor of ~2 too small (Bond 1988, § E). Further, the number density
of objects above a given ““mass” was overcounted (Bond 1989b, BM4). Much work over the years was directed toward fixing up the
BBKS-peaks problems. We believe that the method presented here solves all of these problems.

The peak-patch picture of structure formation is a compelling one. It is the natural consequence of gravitational instability in a
medium for which the fluctuation spectrum is sufficiently steep such that the local collapse of a region can approximately decouple
from the surrounding dynamics before the next higher scale collapses. Corrections to the linear theory can therefore be made by
measurements of the patch of Lagrangian space surrounding the peak candidate—this will determine the fate of the region. It is the
measurement of the density, displacement, and strain fields in the peak patches that really provide the utility of this method.

A critical aspect of our method is that the peaks we find on many filter scales are not the end product. They are just candidate
sampling points for the crucial second phase of the operation, the exclusion and merging process (§ 4.1.3). We used information
based on the average peak-strain field together with a local dynamical model to define the size of the patch for the candidate points.
Obviously the homogeneous ellipsoid model cannot do full justice to the dynamics; and the spherical model fares worse. Prior work
on homogeneous ellipsoids in cosmology did not properly reproduce linear theory. We showed how this could be done in Appendix
A. The Zeldovich approximation was shown to be useless for internal dynamics. We also presented a general formula for measuring
the internal energy of the patches in the linear regime (Appendix B) and argued that these should be robust indicators of the internal
energy of the final virialized state by showing what happens to the energy as ellipsoids collapse. We paid special attention to
modifications to the dynamics and energy with nonzero cosmological constant or nonzero curvature. Although one should be wary
of the oversimplification of ellipsoidal dynamics, it is perhaps worthwhile to remind the reader that the tensor virial theorem
equations for the interior are similar to ellipsoid equations—except that the orientation of the principal axes may vary.

We showed that inclusion of the external anisotropic tidal field in the ellipsoid approximation lowers the mass by ~20% over
spherical collapse models. Although compared with the spherical model, collapse along the axis with the largest strain eigenvalue
occurs earlier, the smallest eigenvalue axis collapse is significantly delayed. This anisotropic shear effect is especially pronounced at
lower masses, for which e, values as large as 0.4 are common (see BM4).

We tested other strategies for finding candidate points rather than those chosen by cutting with a threshold f; the multifiltered
density peak list (§ 4.1.1). The simplest was to expand the list by using f; = O rather than the conventional spherical collapse value
(1.686). We also showed the effects of choosing strain-eigenvalue peaks, \,3 and A,;; these are of interest for afficianados of the
Zeldovich approximation. The main lesson we learned is that the postexclusion lists found with these methods have the same large
mass objects, but do differ at the small mass end. The mass functions for the different candidate lists are reasonably close.

A way to improve the final siting of the surviving hierarchical peak points may be to add more candidate peak centers, although
still using F peaks as our guide where to lay them. However, the best way to do this so that nearby peaks avoid merging in the
candidate list even before exclusion is still under investigation. We believe that an optimized algorithm will lead to approximately
the same large mass objects as we find with the F peaks, but expect that we could get a finer determination of the low-mass leftovers.
The evidence for this is that a few more low-mass entities were included for F peaks when we dropped the threshold to f; = 0.

Although we have concentrated on Gaussian linear fields, the algorithm also applies to non-Gaussian initial conditions. For a
given power spectrum Pr(k), the statistical distribution function for field configurations 2 [ F(r)] that maximizes the entropy,
—[ PLF(r)]In (P[F(r)]) 2 F(r), is the Gaussian one (Bond & Myers 1991). Thus, non-Gaussian distributions concentrate the
power in more localized field configurations than the democratic Gaussian one does. In most circumstances, this should make the
peaks algorithm work even better (although pathological cases can be constructed).

We pointed out in § 3.3 that using all of the points as sample points was really the logical development of the Press-Schechter (or
density field excursion set) approach. Density threshold-crossing points are now connected to their neighbors within a single dy-
namical entity rather than being scattered into different bins in mass space, as the original excursion set approach does. As well, one
may legitimately deal with clustering. Choosing threshold-cut density peaks allows us to sample orders of magnitude fewer points,
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but should give essentially the same result as using all points as candidates. We showed that the Press-Schechter method and the
hierarchical peak-patch method give similar mass functions, especially at the high-mass end, with a slight lowering of the Press-
Schechter critical density threshold f; (§ 4.2.3). Combined with our internal energy mass relationship (with correction factors
derived using detailed constrained field collapse calculations), one may do all of the standard confrontations of models with exper-
iments that people usually do with Press-Schechter, but now with the justification that it is a reasonable fit to the results of the
generalized (nonlocal ) excursion set theory.

We do not believe that the “faint-end” (low-mass) slopes our method gives will be reliable indicators of what to expect from
observations. That is because the high-mass end eats up so much of Lagrangian space that the low-mass end must find the nooks
and crannies left over to occupy. And since these are typically not very far from large peak patches, the tidal fields play a large role
in defining the fate, and one can probably not suppose that higher order external multipole fields can be ignored. We have long felt
that demanding a semi-analytical theory to give a definitive faint end slope was asking too much. The faint end population is
clearly sensitive to the detailed physical assumptions about the objects in question, e.g., winds, luminosity-mass relations, surface
brightness, the environment, etc.

Our method is basically an adaptive one with crude methods for local and flow dynamics, which can obviously be improved at
increasing levels of sophistication. It is clear that the Lagrangian regions that collapse to form a group or cluster are generally not
spherical and the asymmetry should get worse for smaller mass and less rare peaks. We note that our binary reduction algorithm
actually shaves off sections of the sphere, so that if it is completely surrounded by competing peak points, its final Lagrangian patch
will be more polyhedral than spherical. An ambitious project is to search for an algorithm that can efficiently measure the correct
Lagrangian region attached to a peak. Perhaps hope lies within the Berger’s equation (adhesion) approach to cosmic structure
formation, which has had some success in describing collapsed Lagrangian space, even though it is based on the Zeldovich approx-
imation which misses the all-important internal nonlinear tides.

There are many ways in which one can ramp up the computational techniques as we inch towards very large scale adaptive
computations of cosmic structure formation. A better interim strategy for the internal dynamics is to do many constrained peak
collapses to cover the parameter space, using either pure N-body codes or combined hydrodynamical / N-body codes. This coarsely
gridded catalog would then be called upon to calibrate the internal properties. We note that around all of our premerge peak points,
we have measurements of the peak shear and peak velocity. Thus, within a given large-peak region, we have locations, shears and
velocities for all embedded and nearby smaller mass peaks. The displacement field constrained by all these measurements would
have substantially smaller fluctuations because s, would be highly constrained as well as s,. Although there will still be some
statistical fluctuations, especially at high spatial frequencies, we conjecture that the fate of the primary peak will be effectively
defined by this relatively modest tree structure of subpeak and neighboring peak information. How useful such a compressed way
of representing a peak patch will be in practice remains to be seen.

The sample constrained peak-patch fields in § 2.2 showed the strong influence of strain and fluctuating field substructure on the
patch and the lesser influence of peak velocity. A powerful lesson that can be drawn is that in a general constrained peak realization,
centering a simulation volume at the peak point is not always the best strategy, since there may be neighboring peaks or subpeaks
that will be better centers. As well, the mass of the region will not necessarily be related to the filter radius used to set up the
constrained field. We believe that the postexclusion hierarchical peaks list does a much better job in delivering usable constrained
fields for local N-body and hydrodynamical simulations. Of course, one must go farther afield than R, to do a proper computation.
Whatever radius one chooses to go to, an external tidal field should be imposed that is self-consistently determined from the interior
displacement field, as we have done for the ellipsoidal model.

An obvious way to improve the candidate-finding algorithm, easily conceivable with the rapidly advancing computing power, is
to use very large but low-resolution particle-mesh or multigrid Gauss-Seidel N-body calculations to identify the candidate regions.
Eventually, separate high-resolution simulations spawned for each patch to determine the internal state will be possible. In the long
run, this grand adaptivity is what the future shall bring. However, even so, having the picture of flowing peak-patch structures
that are internally collapsing, merging and growing with time provides a relatively precise language for describing the rare event
“intermittent” structure of the medium. Assessing the accuracy of the picture is the task of BM2, while BM3 shows how the tools
are used to address questions about clusters in a variety of theoretical models of cosmic structure formation.

This research was supported by the NSERC of Canada at CITA and by the NSF at Caltech. J. R. B. was supported by a Canadian
Institute for Advanced Research Fellowship.

APPENDIX A
THE HOMOGENEOUS ELLIPSOID DYNAMICS APPROXIMATION TO PEAK COLLAPSE

In this Appendix, we derive the equations for the ellipsoid model of internal peak-patch dynamics.
To obtain the equations of motion for the flow in the homogeneous ellipsoid approximation, we need the peculiar gravitational
acceleration, gr = —Vx ®p, and the peculiar gravitational potential, @, within the region; ® satisfies the Poission-Newton equation
v?\'q)P = 47rG(pnr - Enr) = 47rG5nr6nr ) (Al)

where V% is the Laplacian operator for the physical Eulerian coordinates X. We have assumed that the only type of matter that can
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undergo clustering is nonrelativistic (nr). This includes both cold dark matter and gas. It can also include hot dark matter provided
the velocity dispersion is small when the relevant dynamics occurs, as is the case for massive neutrinos. What is not included is
vacuum energy (i.e., a cosmological constant) which does not cluster. Boundary conditions for the region (e.g., the external tidal
field) are needed to solve equation (A1).

A Taylor expansion of ®pin the neighborhood of the peak gives

@p(X) = 2p(Xopk) = 2 (8p, Jok(Xi = Xpis) + 2 (T Xi = Xpiei )(X; = X 1)/2 - (A2)

ij

The contribution (gp,; )pk = — (Vxi®p), to the peculiar gravitational acceleration describes the translation of the entire region about
the peak, while the gradient of the quadratic term describes the forces distorting the region. The (peculiar) tidal tensor 7; and its
traceless part 7'} are defined by

T;=VyVyd, T=VxVy® —35,V%. (A3)

Both internal and external tides will be included in T;.
To get the equation of motion from the potential, including the Hubble expansion, we need to add to ®» another term involving
the vacuum energy and the background nr-density:

Sr=5TGpuX?/2 + 537G (Prac + 3Pvac) X212 + ®p = §7G 00 X /2 — 375G p00c X 2/2 + &5, (A4)

From now on, we drop the constant term and the linear gradient term that appear in equation (A2), since the first has no effect
on the motion and the second is just center of mass motion. The gravitational potential of a homogeneous ellipsoid of density dpn,
in a known external tidal field 7' ; is

®p(X) = 47Gopn: 2 AXSBAX/2 + 2 AX T sAX;/2,  AXj=X;— Xp - (AS)

7 y

In the principal axes system of the ellipsoid, we have AX; = a;Ar;, where the a; are scale factors in each of the three principal
directions. The matrix (; is diagonal in that frame, with eigenvalues ; given by equation (2.23). (Note that b, + b, + b; = 0.) The
integrals b; can be calculated numerically using Carlson’s elliptic function,

Ro(x z)=§f°° dr
PV E T G0 P ) (s 2)

(A6)

Press & Teukolsky (1990) give an efficient routine for calculating it. The b; can also be expressed in terms of the standard elliptic
integrals E(0, k) and F(0, k) (e.g., Table 2.1 of Binney & Tremaine 1987).
The peculiar tidal tensor entering equation (AS5) is

Tij = i3%7"(;1_)m‘6nr6ij + 47rG;nr6nr%ﬁ;'j + T;xt,ij s (A7)

where (8 denotes the traceless part of 8, with eigenvalues b} = b, — 2 1t must agree with the linear tidal tensor Tin 5 given by
equation (2.19) for small @¢; — a. In the principal axis system, we have a;(¢) = a(t)(1 — \,;) to linear order, with A\,;(¢) oc D(t).
Expanding equation (2.23) to that order gives

F=2olAn o], Na=h-FU. (A8)

Thus the contribution b}é,, in equation (A7) is of second order and hence does not contribute to the traceless linear tide, which
must be entirely made up by the external tidal tensor in the linear regime:

Tlext,ij = T’int,ij = -47rGBnre,pk,ij . (A9)

Therefore the exterior tidal force arising from the matter outside of the ellipsoid is completely determined by the volume-averaged
strain of the ellipsoid. The reason for this is that the displacement field of the points within the ellipsoid responds to internal mass
concentrations, which, when volume-averaged, cancel, and to external mass concentrations which do not average out. That is, by
agreeing to the initial displacement field within the ellipsoid, one is automatically committed to the form of the external tidal field
initially. Of course, to evolve the external tidal field in the nonlinear regime requires another set of equations that does depend upon
the specifics of the external region.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103....1B&amp;db_key=AST

JS. CI03 . _.ABO

R

rT99BA

No. 1, 1996 PEAK-PATCH PICTURE OF COSMIC CATALOGS. I. 29
The simplest approximation for the full T ¢y ; is to extend the linear evolution as if it continued to operate in the nonlinear
regime:

linear external tide approximation: T ey ;(¢) = [D(#) T ex,ii(20)/ D(20)] = T'arii(2) - (A10)

We expect that once the ellipsoid has turned around and begun its collapse, the nonlinear internal tides will overcome the external
tides, hence we should not be overly sensitive to this assumption. To test this, we have also considered a simple nonlinear model:

nonlinear external tide approximation: T 4y ;;(£) = 47Gpn3B5(2) . (A11)

Using equation (A8), we see that this reduces to equation (A10) in the linear regime. Note that once 6, becomes large, this term
will be dominated by the internal dynamics, as required.

In either approximation, the principal axes for the strain tensor remain principal axes for the ellipsoid during evolution. The
dynamical equations for the ellipsoid are derived from

D o A Gr X+ S 1 GhLX, — Vi (A12)
dt2 i 3 ParA; 3 PvacAi xX®p.

With no vacuum energy, they are given by equation (2.21). More generally, we have [with X;(r;, t) = a;r;]

d’ 8 - — 1 bn b
24 =3 va ; — 4 nr '—+£+_'6m+ ,xi 5 A
Pl 37er a; — 4Gy a; 37313 Ae t] (Al3a)
linear external tide approximation: Nexii(2) = Nyi(2) (A13b)
nonlinear external tide approximation: Mexi(2) = 5bi(1) /4, (A13c)

The initial conditions are given by equation (2.24). Thus to characterize an evolution, we need Fy, €,, and p,, and the initial
redshift.

To gain insight into how equation (A 13a) bridges the linear and nonlinear regimes, we rewrite it in terms of nonlinear strain
factors, An1; = 1 — a; /a, which obey

s + 2HAn = 47rG;m[(§ s + xm) +%6m](1 )y =TI (=) — 1. (Al4)
Jj

The A,;:(¢) obey the same linear growth equation as D(¢):
Xui + 2flj\vi = 47rG;7-nrAui . (A15)

Thus, in the linear regime, Any; = Ay;i(2) provided Ag;(£) reduces to Ni;(2). (Note that for cosmologies that are not Einstein—de Sitter,
D # a, so we must integrate equation (A15) for A\, i.e., for D. Although a first integral of the linear evolution equation exists for
simplified cosmologies (e.g., equation [B81), we generally solve coupled ODE’s for D/a, d1n D/d In a, and any energy densities
for decaying particles or decay products.

As described in § 2.1, we have chosen to stop the calculations by using a radial freezeout factor f; (Bond, Szalay, & Silk 1988):
that is, for a; < 0, once a; = f,a at some redshift z.; = a~' — 1, we thereafter keep g, at that value. Stopping collapse by relying on
artificial pressure and dissipation terms has not proved to be very satisfactory. Our virialization strategy makes the final shape
triaxial. There are many strategies that one can try for freezeout. For example, using a3 to determine how far we allow the 2 and 1
axes to collapse gives final spherical states and somewhat larger overdensities than the f; strategy. However, the different strategies
change the 1-axis collapse redshift, 1 + z. ;, by at most a few percent. For f, = 0.177, the value adopted for this paper, the overdensity
of a spherical collapse is 179, the usual spherical top-hat collapse value. Changing f; to 0.1 changes 1 + z., by a percent or so for
e, = 0.1, but by 4%-5% for e, = 0.3, and this depends somewhat upon cosmological model. With f; = 0.01, the error can be 10%-
20%, depending upon the model, but the overdensities are unrealistically high, more than 10°. The calculation must be begun at
high redshift, since the Zeldovich (linear) setup for the initial conditions becomes inaccurate, leading to a few percent error,
otherwise.

There is an interesting history of using the homogeneous ellipsoid as an approximation to triaxial collapses in cosmology. Icke
(1973) considered the evolution of expanding spheroids. White & Silk (1979) used equation (A5) with no external tide, but
required initial anisotropy to be built in. Peebles (1980, § I1.20) used the ellipsoid with no external tide and assumed there was no
matter outside, but correctly cautioned that it could be used to gain insight only for nonlinear evolution, and could not be applied
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to the linear regime. We have shown that the self-consistent external tidal force is needed to recover the Zeldovich approximation
in the linear regime.

Figure 14 shows how the collapse redshifts computed using the homogeneous ellipsoid equations vary with changing parameters
and approximations. Figure 14a compares the nonlinear approximation, equation (A13c), with linear evolution of the exterior
tidal tensor (which is used in the rest of the panels). Figure 14b shows an isolated ellipsoid (with no external mean background
density and no external tide ). One can see the similarity in the results for the nonlinear and linear tide approximations, but also the
dramatic difference that can occur if the linear regime is not properly reproduced by the equations, as in Figure 14b. Figures 14a,
14b, and 14 ¢ are for a flat @, = 1 model. The starting redshift was taken to be 40, but this does not matter if the external tides are
properly included. However, if they are not, as in Figure 14, the degree of anisotropy damping depends upon when one begins.

Figure 14 also compares the Q. = 1 evolution for models (Figs. 14 d-14 1) with nonzero cosmological constant, Q,,. = A/(87G),
and (Figs. 14g-14i) with negative curvature. We choose Q. = 0.2 in both cases, and take Q,,. = 0.8 for a flat cosmology in the
former case. Many workers have considered the evolution of the spherical model with nonzero A (Peebles 1984; Weinberg 1987;
Martel & Wasserman 1990; Martel 1991; Lahav et al. 1991; Lilje 1991). We have checked our A # 0 calculations for the sphere
(e, = p, = 0 limit) with the results given by these authors. Even when we use the spherical approximation for our Monte Carlo
calculations, we have found it simplest to tabulate numerical results for the collapse redshift as a function of Fy,, rather than to
construct fitting formulae. For the spherical case with nonzero A, the Eulerian radius X (r, t) obeys

1.5

(a) NL Ext Tide (b) Isolated (c) p, effect

R | e R
:E :an_o 8 Quc=o 8
S1.5F HR N
® F(g) F= (h) F=1.8 (i) F=1.8
1F 0,,.,=0.8
g 0,,.,=0.8
0.5F
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FIG. 14.—The panels show how the collapse redshifts for the three ellipsoidal axes as a function of the initial ellipticity e, vary as the approximations and
parameters change. In all panels the light dotted curves show the standard case for a Q,, = 1 CDM model with F = 2 and p, = 0 for reference. (a) The
nonlinear external tide approximation. (b) The evolution if the ellipsoid is isolated. (¢) The effect of finite prolaticity p, for linear external tide. The
prolaticities are generally small. The rest of the panels illustrate how ellipsoids in low Q,, universes (here 0.2) with the same F collapse much earlier than in
Q, = 1 ones. Panels (d-f') have nonzero cosmological constant Q,,. = 0.8 and values of linear overdensity F = 2, 1.8, 1.6, as indicated. Panels (g-i) have
nonzero curvature Q¢ = 0.8 and the same range of F. The results are independent of the Hubble parameter. The scaling of 1 + z with F no longer holds as
inthe Q. = 1 case.
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X(r,0) = 37Gpwac X (r, 1) = 37Gpucd@’r*| X *(r, 1) . (A16)

Unperturbed patches of the universe that were initially decelerating will eventually accelerate (i.e., inflate) when the redshift falls
below z, = (2Qac/ 2nr) /> — 1. A perturbed patch will also accelerate and thus certainly never turn around if the gravitating nr-mass
of the perturbation cannot overcome the negative pressure effects; i.e., if X can fall below X, = r/(1 + z,). Of course the turnaround
requirement is more stringent than this. For the spherical case with nonzero A, collapse is again halted using f;. If we use this device
for the cold collapse calculation, with f; = 0.18, at which point an overdensity of 179 is obtained, the required linear density contrast
is F(z) = 1.61, not 1.69, which translates into a 5% rise in the virialization redshift over the usual value adopted.

One can think of the evolutionary equation (A13a) as a tensor virial theorem describing the average behavior of the matter within
the initial sphere of radius R, and which therefore integrates over the interior profile. However, the true dynamics of the collapsing
region is much more complex. In particular, if there is a profile then the external tide may not be lined up with the internal ellipsoidal
shells. Although one can treat specific nonuniform profiles by concentric ellipsoidal shells for isolated objects, as described in
Chandrasekhar (1969) and Binney & Tremaine (1987), we do not believe it is worthwhile to pursue this extra complication in the
cosmological setting, since we know that nonalignment of shears and tides plays an important role. Of course, nonuniformity in the
spherically symmetric case is straightforward to treat and does illustrate that solving tensor virial equations for spherical regions of
various radii r is exact in this case.

APPENDIX B
ESTIMATIONS OF THE INTERNAL ENERGY OF PEAK PATCHES

One of the most difficult tasks we have encountered in developing the hierarchical peaks approach is to accurately predict
virialized velocity dispersions from measurements made in the initial conditions. Our philosophy is to use measures of nearly
conserved quantities.

For a flat Q. = 1 cosmology, as long as there is no transport from an isolated spherical region of radius R, there will be at least
two conserved quantities for that region, its mass and internal (binding ) energy. If there is vacuum energy, nonzero global curvature
or mixing (shell crossing through R, ), conservation will not apply. Further, the energy of gas can be increased through the action
of external pressure and from heat input through supernovae, etc., and lost through radiation and wind outflows, etc. Even in these
cases, we expect that we can infer some of the features of the final region by measuring the binding energy in the initial field.

Internal energy of nonrelativistic matter is not conserved when the cosmology differs from the flat Q,, = 1 variety. For high-
redshift evolution this is irrelevant, but it is important to consider these effects for clusters in A # 0 or open cosmologies. The
internal self-energy in nonrelativistic matter for the region within the initial radius R,y is

1 1 Gpur(X)pnr(X) .
En,=f (X)X 5 V%——f XA X' :
Pl X)d X3 D VI3 | EXd =T (B1)

We consider the energy associated with the vacuum below. The integration regions are the Eulerian-space distortions of the initial
Lagrangian space 7 < Rpy. Since po(X)d’X = pna’d’r, they reduce to integrations over the Lagrangian space sphere, which

considerably simplifies the subsequent development, but is not essential.
We first wish to determine the internal nr-energy in the linear regime. For this we need the linear expansions,

V;=ar;—a(l + Hp/H)s;, IX—=X'|""=ar—r | +atr—r|3s(r)—s(r)]-[r-r1]. (B2)
We also need the Friedmann equation

N2
H2 - (—Z) = H(z)( Qma'3 + Qvac + chrva—z) . (B3)

The internal nr-energy for a general perturbation is then

E /M= Egor)/Mnr + E;I:)/Mnr s (Bda)
where the unperturbed energy is
EQR 1,5, , ~2 2 28,3 52
M—=§H0<r >V[Qvaca +chrv]a <r >VE V fr dr:ngk (B4b)

and the perturbed energy is
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E&ll:) 2 —1 -2 -

A_J;= —H§{r«(s = sp) Y@ ' [(Quacd® + Qeurv)a (1 + Hp/H) + Qn(3/2 + Hp/ H)] (B4c)

= ep[s] — Ho{r-(s — 5px) Yr Quacd > . (B4d)

The unperturbed energy is, of course, zero for an Einstein—de Sitter cosmology, and is constant for one with curvature, but increases
with time if vacuum energy is included, because “pdV > work pumps energy in with expansion because the vacuum pressure is
negative. The perturbed energy is negative if the radial component of the displacement relative to the peak point, s — sy, is positive,
that is, if the peculiar velocity relative to the center is inward pointing. In linear theory almost all of these terms arise from the
kinetic energy. Only Q,./2 of the term in square brackets arises from the gravitational potential energy. Recall that Hp, = D/D. The
quantity ep is the perturbation energy after removal of an interaction energy between the nonrelativistic particles and the vacuum
that we identify below. Using F = V-s, and the spherical nature of the volume, we can express the volume-averaged term appearing
in equation (B4c) in terms of the average overdensity within radius r, F(<r):

1
47R3/3

<r-(s—spk)>y=%(F(<R)R2>V, F(<R)= f rrdrdQF(r,t) . (B5)

Here d is the solid angle element. Thus the perturbed internal binding energy per mass within R, can be expressed as

EWY
Mnr

(S-2V8(3‘72 + QCU!’V)
5 2

(<Rx)=-— % (HaRy)*FuS(Ry)(3+ 2Hp/H)/5 + % (HoRp)? FoS(Ryi) (B6)

where S(Rpx) is given by equation (2.27b). [Note that for a truly homogeneous distribution, we would have S(R,x) = 1.] The
unperturbed energy is not constant if A ¥ 0 and the perturbed energy is not constant if either A # 0 or the curvature is nonzero.
However, when account is taken of the gravitational effect of the vacuum on the nr-matter, which adds a term E,_,;, to the relevant
energy, only the constant curvature energy remains for the unperturbed part, and only ep remains for the perturbed part, which also
turns out to be constant: '

Ey  Epn_ 1 1 F,
Mnr+ Mnr =§H(2)<r2>Vchrv+cP[s]9 CP[S] = _E(HORpk)z—bp—kS(Rpk)Qm, (B7)
where we have made use of
2200312+ Ho ) 4 2 0@ + 2 a1 + Hyp 1) | = 0, (B8)
a first integral of the equation of cold linear evolution,
D+ 2HD — 47GpD=0. (B9)

We now show how this extra term which ensures constancy in linear evolution comes about, and we check under what circum-
stances the internal energy is conserved during nonlinear evolution. For a homogeneous ellipsoid, the internal energy as defined by
equation (B1)is

Eq

4 dr

1 o a? b ©
Mm=<r2>V§ Zg—ngpm?O<r2>V, bO(aj)Ea1a2a3J; o (@t )’ (B10)
However, if we form the virial by taking the equation of motion for X;, multiplying by X;, and summing over i, we obtain
d El]l' Ev—nr -
E(m+—Mnr)—="Iﬁde, (Blla)
where the energy
Ev—m 4 — 1
Es—ngpvac<r2>V§§i:a?. (Bl1b)

associated with the gravitational effects of the vacuum must be added to E,, to form a conserved quantity in linear theory. The
heating rate.
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. ol (B,
Gtide 547FGPnr<" >V§ > aia; E = XEi ), (Bllc)

arising from the internal shear and external tide breaks energy conservation. It vanishes in the linear regime, since g; is replaced by
a and the sums over i of b} and \g; are both zero. For the same reason, the term always vanishes in the spherical dynamics ap-
proximation.

For ellipsoids in the nonlinear regime, g4, can be quite significant, as we illustrate by expanding to second order. Letting a; =
a(l — \y;), using b} = 4X\,;/5 and \g; = \,; in the linear regime, and recognizing that sums over i of the quadratic nonlinearities in
b} and Mg; (if it exists) vanish, we have

(2+ Hp/H)

in quadratic order: gge = 47Gpu (r* Yya*H S

z Dol (B12)

Thus the first apparent effect of shear on the ellipsoid is to add heat, which makes the energy less negative. In BM2, we find that
Couchman’s N-body groups have internal energy 12% lower than those computed from the initial internal energy of the corre-
sponding peaks (and velocities 6% lower).

The heat input is quite complex in the fully nonlinear regime:

e = 37GPpue{r )@ 2 (N = b5/2) { Mail(1 = Fe/3)H = Fru /31 + Mii(1 = Fra/3) = [Mwil’H = Mailwi}, - (B13a)

Fa= Z ANL; - (B13b)

In this case, it is not clear that the sign is always in the direction of adding energy to the region.

If we ignore this nonlinear tide heating/cooling, we can equate the final state quantities to the zeroth and first-order perturbation
values, equation (B7). The internal binding energy in the final virialized state has no bulk kinetic energy, only “thermal” energy,
including the gravitational effect of the residue vacuum. Because vacuum energy density does not change during expansion or
collapse, this energy is not very large in the compact virialized state. For spherical collapse into a final state of (isolated) virial
equilibrium with kinetic energy per mass K/ M, = v%/2 and no curvature, we have ep = —v%/2 — 47Gp,.. X 7, where Xis the final-
state equilibrium radius. A similar result holds for homogeneous ellipsoids. With the curvature term, the equation of the initial and
final energies is

%H(2)<r2>Vchrv + CP[S] = —%‘U% + %H(z)<r2>VQvac E agq,i ) (B14)

where a.,; is the final-state ellipsoidal scale factor of axis i. The Q,,. correction factor is usually negligible, however: with a collapse
factor f, ~ 0.18, the correction to vg is only ~0.006Qc,/[(1 + z¢;) Qnc].

The internal energy of a region is one that we have had considerable success with when we compare in detail with internal energies
of N-body groups (BM2). However, we find that Couchman’s P3M groups have, on average, velocity dispersions that are ~11%
higher than those inferred from the internal energy, which should be accurate if the regions are virialized and relatively isolated. On
the other hand, we have confirmed with constrained field collapses that isolated groups do have both velocity determinations in
agreement. Of course, the P>M groups may be out-of-equilibrium. This is certainly the case if there have been recent major mergers.
However, it may also be that the nonlinear tidal energy which we are not currently including in our estimates can draw enough
energy from the system (make it more bound) to explain the discrepancy, although we showed that the lowest order correction is to
pump energy into the system. So far, we have not found a fully satisfactory way to include the influence of exterior tides upon the
energy.

APPENDIX C
CONSTRAINED-FIELD SIMULATIONS OF A PEAK PATCH

Bertschinger (1987) was the first in cosmology to show how to construct a realization of a Gaussian random field which obeys
various constraints, using Monte Carlo numerical methods borrowed from lattice gauge theory. If one attempts to apply too many
constraints on the field, the relaxation rate of his algorithm to a true realization of the constrained field slows down. For peaks, we
have at least 2 X (1 + 3 + 5) constraints of strong interest, for Fy, Sy, €p;j and for V2F, V, F, [V,;V,F]". These are (smoothed)
scalar, vector or tensor fields, evaluated at the peak site. Therefore a multipole expansion is suggested for the profiles in the neigh-
borhood of the peak (BBKS; Bond 1987a), for then only the monopole, dipole, and quadrupole components will be affected by the
constraints. All higher multipoles are just independent unconstrained Gaussian random fields, realizable in the standard way. We
have developed a simple efficient numerical algorithm for calculating peak quantities based upon multipole expansion of the fields
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about the peak point. The first step is to determine the components of the fields in k-space, which takes essentially no time, and the
second is to do a direct transform to real space, which is slow. The multipole method is well suited for analytic and semi-analytic
work, e.g., for calculating peak-peak and peak-mass correlation functions and alignments (Bond 1986, 1987a; BM4). Binney &
Quinn (1991) have used a different implementation of the multipole method for realizing constrained fields and have also exploited
the analytic features of the approach to estimate peak angular momentum (Quinn & Binney 1992).

A simpler approach for numerically realizing constrained fields was introduced by Hoffman & Ribak (1991). They begin with
any unconstrained realization of the field and measure the values that the constraint operators take in that realization. They then
subtract from the input field the mean background field derived with the unwanted constraints, and then add to it the mean
background field derived with the wanted constraints. If one can ensure that adequate k-space coverage is obtained, then this is the
method of choice. It is also excellent for more complicated situations than the single peak one considered here, for example,
constraining a field to have peaks at many different sites in the computational volume. The Hoffman-Ribak method for peaks at
many sites has been implemented by van Haarlem & van de Weygaert (1993).

In the case we consider here, in which we use direct Fourier transform methods to lay down the long wavelengths for even
unconstrained fields (because the Fast Fourier transform has such poor wavelength coverage at low k), the Hoffman & Ribak
(1991) method results in little saving. We now sketch our implementation of the multipole method that was used to construct the
constrained fields described in this section. Consider the multipole expansion of F, in k-space, Fr,(k). Each Fp,(k) is a one-
dimensional random field in the radial wavenumber k = |k|. Clearly, the » and x constraints affect only Fgy(k), the s and VF
constraints affect only F,(k) and the anisotropic strain and [V,;V;F]’ constraints only affect Fop (k). All Frp(k) for L > 2 are
unconstrained and statistically independent from each other and are therefore easy to realize. The constraints that do act upon
Fu(k) for L < 2 are independent of those acting upon Fy (k) if M’ # M. Thus the constraints split into at most 2 per (real) LM
coefficient for L < 2. Imposing reality upon the multipole components restricts M = 0, but F; _,/(k) enters into two independent
linear combinations with F; (k) to define two independent real field components. . .

Different k’s must be correlated to allow the constraint operators to have fixed values. That is, the { Fra(k) Fra(k')| constraint )
is nonzero for k # k' as it is for the unconstrained components. However, because we are dealing with a one-dimensional Gaussian
random field with just two constraints, once can easily and rapidly diagonalize this correlation matrix and expand these constrained
field components in statistically independent modes. The expansion coefficients are the matrix elements of the inverse square root
of { Fra(k)Fra(k')| constraint ).

These normal modes have two parts, a statistically averaged mean background field and the variance about it. Only the former
depends upon the specific value of the constraints, while the latter is evaluated by independent random number choices for each of
the modes.

Since we are interested in accurately sampling the long wavelength modes in a peak patch, we have paid considerable attention
to k-space sampling procedures in our implementation of the multipole method, and more generally for realizing any field, whether
constrained or not. For the longest wavelengths that affect the constraint, we perform a direct multipole calculation of the fields
Fy(r, 0, ¢) and sy(r, 0, ¢). This involves a direct sum over many Y;,(6, ¢) and spherical Bessel functions j; (kr), which is as
inefficient as direct Fourier transform, but quite familiar from constructing microwave background realizations. For this compo-
nent of the field, we use logarithmic spacing for the radial k bins.

To deal with the split between the fluctuating and background fields, it is advantageous if they are uncorrelated (BBKS), hence
we make a cut in k-space at k,,. For the k < k;, part, the constrained field is layed down by an expansion in spherical Bessel functions
and spherical harmonics (~ 30 multipoles and ~ 100 radial bins in k are sufficient here). For the calculations shown in the figures,
we used k;' = 2 A~ Mpc, which is small compared with the 5 27! Mpc Gaussian filter. Although the patch shown is only 30 42~
Mpc across, corresponding to a 4.8 2~! Mpc fundamental mode, waves as large as k™! = 50 A~! Mpc were added. To do this
calculation solely with an FFT would require a box about an order of magnitude larger. For k > k;, the influence of the constraint
is ignored, which is accurate for the &, choice here. For the fluctuating component, the Fast Fourier Transform is used to lay down
the high wavenumbers efficiently (it is a ~k> sampling procedure). This is augmented with direct (brute force) Fourier transform
calculations using a combination of a hybrid power law (with linear ~k and quadratic ~k? pieces) sampling at intermediate k and
logarithmic ( ~In k) sampling at low & to ensure excellent coverage in k-space. We discuss how these non-FFT sampling procedures
are combined with FFT sampling in Appendix D, since they are used to add very long wavelength modes to the density and
displacement fields needed for catalog construction. One can also easily implement these three sampling procedures in the Hoffman-
Ribak approach to constrained-field realizations, which we have also done.

The figures illustrating the structure of constrained fields shown in Figures 2, 3, 4, and 5, were described in § 2.2. Here we add a
few more comments on Figure 3. For the high shear case (Figs. 3a-3b) we included some nonalignment of the V,V; F principal axes
with the principal axes of the strain (taken to be the Cartesian axes) to show the resulting contour distortion. The parameter e, was
also increased with e, in accord with mean field theory. We have not shown the independent effect of increasing —V>F. When one
does, one gets increasingly sharp and concentrated contours, as expected. To satisfy the other constraints, the voids just outside
become deeper and deeper.

The high-velocity examples (Figs. 3¢-3d) show large-scale coherence: at the cutoff of 1 A~! Mpc, the coherence scale for the
displacement field (V3 0_,/a0)is 2.7 A~" Mpc for this CDM model, and the rms displacement is 4.7 4~ Mpc. There must be density
enhancements somewhere doing the pulling (or a void doing the pushing). However these can arise from outside the patch shown,
from long wavelengths. Note that to house a full wavelength within the entire region shown, the wavevector required (the “funda-
mental mode”)is only k' = 5 2~! Mpc. Of course, what is also not shown is the flow out of and into the page, due to other nearby
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peaks not visible in this planar cut. What is rather remarkable is that when we remove the box-averaged flow, what is left looks
relatively similar to Figure 2d. That is the deviations in the flow from bulk really do converge nicely in the region within the circle.
This is defined largely by the anisotropic peak-strain constraint. Thus, although the image in Figure 3d of fast matter overtaking
slower matter creating a structure like a breaking wave has some correctness, in the bulk flow frame something like an ellipsoidal
approximation should work.

A lesson should be drawn from high-speed peak realizations such as this one: high-speed peaks are very likely to be near other
major mass concentrations. Such a peak is a good candidate for merging, and it is not a good idea to center a computation on it.

APPENDIX D
THE IMPORTANCE OF THE “BACKGROUND” LONG-WAVELENGTH FIELD

For the simulation “box”, the lattice size a; and our chosen number of grid cells N3, = 1283 determines the box length Ly, =
Nioxar . The fundamental wavenumber for the box is Kfuna = 27/ Lyox- The Nyquist wavenumber is knyq = 7/ ar = NooxKfuna/ 2. For
the cases we show in this paper, we use the standard cold dark matter spectrum (Qum = 1, 2 = 0.5) with o5 = 0.97 (this is used in
the comparison with the Couchman simulation given in BM2). Clusters are defined predominantly by waves with wavenumbers in
the range k' ~ 3-8 h~! Mpc, groups from smaller k~'. A Nyquist wavenumber of kx}q = 0.5 £~! Mpc therefore seems to be a safe
choice. The box then has Lyo, ~ 200 2~' Mpc, which is what we chose. The fundamental mode has wavenumber kg = 31.8 A™!
Mpc. The amount of power in the linear density fluctuation on this scale is measured by ao(kzhe) = 0.0505. The contribution to
the rms velocities is 0, (Krma) = 24405 km s™!, and to the rms displacement is o_; (kzha) = 1.263 A~! Mpc. Note that ¢, = Hpo—;.
For a typical cluster-scale wavevector, k™! ~ 4 h~! Mpc, we have ¢ = 0.970g and o, = 75105 km s ' . For 3¢ peaks of the background
density field, we get only an 0.15 correction to Fy, a relatively small but not negligible correction to the value f. = 1.686, since it
can modulate the number of peaks over these very large scales. More significantly, when we map into redshift space, there can be
displacement effects associated with the very long waves which should be included to get the correct ultralarge clustering pattern.

Another important facet of the ultralong wavelength modes is this: they ensure coherence of structures from box to box. For F;
and s;, we choose different random phases for each box. Otherwise we would get the same periodic pattern repeating itself from box
to box, which is obviously undesirable. We actually choose to overnest the boxes and do not quite go to the edge to ensure that
wraparound does not occur. Nonetheless there is no cross-box coherence of clusters. We can get this only from the ultralong
wavelength power.

Although this is not a fundamental problem for clusters because of the large size that we can take the box to be relative to the
correlation length of clusters, we do lose large scale correlation power this way. This underscores why having an accurate semi-
analytic theory is so important.

For galaxy scale halos, we may wish to have kxl, = 0.05 £~ Mpc, which gives 20 #~' Mpc boxes and kqha = 3.2 ™! Mpc. We
then have a contribution to the rms density field of 6(kgha) = 1.20%, to the rms velocities of 80005 km s™!, and to the rms
displacement of 405 £~ Mpc. The rms values k-space filtered at the Nyquist frequency are 1205, 99005 km s~*, and Se5 ™! Mpc,
respectively. A typical wavenumber for a galaxy scale is k™' ~ 0.3 £~! Mpc, which gives 605 and a rms displacement of 4.9 A"
Mpc. The modulation of the density peak number can therefore be quite significant and most of the displacement comes from the
long waves. This is fundamental to include if one would like to determine the clustering associated with large-scale wall and filament
formation at very high redshift, for example.

For F,,, we store n,, wavevectors k, amplitudes 4,(¢o) = | Fx| and phases ;. Since the functions we wish to Fourier transform
are real ones, there is a relationship between the upper and lower halves of k-space: 4_x(t9) = Ax(to), 0_x = — 0. We therefore only
store k in the upper half of k-space (uhs) and there are only 7, terms in the sum:

Fy(r,t0)=2 2 Aufcos(k-r+6;)], Ar=|Fyl, (D1)

keuhs

so(r,t0) =2 S kk~'Afsin (k-r + 64)]. (D2)

k&uhs

Because this is a direct summation, and many operations are required for each k and each spatial point r, it costs many times Aps# ..+
in total operations to evaluate. Although we only need to calculate these quantities at those points that lie within the peak patch
associated with the candidate points, this can be quite a large fraction of the entire volume. This is therefore a costly operation, even
though we at least do not have to evaluate it for each filter. If the characteristic Lagrangian radius of the patches is small compared
with the overall box size, as it is for clusters, it is often adequate for us to evaluate the direct sum only at r,, and assume it varies
sufficiently slowly over R that we can take its contribution as constant. The number of evaluations is then often quite manageable.
Whether or not this can be done, it is clear that we wish to minimize n,, and strategies for minimizing this are very useful.

For the 7., ultralong wavelength vectors in the upper half of k-space, the discretizations of the magnitudes of the vectors, k, and
the directions, , are at our disposal. We parameterize the upper half sphere by the usual longitude ¢ € [0, 27) and the cosine of the
colatitude p = k;, with p restricted to lie in the range [0, 1]. The 2-sphere measure is dQ;/(27) = dud/(27). In practice, we split
k, p, and ¢ into n, n,, and n,, bins, with n,, = mcn,n,. A given wavevector among the 7, total has three labels, one for the k-bin,
one for the p-bin and one for the ¢ bin in which it resides. However, within the bins, random number choices are made so that the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103....1B&amp;db_key=AST

JS. CI03 . _.ABO

]

rT99BA

36 BOND & MYERS Vol. 103

k vector is not on the bin boundary. This strategy serves two purposes, ensuring by the binning that k space is well covered, yet by
the randomness of k within the bins that special lines in k-space are avoided. The radial wavenumber choice deserves special
comment. Assume there is a minimum wavenumber allowed, k., as well as the maximum we are adopting, k. = k. We choose
the radial wavenumber components k as k; = k(q;),j= 1, . .., nx. Here g; = (j — 0.5) Aq, where Ag = 1/m;, and k(q) is a sampling
function which goes from k.;, at ¢ = 0 to k. at g = 1. How we choose it to go in between depends upon what sort of spectrum we
have. Let [ Ag%]; be the power in Fin the [k;_q3s, kj+0.5) interval; this is approximately

k} Pr(k;) (dg/dIn k)
A 27. F —
[AcF]; =~ (2r?) / w(k;),  where w(k) = rg (D3)
In practice, we use one or two of the following forms:
logarithmic: q= ln (k/kmin)/ln (kmax/kmin)a k(Q) = kmin(kmax/kmin)q E) (D4)
w = nk/ln (kmax/kmin) )
ks — kS,
power law: g = m, (D3)
k(q) = [ki + a(ki — Kis)1V"s, W‘(k"""+ksz
hvbri law: g = o K5~ Kiin ks — Ko D6
ybrid power aW.q—am+(l—a)m (D6)
k(q) = kminx¥"s,  w=(c1xs+ a2)xs,
Wherexs = (l + axl)/(l - a) + (1% + q’ X = (kmax/kmin)ns9
4 _alx t+1) b =(x?—l) _mns2(1—a) g, = Tl
2(l-e)” T (1) T (x3-D T (a1

An FFT is approximately like a power-law sampling function, with power ns = 3, except that it poorly samples near the fundamental
mode of the box. When long-wavelength power is needed, our standard strategy is: for the longest wavelengths, we use the logarith-
mic law; for slightly shorter ones we use the power-law hybrid law with #ng = 1 and a = 0.5, which is a combination of a linear and
square sampling strategy. Each sampling regime is given a separate set of bin numbers, 7, n,, 1,. The volume of a bin in k-space is
(k} — k3-1)/(n,n,). We choose the sharp k-space cut between logarithmic and hybrid sampling when the volume of the bin with
hybrid sampling is smaller than the volume of the bin with logarithmic sampling (if it ever is). For k;, the transition to where we
use the FFT, it is that wavenumber at which the hybrid sampling bin volume equals the volume of a cell in the reciprocal lattice,
(27/ Lyox ), where Ly, is the comoving length of the box.

Another possible approach is to use very large coarse boxes that have a discrete number of our boxes within them, perform Fast
Fourier transforms to get F), on a very coarse grid, and then interpolate to get the local values. Although we have not used this
approach, for some cases it could be faster than the direct one we have adopted.

APPENDIX E
ALGORITHMS FOR LOCAL PEAK-PATCH MEASUREMENTS

Given the list of candidate “peak” lattice cells, we still need to determine the properties of the regions about them. We have
Fourier components of the (unfiltered) density field F; and of the displacement field §;. As mentioned earlier, we actually smooth
F with a “minimal” Gaussian filter, Rg = 0.5a;, to damp high-frequency noise in the realization, which has negligible effect on
peaks whose sizes are well above a; , i.e., those of interest. The choice Rg = 0.5a; arises because it is the Gaussian filter reasonably
well-matched to filtering at the Nyquist wavenumber «/a; . (In FFTs, wavenumbers actually extend to V37 /4y, but only in certain
directions in the box. To relate a Gaussian filter to a;, we equate the volume within a Nyquist-frequency sharp k-space filter
[67%(a, /)] with the volume associated with a Gaussian-filter [ (27)*2RE]; this yields Rg = (3V7/2)"%a, /7 = 0.49a; .

To calculate the mass-averaged quantities F, 5, and e;;, and test for collapse, we use the fields sampled on the lattice points r,:

F,=F(r,) s,=s(r,).
Consider a peak at location ry,,. We shall denote the positions of the lattice points relative to the peak center by

R,,=rp—rpk sz IRpl .
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Since the initial density is uniform, mass averages are equivalent to volume averages. Until a more sophisticated approach to the
identification of a Lagrangian region associated with a peak is found, we calculate these averages within Lagrangian spheres.

We first choose a radius at which to start our spherical integration. The intention is to first integrate outward to this radius, test
for collapse at the redshift of the peak z,, and then step the radius of integration outward or inward until we find the radius at
which the transition between collapse and noncollapse occurs. If we reach the peak center after stepping inward without finding a
collapse, then we throw out the peak from the list.

We step in radius by “shells” of the lattice about the center. Because of the cubical symmetry of the grid, the shells (outside the
center pixel) come in discrete radial steps and contain at least six cells each. We number the shells m outward from the origin in
radius R[m], with n[ m] cells on the shell. The radial sampling is roughly even in R?, since R?/a? is an integer that is the sum of 1,
2, or 3 squares of integers. Unfortunately, the number of cells on each shell fluctuates from shell to shell, e.g., 6, 8, 12, 24, 48. This
does not present a problem if we smooth or sum over multiple shells.

For shell m, we calculate the quantities

bF[m] =;1ﬁ S F,, bsim] =n—[17] S s, bsRIm] =ﬁ S SpuRpy s (E1)
pPEmM pEM pPEM

which are stored as we move outward in radius. At any given shell we compute the volume average of the density field
R[m)F[m]=Rm—1]F[m— 1]+ 0.5(6F[m — 1] + 6F[m])(R*[m] — R [m — 1]). (E2)
Our first search is to find the shell 7, at which F first crosses the critical value f, = 1.686,
Flml=zf, Flm+1]<f.

This defines the region of collapse in the spherical approximation, and we can interpolate the F between the shells to find the
Lagrangian radius

3 _ p3 3 3 F[m.] — [
Rpk,sph R [mc] + (R [mc+ 1] R [mc])F—[mc] _ F[mc + 1] . (E3)

The expression for the mass-averaged strain e;(<R) in terms of the surface integral of the relative displacements was given in
equation (2.26). We have s; only on lattice sites—hence we need a method to interpolate the field from the lattice sites onto the
bounding spherical shell. We do this by using a spline, that is a smoothing kernel similar to the Gaussian kernel Wg. Although the
Gaussian, Wg oc exp [-r?/(2R3%)], has many desirable features (it is very smooth and interpolates linearly with high accuracy
when the particle separation is ~ Rg), one must go out a relatively large distance, 3 Rg, to drop to a percent contribution in the
interpolation. Instead, we use the piecewise polynomial smoothing function of compact support given by equation (2.9), a spheri-
cally symmetric kernel based on Schoenberg’s B-splines (Monaghan 1985). The mean number density of the lattice grid points is
the inverse of the volume of a cell, a7, where g, is the lattice spacing. The field s; at a point R about r,, is approximated by

Asi(r) = 2 aiAs;(r)Wen(r — 13 Ry) . (E4)

b

Only those lattice points within 2 R, of the shell at radius R contribute to the angle-average which gives e;. We would like to choose
2R, to be as small as possible to avoid getting a contribution from points too far afield, yet it must be large enough so that a number
of radial grid-shells contribute. In our code, we adopt the smoothing size of the lattice (R, = a; ), which interpolates on the grid over
27 points. The angular integral in equation (2.26) can be readily performed by introducing, for each grid point p, a coordinate
system with polar axis R,, u, = R-R,, and an azimuthal angle ¢,. Averaging R over the azimuthal angle then gives u,R,. To
integrate over u,, we change variablesto Q, = |R — R, |, which has the limits | R — R,| < Q, < R + R,, yielding

. 3a3 > (ASp,i Ry + Asp iRy i)

e <R)=~"0s R U(R/Ry, Ry/Ry). (ES)
p
min[4R},(R+R )% Woson(Oy: R )(R2 +R2—0?)
g = 2 nsph ps f\h p p . E6
()= | s g} e e SRR (E6)

The integral % over the kernel in equation (ES5) can easily be calculated for the piecewise polynomial SPH kernel. To display the
explicit equation, we introduce the following abbreviations and functions,
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Uu=R/hy,u,=R,/hp,u_= |u—u,|, uy =u+u,
gilx,w)=—3—ix*(1 = x*+3x*) — Iw+ Iwmx?(2 - 3x2 + 2x?).
S(x, W) =5 —ix* (2 —Zx+x2—ix*) —Iw+ wx(1 — x + 3x2 — 1x%).
We then have

U(u,uy) = g (u_,u*+ul) foru-<1,u,>2,
=g(u_,u*+ul) forl=u <2,u,>2,
=g(u, W +ul)—g(ur,u>+u2) foru<l,l<u, <2,
=g(u_,u*+ul)—g(u,u>+u2) forl<su <2, 1<u,<2,
=g(u_,u*+ud)—g(u, u>+u2) foru<lu <1,
=0  otherwise . (E7)

Since we use the lattice spacing for the smoothing, R, = a,, the interpolation from a given lattice site spreads over 27 points.
Thus, to calculate e;[ 7] on lattice shell m, we smooth over a radius of four cells. Of course, the ideal procedure is to mass-average
e;(<R) in the same way as for F[m]. Even though we have smoothed over more than just a single shell, our estimation will be
somewhat inaccurate. However, the errors will affect all of the components in about the same way, so since we have F[m] from the
spherical shell integration stored, we renormalize the e;( <R) by dividing by the trace calculated using the spline smoothing and
multiplying all components by F[m]. The values of the peak ellipticity e, and prolaticity p, (eq. [2. 20d]) are, of course, unaffected
by this renormalization. _

Thus, at the radius R[m], we use the F[m] and the calculated e, and p, to determine z.[r], which is in turn compared to the zp.
By our search in radius, we locate the shell m, such that

zmp] = z zmp + 1] < zy .

The Lagrangian radius R, is then determined by interpolation in z [m] between the shells:

Zc['nO] — Zpk

Ripom = R? + (R3my+ 11— R3 . E
Baom = RoLmo] + (R mo + 1] = Ro[mo]) oo o8t (E8)
We obtain the mass of the peak (in nonrelativistic, i.e., clustering, matter) from the Lagrangian top-hat radius,
4 _
My =—= 3 Por(Zp) R = 1156 X 1000 (Ros/ h™ Mpe)? b~ (E9)

The mean overdensity F{ <Ry,) is interpolated linearly in R between the shells, the reverse of the interpolation equation (E3).
To get the mean displacement of the peak, we volume average s over the lattice points inside R

my

> lmlistm], N S nlml,

m=0

Spk =

1
N

where ds[ ] is the shell average of s, (eq. [E1]). B
For the calculation of the (perturbed) internal binding energy (per unit mass), &k, We need to mass-average F(<R) as in
equations (2.27a)-(2.27b). To evaluate Spx, we use the simple numerical integration

S[m] = RS[ ] g % [m'— 1]+ F[m'])(R*[m'] — R’ [m' — 1]), (E10)

Spk =

= 2 RAUmlSTmo] + 3 (Flma] + Fo) (Rl ~ R[] (E11)
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Other local properties of the peaks can also be measured. For example, a byproduct of our strain eigenvalue determinations are
the orientation angles of the strain tensor’s principal axes. If one can convince oneself that these have will be aligned with the
principal axes of the virialized objects, at least statistically, then they can be used to address such issues as the Binggeli effect, i.e., of
clusters tending to align with other clusters. We have not yet checked how well this works compared with N-body studies, although
we are convinced that it is much better to use the initial peak-strain tensor alignments to discuss this effect than principal axes
alignments of the tensor (V;V,F), that Bond (1987b) originally suggested.

REFERENCES

Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15
(BBKS)

Barnes, J., & Hut, P. 1986, Nature, 324, 446

. 1989, ApJS, 70, 389

Bernardeau, F. 1994, ApJ, 427, 51

Bertschinger, E. 1987, ApJ, 23,103

Binney, J., & Quinn, T. 1991, MNRAS, 249, 678

Binney, J., & Tremaine, S. 1987, Galactic Dynamics ( Princeton: Princeton
Univ. Press)

Bond, J. R. 1986, Galaxy Distances and Deviations from the Universal
Expansion, ed. B. F. Madore & R. B. Tully (Dordrecht: Reidel), 255

. 1987a, Nearly Normal Galaxies from the Planck Era to the Pres-

ent, ed. S. Faber (New York: Springer), 388

. 1987b, in Proc. Workshop Cosmology and Particle Physics, ed. I.

Hinchcliffe (Singapore: World Scientific), 22

. 1988, in Proc. NATO Summer School, The Early Universe, ed.

W. G. Unruh (Dordrecht: Reidel), 283

. 19893, in Proc. Vatican Study Week, Large-Scale Motions in the

Universe, ed. V. Rubin & G. Coyne (Princeton: Princeton Univ. Press),

419

. 1989, in Frontiers of Physics: From Colliders to Cosmology, ed.
A. Astbury et al. (Singapore: World Scientific), 182

Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. 1991, ApJ, 379, 440
(BCEK)

Bond, J. R., & Myers, S. 1991, Trends in Astroparticle Physics, ed. D. Cline
& R. Peccei (Singapore: World Scientific), 262

. 1993a, in Proc. 3d Teton Summer School, The Evolution of Gal-

axies and Their Environment, ed. M. Shull & H. Thronson, NASA CP

3190, 21

. 1993b, in Proc. 3d Teton Summer School, The Evolution of Gal-
axies and Their Environment, ed. M. Shull & H. Thronson, NASA CP
3190, 52

———. 1995a, ApJS, 103, 41 (BM2)

. 1995b, ApJS, 103, 63 (BM3)

. 1995c¢, preprint (BM4)

Bond, J. R., Szalay, A. S., & Silk, J. 1988, ApJ, 324,627

Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium (New Haven:
Yale Univ. Press)

Cole, S., & Kaiser, S. 1988, MNRAS, 233, 637

Couchman, H. M. P. 1991, ApJ, 368, .23

Davis M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292,
371

Doroshkevich, A. G. 1970, Astrophysica, 6, 320

Doroshkevich, A. G., & Shandarin, S. 1978a, Soviet Astron., 22, 653

. 1978b, MNRAS, 182, 27

Dubinski, J., & Carlberg, R. G. 1991, ApJ, 378, 496

Evrard, G. 1990, ApJ, 363, 349

Gott,J. R., & Rees, M. J. 1975, A&A, 45, 365

Gunn, J. E., & Gott,J. R. 1972, ApJ, 176, 1

Gurbatov, S., Saichev, A., & Shandarin, S. 1989, MNRAS, 236, 385

Hernquist, L., & Katz, N. 1989, ApJS, 70, 419

Hoffman, Y., & Ribak, E. 1991, ApJ, 380, L5

Icke, V. 1973, A&A, 27, 1

Lahav, O, Lilje, P. B., Primack, J. R., & Rees, M. J. 1991, MNRAS, 251,
158

Lilje, P. B. 1991, ApJ, 386,133

Martel, H. 1991, ApJ, 377,7

Martel, H., & Wasserman, I. 1990, ApJ, 348, 1

Monaghan, J. M. 1985, J. Comput. Phys., 60, 253

Monaghan, J. M., & Lattanzio, J. C. 1985, A&A, 149, 135

Park, C. 1990, MNRAS, 242, 59

Peacock, J. A., & Heavens, A. F. 1985, MNRAS, 217, 805

. 1990, MNRAS, 243, 133

Peebles, P. J. E. 1980, Large-Scale Structure of the Universe (Princeton:
Princeton Univ. Press) (PS)

. 1984, ApJ, 284, 439

Press, W. H., & Schechter, P. 1974, ApJ, 187, 425

Press, W. H., & Teukolsky, S. A. 1990, Comput. Phys., 1990 Jan/Feb., 92

Quinn, T., & Binney, J. 1992, MNRAS, 255, 729

Shandarin, S. F., & Zeldovich, Ya. B. 1989, Rev. Mod. Phys., 61, 185

van Haarlem, M., & van de Weygaert, R. 1993, ApJ, 418, 544

van de Weygaert, R., & Bertschringer, E. 1995, preprint

Villumsen, J. 1989, ApJS, 71, 407

Weinberg, S. 1987, Phys. Rev. Lett., 59, 2607

White, S. D. M., & Silk, J. 1979, ApJ, 231, 1

Zeldovich, Ya. B. 1970, A&A, 5, 84

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..103....1B&amp;db_key=AST

