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Chapter 1

Introduction

This document describes how to calibrate and image interferometric and single-dish radio astro-
nomical data using the CASA (Common Astronomy Software Application) package. CASA is a
suite of astronomical data reduction tools and tasks that can be run via the IPython interface to
Python. CASA is being developed in order to fulfill the data post-processing requirements of the
ALMA and EVLA projects, but also provides basic and advanced capabilities useful for the analysis
of data from other radio, millimeter, and submillimeter telescopes.

The CASA home page can be found at:

• http://casa.nrao.edu

From there you can find documentation and assistance for the use of the package. Currently, CASA
is in an alpha release and this should be taken into account as users begin to learn the package.

Tools in CASA provide the full capability of the package, and are the atomic functions that form
the basis of data reduction. Tasks represent the more streamlined operations that a typical user
would carry out — in many cases these are Python interface scripts to the tools, but with specific,
limited access to them and a standardized interface for parameter setting. The idea for having
tasks is that they are simpler to use, provide a more familiar interface, and are easier to learn for
most astronomers who are familiar with radio interferometric data reduction (and hopefully for
novice users as well).

For the moment, the audience is assumed to have some basic grasp of the fundamentals of synthesis
imaging, so details of how a radio interferometer or telescope works and why the data needs to
undergo calibration in order to make synthesis images are left to other documentation — a good
place to start might be Synthesis Imaging in Radio Astronomy II (1999, ASP Conference Series
Vol. 180, eds. Taylor, Carilli & Perley).

The CASA Reference Library consists of:

• CASA Synthesis & Single Dish Reduction Cookbook — task-based data analysis walk-
through and instructions;

• CASA in-line help — accessed using help in the casapy interface;

7

http://casa.nrao.edu


CHAPTER 1. INTRODUCTION 8

• The CASA Toolkit Guide — this document; useful when the tasks do not have everything
you want and you need more power and functionality, also contains more detailed descriptions
of the philosophy of data analysis;

• The CASA User Reference Manual — to find out what a specific task or tool does and
how to use it.



Chapter 2

Data Import, Handling, and Export

2.1 CASA Measurement Sets

Data is handled in CASA via the table system. In particular, visibility data are stored in a CASA
table known as a Measurement Set (MS). Note that images are handled through special image
tables, although standard FITS I/O is also supported. Images and image data are described in a
separate chapter.

Unless your data was previously processed by CASA or software based upon its predecessor aips++,
you will need to import it into CASA as an MS. Supported formats include some “standard” flavors
of UVFITS, the VLA “Export” archive format, and most recently, the ALMA Science Data Model
(ASDM) format.

2.1.1 Measurement Set Structure

Visibility data are stored in a CASA table known as a Measurement Set (MS). An MS consists of a
main table containing the visibility data and associated sub-tables containing auxiliary or secondary
information. Table 2.1 lists data selection parameters which may be used during a typical data
reduction session while Table 2.2 identifies the commonly accessed components of the MAIN table
in data sets.

Each row in a data column in the MS (e.g. DATA, ALMA PHAS CORR, CORRECTED DATA) contains
a matrix of observed complex visibilities at a single time stamp, for a single baseline in a single
spectral window. The shape of the data matrix is given by the number of channels and the number
of correlations (voltage-products) formed by the correlator for an array.

All CASA data files, including Measurement Sets, are written into the current working directory by
default, with each CASA table represented as a separate sub-directory. MS names therefore need
only comply with UNIX file or directory naming conventions, and can be referred to from within
CASA directly, or via full path names.

9
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Table 2.1: Common Data Selection Parameters

Parameter Contents
ANTENNA1 First antenna in baseline
ANTENNA2 Second antenna in baseline
FIELD ID Field (source no.) identification
DATA DESC ID Spectral window number, polarization identifier pair (IF no.)
ARRAY ID Subarray number
OBSERVATION ID Observation identification
POLARIZATION ID Polarization identification
SCAN NUMBER Scan number
TIME Integration midpoint time
UVW UVW coordinates

Note: when you examine table entries like FIELD ID or DATA DESC ID with the table browser, you
will see 0-based numbers.

2.2 UVFITS Import and Export

Import and export methods include ms.fromfits and ms.tofits.
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Figure 2.1: The structure of a Measurement Set. The tables which compose a Measurement Set
named ngc5921.ms on disk.

Figure 2.2: A few of the MAIN table columns in a Measurement Set.
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Table 2.2: Commonly accessed MAIN Table components for ALMA data

Column Format
Comments

DATA Complex(Nc, Nf )
Complex visibility matrix
=ALMA PHASE CORR by default

WEIGHT SPECTRUM Float(Nc)
Weight for whole data matrix

ALMA PHASE CORR Complex(Nc, Nf )
On-line phase corrected complex visibility matrix
(Not in VLA data)

ALMA NO PHAS CORR Bool(Nc, Nf )
Complex visibility matrix that has not been phase corrected
(Not in VLA data)

ALMA PHAS CORR FLAG ROW Bool(Nc, Nf )
Flag to use phase-corrected data or not, Default=F
(not in VLA data)

CORRECTED DATA Complex(Nc, Nf )
Corrected data created by calibrater or imager tools

MODEL DATA Complex(Nc, Nf )
Model data created by calibrater or imager tools

IMAGING WEIGHT Float(Nc)
created by calibrater or imager tools

FLAG Bool(Nc, Nf )
cumulative data flags
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Figure 2.3: matplotlib plotter. The buttons on the lower left are: 1,2,3) Home, Back and
Forward. Click to navigate between previously defined views (akin to web navigation), 4) pan.
Click and drag to pan to a new position, 5) zoom. Click to define a rectangular region for zooming,
6) Subplot Configuration. Click to configure the parameters of the subplot and spaces for the
figures, 7) Save. Click to launch a file save dialog box. The cursor readout is on the bottom right.



Chapter 3

Data Examination and Editing

3.1 Plot the Data

CASA uses the matplotlib plotting library to display its plots. You can find information on
matplotlib at http://matplotlib.sourceforge.net/.

3.1.1 Plot Symbols

The plotsymbol defines both the line or symbol for the data being drawn as well as the color; from
the matplotlib online documentation (e.g., type pl.plot? for help):

The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
. : points
, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
x : cross symbols
D : diamond symbols
d : thin diamond symbols
1 : tripod down symbols
2 : tripod up symbols
3 : tripod left symbols
4 : tripod right symbols
h : hexagon symbols
H : rotated hexagon symbols

14
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p : pentagon symbols
| : vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style ’steps’ # kwarg only

The following color strings are supported
b : blue
g : green
r : red
c : cyan
m : magenta
y : yellow
k : black
w : white

Line styles and colors are combined in a single format string, as in
’bo’ for blue circles.

3.1.2 Pylab - matplotlib library interface

For even more functionality, you can access the pl tool directly using pylab functions that allow one
to annotate, alter, or add to any plot displayed in the matplotlib plotter (e.g. plotxy). matplotlib
commands can be found at:

http://matplotlib.sourceforge.net/pylab_commands.html

The pl.clf() method is perhaps the most useful native command as it will clear the contents of
the plotter frame.

A quick synopsis of relevant commands for altering plots are found below.

pl.axhline - draw a horizontal line across axes
pl.axvline - draw a vertical line across axes
pl.axhspan - draw a horizontal bar across axes
pl.axvspan - draw a vertical bar across axes
pl.clf - clear the current figure
pl.close - close the plotter (subsequent plots will reopen a plotter window)
pl.ion - turn interaction mode on (default - this indicates that any plotting command

will be seen immediately after the command)
pl.ioff - turn off interaction mode (a ’show’ command is required to see commands after

this mode has been enabled)
pl.savefig - save the current figure
pl.subplot - make a subplot (numrows, numcols, axesnum)
pl.text - add some text at location (x,y)
pl.title - add/change the title
pl.xlim - set/get the xlimits
pl.ylim - set/get the ylimits
pl.xlabel - add/change the xlabel
pl.ylabel - add/change the ylabel

In addition, there are a range of mathematical functions provided (trigonometric, matrix algebra,
logs, etc). Again, see the pylab documentation for help.

http://matplotlib.sourceforge.net/pylab_commands.html
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3.2 Data Flagging



Chapter 4

Synthesis Calibration

4.1 Calibration Philosophy

The visibilities measured by an instrument must be calibrated before formation of an image. This is
becausethe wavefronts received and processed by the observational hardwarehave been corrupted by
a variety of effects. These include the effects of transmission through the atmosphere, the imperfect
details amplified electronic (digital) signal and transmission through thesignal processing system,
and the effects of formation of the cross-power spectra by a correlator. Calibration is the process
of reversing these effects to arrive at corrected visibilities which resemble as closely as possible the
visibilities that would have been measured in vacuum by a perfect system. The subject of this
chapter of the cookbook is the determination of these effects by using the visibility data itself.

The relationship between the observed and ideal (desired) visibilities on the baseline between an-
tennas i and j may be expressed by the Measurement Equation:
~Vij = Jij

~V IDEAL
ij

where ~Vij represents the observed visbility, ~V IDEAL
ij represents the corresponding ideal visibilities,

and Jij represents the accumulation of all corruptions affecting baseline ij. The visibilities are
indicated as vectors spanning the four correlation combinations which can be formed from dual-
polarization signals. These four correlations are related directly to the Stokes parameters which
fully describe the radiation. The Jij term is therefore a 4×4 matrix.

Most of the effects contained in Jij (indeed, the most important of them) are antenna-based, i.e.,
they arise from measurable physical properties of (or above) individual antenna elements in a
synthesis array. Thus, adequate calibration of an array of Nant antennas forming Nant(Nant− 1)/2
baseline visibilities is usually achieved through the determination of only Nant factors, such that
Jij = Ji⊗J∗j . For the rest of this chapter, we will usually assume that Jij is factorable in this way,
unless otherwise noted.

As implied above, Jij may also be factored into the sequence of specific corrupting effects, each hav-
ing their own particular (relative) importance and physical origin, which determines their unique
algebra. Including the most commonly considered effects, the Measurement Equation can be writ-
ten:

17
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~Vij = Mij Bij Gij Dij Eij Pij Tij
~V IDEAL

ij

where:

• Tij = Polarization-independent multiplicative effects introduced by the troposphere, such
as opacity and path-length variation.

• Pij = Parallactic angle, which describes the orientation of the polarization coordinates on
the plane of the sky. This term varies according to the type of the antenna mount.

• Eij = Effects introduced by properties of the optical components of the telescopes, such as
the collecting area’s dependence on elevation.

• Dij = Instrumental polarization response. ”D-terms” describe the polarization leakage
between feeds (e.g. how much the R-polarized feed picked up L-polarized emission, and vice
versa).

• Gij = Electronic gain response due to components in the signal path between the feed
and the correlator. This complex gain term Gij includes the scale factor for absolute flux
density calibration, and may include phase and amplitude corrections due to changes in the
atmosphere (in lieu of Tij). These gains are polarization-dependent.

• Bij = Bandpass (frequency-dependent) response, such as that introduced by spectral filters
in the electronic transmission system

• Mij = Baseline-based correlator (non-closing) errors. By definition, these are not factorable
into antenna-based parts.

Note that the terms are listed in the order in which they affect the incoming wavefront (G and B
represent an arbitrary sequence of such terms depending upon the details of the particular electronic
system). Note that M differs from all of the rest in that it is not antenna-based, and thus not
factorable into terms for each antenna.

As written above, the measurement equation is very general; not all observations will require
treatment of all effects, depending upon the desired dynamic range. E.g., bandpass need only be
considered for continuum observations if observed in a channelized mode and very high dynamic
range is desired. Similarly, instrumental polarization calibration can usually be omitted when
observing (only) total intensity using circular feeds. Ultimately, however, each of these effects
occurs at some level, and a complete treatment will yield the most accurate calibration. Modern
high-sensitivity instruments such as ALMA and EVLA will likely require a more general calibration
treatment for similar observations with older arrays in order to reach the advertised dynamic ranges
on strong sources.

In practice, it is usually far too difficult to adequately measure most calibration effects absolutely
(as if in the laboratory) for use in calibration. The effects are usually far too changable. Instead, the
calibration is achieved by making observations of calibrator sources on the appropriate timescales
for the relevant effects, and solving the measurement equation for them using the fact that we have
Nant(Nant − 1)/2 measurements and only Nant factors to determine (except for M which is only
sparingly used). (Note: By partitioning the calibration factors into a series of consecutive effects,
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it might appear that the number of free parameters is some multiple of Nant, but the relative algebra
and timescales of the different effects, as well as the the multiplicity of observed polarizations and
channels compensate, and it can be shown that the problem remains well-determined until, perhaps,
the effects are direction-dependent within the field of view. Limited solvers for such effects are under
study; the calibrater tool currently only handles effects which may be assumed constant within the
field of view. Corrections for the primary beam are handled in the imager tool.) Once determined,
these terms are used to correct the visibilities measured for the scientific target. This procedure is
known as cross-calibration (when only phase is considered, it is called phase-referencing).

The best calibrators are point sources at the phase center (constant visibility amplitude, zero
phase), with sufficient flux density to determine the calibration factors with adequate SNR on the
relevant timescale. The primary gain calibrator must be sufficiently close to the target on the sky so
that its observations sample the same atmospheric effects. A bandpass calibrator usually must be
sufficiently strong (or observed with sufficient duration) to provide adequate per-channel sensitivity
for a useful calibration. In practice, several calibrators are usually observed, each with properties
suitable for one or more of the required calibrations.

Synthesis calibration is inherently a bootstrapping process. First, the dominant calibration term
is determined, and then, using this result, more subtle effects are solved for, until the full set of
required calibration terms is available for application to the target field. The solutions for each
successive term are relative to the previous terms. Occasionally, when the several calibration terms
are not sufficiently orthogonal, it is useful to re-solve for earlier types using the results for later
types, in effect, reducing the effect of the later terms on the solution for earlier ones, and thus better
isolating them. This idea is a generalization of the traditional concept of self-calibration, where
initial imaging of the target source supplies the visibility model for a re-solve of the gain calibration
(G or T ). Iteration tends toward convergence to a statistically optimal image. In general, the
quality of each calibration and of the source model are mutually dependent. In principle, as long
as the solution for any calibration component (or the source model itself) is likely to improve
substantially through the use of new information (provided by other improved solutions), it is
worthwhile to continue this process.

In practice, these concepts motivate certain patterns of calibration for different types of observation,
and the calibrater tool in CASA is designed to accomodate these patterns in a general and flexible
manner. For a spectral line total intensity observation, the pattern is usually:

1. Solve for G on the bandpass calibrator

2. Solve for B on the bandpass calibrator, using G

3. Solve for G on the primary gain (near-target) and flux density calibrators, using B solutions
just obtained

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply G and B solutions to the target data

6. Image the calibrated target data



CHAPTER 4. SYNTHESIS CALIBRATION 20

If opacity and gain curve information are relevant and available, these types are incorporated in
each of the steps (in future, an actual solve for opacity from appropriate data may be folded into
this process):

1. Solve for G on the bandpass calibrator, using T (opacity) and E (gain curve) solutions already
derived.

2. Solve for B on the bandpass calibrator, using G, T (opacity), and E (gain curve) solutions.

3. Solve for G on primary gain (near-target) and flux density calibrators, using B, T (opacity),
and E (gain curve) solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions

5. Apply T (opacity), E (gain curve), G, and B solutions to the target data

6. Image the calibrated target data

For continuum polarimetry, the typical pattern is:

1. Solve for G on the polarization calibrator, using (analytical) P solutions.

2. Solve for D on the polarization calibrator, using P and G solutions.

3. Solve for G on primary gain and flux density calibrators, using P and D solutions.

4. Scale G solutions for the primary gain calibrator according to the flux density calibrator
solutions.

5. Apply P , D, and G solutions to target data.

6. Image the calibrated target data.

For a spectro-polarimetry observation, these two examples would be folded together.

In all cases the calibrator model must be adequate at each solve step. At high dynamic range
and/or high resolution, many calibrators which are nominally assumed to be point sources become
slightly resolved. If this has biased the calibration solutions, the offending calibrator may be imaged
at any point in the process and the resulting model used to improve the calibration. Finally, if
sufficiently strong, the target may be self-calibrated as well.

4.2 General Calibrater Mechanics

The calibrater tasks/tool are designed to solve and apply solutions for all of the solution types
listed above (and more are in the works). This leads to a single basic sequence of execution for all
solves, regardless of type:
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1. Set the calibrator model visibilities

2. Select the visibility data which will be used to solve for a calibration type

3. Arrange to apply any already-known calibration types (the first time through, none may yet
be available)

4. Arrange to solve for a specific calibration type, including specification of the solution timescale
and other specifics

5. Execute the solve process

6. Repeat 1-4 for all required types, using each result, as it becomes available, in step 2, and
perhaps repeating for some types to improve the solutions

By itself, this sequence doesn’t guarantee success; the data provided for the solve must have suffi-
cient SNR on the appropriate timescale, and must provide sufficient leverage for the solution (e.g.,
D solutions require data taken over a sufficient range of parallactic angle in order to separate the
source polarization contribution from the instrumental polarization).

4.3 Baseline-based Calibration

Some calibration cannot be factored into antenna-based factors. Such effects occur physically
after the signals from each antenna have been combined in the correlator. These may occur as a
consequence of finite time- and frequency-averaging over other calibration factors before they are
corrected. Any loss of coherence in such averaging gives rise to residual baseline-based errors which
depend on the details of the combination of antenna-based errors on the baseline. Also, if only a
single baseline is available, a single calibration solution for that baseline is obtainable, and short of
additional information, it simply cannot be factored into unique terms for each antenna. Therefore,
such situations necessarily require baseline-based calibration solutions.

It is important to note that source structure also introduces baseline-based information in the
visibilities, and so it can be difficult to distiguish baseline-based errors from the information in
which we are interested, namely, the astronomincal visibilities (which are imaged). Therefore,
baseline based calibration factors should be used with great care, to avoid changing the desired
astrophysical information in ways that cannot be determined. As indicated below, there are some
calibration circumstances where such extreme measures are warranted (e.g., resolved bandpass
calibrators), but the careful observer should always consider how different calibration factors affect
the data, and this is especially important for baseline-based factors.

4.3.1 M, MF solutions (Generic Baseline-based Gain)

The calibration types M and MF provide the baseline-based analogs of G and B, respectively. M
provides for (per-spectral window) time-dependent gain calibration for each baseline independently.
MF provides for a frequency-dependent (within each spectral window) version of M. One or the other
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of these types can be used to compensate for any residual closure errors, usually after all antenna-
based calibrations have converged. Since these types can absorb legitimate visibility information
from the data, they should be used with great care, and usually only on sources for which there
is no doubt about the source structure. It is therefore largely meaningless to use them in self-
calibration—they will only reinforce the current source model, and can even artifically absorb
thermal noise in the data.

To solve for M on an hourly timescale, using previously determined G and B solutions:

cb.reset() # Reset the calibrater tool
cb.setdata(msselect=’FIELD_ID IN [0,1]’) # Restrict data selection
cb.setapply(type=’G’,table=’cal.G’) # Apply existing G solution
cb.setapply(type=’B’,table=’cal.B’) # Apply existing G solution

cb.setsolve(type=’M’,table=’cal.M’, # Setup to solve for M on
t=3600) # an hourly timescale,

# write solutions to a table on
# disk called ’cal.M’

cb.solve() # Solve

Note that refant is, of course, meaningless for baseline-based calibration types.

To apply these solutions, along with G and B:

cb.reset() # Reset calibrater tool
cb.setdata(msselect=’FIELD_ID IN [0,1,2]’) # Restrict data selection
cb.setapply(type=’G’,table=’cal.G’) # Apply G solutions
cb.setapply(type=’B’,table=’cal.B’) # Apply B solutions
cb.setapply(type=’M’,table=’cal.M’) # Apply M solutions
cb.correct() # Correct data and write to

# CORRECTED_DATA column in MS

Use of MF is essentially identical, except that it will probably be used on even longer timescales
than M (as for B, compared to G).

An M solution can be especially useful for obtaining normalized bandpass solutions from signif-
icantly resolved calibrators where a source model adequate for pre-B G-solving is not available.
Ordinarily, if the bandpass calibrator is nearly point-like, we first solve for G (using a point-like
model):
~Vij = Gij

~V point
ij

Then, use this G to solve for B (using the same model):

~Vij = Bij

(
Gij

~V point
ij

)
However, we will get (at best) awkwardly scaled and/or poorly converged B solutions if our source
model is not sufficient for the either of these solutions. In this circumstance, we can use M to
absorb both time-dependent gain variations during the bandpass calibration scan and the source
structure. First solve for M, using a point-like model:
~Vij = Mij

~V point
ij
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Then, use this solution to solve for B:(
M−1

ij
~Vij

)
= Bij

~V point
ij

The resulting B solution is nearly as good as one obtained with a good, resolved source model
and G. It is somewhat less sensitive because more free parameters have been introduced, but this
technique can often be useful. Note that the data for the bandpass calibrator, after correction by
B and M, will be that of a point source, since M has absorbed the source structure information.
This information has been sacrificed for a decent bandpass calibration applicable to other sources.

4.3.2 K solutions (Baseline-based fringe-fitting)

Fringe-fitting is essentially a generalization of ordinary phase calibration (the phase part of G, B,
M, and/or MF) in which coefficients of the Taylor expansion of the phase in time and frequency
are solved for. Usually, the expansion is only taken to first order in time and frequency. In this
case, the phase can be written:

φ = φ(to, νo) + 2π(ν − νo)τ + 2πν(t− to)τ̇

In this equation, to and νo are a fiducial time and frequency within the solution interval (where
the phase is φ(to, νo)), and τ and τ̇ are the delay (phase slope in frequency) and delay-rate (phase
slope in time), respectively.

Note: As written, this equation defines the group delay (by virtue of referring the frequency to
the fiducial value) where the delay-rate is not necessarily the time derivative of the delay. For most
current observations, this is the case simply because the noise on the delay solution far exceeds the
variation implied by the delay-rates. The equation can also be written in terms of the phase delay,
where the νo is dropped from the second term, and the delay-rate is exactly the derivative of the
delay. This mode will be useful for the wide-bandwidth instruments of the near future, and will be
an option available for users of K.

Evidently, fringe-fitting permits more accurate phase tracking in both time and frequency when
delay and delay-rate errors are large. Such errors originate in independent clock and position errors
of antennas and in errors in the direction to radio sources. Fringe-fitting is normally associated
with VLBI because these clock and geometry errors are more significant there than for smaller
connected-element arrays, but the wide bandwidths and high frequencies of future instruments will
likely find fringe-fitting useful.

The current implementation of fringe-fitting in CASA is baseline-based and quite simple. It solves
the above equation for φ(to, νo), τ , and τ̇ for each baseline independently, assuming less than one
cycle of phase over the bandwidth and duration of the solution interval.

Note: Solutions outside the first ambiguity require implementation of a first-guess mechanism (an
FFT) to reduce the phase to within the first ambiguity. This is still under development.

A separate phase and delay is determined for each polarization, but only one rate is determined
for both.

Note: This is almost always justified since the phase and delay correspond to signal path lengths,
and the delay rate corresponds to the speed of the signal along the path. The phase and delay
are likely to be different for different polarizations since these signals traverse different electronics
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with different path lengths, but the speed at which the signal travels is the same. In any case, this
constraint will be relaxable in a future version.

To obtain a scan-based K solution, with an existing MF solution applied:

cb.setdata(msselect=’FIELD_ID==0’) # select data
cb.setapply(type=’MF’,table=’cal.MF’) # arrange apply of MF
cb.setsolve(type=’K’,table=’cal.K’,t=0) # arrange solve for K
cb.solve() # solve

Application is like any other type:

cb.setdata(msselect=’FIELD_ID IN [0,1]’) # select data
cb.setapply(type=’MF’,table=’cal.MF’) # arrange apply of MF
cb.setapply(type=’K’,table=’cal.K’) # arrange apply of K
cb.correct() # correct

Note that only nearest interpolation is available for application of K. This will be remedied in the
near future.



Chapter 5

Imaging Data

This chapter describes how to make and deconvolve images starting from a calibrated Measure-
mentSet.

5.1 The im Toolkit

The rm tool for imaging and deconvolution is imager (im). It has been designed to do grid-
ding/degridding of visibility data, Fourier transforms, deconvolution using various methods, etc. A
complete overview of the capabilities of Imager can be found in the User Reference Manual for the
imager tool on the web:

(http://aips2.aoc.nrao.edu/weekly/docs/user/SynthesisRef/node118.html#imager);

Note: at this time the Reference Manual still refers to the Glish syntax so you will have to convert
this to python syntax.

There are two sorts of tool functions in im; passive and active. The passive functions like setimage,
setdata etc. set the state of the im tool. Then, active functions such as makeimage, clean etc.
act on the data according to the previously set state.

To use an im tool, one must first construct it from a MeasurementSet and then configure it (set
its “state”). When you are finished, you destroy the tool (which of course does not affect the
actual MeasurementSet on disk). To construct an imager tool for a measurement set located at
/home/data/data.ms:

im.open(’/home/data/data.ms’) # Load data into imager tool
im.summary() # Summarize state of tool
im.close() # End the tool

The summary function is always useful to summarize the current state of the imager tool.

25
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5.2 Setting up the im Tool

5.2.1 Data Selection

To make an image from the visibilities one needs to select the part of the data from the Measure-
mentSet that is going to be used (e.g which pointing or channels or spectral window that is going
to be imaged). This is done with the imager.setdata function. If you don’t run this function, you
get all of the data.

Here are some examples (refer to the User Reference Manual for more details):

im.setdata(mode=’channel’, nchan=15, # Select 15 channels, third
spwid=2, fieldid=3) # spectral window and fourth field

# REMEMBER: everything is 0-based!

im.setdata(mode=’channel’, nchan=256, # Select every second channel
step=2, spwid=2, field=3) # to make 256 total channels

im.setdata(mode=’velocity’, nchan=63, # Select data based on
mstart=quantity(20.,’km/s’), # radio velocity
mstep=quantity(-100.,’m/s’),
spwid=2,
fieldid=3)

im.setdata(mode=’opticalvelocity’, # Select data based on
nchan=63,
mstart=quantity(20.’km/s’), # optical velocity
mstep=quantity(-100.,’m/s’)) #

# Consider a more complex data selection with diferent number of channels and
# different spectral windows:

im.setdata(mode=’channel’, spwid=[1,2], # Select spectral windows 2 & 3,
start=[3,4], # spwid 1: start at 4, select 10 chans
nchan=[10,12], step=[1,1]) # spwid 2: start at 5, select 12 chans

# step by 1 channel for each spwid

Other functions like imager.filter and imager.uvrange can also further reduce the data selected.

5.2.2 Setting Image Parameters

To set the actual imaging parameters use the imager.setimage function. This is a required
function in Imager (in fact, the only one presently). This function is passive; it just sets state so
that when you tell Imager to do something (like make an image), it knows what to do.

This function controls things like image size, cell size, spectral and polarization selection, sampling,
phasecenter, and number of facets (for wide-field imaging). Images constructed afterwards (using
e.g. the imager.clean function) will have these parameters.
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One important point to note is that the image size does NOT have to be a power of two. Just
choose some reasonably composite even number close to the number that you want. Do not use a
prime number since the Fourier Transform will then be very slow.

Another important point is that the data selection between setdata and setimage should be
aligned, that is, there must be some overlap (e.g., don’t select fieldid=1 in setdata and fieldid=2
in setimage). If you aren’t doing any averaging, then the data selection fields (fieldid, mode,
nchan, start, spwid, etc) should be the same in both function calls; see below for more details.

As an example, to set the image parameters for a simple image cube:

im.setimage(nx=600, ny=600, # Define image to be 600x600 pixels
cellx=quantity(0.5,’arcsec’),
celly=quantity(0.5,’arcsec’), # with 0.5’’ pixels for
fieldid=2, mode=’channel’, # field 3 and image 20 channels
nchan=20, start=10) # starting at channel 11.

The phase center is that of the specified field center. In addition, each selected channel will be
imaged as one channel of the output image.

5.2.3 Channel Selection and Combination

Functions imager.setdata and imager.setimage both have arguments nchan, start and step.
setdata is used to select channels. setimage is used to specify how many output channels the
image will have, and how the input channels should be combined (averaging, gridding).

You should call setdata first. After you have called this function, subsequent active Imager
function calls only have available to them the data that you selected.

Note however, that when you call setimage, the specification of the channels is still in an absolute
sense. Thus, if you set nchan=10, start=20 in setdata, and you wish to image all of these channels
(let us say one image plane per channel), you must also set nchan=10, start=20 in setimage.

You might think that you have already selected the 20 channels you want with setdata and
therefore in function setimage setting start=1 would select the first of those 20 channels. This
is not the way it works. If you asked for, say, channel 1 with setimage when you did not select
channel 1 with function setdata, that channel would be imaged but empty in the output image.

You use the channel selection parameters in setimage to specify how the selected channels will be
combined and how many output channels the image will have. Basically, there are two sorts of
ways that you might like to use the channels that you have selected.

Firstly, in a multi-frequency synthesis image, all of the selected channels are gridded onto the uv
plane to reduce band-width smearing (which would be incurred if you averaged the channels and
then gridded). In this case, the step argument is not generally relevant; leave it at 1 if explicitly
’mfs’ is used. For example:

im.setdata(mode=’channel’, # Select 32 channels and start at channel 11
nchan=32, start=10, step=1)

im.setimage(mode=’mfs’, # In mfs mode, create the average of
nchan=1, start=0, step=1) # the 32 channels selected above
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Or, if you want a straight average:

im.setdata(mode=’channel’, # select 32 channels starting at channel 11
nchan=32, start=10, step=1)

im.setimage(mode=’channel’, # Select 1 channel - this will be the
nchan=1, start=10, step=32) # average of the 32 channels selected above

Secondly, when you make a spectral-line cube, you may wish to select/combine channels in a variety
of ways according to the science you want to do. Here are some examples.

im.setdata(mode=’channel’, # Select 200 consecutive channels starting
nchan=200, start=10, step=1) # with channel 11

im.setimage(mode=’channel’, # Form an image plane for each
nchan=200, start=10, step=1) # selected channel

im.setdata(mode=’channel’, # Select 200 channels starting with channel
nchan=200, start=10, step=5) # 11, pick every fifth channel

im.setimage(mode=’channel’, # Form an image plane for each
nchan=200, start=10, step=5) # selected channel

im.setdata(mode=’channel’, # Select 200 channels starting with channel
nchan=200, start=10, step=5) # 11, pick every fifth channel

im.setimage(mode=’channel’, # Each channel of the image is formed by
nchan=100, start=10, step=10) # averaging 2 successively selected channels

In the above example, channels 11, 16, 21, 26, 31, etc... are selected. During imaging, channels 11
and 16 will be averaged to form output image channel 0. Channels 21 and 26 are averaged to form
output channel 1 and so on.

Of course you could also use mode=’mfs’ when combining groups of channels if you want an output
image of more than one channel. In this case the combination is done by gridding rather than
averaging.

Now to an example when one wants to make a cube image from multiple spectral windows:

im.setdata(mode=’channel’, # Select 600 data channels from
spwid=[0,1,2], nchan=[200,200,200], # 3 spectral windows(200 from each)
start=[0,0,0], step=[1,1,1], # start at channel 1, step by 1,
fieldid=1) # for field 2

im.setimage(mode=’channel’, # Create 150 channels, average
spwid=[0,1,2], nchan=150, # 4 channels for each image
start=0, step=4, # plane.
fieldid=1) #

In the above example we select 600 data channels from 3 spectral windows (200 from each spectral
window). Then in the setimage step we make imager combine 4 channels to make one image
channel. Note, the spectral windows should have some overlapping channels for this procedure.
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imager will figure out what the overlap is and create a continuous image cube from all 3 spectral
windows.

Now consider an example in which all data in spectral windows 1 and 2 are selected. Then define
an image in terms of velocity values:

im.setdata(fieldid=1, spwid=[0,1]) # Select field 2 and sp windows 1 & 2
im.setimage(nx=800, ny=800, # Image will have 800x800 pixels

cellx=quantity(0.5,’arcsec’),
celly=quantity(0.5,’arcsec’), # 0.5’’ on a side, create 30 channels,
mode=’velocity’, nchan=30, # start at -10km/s and step by
mstart=quantity(-10.,’km/s’),
mstep=quantity(1.8,’km/s’), # 1.8km/s. Do this for field 2
spwid=[0,1], fieldid=1) # and use both spectral windows

Examples for mosaics are given in Section 5.6.5.

5.3 Weighting

The above steps show how to set up the Imager tool as desired. In addition, before imaging one
may wish to set some values in the MeasurementSet itself. This is necessary for visibility weighting.
The visibility imaging weights are computed prior to the actual imaging and stored in a column of
the MeasurementSet called “IMAGING WEIGHT”.

The first time an Imager tool is attached to a MeasurementSet it initializes the imaging weights to
the natural weighting scheme. Thereafter, whatever weighting scheme you last used is the one you
will get if you don’t explicitly run one of the weighting functions.

The values in the IMAGING WEIGHT column are set, changed, and examined by the following
functions.

• im.weight – sets the column using one of natural, uniform, or Briggs (robust) weighting. For
the latter two methods, one can specify the field of view over which the minimization of the
sidelobes is done (thus achieving what is often called super-uniform weighting). Below are
some examples of how to set imaging weights:

im.weight(type=’natural’) # Natural weighting
im.weight(type=’uniform’) # Uniform over entire field of view
im.weight(type=’uniform’, npixels=300) # Uniform over specified size
im.weight(type=’briggs’, rmode=’norm’, # An example of Briggs

robust=0.5) # weighting

• im.filter – applies an optimal filter for a given shape (often called ’tapering’). In the
following example we apply a Gaussian filter:

im.filter(type=’gaussian’, # Apply a Gaussian taper
bmaj=quantity(4.0,’arcsec’),
bmin=quantity(2.5,’arcsec’), # that is 4x2.5 arcsec in size
bpa=quantity(60.,’deg’)) # at a position angle of 60deg
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• im.plotweights – plots the imaging weights either as a function of uv distance or on a
gridded plane.

• im.sensitivity – calculates and returns the sensitivity of the resulting weighting both ab-
solutely and relative to natural weighting.

• im.fitpsf – calculates the dirty point spread function and returns the best fitting Gaussian.

WARNING: All the weighting schemes modify the MeasurementSet and thus are conserved even
after destroying the Imager tool and may no longer be suitable for subsequent imaging. You can
of course reset the weighting scheme with the im.weight function.

5.4 Creating Images

It may be helpful to use the im.advise function to help determine the cell size, as well as the number
of pixels for a given field of view.

Imagine we want to make an image over a field of view of 10 arcmin. The im.advise function will
return the maximum pixel size required and number of pixels. If the number of facets required
is larger than 1 then one needs a wide-field imaging algorithm as described in the wide-field
Section below . The recommendations should always be considered in the context of your imaging
goals before being used. For example, to use the advise function on a split MeasurementSet that
contains only calibrated source data:

im.open(’source.ms’) # Create the imager tool
im.advise(fieldofview=quantity(10.,’arcmin’)) # Provide advice if FOV=10’

# Logger will report something like:
Maximum uv distance = 31068.1 wavelengths
Recommended cell size < 3.31956 arcsec
Recommended number of pixels = 192
Dispersion in uv, w distance = 16011.2, 6277.93 wavelengths
Best fitting plane is w = -0.0543279 * u + -0.418078 * v
Dispersion in fitted w = 4882.22 wavelengths
Wide field cleaning is not necessary

It is often useful to make a dirty image of the field before deconvolution. Use the im.makeimage
function to make a dirty image and the point spread function:

im.makeimage(type=’corrected’, # Make a dirty image and store
image=’dirty.image’) # it in the file called ’dirty.image’

im.makeimage(type=’psf’, # Make a PSF image and store it
image=’dirty.beam’) # in the file on disk called ’dirty.beam’
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5.5 Deconvolution

At this point, you are ready to deconvolve the point spread function (usually called the dirty beam)
from the dirty image. The goal of this step is to correct the dirty image for the sidelobes in the
point spread function which arise from the limited Fourier plane coverage in your observation.

The available deconvolution algorithms are CLEAN, MEM and multiscale-CLEAN. Each are de-
scribed below.

5.5.1 CLEAN deconvolution

Högbom, Clark and multi-scale variants of the CLEAN algorithm are available using the im.clean
function.

If you use a multi-scale algorithm, you should also set up the scale sizes via the im.setscales
function.

CLEAN hints

For data using a PSF with high sidelobes, data that hasn’t been properly calibrated, or in mosaics
in which the PSF used is very different between different fields, the clean residuals may begin to
diverge (rather than converge to zero). In these cases, there are a number of controls to help rein
the cleaning process:

• Reconcile the visibilities often and regenerate new residuals from the residual visibilities.

• If using one of the multi-field algorithms (mf), the setmfcontrol parameters provide addi-
tional controls on the process.:

– cyclefactor: The threshold in a major cycle by default is 1.5 times the product of the peak
residual and the maximum outer sidelobe. This can be increased to raise the threshold.

– cyclespeedup: Number of iterations after which it will increase the threshold in a major
cycle by 2.

• Manually set niter to a small value and restart clean multiple times. im subtracts the model
visibility everytime it is started with a model image. This wya, one can force a major cycle
every niter iterations.

• Use a mask around the region where one believes there is real emission. In confused regions
or with strong sources, use interactive masking to change the mask by looking at the residual
after some iteration of clean.

• Use a very low gain.

• Re-calibrate, edit the data.

Example: Force major cycles:
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im.open("orion.ms" ) # load data into imager (im) tool
im.setdata(mode="none" , # set all channels

spwid=[0, 1] , # set spectral windows 0 and 1
fieldid=6) # set field 7

im.setimage(nx=500, ny=500, # set 500 x 500
cellx=quantity(2.0,’arcsec’), # set cells to be 2"x2"
celly=quantity(2.0,’arcsec’),
stokes="I" , # set Stokes I
spwid=[0,1], # image spectral windows 1 and 2
fieldid=6) # image field 7

im.weight(type="briggs", # Briggs weighting parameters
robust=0,
fieldofview=quantity(10.,arcsec’))

im.make(’field_7c’) # make a blank image to use as starting model
im.setscales(scalemethod=’uservector’, # set multiscale clean scales

uservector=[0,3,10,50])
im.setmfcontrol(stoplargenegatives=-1) # continue component search even if

# we’ve found negative components

for k in range(10): # do a loop to force major cycles based
im.clean(algorithm=’mfmultiscale’, # on the number of iterations
niter=2000, # in the initial trial, 10000 iterations

# diverged so we choose a 2000 iterations
# (fraction of 10000) to force the major cycle

gain=0.1, threshold=’0.005Jy’, # force major cycles every 2000 iterations
model=[’field_7c’],
residual=[’field_7c.residual’],
image=[’field_7c.restored’],
mask=[’orion.mask2’]) # use a tight mask around emission

# you can generate this with interactivemask

5.5.2 Maximum Entropy Method Deconvolution (MEM)

Maximum entropy and maximum emptiness methods are available. Functions that implement
MEM are im.mem and tt dc.mem.

im.setdata(mode=’channel’, # Select 200 consecutive channels starting
nchan=200, start=10, step=1) # with channel 11

im.setimage(mode=’channel’, # Form an image plane for each
nchan=200, start=10, step=1) # selected channel

im.mem(algorithm=’entropy’, # Select maximum entropy algorithm
niter=10, # niter is smaller than that used in CLEAN as

# it is not the components but the number of
# iterations to maximize the entropy

sigma=quantity(0.1,’Jy’), # target noise to achieve in residual image
targetflux=quantity(10.,’Jy’),# an estimate of the total flux in the image -

# if uncertain, start with 1/10th to 1/2 of the
# expected source flux

constrainflux=F, # set this to ’T’ if you want the total flux fixed
# to the target flux specified above
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prior=’priorimage’, # if available, an image that gives some knowledge of
# how the flux is distributed. This is not necessary.

image=[’maxen.image’], # output images
model=[’maxen.model’],
residual=[’maxen.resid’],
mask=[’mask.im’]) # If needed you can specify a region to constrain the

# flux

MEM hints

How to set up MEM so it can converge; how to decide when to stop MEM:

• Run MEM with only a few iterations (niter=5-10) and no mask. The image will be poor
but you can use it to define a mask. This is critical as MEM can easily diverge if you have
complicated emission and no mask. Go through this procedure, increasing niter a bit until
you have a good mask.

• Start with about half of the flux density expected in the final image. This allows MEM
adequate cycles to achieve convergence. If you start with the full known flux density MEM
may not converge to the correct flux. If you start with too little flux density, MEM may
obtain a divergent flux. If in doubt, start with a small value, and watch the convergence.
If you get no convergence on the final map flux with 20 to 50 iterations, increase the input
Target Flux until you see MEM behaving reasonably. Note: when using a single-dish image
as the starting model, the target flux should be set to the value of the single-dish flux since
this is a known, rigid constraint.

• Use a sigma input that is about or lower than what you expect for the final image. This is
not too critical. If it is clearly too high, MEM will stop before it has obtained a good image.
You want to make sure sigma is low enough that MEM continues to deconvolve the image
until it has converged to a good solution. You will probably stop MEM manually anyway
based on the displayprogress plot.

• When you have arrived at good initial inputs to MEM and you have a good mask, the
displayprogress plot will show discontinuities between each major cycle but steadily increasing
flux. If, during a cycle, the peak flux and sigma show signs of instability (they get a small
bump). This is the first sign that MEM is digging too deep. You will want to stop MEM
before the peak and sigma become unstable.

• If you stop the iterations before MEM gets unstale will get you a nice flat residual map and
a good deconvolved image with low background. If you allow MEM to dig deeper, you will
get increased background, stripes and a worse residual image.

• When in doubt, make lots of images and compare. Also, compare MEM with CLEAN or
multi-scale CLEAN.

The deconvolution methods do not keep a list of CLEAN components in sequence. Instead the
CLEAN components are immediately added to the model image. This allows interoperability of
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the CLEAN and MEM algorithms as well the deconvolution functions in the Deconvolver tool. It
also allows editing of the resulting images using the Image tool.

The deconvolution functions can return the residual and restored images, as well as the updated
model image. In addition, there are imager.residual and imager.restore functions that also
compute residual and restored images. The distinction is that in the former, the residual is that
calculated by the deconvolution method at the end of iteration, whereas the latter returns the
residual calculated by going back to the original visibility data (except for the cases of multi-field
and wide-field algorithms).

An example of using Clark CLEAN deconvolution with the imager tool is given below:

im.clean(algorithm=’clark’, # Clean a single field with Clark clean
niter=2000, gain=0.2, # using 2000 iterations, set loop gain=0.2,
model=[’model_2000’], # The model image is called model_2000,
residual=[’residual_2000’],# the residual image is residual_2000,
image=[’restored_2000’]) # the final restored image is restored_2000.

# All images are written to disk.

If the model image does not pre-exist it will be created and filled with the CLEAN delta function
components found. If it does pre-exist (it may be non-empty (perhaps the result of a prior decon-
volution) its Fourier transform is first subracted. This is also how you would continue to CLEAN
deeper from a prior run of clean or mem.

Note that the model image is updated when this function finishes. So if it was non-empty on input,
you should save a copy first, if you wish to preserve that model.

5.5.3 Multi-scale CLEAN

Background on CLEAN versus Multi-scale CLEAN: Delta function CLEAN algorithms,
such as the Clark or Hogbom algorithms, must use a modest gain factor (traditionally 0.1) in
order to image extended emission in a reasonable manner. Otherwise, emissions and sidelobes get
confused and error striping can result.

Multi-scale CLEAN algorithms attempt to recognize that the emission in the sky usually comes in
a variety of scale sizes; it decomposes the image into Gaussians of the specified scale sizes. This
means it does not spend huge amounts of time CLEANing large extended sources pretending that
they are really collections of delta functions. However, note: because you are CLEANing multiple
scale sizes, multi-scale CLEAN generally takes longer than CLEAN to run.

The im.setscales function allows you to choose these scales, either with an automatic method
(you say how many scales you want) or by direct specification of the scale sizes in pixels.

Multi-scale CLEAN does not suffer from the same problems as delta function CLEAN and can use
a larger value of the gain factor. Sometimes an oscillatory pattern will occur in the total cleaned
flux with the peak residuals bouncing back and forth between positive and negative. If this occurs,
try reducing the gain factor or try reducing the size of the largest scale.

As an example:
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im.setdata(mode=’channel’, nchan=15, # Select 15 channels,
start=10, step=1, # starting with channel 11, use
spwid=2, fieldid=3) # spectral window 3 and field 4

im.setimage(nx=600, ny=600, # Set up the imaging parameters
cellx=quantity(0.5,’arcsec’), # Combine all channels into a single
celly=quantity(0.5,’arcsec’),
mode=’mfs’, # plane using multi-frequency synthesis.
spwid=2, fieldid=3))

im.setscales(scalemethod=’nscales’, # Set up multi-scale components
nscales=3) # Specify number of scales, allow imager

# to determine the scale sizes.
im.clean(algorithm=’msclean’, # Deconvolve using multi-scale CLEAN

model=[’model’], # Call the model image ’model’ and
image=[’restored’], # restored image ’restored’
niter=100, gain=0.3) # clean down 100 iterations using a gain loop

# of 0.3.

Multi-scale CLEAN hints

• Use im.setscales to set scalemethod=’uservector’. Look at the general distribution of emission
and choose scales that are appropriate for the emission (e.g., start with 0 and 3 pixels; add
scale sizes until the largest scale is about the size of the largest diffuse clump in the map). For
example, assume you have emission that covers a 4 arcminute area, and there is significant
diffuse emission that looks like it has a size scale of about 30 - 40 arcseconds. With 1 arcsecond
pixels, choose deconvolution scales of [0,3,10,30] pixels. You can go smaller (e.g., [0,2,5,10]),
but don’t go much larger.

• The more scale sizes you choose, the more memory it will take to deconvolve the image. Be
conservative.

• The largest scale you choose should fit in any deconvolution masks you set (or multi-scale
CLEAN will not be able to use the largest scale).

• If you have a mosaic where the fields are not sampled very quickly (e.g., field uv coverages
differ somewhat) then the PSF will also differ between fields, sometimes significantly. CASA
finds an average PSF that is common to all fields and cleans down to a certain level in
each major cycle. In almost any mosaic that is taken with current instrumentation, fields
are observed at different times and can be observed at slightly different frequencies. Thus,
the PSFs between fields will differ enough that convergence in multi-scale CLEAN can be
challenging. Try: in imager.setmfcontrol, start with cyclefactor=3 and cyclespeedup=500.

• While multi-scale CLEAN is running, watch the progress. If there is significant large-scale
emission, initial major cycles will only get flux on the largest scale. As the number of cycles
increase, more scales will begin to accumulate flux. Eventually, smaller scales will go negative;
don’t panic. The smaller scales are compensating for errors in the large scale flux distribution.
Stop the iterations when you see minimal or negative flux on all scales. We recommend using
the im.setmfcontrol method with the stoplargenegatives=-1 setting. Notice as the number of
iterations increases, the final threshold obtained in the residual image decreases.
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5.6 Mosaicing

The Fourier transform relationship between the Fourier plane and the image plane must include
the primary beam:

V (u) =
∫

A(x)I(x)e−i2πuxdx

Where V (u) is the measured visibilities; A(x) is the primary beam response; and I(x) is the true
brightness distribution on the sky.

Hence, given the image, one can simulate the corresponding uv data. However, given the data and
desiring the image, we have an inverse problem to solve.

Early attempts at mosaicing treated each field independently, deconvolving and self-calibrating
each, and then sewing the overlapping fields’ images together via the basic mosaicing equation:

I(x) =
∑

f
If (x)Af (x)∑
f

A2
f
(x)

.

Where the subscript f refers to each field in the mosaic. However, Cornwell (1988) demonstrated
that better results can be obtained via a simultaneous deconvolution of the data from all the fields.
This simultaneous deconvolution was achieved by using maximum entropy (MEM) or maximum
emptiness as a solution engine to solve the inverse problem. Total power could be added as addi-
tional fields with their own primary beam. However, MEM’s positivity bias, which is detrimental
to low SNR imaging, led to a search for other algorithms to image multi-field data.

Sault et al. (1996) have implemented mosaicing algorithms which can use either CLEAN or MEM
for simultaneous deconvolution.

5.6.1 The CASA Mosaicing Algorithm

Cornwell, Holdaway, and Uson (1994) proposed the following mosaicing algorithm: generate the
mosaic of the dirty images and a single approximate point-spread function (PSF), and then proceed
with any conventional single field deconvolution algorithm. For high-quality Fourier-plane coverage
and similar PSF’s for all fields in the mosaic, this approach is not limited by the differences in the
approximate PSF and each field’s actual PSF until the possible image dynamic range exceeded a
few hundred to one.

CASA takes this approach to mosaicing a step further: perform an incremental deconvolution of the
residuals with the approximate PSF, with an exact subtraction of the cumulative model brightness
distribution at the end of each incremental “major cycle” (similar in concept to the major cycles
of the Clark CLEAN).

If all of the fields are observed with many short snapshots over and over again (this is the preferred
way to make a mosaic observation) then each field will have similar Fourier coverage and hence
similar synthesized beams. An approximate PSF can be created which is a fairly good match to the
actual PSF of each of the fields. Also, if the sky-coverage of the observed fields is Nyquist or better,
then the approximate, shift-invariant PSF will be a reasonable match to the actual PSF of sources
at various locations across the mosaic. The residual visibilities from each field can be transformed
and mosaiced to make a single residual mosaic image. This mosaic image can be deconvolved with
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the deconvolution method of your choice; for example, with Clark CLEAN, Multiscale CLEAN,
maximum entropy, or maximum emptiness.

The deconvolution algorithm cannot deconvolve arbitrarily deeply, because at some level the dis-
crepancies between our approximate shift-invariant PSF and the true PSF at any location in the
image will become apparent, and we will start “cleaning” error flux. Hence, we need to stop de-
convolving when we have gotten down to the level of these PSF discrepancies. At this point, we
take the part of the model brightness distribution we have just deconvolved and calculate model
visibilities (using the measurement equation) and subtract them from the (corrected) data visibil-
ities. To the extent that the primary beam and sky pointing are exact, the visibility subtraction
is also exact. The residual visibilities can then be re-mosaiced, but the peak residual is at a much
lower level. The process of deconvolving with the approximate, shift-invariant PSF then continues,
and another increment to the model brightness distribution is formed, removed from the remaining
residual visibilities, and added to the cumulative model brightness distribution. Borrowing from the
Clark CLEAN’s terminology, we call each cycle of incremental deconvolution and exact visibility
subtraction a “major cycle”.

5.6.2 How to Set Up a Mosaic Image

5.6.2.1 Set the Data Fields

Mosaicing can be a time consuming process, so it may be worthwhile to make a restricted version of
the mosaic first. For example, you may want to image a few fields at lower resolution to reduce the
number of pixels you are imaging. Eventually, you will want to image most or all of the observed
fields. Use the setdata function to restrict the data over which you will generate your image, e.g.,

im.setdata(fieldid=range(0,4)) # Select first 4 fields

Set the Image

One of the fields must be specified in im.setimage to provide the direction of the resultant image’s
reference pixel. For example, with a 25 pointing (5 x 5 raster) observation, field 13 could be the
central field:

im.setdata(fieldid=range(0,25)) # Select all 25 pointings
im.setimage(nx=256, ny=256, # Create a 256x256 resultant image

cellx=quantity(3.,"arcsec"), # Choose a cell size of 3x3 arcseconds
celly=quantity(3.,"arcsec"),
fieldid=12) # Select field 13 as the center

5.6.2.2 Setting the Voltage pattern (primary beam)

We must account for the primary beam pattern when imaging the same region but from different
pointings. CASA currently has primary beam patterns stored for:

1. ATCA
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2. GBT

3. GMRT

4. HATCREEK

5. NMA

6. NRAO12M

7. NRAO140FT

8. OVRO

9. VLA

10. WSRT

11. OTHER

in addition, there are specific beams available for each of the following:

1. ATCA L1, ATCA L2, ATCA L3, ATCA S, ATCA C, ATCA X, GBT, GMRT, HATCREEK,
NRAO12M, NRAO140FT, OVRO, VLA, VLA INVERSE, VLA NVSS, VLA 2NULL, VLA 4,
VLA P, VLA L, VLA C, VLA X, VLA U, VLA K, VLA Q, WSRT, WSRT LOW

im.setvp(dovp=T) # dovp=do the voltage pattern correction
# this will default to use the voltage pattern for the
# telescope used and frequency observed. If no such
# default exists, a warning is issued.

although rare, if a voltage pattern is not provided, you can specify your own voltage pattern and
bind it to the telescopes in a MeasurementSet by using the vpmanager (voltage pattern manager.
The Vpmanager will produce a table describing the different telescopes’ voltage patterns, and this
table can be used by Imager.
See the vpsection of the User Reference Manual for details:

http://aips2.nrao.edu/stable/docs/user/SynthesisRef/node228.html

5.6.2.3 Mosaic Weighting

If you use “uniform” or “briggs” weighting, the weighting details will depend upon the way the
data are gridded. However, if all fields are specified in function setdata, then the weights from all
fields will be gridded onto a single grid for the purposes of calculating the weights. This is valid for
natural weighting but will not be valid for other types of weighting. You probably want to weight
the data on a field-by-field basis:

im.weight(type="uniform",mosaic=T) # This will weight each field separately
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Mosaic Options

For mosaicing, there is a key option which can be used. In particular, the gridding can use the
primary beam as the convolution function. This is achieved using the option ftmachine="mosaic".

im.setoptions(ftmachine=’mosaic’) # do a mosaic gridding

The normal gridder uses a spheroidal function to grid the data. For mosaics, using the Fourier
transform of the primary beam as the gridding function has some advantages.

After a major cycle, the primary beam correction using the mosaic gridder leaves the (uncleaned)
noise floor flat while it gets the deconvolved component scaled properly for flux scale. The use of
the spheroidal gridding function, after correcting for the primary beam, tends to lift the noise at
the edge of the beams and thus is non-optimal for images with emission extending to the edge of
the mosaic.

In addition, controls are available using the setmfcontrol function to help adjust the cycle param-
eters (the conditions for ending the deconvolution cycles) for multi-field (and wide-field) imaging.

# Set the image plane flux scale type to "SAULT"
# Set a cutoff for the minimum primary beam level to use
# constpb is used for SAULT weighting to set the flux scale constant above
# this level.
im.setmfcontrol(scaletype=’SAULT’, # This selects Sault weighting which uses a

# primary beam function that is flat across most
# of the mosaiced image but is attenuated at
# the edges of the mosaic so that the noise level
# does not become excessive there

minpb=0.07, # minimum primary beam level to use in each field
constpb=0.4) # The noise is constant above this primary

# beam level

5.6.3 Mosaic Deconvolution

To image and deconvolve, use either imager’s CLEAN or MEM functions. Only algorithms with
the “mf” prefix will perform multi-field imaging correctly (i.e. algorithm “clark” will grid the data
from all specified fields onto the same grid, resulting in a very confused image. CLEAN’s mosaicing
methods include mfclark, mfhogbom, and mfmultiscale, while MEM’s mosaicing methods include
mfentropy and mfemptiness. Some hints for CLEAN and MEM are provided at 5.6.4.2 and 5.6.4.3,
respectively. A full example of how to create a mosaic image is given below. A detailed script is
given at the end of this chapter.

im.open(’data.ms’) # load data into imager
# choose all fields (1-10) and all channels

im.setdata(mode=’channel’, nchan=62, start=0, # restrict the data to the
step=1,fieldid=range(0,10), spwid=[0,1]) # first two spectral windows

im.setimage(nx=640, ny=256, # select the output image size
cellx=quantity(0.5,’arcsec’), # and cell size properties
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celly=quantity(0.5,’arcsec’),stokes=’I’,
mode=’channel’,
nchan=18,start=2,step=5,fieldid=0,
spwid=[0,1]) # do 18 channels starting

# at channel 3 and averaging 5
# channels; use field 1 as the mosaic
# field center

im.setvp(dovp=T) # do primary beam correction
im.weight(type="uniform",mosaic=T) # use uniform weighting for each field
im.setoptions(padding=1.0, ftmachine=’mosaic’) # do mosaic gridding
im.clean(algorithm="mfclark" , niter=1000, # use mfclark algorithm

gain=0.1, threshold=quantity(0.005,’Jy’),
model=["src.all.cln.model"], # stop cleaning at a threshold

# of 0.005 Jy
image=["srcmos"], residual=["src.all.cln.resid"])

5.6.4 Mosaic Details

5.6.4.1 Controlling the Major Cycles

The key to making the incremental deconvolution in CASA multi-field imaging successful lies in
controlling just how deeply to deconvolve in the major cycles. The control parameters discussed
here can be set withim.setmfcontrol. Deconvolving too deeply with the approximate PSF will
waste computation time as slightly different PSF sidelobes add and subtract components. Not
deconvolving deeply enough also causes problems as it necessitates more major cycles, again slowing
down the computation time.

• by increasing the cyclefactor. The major cycle cleaning threshold is a fraction of the peak
image residual. That residual fraction is determined by the cyclefactor multiplied by the peak
negative sidelobe of the approximate PSF. Stopping the major cycle cleaning sooner can be
accomplished by increasing the cyclefactor. Values ranging between 2 and 4 are common.

• by decreasing the cyclespeedup. What if the cyclefactor is set too low? The cycle thresh-
old as calculated above can be made to drift upwards by setting the cyclespeedup. The
threshold will double every cyclespeedup iterations in the major cycle until the major cycle
stops. If the cyclespeedup is less than or equal to 0.0, no adjustments to the calculated cycle
threshold will be made.

In addition to these cycle control parameters, which are applicable to mosaicing with CLEAN,
Multi-Scale CLEAN, MEM, or Maximum Emptiness, there are two more control arguments set by
im.setmfcontrol which are applicable only to Multi-Scale CLEAN. These are stoplargenegatives
and stoppointmode, which are discussed below.

5.6.4.2 Multi-Scale CLEAN Hints

Sometimes in the first few iterations of Multi-scale CLEAN in the mosaicing context, the largest
scale will be dominated by large negative residuals (i.e. this is just the negative bowl, integrated
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over the area of the largest clean-component scale). One way to fix this is to make the largest scale
smaller. Another way is to use a tighter mask which excludes finding large scale components in
the bowl region. And a third, ad hoc way is to stop the major cycle when a negative component is
found on the largest scale. This allows the exact subtraction to proceed, often resulting in a reduced
bowl level. Stopping the major cycle upon encountering a negative component on the largest scale
should only be performed on the first few cycles, as during subsequent cycles small amplitude large
scale components may be required to make adjustments in the image. The number of cycles for
which stopping when a negative component is found on the largest scale can be controlled by the
parameter stoplargenegatives in imager.setmfcontrol. As smaller scales may require negative
components to correct for errors made by “over-cleaning” in the larger cycles, no restriction should
be placed on negative components from smaller size scales.

5.6.4.3 MEM Hints

If there are bright unresolved or barely resolved sources in the field, it may be advantageous to
perform a Clark Clean down to the level of the peak extended emission, or include a component
list in the model, because MEM does not work well on bright point-like sources.

The maximum entropy/emptiness algorithm has been modified to fit into the incremental decon-
volution/major cycle framework adopted by mosaicing in CASA. These algorithms deal with both
the incremental brightness distribution, which it seeks to solve given the approximate PSF and the
residual mosaic image, and the cumulative brightness distribution for the calculation of the entropy
function and its gradients. When maximum entropy starts up, it typically takes the algorithm four
or five iterations to “find itself” and get the control parameters set to achieve the proper balance
between the gradients of the entropy and the χ2. Once a good balance is struck, the algorithm
makes marked progress towards convergence. At the end of a major cycle, the relevant control
parameters are saved and used for the next major cycle.

An example similar to the single field case but with the algorithm changed to ’mfentropy’ for
multiple fields:

im.setdata(mode=’channel’, # Select 200 consecutive channels starting at 11
fields=range(0,10), # Select 10 mosaic fields
nchan=200, start=10, step=1) #

im.setimage(mode=’channel’, # Form an image plane for each selected channel
nx=300,ny=300, # Create a 300x300 pixel image with
cellx=quantity(2.,’arcsec’),
celly=quantity(2.,’arcsec’), # 2"x2" pixels
nchan=200,start=10,step=1, # use all channels selected in setdata
field=5) # Use field 6 as the mosaic center

im.mem(algorithm=’mfentropy’, # Select maximum entropy algorithm for mosaic
niter=10, # niter is smaller than that used in CLEAN as

# it is not the components but the number of
# iterations to maximize the entropy

sigma=quantity(0.1,’Jy’), # target noise to achieve in residual image
targetflux=quantity(10.,’Jy’),# an estimate of the total flux in the image -

# if uncertain, use 1/10 of the expected flux
constrainflux=F, # set this to ’T’ if you want the total flux fixed
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# to the target flux specified above
prior=’priorimage’, # if available, an image that gives some knowledge of

# how the flux is distributed. This is not necessary.
image=[’maxen.image’], # output images
model=[’maxen.model’],
residual=[’maxen.resid’],
mask=[’mask.im’]) # If needed you can specify a region to constrain the

# flux

5.6.4.4 Flux Scale Images

When correcting for the effects of the primary beam to achieve an accurate and uniform flux scale
across the image (i.e. by dividing by the primary beam in the case of a single field observation),
the noise and errors at the edge of the mosaic sky coverage are amplified. The noise amplifica-
tion distracts from the visual beauty of the image and may complicate the image’s display and
interpretation.

Sault et al (1996) endorse a different image plane weighting in the mosaicing which results in
a constant noise level across the image, but has a variable flux scale, e.g., for Nyquist sampled
mosaics, flux scale decreases outside of the overlap region of the mosaic field - just as the single
field fluxscale decreases toward the edge of the primary beam.

In CASA an image plane weighting similar to Sault’s scheme has been implemented, but the noise
goes to zero outside the region covered by the primary beams. The flux scale is position dependent,
but it is mostly flat over most of the mosaic sky coverage (depending on how constpb is set
within the setmfcontrol function and how much overlap there is between pointing centers). In
order to get a constant flux image across the mosaic, one must divide by the fluxscale image (See
Section 7 for details on manipulating images). The flux scale images can be created by setting
the fluxscale argument in Imager’s setmfcontrol function (in case an inverse-Sault weighting
is needed to correct the image). Regions outside the multi-field primary beam pattern will have a
zero value.

5.6.4.5 Masks with Mosaic Fields

Routinely in single field deconvolution, only the inner quarter of an image is deconvolved so that
the sidelobes from this region can be correctly subtracted from the entire image. However, in the
multi-field case, such a restriction usually does not exist. The major cycles only deconvolve down to
a certain level, fixed by the sidelobe characteristics of the PSF. After that, the exact subtraction of
the deconvolved flux is carried out. Typically, the exact subtraction is performed by multiplying the
brightness distribution by a field’s primary beam, convolving by that field’s exact PSF, multiplying
by the primary beam again, and subtracting from the previous cycle’s residual mosaic. The two
primary beam multiplications ensure that the far out effects of the PSF, which will not be correct
due to the full-image deconvolution, will not effect the model brightness distribution.

If no mask is used, the major cycle deconvolution algorithms create a mask from the generalized
primary beam pattern of all observed fields, with zero outside the outermost fields’ primary beam
main lobes. If you don’t want this mask for some reason, you should supply your own mask image.
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5.6.5 An Example Mosaic Script

The following script makes an interferometer-only mosaic image from the multi-field test measure-
mentset which is distributed with CASA:

im.open(’XCAS.ms’)
# Use all the data for the mosaic
im.setdata(mode="none",

spwid=[1:2], fieldid=[1:7])

# Use the first field as the image center
im.setimage(nx=256, ny=256, cellx="3arcsec",

celly="3arcsec", stokes="I", doshift=F,
mode="mfs", spwid=[1:2], fieldid=1, facets=1)

# Weight each field individually
im.weight(type="uniform",mosaic=T)

# Use all the data for the mosaic
im.setdata(mode="none", nchan=1, start=1, step=1,

spwid=[1:2], fieldid=[1:7])

# Using the mosaic gridder that uses the FT of the Primary Beam as the gridding function
im.setoptions(ftmachine=’mosaic’)

# Use the voltage pattern (primary beam) - it will lookup the telescope and use the
# appropriate PB for the observing frequency
im.setvp(dovp=T, usedefaultvp=T, dosquint=F)

# Make a MEM image (using mask image) - set names for results
maskname = [’mem.mask’] # maskname will be mem.mask
modname = [’mem.model’] # modname will be mem.model
imgname = [’mem.image’] # imgname will be mem.image
resname = [’mem.resid’] # resname will be mem.resid
scalename = [’mem.scale’] # scalename will be mem.scale

# set some multi-field control parameters.
im.setmfcontrol(cyclefactor=3.0, # set to 3.0* max sidelobe * max residual

cyclespeedup=20.0, # threshold doubles in this many iterations
fluxscale=scalename) # name of fluxscale image

im.mem(algorithm=’mfentropy’, # use multi-field Maximum Entropy algorithm
niter=80, sigma=’0.001Jy’, # number of iterations and target sigma
targetflux=’10.0Jy’, # target flux for final image
constrainflux=F, # constrain image to match target flux
displayprogress=T, fixed=F, # display progress, don’t keep model fixed
complist=’’, prior=’’, # set these to blank
mask=maskname, # setup output file names
model=modname,
image=imgname,
residual=resname)
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# Make a multi-scale CLEAN image for comparison
modname = [’msclean.model’] # modname will be msclean.model
imgname = [’msclean.image’] # imgname will be msclean.image
resname = [’msclean.resid’] # resname will be msclean.resid
scalename = [’msclean.scale’] # scalename will be msclean.scale

im.setscales(scalemethod=’uservector’, # method by which scales are set
uservector=[0.0, 3.0, 10.0, 20.0]) # vector of scale sizes in pixels

### please note the use of parameter stoplargenegatives
### which is set to false to let multi-scale clean to continue despite hitting
### a negative on the largest scale

im.setmfcontrol(cyclefactor=3.0, # set to 3.0 * max sidelobe * max residual
stoplargenegatives=-1, # continue despite negatives
fluxscale=scalename) # name of fluxscale image

im.clean(algorithm=’mfmultiscale’,# use multi-field multi-scale algorithm
niter=1000, gain=0.6, # number of iterations and loop gain
threshold=’0Jy’, # stop cleaning at this threshold
displayprogress=T, fixed=F, # display progress, don’t keep model fixed
complist=’’, # name of component list
mask=maskname, # set names for produced files
model=modname,
image=imgname,
residual=resname)

# unload data from tool
im.close()

5.7 Imaging combined single dish/synthesis data

5.7.1 Methods

Below is a list of current methods used to combine single dish and synthesis data (Stanimirovic
2002).

• Feathering in the image domain (IMMERGE in miriad, IMERG in AIPS, im.feather in
CASA). Images are feathered together in the Fourier plane. Intermediate size scales are
down-weighted to give interferometer resolution while preserving single-dish total flux density.

This is the fastest and least computer intensive way to add short-spacings. Also the most
robust way relative to the other 3 methods which all require a non-linear deconvolution at the
end.

• Linear combination - the single-dish image and the interferometer dirty image are linearly
combined in the image plane, a composite beam is constructed, and the resulting composite
image is deconvolved with the composite beam. Existing packages don’t directly support this
method but it can be done via image manipulation and subsequent deconvolution.
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Straight linear combination is not optimal but this method has the advantage that it does not
require either Fourier transformation of the single-dish data which can suffer severely from
edge effects, nor deconvolution of the single-dish data which is especially uncertain and leads
to amplification errors.

• Model Image - use the single-dish image as the starting model and subtract this model from
the uv data. In the shortest uv spacing, the single-dish-sampled structure will be preserved
in the model information. In the uv overlap region, the source structure can be modified
from the single-dish flux density distribution during deconvolution using the interferometer
uv data. In the interferometer-only region of the uv-plane, the deconvolution will proceed as
usual with no single-dish constraints.

this works effectively with good uv overlap (i.e., large single-dish).

• Full Joint Deconvolution - single-dish and interferometer data are gridded together. All
regions of the uv-plane are jointly deconvolved.

Theoretically the best way to do short spacing correction. This method depends heavily on a
good estimate of the interferometer and single-dish noise variances.

Note: These techniques rely on images (data and masks) having the same number of axes. If errors
are encountered with complaints about image shapes, use the image.summary function to look at
the input images axes.

5.7.2 Feathering

In the image feathering technique, first the calibrated single-dish image is corrected for the beam
response and the calibrated interferometric data are Fourier transformed and deconvolved to create
an interferometer-only image.

The feathering technique does the following:

• The single-dish and interferometer images are Fourier transformed.

• The beam from the single-dish image is Fourier transformed (FTSDB(u,v)).

• The Fourier transform of the interferometer image is multiplied by (1-FTSDB(u,v)). This
basically down weights the shorter spacing data from the interferometer image.

• The Fourier transform of the single-dish image is scaled by the volume ratio of the interfer-
ometer restoring beam to the single dish beam.

• The results from c and d are added and Fourier transformed back to the image plane.

The term feathering derives from the tapering or down-weighting of the data in this technique;
the overlapping, shorter spacing data from the deconvolved interferometer image is weighted down
compared to the single dish image while the overlapping, longer spacing data from the single-dish
are weighted down compared to the interferometer image.
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The tapering uses the transform of the low resolution point spread function. This can be specified
as an input image or the appropriate telescope beam for the single-dish. The point spread function
for a single dish image may also be calculated using makeimage.

Advice: Note that if you are feathering large images, be advised to have the number of pixels along
the X and Y axes to be composite numbers and definitely not prime numbers. In general FFTs
work much faster on even and composite numbers. You may use subimage function of the image
tool to trim the number of pixels to something desirable.

Note: This method is analogous to the AIPS IMERG task and the MIRIAD immerge task with
option ’feather’.

Feathering Example:

im.setvp(dovp=T) # Do primary beam correction; it will use the default
# primary beam for the single-dish telescope
# and frequency

im.feather(image=’feathered.image’# Resulting, combined image
highres=’synthesis.image’, # Synthesis image
lowres=’singledish.image’) # Single-dish image

# If the beam response of the single-dish telescope
# is not stored in AIPS++ then, one can optionally
# specify the ’lowpsf’ image if available.

The feather task works on both single plane images and on multi-plane images (data cubes). The
synthesis and single-dish images must have the same number of axes however; for example, default
images in CASA have axes of: 1) Direction (e.g., RA) 2) Direction (e.g., Dec), 3) Stokes (e.g., I),
and 4) Spectral (e.g., frequency or velocity). These axes can be manipulated (added or deleted) as
necessary using the image tool; this tool has not yet been ported to CASA .

5.7.3 uv-plane Combination

There are two principal methods for the uv-plane combination of single-dish and synthesis data.

• Use the single-dish image as a starting model for the deconvolution (CLEAN or MEM).

• Full joint deconvolution of the datasets.

Use single-dish image as starting model

In this first technique, a non-linear combination of the synthesis and single-dish data is performed
in the uv plane. In the CASA implementation, the single-dish image is used to make a model
(clean component) image which is then used as the starting point for the deconvolving algorithm
to interpolate the missing short baselines.

During the deconvolution step in the CLEAN process, the interferometric data is extrapolated to
shorter spacings. When starting CLEAN with a model from a single-dish image, the single-dish
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image is Fourier transformed and data in the area of uv-overlap is compared in a major cycle. The
uv spacings provided by the single-dish image thus provides information (constraints) which help
to prevent CLEAN from over-extrapolating in this region of the uv-plane.

The imager function, setsdoptions can be used to set a factor by which to scale the single-dish
image, if necessary (typically to convert from K to Jy/beam).

The sdpsf parameter (optional) should be used if an external PSF image of the single dish is
needed to calculate the beam parameters of the primary beam of the dish. This is usually needed
if the single-dish image is from a non standard telescope or the beam is not in the CASA system;
see the example in feather - 5.7.2 for generating a beam in this fashion.

A mask image can be provided to the clean algorithm. This mask image helps guide the clean (and
mem) algorithms and should be chosen carefully based on the ’known’ emission.

Eventually, it will be possible to create a mask image from an existing image via an interactivemask
task. But this is not implemented yet. In CASA you will need to use the makemask task to create
simple clean boxes.

There are two ways to get a model from a single-dish image:

• Directly convert the single-dish image from Jy/beam to Jy/pixel.

• Deconvolve the single-dish image with MEM or multiscale-CLEAN (using large scales only)
to obtain a model image (Jy/pixel).

Example

Example: Directly convert the single-dish image to a model and use this as a starting model for
the deconvolution.

im.open(filename=’n4826_both.ms’) # Create imager tool using synthesis data
im.setdata(fieldid=range(0,7), # Select mosaic fields 1-7

spwid=[0,1,2]) # Select spectral windows 1-3
im.setimage(nx=256, ny=256, # Resultant image will be 256x256

cellx=quantity(1.,’arcsec’),
celly=quantity(1.,’arcsec’), # with 1" pixels
stokes=’I’, # Resultant image will be Stokes I
mode=’channel’, # Define image planes by channel
nchan=30, # 30 planes
start=46, # Starting with channel 47
step=4, # Averaging 4 channels
fieldid=0, # Use fieldid=1 as the phase center reference
spwid=[0,1,2]) # Use spectral windows 1-3

im.setmfcontrol(scaletype="NONE", # Set some multi-field processing parameters
# NONE indicates no scaling

minpb=0.1) # Level at which the primary beam will be applied
im.setvp(dovp=T) # Do primary beam correction

# Make starting model image from single-dish image
im.makemodelfromsd(sdimage=’n4826_12mchan.im’, # specify single-dish image
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modelimage=’n4826_joint1’, # specify name of output model image
maskimage=’n4826.mask’) # specify make image

# joint deconvolution and clean
im.clean(algorithm=’mfclark’, # Use multi-field clark algorithm

model=[’n4826_joint1’], # Use model image generated above as the initial model
gain=0.2, niter=500) # set gain and iterations

# you can specify a clean mask if desired - see
# Section 5.3.4.1 on interactivemask
# Note: if the output image name isn’t specified, the
# restored image name will be the model image name,
# ’n4826_joint1’ appended with ’.restored’

im.close() # Close tool

When combining single-dish images (in feather or uv-plane combination), the single-dish image can
be scaled by a factor (typically to convert from K to Jy/beam) using the setsdoptions function.

im.setsdoptions(scale=0.5)

Full Joint Deconvolution

This functionality is currently under construction.

5.7.4 References for Single-Dish and Interferometric Data Combination

1. For a review of techniques see: Stanimirovic, S. 2002, astro-ph/0205329, ”Short-Spacings
Correction from the Single Dish perspective”.

2. Emerson, D. T. 1974, MNRAS, 169, 607

3. Helfer et al., 2003, ApJS, 145, 259, Appendix B

4. Holdaway, M. A. 1999, in ASP Conf. Ser. 180, Synthesis Imaging in Radio Astronomy II, ed.
ed. G. B. Taylor, C. L. Carilli, & R. A. Perley (San Francisco: ASP), 401

5. Stanimirovic, S., Staveley-Smith, L., Dickey, J. M., Sault, R. J., & Snowden, S. 1999, MNRAS,
302, 417

6. Vogel, S. N., Wright, M. C. H., Plambeck, R. L., & Welch, W. J. 1984, ApJ, 283, 655

5.8 Wide Field Imaging

The problem of imaging interferometric data for wide fields involves correcting for the non-co-
planarity of the array when inverting the visibilities in the Fourier basis. The distortions in the
image domain increase as a function of distance from the phase center. This distortion, if not
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corrected, limits the imaging dynamic range for fields with significant emission away from the
phase center. The measurement equation for such an observation is

V (u, v, w) =
∫ ∫

I(l, m)e2πι(ul+vm+w
√

1−l2−m2) dldm√
1−l2−m2

with the usual meaning for the various symbols. The two algorithms in CASA for correcting for
the non-co-planarity are called the “w-projection” and the “faceted imaging” algorithm.

5.8.1 W-Projection

The w-projection algorithm is a matched filter approach. A set of filters corresponding to various
value of w for the e2πιw

√
1−l2−m2 term are constructed and applied to the 2D co-planar visibility

function to evaluate the 3D non-co-planarity visibilities as:

V (u, v, w) = G(u, v, w) ∗ V (u, v)

where G(u, v, w) are the filters. For fast evaluation of the left-hand side, G is pre-computed for a
discrete set of w with uniform sampling in

√
w and the filter corresponding to the nearest value of

the w is used.

This effectively increases the limit before which the errors due to the non-coplanar array dominates.
The errors in the PSF computed using the w-projection approach are smaller than those incurred
in using the approximate PSF in the minor cycle of Clark-Clean. Effectively therefore, Clark-Clean
(and its variants) uses one form of approximate PSF in the minor cycle, while w-projection uses
another. The accuracy of the major cycle in w-projection depends on the resolution at the which
the w-axis is sampled by the filters. For VLA L-band imaging, 256 samples along the w-axis is
probably sufficient (set via the facets argument of the setimage() method of the imager).

5.8.2 Faceted Imaging

The tradition approach for wide-field imaging involves approximating the (curved) sky by a set of
tangent planes. The size of the facets is set such that the 2D approximation of the measurement
equation is valid on each facet. The part of sky covered by each facet is them imaged and de-
convolved in the usual manner by phase rotating the visibilities to the center of each facet. The
Clean-ed images for each of the facets are then appropriately rotated and projected onto a single
2D tangent image. The accuracy of the major cycle for this algorithm also depends on the number
(and hence the size) of the facets, but the dependence is different from that of the w-projection
algorithm.

It can be shown that the imaging on each facet in the image domain is equivalent to a shear
operation in the visibility domain. The CASA implementation of the faceted imaging algorithm
uses this technique, which effectively does the faceting in the visibility domain rather than in the
image domain. The functional advantage of this approach is that the users see (and manage) a
single 2D image as against multiple facet images when the faceting is done in the image domain.
This is a significant advantage, when using faceted imaging.
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5.8.3 Comparison of the two methods

The w-projection algorithm can be shown to be about 10x faster than the faceted algorithm. The
major cost of major-minor cycle based deconvolution algorithms is the cost of the major cycle.
The dominant cost of major cycle is in the the prediction of the visibilities, given a model image.
Typically, in faceted imaging approach, each major cycle involves predicting the visibilities for each
facet. Though the facets without any emission need not be predicted saving some compute time,
this saving disappears for typical P- and L-bands fields which invariable have emission is most
facets.

The disadvantage of the w-projection algorithm is that it needs the entire image for the minor cycle.
Since a single image covers the entire field of view, this approach requires larger run-time memory.
This can however be relaxed by putting smaller fields around the dominant flanking sources in the
field of view, which can be of smaller sizes.

5.8.4 Example — Faceted Single Field Imaging

A typical script for imaging a Measurement Set named MS using the w-projection algorithm is as
follows. The number of facets in this case corresponds to the number of discreet values of w for
which the gridding convolution functions are evaluated. This ultimately determins the imaging
dynamic range. However since the runtime is only weakly dependant on the number of facets,
setting it to a high number like 256 is sufficient for VLA L-band imaging.

#
# Set the various paraments of imaging
#
MS = ’’ # Name of the MS

ALGO = ’mfclark’ # The algorithm to use for
# deconvolution

IMSIZE = [4096,4096] # The image size

CELLSIZE = [’2arcsec’,’2arcsec’] # The cellsize

SPWID = [1,2] # Spectral windows to image

FIELDID = 1 # Field IDs to image

NFACETS = 256 # No. of w-planes.

STOKES = ’I’ # Stokes value

MODEL_IMAGE_NAME =’1046.im’ # Name of the image files.
# The restored Clean-ed image
# and the residual imgaes are
# stored in images with
# ‘‘.clean’’ and ‘‘.res’’
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# appended to this name.

NITER = 10000 # No. of Clean components

THRESHOLD= ’100e-3mJy’ # The Cleaning threshold. The
# iterations are stopped when
# the magnitude of the
# strongest components is lower
# than this value.

DOINTERACTIVE = F # Set it to T to do interactive
# box setting in-between iterations.

im.open(MS)

im.setdata(spwid=SPWID,fieldid=FIELDID,mode=’channel’)

im.setimage(nx=IMSIZE[1],ny=IMSIZE[2],
cellx=CELLSIZE[1],celly=CELLSIZE[2],
facets=NFACETS,stokes=stokes,
spwid=SPWID,fieldid=FIELDID)
im.setoptions(ftmachine=’wproject’)

im.clean(algorithm=ALGO,
niter=NITER,threshold=THRESHOLD,
interactive=DOINTERACTIVE,
model=[MODEL_IMAGE_NAME],
image=[MODEL_IMAGE_NAME+’.clean’],
residual=[MODEL_IMAGE_NAME+’.res’])

5.8.5 Wide Field Imaging References

See the EVLA Memo: http://www.aoc.nrao.edu/evla/geninfo/memoseries/evlamemo67.pdf

http://www.aoc.nrao.edu/evla/geninfo/memoseries/evlamemo67.pdf


Chapter 6

Displaying Images

This chapter describes how to display data with the casaviewer either as a stand-alone or through
the viewer task. You can display both images and MeasurementSets.

6.1 Starting the casaviewer

casaviewer is the name of the stand-alone application that is available with a CASA installation.
You can call this command from the command line in the following ways:

Start the casaviewer with no default image/MS loaded; it will pop up the Load Data frame and a
blank, standard ”Viewer Display Panel. Selecting a file on disk in the Load Data panel will provide
options for how to display the data. Images can be displayed as: 1) Raster Image, 2) Contour Map,
3) Vector map or 4) Marker Map. MS’s can only be displayed as raster.

> casaviewer &

Start the casaviewer with the selected image; the image will be displayed in the Viewer Display
Panel. If the image is a cube (more than one plane for frequency or polarization) then it will be
one the first plane of the cube.

> casaviewer image_filename &

Start the casaviewer with the selected MeasurementSet; note the additional parameter indicating
that it is an ms; the default is ’image’.

> casaviewer ms_filename ms &

In addition, within the casapy environment, there is a viewer task which can be used to call up an
image (Note: currently the parameter list of the viewer task needs to expand to handle the extra
parameter to indicate an MS; until then, please use the stand-alone invocations for viewing MS’s):

52
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viewer(imagename=None)
View an image or visibility data set:

Keyword arguments:
imagename -- Name of file to visualize

default: <unset>; example: imagename=’ngc5921.image’

The viewer can be started as:

CASA <4>: viewer
--------> viewer()

or
CASA <5>: viewer ’ngc5921_task.image’
--------> viewer(’ngc5921_task.image’)

6.2 The viewer GUI

The main parts of the GUI are the menus:

• Data

– Open - open an image from disk

– Register - register selected image (menu expands to the right containing all loaded im-
ages)

– Close - close selected image (menu expands to the right)

– Adjust - open the adjust panel

– Print - print the displayed image

– Close Panel - close the Viewer Display Panel

– Quit Viewer - currently disabled

• Display Panel

– New Panel - create a new Viewer Display Panel

– Panel Options - open the panel options frame

– Print - print displayed image

– Close Panel - close the Viewer Display Panel

• Tools

– Currently blank - will hold annotations and image analysis tools

Below this are icons for fast access to some of these menu items:

• folder - Data:Open shortcut – pulls up Load Data panel
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• wrench - Data:Adjust shortcut – pulls up Data Display Options panel

• panels - Data:Register shortcut – pull up menu of loaded data

• delete - Data:Close shortcut – closes/unloads selected data

• panel - Display Panel:New Panel

• panel wrench - Display Panel:Panel Options – pulls up Viewer Canvas Manager

• print - Display Panel:Print – print data

Important Bug Note: Please use the icon buttons whenever possible instead of the
menus. The Register and Close menus especially are known to lead to viewer crashes in some
cases. You’ll usually find that the first four icon buttons are all you need. Click on the display
panel titlebar then hover over the buttons for brief reminders of their purpose.

Below this are the eight mouse control buttons. These allow/show the assignment of the mouse
buttons for different operations. Clicking in one of these buttons will re-assign a mouse button to
that operation.

• Zooming (magnifying glass icon) Zooming is accomplished by pressing down the selected
mouse button at the start point, dragging the mouse away from that point, and releasing the
selected mouse button when the zoom box encloses the desired zoom area. Once the button
is released, the zoom rectangle can be moved by clicking inside it with the selected mouse
button and dragging it around. To zoom in, simply double click with the selected button
inside the rectangle. Double clicking outside the rectangle will result in a zoom out.

• Panning (hand icon) Panning is accomplished by pressing down on the selected mouse
button at the point you wish to move, dragging the mouse to the position where you want
the first point moved to, and releasing the selected mouse button. Note: The arrow keys,
Page Up, Page Down, Home and End keys, and scroll wheel (if any) can also be used to
scroll through your data once you have zoomed in. For these to work, the mouse must be over
the display panel drawing area, but no mouse tool need be active. Note: this is currently not
enabled.

• Stretch-shift colormap fiddling

• Brightness-contrast colormap fiddling

• Positioning This enables the user to place a crosshair marker on the image to indicate a
position. Depending on the context, the positions may be used to flag MeasurementSet data
(not yet enabled) or display image spectral profiles (also not currently enabled). Click on
the position to place the crosshair; once placed you can drag it to move to another location.
Double click is not needed for this control.

• Rectangle and Polygon region drawing A rectangle region is generated exactly the same
way as the zoom rectangle, and is set by double clicking within the rectangle. Polygon
regions can be constructed by progressively clicking the selected mouse button at the desired
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location of each vertex, and clicking in the same location twice to complete the polygon. Once
constructed, it can be moved by dragging inside the polygon, and reshaped by dragging the
various handles at the vertices.

• Polyline drawing A polyline can be constructed with this button selected. It is almost
identical to the polygon region tool. Create points by clicking at the positions wanted and
then double-click to finish the line.

Below this area is the actual display surface.

Below the display is the ’tape deck’ which provides basic movement between image planes along
a selected third dimension of an image cube. This set of buttons is only enabled when the first-
registered image reports that it has more than one plane along the ’Z axis’. In the most common
case, the animator controls the frequency channel being viewed. From left to right, the tape deck
controls allow the user to:

• rewind to the start of the sequence (i.e., the first plane)

• step backwards by one plane

• play backwards, or repetitively step backwards

• stop any current play

• play forward, or repetitively step forward

• step forward by one plane

• fast forward to the end of the sequence

To the right of the tape deck is an editable text box indicating the current frame number and a
sunken label showing the total number of frames. One can type a channel number into the current
frame to jump to that channel. Below this is a slider for controlling the animation speed. To the
right of this is the ’Full/Compact’ toggle. In full mode, additional controls for blinking and for
controlling the frame value and step are available; the default setting is for compact. In ’Blink’
mode, when more than one raster image is registered in the Viewer Display Panel, the tapedeck
will control which is being displayed at the moment. The images registered should cover the same
portion of the sky, using the same coordinate projection.

6.3 Viewing a raster map

A raster map of an image shows pixel intensities in a two-dimensional cross-section of gridded data
with colors selected from a finite set of (normally) smooth and continuous colors, i.e., a colormap.

Starting the casaviewer with an image as a raster map will look something like:

You will see the GUI which consists of two main windows, entitled ”Viewer Display Panel” and
”Load Data”. In the ”Load Data” panel, you will see all of the files in the current working directory
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along with their type (Image, MeasurementSet, etc). After selecting a file, you are presented with
the available data types for these data. Clicking on the button Raster Map will create a display as
above. The main parts of the ”Viewer Display Panel” GUI are discussed in the following Section.

6.4 Viewing a contour map

Viewing a contour image is similar the process above. A contour map shows lines of equal pixel
intensity (e.g., flux density) in a two dimensional cross-section of gridded data. Contour maps are
particularly useful for overlaying on raster images so that two different measurements of the same
part of the sky can be shown simultaneously.

6.5 Viewing a MeasurementSet with visibility data

Visibility data can also be displayed and flagged directly from the viewer (Note: flagging is not
currently enabled). For MeasurementSet files the only option for display is ’Raster’ (similar to AIPS
task TVFLG).

Note: There is also a bug in the current MS viewing which disables display of the data and flags;
use the ’Adjust’ panel ’Flagging Options’ Menu to change the ’Show Flagged Regions’ option to
’Masked to Background’. This will be the default for Patch 2.

6.6 Adjusting Display Parameters

The data display can be adjusted by the user as needed. The following illustrate the available
options in the catagories of:

• Display axes

• Hidden axes

• Basic Settings

• Position tracking

• Axis labels

• Axis label properties

This older web page gives details of individual display options. Although it has not yet been
integrated into the reference manual for the newer CASA, it is accurate in most cases:

http://aips2.nrao.edu/daily/docs/user/Display/node267.html

http://aips2.nrao.edu/daily/docs/user/Display/node267.html
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6.7 Adjusting Canvas Parameters/Multi-panel displays

The display area or Canvas can also be manipulated through two sets of values:

• Margins - specify the spacing for the left, right, top, and bottom margins

• Number of panels - specify the number of panels in x and y and the spacing between those
panels.

The following illustrates a multi-panel display along with the Viewer Canvas Manager settings
which created it.

6.8 Overlay contours on a raster map

Contours of either a second data set or the same data set can be used for comparison or to enhance
visualization of the data. The Adjust Panel will have multiple tabs which allow adjusting each data
set individually (Note tabs along the top). To enable this simply open up the Load Data panel
(Use the Data menu or click on the Folder icon), select the data set and select Contour.
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Figure 6.1: Viewer Display Panel with no data loaded. Each section of the GUI is explained below
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Figure 6.2: casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the
Load Data panel (right).
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Figure 6.3: casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the
Load Data panel (right).
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Figure 6.4: casaviewer: Display of visibility data. The default axes are time vs. baseline.
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Figure 6.5: casaviewer: Data display options. In the left panel, the Display axes, Hidden axes, and
Basic Settings options are shown; in the right panel, the Position tracking and Axis labels options
are shown.
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Figure 6.6: casaviewer: Data display options. In this final, third panel , the Axis label properties
are shown.
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Figure 6.7: casaviewer: A multi-panel display set up through the Viewer Canvas Manager.
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Figure 6.8: casaviewer: Display contour overlay on top of a raster image.
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Image Analysis

7.1 Open a file

To open an image file for analysis, use the ia.open method, e.g.:

ia.open(’ngc5921_task.image’)

7.2 Get an image summary

To get a summary of the properties of your image, use the ia.summary method, e.g.:

imhead(imagename=’image.im’)

7.3 Image statistics

The ia.statistics method computes statistics in a (region) of an image.

CASA <50>: ia.open(’ngc5921_task.image’)
CASA <51>: ia.statistics() # Note: formatted output goes to the logger
{’return’: True,
’statsout’: {’blc’: [0, 0, 0, 0],

’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41281e+09Hz’,
’flux’: [12.136708280654085],
’max’: [0.12773475050926208],
’maxpos’: [134, 134, 0, 38],
’maxposf’: ’15:21:53.976, +05.05.29.998, I, 1.41374e+09Hz’,
’mean’: [4.7899158775357123e-05],
’min’: [-0.023951441049575806],
’minpos’: [230, 0, 0, 15],
’minposf’: ’15:20:17.679, +04.31.59.470, I, 1.41317e+09Hz’,
’npts’: [3014656.0],
’rms’: [0.00421889778226614],

66
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’sigma’: [0.0042186264443439979],
’sum’: [144.399486397083],
’sumsq’: [53.658156081703709],
’trc’: [255, 255, 0, 45],
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41391e+09Hz’}}

Restrict statistics to a region:

CASA <60>: blc=[0,0,0,23]

CASA <61>: trc=[255,255,0,23]

CASA <62>: bbox=ia.setregion(blc,trc)

CASA <63>: ia.statistics(region=bbox)

0%....10....20....30....40....50....60....70....80....90....100%
Warning no plotter attached. Attach a plotter to get plots
Out[63]:

{’return’: True,
’statsout’: {’blc’: [0, 0, 0, 23],

’blcf’: ’15:24:08.404, +04.31.59.181, I, 1.41337e+09Hz’,
’flux’: [0.21697188625158217],
’max’: [0.061052091419696808],
’maxpos’: [124, 132, 0, 23],
’maxposf’: ’15:22:04.016, +05.04.59.999, I, 1.41337e+09Hz’,
’mean’: [3.9390207550122095e-05],
’min’: [-0.018510516732931137],
’minpos’: [254, 20, 0, 23],
’minposf’: ’15:19:53.588, +04.36.59.216, I, 1.41337e+09Hz’,
’npts’: [65536.0],
’rms’: [0.0040461532771587372],
’sigma’: [0.0040459925613279676],
’sum’: [2.5814766420048016],
’sumsq’: [1.0729132921679772],
’trc’: [255, 255, 0, 23],
’trcf’: ’15:19:52.390, +05.35.44.246, I, 1.41337e+09Hz’}}

You can also use the viewer to interactively obtain image statistics on a region:

viewer(’imagename.im’)
# Now use the right mouse button (default for region setting)
# create a region and then double click inside to obtain statistics on that region
# Currently this supports a single plane only and the output goes to your casapy
# terminal window as:

ngc5921_task.image

n Std Dev RMS Mean Variance Sum
660 0.01262 0.0138 0.005622 0.0001592 3.711
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Flux Med |Dev| Quartile Median Min Max
0.3119 0.003758 0.004586 0.001434 -0.009671 0.06105

7.3.1 Moments

Make 0th and 1st moment maps. The example below takes an existing image cube ang generates
0th and 1st moment maps. No task yet exists to make moment masks so the examples below show
you how to do this with the CASA tools:

ia.open(’mosaic.image’) # Open the image you want and attach it to a tool called ia
ia.moments(outfile=’mosaic.mom0’, # Write the moment 0 map, mosaic.mom0, to disk

moments=0, axis=3, # Take the zeroth moment over velocity (axis 3,0-based)
mask=’indexin(4,[4:25])’, # Select channels 4-25

# Darn: mask axis input must be 1-based (4=velocity now).
includepix=[0.09,100.0]) # Only include pixels above 0.09 Jy

ia.close() # Close the tool and detach from the MS

ia.open(’mosaic.image’) # Open the image you want and attach it to a tool called ia
ia.moments(outfile=’mosaic.mom1’, # Write the moment 1 map, mosaic.mom1, to disk

moments=1, axis=3, # Take the first moment over velocity (axis 3 - 0-based)
mask=’indexin(4,[4:25])’, # Select channels 4-25, over velocity
includepix=[0.09,10.0]) # Only include pixels above 0.09 Jy

ia.close() # Close the tool and detach from the MS

Note: 4mar07 there is a bug with the moments in that it keeps the moment image locked so you
can’t look at it with the viewer. Type the following to clear all locks and then bring up the viewer:

tb.clearlocks()
viewer

Now the viewer will come up and you can look at the resulting image.

7.4 Image Math

Images can be scaled, manipulated and combined in various ways. The most straightforward
method is to use the imagecalc tool to do a simple scaling:

ia.open(’n75.im’) # open the image called n75.im
ia.imagecalc(outfile=’output.im’, # divide the image by 2 and write new image

pixels=’infile.im/2’) # to the file called output.im
ia.close() # close the tool.

Now, say you have made a mosic that has uniform RMS across the image but the flux falls off as
you move to the edge of the mosaic. You wrote out a fluxscale image called fluxscale.im that you
can use to scale your mosaic to have the correct flux across the entire field (albiet it has increasing
RMS noise as you go to the edge of the mosaic). For example:
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ia.open(’mosaic.im’) # open the image called mosaic.im
ia.imagecalc(outfile=’mosaic.correctflux.im’, # divide it by the fluxscale.im

pixels=’(mosaic.image)*(fluxscale.im)’);
ia.close() # close the tool.
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Single Dish Data Processing

For single-dish spectral calibration and analysis, CASA uses the ATNF Spectral Analysis Package
(ASAP). This is imported as the sd tool, and forms the basis for a series of tasks (the “SDtasks”)
that encapsulate the functionality within the standard CASA task framework. ASAP was developed
to support the Australian telescopes such as Mopra, Parkes, and Tidbinbilla, and we have adapted
it for use within CASA for GBT and eventually ALMA data also. For details on ASAP, see the
ASAP home page at ATNF:

• http://www.atnf.csiro.au/computing/software/asap/

You can also download the ASAP User Guide and Reference Manual at this web site. There is
also a brief tutorial. Note that within CASA, the ASAP tools are prefaced with sd., e.g. where it
says in the ASAP User Guide to use scantable you will use sd.scantable in CASA. See § 8.2 for
more information on the tools.

All of the ASAP functionality is available with a CASA installation. In the following, we outline
how to access ASAP functionality within CASA with the tasks and tools, and the data flow for
standard use cases.

If you run into trouble, be sure to check the list of known issues and features of ASAP and the
SDtasks presented in § 8.4 first.

8.1 Guidelines for Use of ASAP and SDtasks in CASA

8.1.1 Environment Variables

There are a number of environment variables that the ASAP tools (and thus the SDtasks) use to
help control their operation. These are described in the ASAP User Guide as being in the .asaprc
file. Within CASA, these are contained in the Python dictionary sd.rcParams and are accessible
through its keys and values. For SDtask users, the most important are the verbose parameter
controlling the display of detailed messages from the tools. By default

sd.rcParams[’verbose’] = True

70
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and you get lots of messages. Also ), and the scantable.storage parameter controlling whether
scantable operations are done in memory or on disk. The default

sd.rcParams[’scantable.storage’] = ’memory’

does it in memory (best choice if you have enough), while to force the scantables to disk use

sd.rcParams[’scantable.storage’] = ’disk’

which might be necessary to allow processing of large datasets. See § 8.2.1 for more details on the
ASAP environment variables.

8.1.2 Assignment

Some ASAP methods and function require you to assign that method to a variable which you
can then manipulate. This includes sd.scantable and sd.selector, which make objects. For
example,

s = sd.scantable(’OrionS_rawACSmod’, average=False)

8.1.3 Lists

For lists of scans or IFs, such as in scanlist and iflist in the SDtasks, the tasks and functions
want a comma-separated Python list, e.g.

scanlist = [241, 242, 243, 244, 245, 246]

You can use the Python range function to generate a list of consecutive numbers, e.g.

scanlist = range(241,247)

giving the same list as above, e.g.

CASA <3>: scanlist=range(241,247)
CASA <4>: print scanlist
[241, 242, 243, 244, 245, 246]

You can also combine multiple ranges by summing lists

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254]

Note that in the future, the sd tools and SDtasks will use the same selection language as in the
synthesis part of the package.
Spectral regions, such as those for setting masks, are pairs of min and max values for whatever
spectral axis unit is currently chosen. These are fed into the tasks and tools as a list of lists, with
each list element a list with the [min,max] for that sub-region, e.g.

masklist=[[1000,3000], [5000,7000]].
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8.1.4 Text

The SDtasks trap leading and trailing whitespace on string parameters (such as infile and
sdfile), but ASAP does not, so be careful with setting string parameters. ASAP is also case-
sensitive, with most parameters being upper-case, such as ASAP for the sd.scantable.save file
format. The SDtasks are generally more forgiving.

8.2 Using The ASAP Toolkit Within CASA

ASAP is included with the CASA installation/build. It is not loaded upon start-up, however, and
must be imported as a standard Python package. A convenience function exists for importing
ASAP along with a set of prototype tasks for single dish analysis:

CASA <1>: asap_init

Once this is done, all of the ASAP functionality is now under the Python ’sd’ tool. bf: Note: This
means that if you are following the ASAP cookbook or documentation, all of the commands should
be invoked with a ’sd.’ before the native ASAP command.

The ASAP interface is essentially the same as that of the CASA toolkit, that is, there are groups
of functionality (aka tools) which have the ability to operate on your data. Type:

CASA <4>: sd.<TAB>
sd.__class__ sd._validate_bool sd.list_scans
sd.__date__ sd._validate_int sd.mask_and
sd.__delattr__ sd.asapfitter sd.mask_not
sd.__dict__ sd.asaplinefind sd.mask_or
sd.__doc__ sd.asaplog sd.merge
sd.__file__ sd.asaplotbase sd.os
sd.__getattribute__ sd.asaplotgui sd.plf
sd.__hash__ sd.asapmath sd.plotter
sd.__init__ sd.asapplotter sd.print_log
sd.__name__ sd.asapreader sd.quotient
sd.__new__ sd.average_time sd.rc
sd.__path__ sd.calfs sd.rcParams
sd.__reduce__ sd.calnod sd.rcParamsDefault
sd.__reduce_ex__ sd.calps sd.rc_params
sd.__repr__ sd.commands sd.rcdefaults
sd.__setattr__ sd.defaultParams sd.reader
sd.__str__ sd.dosigref sd.scantable
sd.__version__ sd.dototalpower sd.selector
sd._asap sd.fitter sd.simple_math
sd._asap_fname sd.is_ipython sd.sys
sd._asaplog sd.linecatalog sd.unique
sd._is_sequence_or_number sd.linefinder sd.version
sd._n_bools sd.list_files sd.welcome
sd._to_list sd.list_rcparameters sd.xyplotter
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...to see the list of tools.

In particular, the following are essential for most reduction sessions:

• sd.scantable - the data structure for ASAP and the core methods for manipulating the
data; allows importing data, making data selections, basic operations (averaging, baselines,
etc) and setting data characteristics (e.g., frequencies, etc).

• sd.selector - selects a subset of data for subsequent operations

• sd.fitter - fit data

• sd.plotter - plotting facilities (uses matplotlib)

The scantable functions are used most often and can be applied to both the initial scantable and
to any spectrum from that scan table. Type

sd.scantable.<TAB>

(using TAB completion) to see the full list.

8.2.1 Environment Variables

The asaprc environment variables are stored in the Python dictionary sd.rcParams in CASA.
This contains a number of parameters that control how ASAP runs, for both tools and tasks. You
can see what these are set to by typing at the CASA prompt:

CASA <2>: sd.rcParams
Out[2]:

{’insitu’: True,
’plotter.colours’: ’’,
’plotter.decimate’: False,
’plotter.ganged’: True,
’plotter.gui’: True,
’plotter.histogram’: False,
’plotter.linestyles’: ’’,
’plotter.panelling’: ’s’,
’plotter.papertype’: ’A4’,
’plotter.stacking’: ’p’,
’scantable.autoaverage’: True,
’scantable.freqframe’: ’LSRK’,
’scantable.save’: ’ASAP’,
’scantable.storage’: ’memory’,
’scantable.verbosesummary’: False,
’useplotter’: True,
’verbose’: True}

The use of these parameters is described in detail in the ASAP Users Guide.

You can also change these parameters through the sd.rc function. The use of this is described in
help sd.rc:
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CASA <3>: help(sd.rc)
Help on function rc in module asap:

rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg
for scantable.save the group is ’scantable’, for plotter.stacking, the
group is ’plotter’, and so on. kwargs is a list of attribute
name/value pairs, eg

rc(’scantable’, save=’SDFITS’)

sets the current rc params and is equivalent to

rcParams[’scantable.save’] = ’SDFITS’

Use rcdefaults to restore the default rc params after changes.

8.2.2 Import

Data can be loaded into ASAP by using the scantable function which will read a variety of
recognized formats (RPFITS, varieties of SDFITS, and the CASA MeasurementSet). For example:

CASA <1>: scans = sd.scantable(’OrionS_rawACSmod’, average=False)
Importing OrionS_rawACSmod...

NOTE: It is important to use the average=False parameter setting as the calibration routines
supporting GBT data require all of the individual times and phases.

NOTE: GBT data may need some pre-processing prior to using ASAP. In particular, the program
which converts GBT raw data into CASA MeasurementSets tends to proliferate the number of
spectral windows due to shifts in the tracking frequency; this is being worked on by GBT staff. In
addition, GBT SDFITS is currently not readable by ASAP (in progress).

NOTE: The MeasurementSet to scantable conversion is able to deduce the reference and source
data and assigns an ’ r’ to the reference data to comply with the ASAP conventions.

NOTE: GBT observing modes are identifiable in scantable in the name assignment: position
switched (’ ps’), Nod (’ nod’), and frequency switched (’ fs’). These are combined with the reference
data assignment. (For example, the reference data taken in position switched mode observation
are assigned as ’ psr’.)

Use the summary function to examine the data and get basic information:

CASA <8>: scans.summary()
--------------------------------------------------------------------------------
Scan Table Summary
--------------------------------------------------------------------------------
Beams: 1
IFs: 26
Polarisations: 2 (linear)
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Channels: 8192

Observer: Joseph McMullin
Obs Date: 2006/01/19/01:45:58
Project: AGBT06A_018_01
Obs. Type: OffOn:PSWITCHOFF:TPWCAL
Antenna Name: GBT
Flux Unit: Jy
Rest Freqs: [4.5490258e+10] [Hz]
Abcissa: Channel
Selection: none

Scan Source Time Integration
Beam Position (J2000)

IF Frame RefVal RefPix Increment
--------------------------------------------------------------------------------
20 OrionS_psr 01:45:58 4 x 30.0s

0 05:15:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

21 OrionS_ps 01:48:38 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

22 OrionS_psr 01:51:21 4 x 30.0s
0 05:15:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

23 OrionS_ps 01:54:01 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

24 OrionS_psr 02:01:47 4 x 30.0s
0 05:15:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

25 OrionS_ps 02:04:27 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
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15 LSRK 4.3422823e+10 4096 6104.2336
26 OrionS_psr 02:07:10 4 x 30.0s

0 05:15:13.5 -05.24.08.2
12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

27 OrionS_ps 02:09:51 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

8.2.3 Scantable Manipulation

Within ASAP, data is stored in a scantable, which holds all of the observational information and
provides functionality to manipulate the data and information. The building block of a scantable
is an integration which is a single row of a scantable. Each row contains just one spectrum for each
beam, IF and polarization.

Once you have a scantable in ASAP, you can select a subset of the data based on scan numbers,
sources, or types of scan; note that each of these selections returns a new ’scantable’ with all of the
underlying functionality:

CASA <5>: scan27=scans.get_scan(27) # Get the 27th scan
CASA <6>: scans20to24=scans.get_scan(range(20,25)) # Get scans 20 - 24
CASA <7>: scans_on=scans.get_scan(’*_ps’) # Get ps scans on source
CASA <8>: scansOrion=scans.get_scan(’Ori*’) # Get all Orion scans

To copy a scantable, do:

CASA <15>: ss=scans.copy()

8.2.3.1 Data Selection

In addition to the basic data selection above, data can be selected based on IF, beam, polarization,
scan number as well as values such as Tsys. To make a selection you create a selector object
which you then define with various selection functions, e.g.,

sel = sd.selector() # initialize a selector object
# sel.<TAB> will list all options

sel.set_ifs(0) # select only the first IF of the data
scans.set_selection(sel) # apply the selection to the data
print scans # shows just the first IF
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8.2.3.2 State Information

Some properties of a scantable apply to all of the data, such as example, spectral units, frequency
frame, or Doppler type. This information can be set using the scantable set xxxx methods.
These are currently:

CASA <1>: sd.scantable.set_<TAB>
sd.scantable.set_dirframe sd.scantable.set_fluxunit sd.scantable.set_restfreqs
sd.scantable.set_doppler sd.scantable.set_freqframe sd.scantable.set_selection
sd.scantable.set_feedtype sd.scantable.set_instrument sd.scantable.set_unit

For example, sd.scantable.set fluxunit sets the default units that describe the flux axis:

scans.set_fluxunit(’K’) # Set the flux unit for data to Kelvin

Choices are ’K’ or ’Jy’. Note: the scantable.set fluxunit function only changes the name of
the current fluxunit. To change fluxunits, use scantable.convert flux as described in § 8.2.4.2
instead (currently you need to do some gymnastics for GBT or non-AT telescopes).
Use sd.scantable.set unit to set the units to be used on the spectral axis:

scans.set_unit(’GHz’) # Use GHZ as the spectral axis for plots

The choices for the units are ’km/s’, ’channel’, or ’*Hz’ (e.g. ’GHz’, ’MHz’, ’kHz’, ’Hz’). This
does the proper conversion using the current frame and doppler reference as can be seen when the
spectrum is plotted.
You can use sd.scantable.set freqframe to set the frame in which the freqency (spectral) axis
is defined:

CASA <2>: help(sd.scantable.set_freqframe)
Help on method set_freqframe in module asap.scantable:

set_freqframe(self, frame=None) unbound asap.scantable.scantable method
Set the frame type of the Spectral Axis.
Parameters:

frame: an optional frame type, default ’LSRK’. Valid frames are:
’REST’, ’TOPO’, ’LSRD’, ’LSRK’, ’BARY’,
’GEO’, ’GALACTO’, ’LGROUP’, ’CMB’

Examples:
scan.set_freqframe(’BARY’)

The most useful choices here are frame = ’LSRK’ (the default for the function) and frame =
’TOPO’ (what the GBT actually observes in). Note that the ’REST’ option is not yet available.
The doppler frame is set with sd.scantable.set doppler:

CASA <3>: help(sd.scantable.set_doppler)
Help on method set_doppler in module asap.scantable:

set_doppler(self, doppler=’RADIO’) unbound asap.scantable.scantable method
Set the doppler for all following operations on this scantable.
Parameters:

doppler: One of ’RADIO’, ’OPTICAL’, ’Z’, ’BETA’, ’GAMMA’
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Finally, there are a number of functions to query the state of the scantable. These can be found in
the usual way:

CASA <4>: sd.scantable.get<TAB>
sd.scantable.get_abcissa sd.scantable.get_restfreqs sd.scantable.getbeamnos
sd.scantable.get_azimuth sd.scantable.get_scan sd.scantable.getcycle
sd.scantable.get_column_names sd.scantable.get_selection sd.scantable.getif
sd.scantable.get_direction sd.scantable.get_sourcename sd.scantable.getifnos
sd.scantable.get_elevation sd.scantable.get_time sd.scantable.getpol
sd.scantable.get_fit sd.scantable.get_tsys sd.scantable.getpolnos
sd.scantable.get_fluxunit sd.scantable.get_unit sd.scantable.getscan
sd.scantable.get_parangle sd.scantable.getbeam sd.scantable.getscannos

These include functions to get the current values of the states mentioned above, as well as as meth-
ods to query the number of scans, IFs, and polarizations in the scantable, and their designations.
See the inline help for the individual functions for more information.

8.2.3.3 Masks

Several functions (fitting, baseline subtraction, statistics, etc) may be run on a range of channels
(or velocity/frequency ranges). You can create masks of this type using the create mask function:

# spave = an averaged spectrum
spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # create a region over channels 5000-7000
rms=spave.stats(stat=’rms’,mask=rmsmask) # get rms of line free region

rmsmask=spave.create_mask([3000,4000],invert=True) # choose the region
# *excluding* the specified channels

The mask is stored in a simple Python variable (a list) and so may be manipulated using an Python
facilities.

8.2.3.4 Scantable Management

scantables can be listed via:

CASA <33>: sd.list_scans()
The user created scantables are:
[’scans20to24’, ’s’, ’scan27’]

As every scantable will consume memory, if you will not use it any longer, you can explicitly
remove it via:

del <scantable name>
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8.2.3.5 Scantable Mathematics

It is possible to do simple mathematics directly on scantables from the CASA command line
using the +,−, ∗, / operators as well as their cousins + =,− =, ∗ =, / =

CASA <10>: scan2=scan1+2.0 # add 2.0 to data
CASA <11>: scan *= 1.05 # scale spectrum by 1.05

NOTE: mathematics between two scantables is not currently available in ASAP.

8.2.3.6 Scantable Save and Export

ASAP can save scantables in a variety of formats, suitable for reading into other packages. The
formats are:

• ASAP – This is the internal format used for ASAP. It is the only format that allows the
user to restore the data, fits, etc, without loosing any information. As mentioned before, the
ASAP scantable is a CASA Table (memory-based table). This function just converts it to a
disk-based table. You can access this with the CASA browsetable task or any other CASA
table tasks.

• SDFITS – The Single Dish FITS format. This format was designed for interchange between
packages but few packages can actually read it.

• ASCII – A simple text based format suitable for the user to process using Python or other
means.

• MeasurementSet (V2: CASA format) – Saves the data in a MeasurementSet. All CASA tasks
which use an MS should work on this.

scans.save(’output_filename’,’format’), e.g.,
CASA <19>: scans.save(’FLS3a_calfs’,’MS2’)

8.2.4 Calibration

For some observatories, the calibration happens transparently as the input data contains the Tsys
measurements taken during the observations. The nominal ’Tsys’ values may be in Kelvin or Jansky.
The user may wish to apply a Tsys correction or apply gain-elevation and opacity corrections.

8.2.4.1 Tsys scaling

If the nominal Tsys measurement at the telescope is wrong due to incorrect calibration, the scale
function allows it to be corrected.

scans.scale(1.05,tsys=True) # by default only the spectra are scaled
# (and not the corresponding Tsys) unless tsys=True
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8.2.4.2 Flux and Temperature Unit Conversion

To convert measurements in Kelvin to Jansky (and vice versa), the convert flux function may be
used. This converts and scales the data to the selected units. The user may need to supply the
aperture efficiency, telescope diameter or the Jy/K factor

scans.convert_flux(eta=0.48, d=35.) # Unknown telescope
scans.convert_flux(jypk=15) # Unknown telecope (alternative)
scans.convert_flux() # known telescope (mostly AT telescopes)
scans.convert_flux(eta=0.48) # if telescope diameter known

8.2.4.3 Gain-Elevation and Atmospheric Optical Depth Corrections

At higher frequencies, it is important to make corrections for atmospheric opacity and gain-elevation
effects. NOTE: Currently, the MS to scantable conversion does not adequately populate the
azimuth and elevation in the scantable. As a result, one must calculate these via:

scans.recalc_azel()
Computed azimuth/elevation using
Position: [882590, -4.92487e+06, 3.94373e+06]
Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

...

Once you have the correct Az/El, you can correct for a known opacity by:

scans.opacity(tau=0.09) # Opacity from which the correction factor:
# exp(tau*zenith-distance)

8.2.4.4 Calibration of GBT data

Data from the GBT is uncalibrated and comes as sets of integrations representing the different
phases within a calibration cycle (e.g., on source, calibration on, on source, calibration off, on
reference, calibration on; on reference, calibration off). Currently, there are a number of routines
emulating the standard GBT calibration (in GBTIDL):

• calps - calibrate position switched data

• calfs - calibrate frequency switched data
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• calnod - calibration nod (beam switch) data

All these routines calibrate the spectral data to antenna temperature adopting the GBT calibration
method as described in the GBTIDL calibration document available at:

• http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf

There are two basic steps:

First: determine system temperature using a noise tube calibrator (sd.dototalpower())

For each integration, the system temperature is calculated from CAL noise on/off data as:

Tsys = Tcal x <refcaloff >
<refcalon−refcaloff > + Tcal

2

ref refers to reference data and the spectral data are averaged across the bandpass. Note that the
central 80% of the spectra are used for the calculation.

Second, determine antenna temperature (sd.dosigref())

The antenna temperature for each channel is calculated as:

Ta(ν) = Tsys x sig(ν)−ref(ν)
ref(ν)

where sig = 1
2(sigcalon + sigcaloff ), ref = 1

2(sigcalon + sigcaloff ).

Each calibration routine may be used as:

scans=sd.scantable(’inputdata’,False) # create a scantable called ’scans’
calibrated_scans = sd.calps(scans,[scanlist]) # calibrate scantable with position-switched

# scheme

Note: For calps and calnod, the scanlist must be scan pairs in correct order as these routines only
do miminum checking.

8.2.5 Averaging

One can average polarizations in a scantable using the sd.scantable.average pol function:

averaged_scan = scans.average_pol(mask,weight)

where:
Parameters:

mask: An optional mask defining the region, where the
averaging will be applied. The output will have all
specified points masked.

weight: Weighting scheme. ’none’ (default), ’var’ (1/var(spec)
weighted), or ’tsys’ (1/Tsys**2 weighted)

Example:

spave = stave.average_pol(weight=’tsys’)

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf
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One can also average scans over time using sd.average time:

sd.average_time(scantable,mask,scanav,weight,align)

where:

Parameters:
one scan or comma separated scans
mask: an optional mask (only used for ’var’ and ’tsys’ weighting)
scanav: True averages each scan separately.

False (default) averages all scans together,
weight: Weighting scheme.

’none’ (mean no weight)
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ ( median averaging)

align: align the spectra in velocity before averaging. It takes
the time of the first spectrum in the first scantable
as reference time.

Example:

stave = sd.average_time(scans,weight=’tintsys’)

Note that alignment of the velocity frame should be done before averaging if the time spanned by
the scantable is long enough. This is done through the align=True option in sd.average time, or
explicity through the sd.scantable.freq align function, e.g.

CASA <62>: sc = sd.scantable(’orions_scan20to23_if0to3.asap’,False)
CASA <63>: sc.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <64>: av = sd.average_times(sc)

The time averaging can also be applied to multiple scantables. This might have been taken on differ-
ent days, for example. The sd.average time function takes multiple scantables as input. However,
if taken at significantly different times (different days for example) then sd.scantable.freq align
must be used to align the velocity scales to the same time, e.g.

CASA <65>: sc1 = sd.scantable(’orions_scan21_if0to3.asap’,False)
CASA <66>: sc2 = sd.scantable(’orions_scan23_if0to3.asap’,False)
CASA <67>: sc1.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <68>: sc2.freq_align(reftime=’2006/01/19/01:49:23’)
Aligned at reference Epoch 2006/01/19/01:54:46 (UTC) in frame LSRK
CASA <69>: scav = sd.average_times(sc1,sc2)

8.2.6 Spectral Smoothing

Smoothing on data can be done as follows:
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scantable.smooth(kernel, # type of smoothing: ’hanning’ (default), ’gaussian’, ’boxcar’
width, # width in pixls (ignored for hanning); FWHM for gaussian.
insitu) # if False (default), do smoothing in-situ; otherwise,

# make new scantable

Example:
# spave is an averaged spectrum
spave.smooth(’boxcar’,5) # do a 5 pixel boxcar smooth on the spectrum
sd.plotter.plot(spave) # should see smoothed spectrum

8.2.7 Baseline Fitting

The function sd.scantable.poly baseline carries out a baseline fit, given an mask of channels
(if desired):

msk=scans.create_mask([100,400],[600,900])
scans.poly_baseline(msk,order=1)

This will fit a first order polynomial to the selected channels and subtract this polynomial from the
full spectrum.

The auto poly baseline function can be used to automatically baseline your data without having
to specify channel ranges for the line free data. It automatically figures out the line-free emission
and fits a polynomial baseline to that data. The user can use masks to fix the range of channels or
velocity range for the fit as well as mark the band edge as invalid:

scans.auto_poly_baseline(mask,edge,order,threshold,chan_avg_limit,plot,insitu):

Parameters:
mask: an optional mask retreived from scantable
edge: an optional number of channel to drop at

the edge of spectrum. If only one value is
specified, the same number will be dropped from
both sides of the spectrum. Default is to keep
all channels. Nested tuples represent individual
edge selection for different IFs (a number of spectral
channels can be different)

order: the order of the polynomial (default is 0)
threshold: the threshold used by line finder. It is better to

keep it large as only strong lines affect the
baseline solution.

chan_avg_limit:
a maximum number of consequtive spectral channels to
average during the search of weak and broad lines.
The default is no averaging (and no search for weak
lines). If such lines can affect the fitted baseline
(e.g. a high order polynomial is fitted), increase this
parameter (usually values up to 8 are reasonable). Most
users of this method should find the default value
sufficient.
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plot: plot the fit and the residual. In this each
indivual fit has to be approved, by typing ’y’
or ’n’

insitu: if False a new scantable is returned.
Otherwise, the scaling is done in-situ
The default is taken from .asaprc (False)

Example:
scans.auto_poly_baseline(order=2,threshold=5)

8.2.8 Line Fitting

Multi-component Gaussian fitting is available. This is done by creating a fitting object, specifying
fit parameters and finally fitting the data. Fitting can be done on a scantable selection or an
entire scantable using the auto fit function.

#spave is an averaged spectrum
f=sd.fitter() # create fitter object
msk=spave.create_mask([3928,4255]) # create mask region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the scantable and region

#
# Automatically guess start values

f.fit() # fit
f.plot(residual=True) # plot residual
f.get_parameters() # retrieve fit parameters
# 0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
# area = 59.473 K channel
f.store_fit(’orions_hc3n_fit.txt’) # store fit

#
# To specify initial guess:

f.set_function(gauss=1) # set a single gaussian component
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
# (peak,center,fwhm)
#
# For multiple components set
# initial guesses for each, e.g.

f.set_function(gauss=2) # set two gaussian components
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
f.set_gauss_parameters(0.1,4200,100\ # set initial guesses for Gaussian

,component=1) # for second component (1)

8.2.9 Plotting

The ASAP plotter uses the same Python matplotlib library as in CASA (for x-y plots). It is
accessed via the:
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sd.plotter<TAB> # see all functions (omitted here)
sd.plotter.plot(scans) # the workhorse function
sd.plotter.set<TAB>
sd.plotter.set_abcissa sd.plotter.set_legend sd.plotter.set_range
sd.plotter.set_colors sd.plotter.set_linestyles sd.plotter.set_selection
sd.plotter.set_colours sd.plotter.set_mask sd.plotter.set_stacking
sd.plotter.set_font sd.plotter.set_mode sd.plotter.set_title
sd.plotter.set_histogram sd.plotter.set_ordinate
sd.plotter.set_layout sd.plotter.set_panelling

Spectra can be plotted at any time, and it will attempt to do the correct layout depending on
whether it is a set of scans or a single scan.

The details of the plotter display (matplotlib) are detailed in the earlier section.

8.2.10 Single Dish Spectral Analysis Use Case With ASAP Toolkit

Below is a script that illustrates how to reduce single dish data using ASAP within CASA. First a
summary of the dataset is given and then the script.

# MeasurementSet Name: /home/rohir3/jmcmulli/SD/OrionS_rawACSmod MS Version 2
#
# Project: AGBT06A_018_01
# Observation: GBT(1 antennas)
#
#Data records: 256 Total integration time = 1523.13 seconds
# Observed from 01:45:58 to 02:11:21
#
#Fields: 4
# ID Name Right Ascension Declination Epoch
# 0 OrionS 05:15:13.45 -05.24.08.20 J2000
# 1 OrionS 05:35:13.45 -05.24.08.20 J2000
# 2 OrionS 05:15:13.45 -05.24.08.20 J2000
# 3 OrionS 05:35:13.45 -05.24.08.20 J2000
#
#Spectral Windows: (8 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 8192 LSRK 45464.3506 6.10423298 50005.8766 45489.3536 RR LL HC3N
# 1 8192 LSRK 45275.7825 6.10423298 50005.8766 45300.7854 RR LL HN15CO
# 2 8192 LSRK 44049.9264 6.10423298 50005.8766 44074.9293 RR LL CH3OH
# 3 8192 LSRK 44141.2121 6.10423298 50005.8766 44166.2151 RR LL HCCC15N
# 12 8192 LSRK 43937.1232 6.10423356 50005.8813 43962.1261 RR LL HNCO
# 13 8192 LSRK 42620.4173 6.10423356 50005.8813 42645.4203 RR LL H15NCO
# 14 8192 LSRK 41569.9768 6.10423356 50005.8813 41594.9797 RR LL HNC18O
# 15 8192 LSRK 43397.8198 6.10423356 50005.8813 43422.8227 RR LL SiO

# Scans: 21-24 Setup 1 HC3N et al
# Scans: 25-28 Setup 2 SiO et al

casapath=os.environ[’AIPSPATH’]
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#ASAP script # COMMENTS
#-------------------------------------- -----------------------------------------------
import asap as sd #import ASAP package into CASA

#Orion-S (SiO line reduction only)
#Notes:
#scan numbers (zero-based) as compared to GBTIDL

#changes made to get to OrionS_rawACSmod
#modifications to label sig/ref positions

os.environ[’AIPSPATH’]=casapath #set this environment variable back - ASAP changes it

s=sd.scantable(’OrionS_rawACSmod’,False)#load the data without averaging

Figure 8.1: Multi-panel display of the scantable. There are two plots per scan indicating the psr
(reference position data) and the ps (source data).

s.summary() #summary info
s.set_fluxunit(’K’) # make ’K’ default unit
scal=sd.calps(s,[20,21,22,23]) # Calibrate HC3N scans

scal.recalc_azel() # recalculate az/el to
scal.opacity(0.09) # do opacity correction
sel=sd.selector() # Prepare a selection
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Figure 8.2: Two panel plot of the calibrated spectra. The GBT data has a separate scan for the
SOURCE and REFERENCE positions so scans 20,21,22 and 23 result in these two spectra.

sel.set_ifs(0) # select HC3N IF
scal.set_selection(sel) # get this IF
stave=sd.average_time(scal,weight=’tintsys’) # average in time
spave=stave.average_pol(weight=’tsys’) # average polarizations;Tsys-weighted (1/Tsys**2) average
sd.plotter.plot(spave) # plot

spave.smooth(’boxcar’,5) # boxcar 5
spave.auto_poly_baseline(order=2) # baseline fit order=2
sd.plotter.plot(spave) # plot

spave.set_unit(’GHz’)
sd.plotter.plot(spave)
sd.plotter.set_histogram(hist=True) # draw spectrum using histogram
sd.plotter.axhline(color=’r’,linewidth=2) # zline
sd.plotter.save(’orions_hc3n_reduced.eps’)# save postscript spectrum

spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # get rms of line free regions
rms=spave.stats(stat=’rms’,mask=rmsmask)# rms

#----------------------------------------------
#Scan[0] (OrionS_ps) Time[2006/01/19/01:52:05]:
# IF[0] = 0.048
#----------------------------------------------
# LINE
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Figure 8.3: Calibrated spectrum with a line at zero (using histograms).

linemask=spave.create_mask([3900,4200])
max=spave.stats(’max’,linemask) # IF[0] = 0.918
sum=spave.stats(’sum’,linemask) # IF[0] = 64.994
median=spave.stats(’median’,linemask) # IF[0] = 0.091
mean=spave.stats(’mean’,linemask) # IF[0] = 0.210

# Fitting
spave.set_unit(’channel’) # set units to channel
sd.plotter.plot(spave) # plot spectrum
f=sd.fitter()
msk=spave.create_mask([3928,4255]) # create region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the data and region for the fitter
f.fit() # fit
f.plot(residual=True) # plot residual

f.get_parameters() # retrieve fit parameters
# 0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
# area = 59.473 K channel
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f.store_fit(’orions_hc3n_fit.txt’) # store fit

# Save the spectrum
spave.save(’orions_hc3n_reduced’,’ASCII’,True) # save the spectrum

8.3 Single Dish Imaging

Single dish imaging is supported within CASA using standard tasks and tools. The data must be
in the MeasurementSet format. Once there, you can use the sdgrid task or the im (imager) tool
to create images:

Tool example:

scans.save(’outputms’,’MS2’) # Save your data from ASAP into an MS

im.open(’outputms’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the dataa

spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters

phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

# gridding function used
# (default=prolate spheroidal wave function)

im.makeimage(type=’singledish’, # make the image
image=’FLS3a_HI.image’)

8.3.1 Single Dish Imaging Use Case With ASAP Toolkit

Again, the data summary and then the script is given below.

# Project: AGBT02A_007_01
# Observation: GBT(1 antennas)
#
# Telescope Observation Date Observer Project
# GBT [ 4.57539e+09, 4.5754e+09]Lockman AGBT02A_007_01
# GBT [ 4.57574e+09, 4.57575e+09]Lockman AGBT02A_007_02
# GBT [ 4.5831e+09, 4.58313e+09]Lockman AGBT02A_031_12
#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Data records: 76860 Total integration time = 7.74277e+06 seconds
# Observed from 22:05:41 to 12:51:56
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#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Fields: 2
# ID Name Right Ascension Declination Epoch
# 0 FLS3a 17:18:00.00 +59.30.00.00 J2000
# 1 FLS3b 17:18:00.00 +59.30.00.00 J2000
#
# Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
# Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
# SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
# 0 1024 LSRK 1421.89269 2.44140625 2500 1420.64269 XX YY
# 1 1024 LSRK 1419.39269 2.44140625 2500 1418.14269 XX YY

# FLS3 data calibration
# this is calibration part of FLS3 data
#
casapath=os.environ[’AIPSPATH’]
import asap as sd
os.environ[’AIPSPATH’]=casapath

print ’--Import--’

s=sd.scantable(’FLS3_all_newcal_SP’,false) # read in MeasurementSet

print ’--Split--’

# splitting the data for each field
s0=s.get_scan(’FLS3a*’) # split the data for the field of interest
s0.save(’FLS3a_HI.asap’) # save this scantable to disk (asap format)
del s0 # free up memory from scantable

print ’--Calibrate--’
s=sd.scantable(’FLS3a_HI.asap’) # read in scantable from disk (FLS3a)
s.set_fluxunit(’K’) # set the brightness units to Kelvin
scanns = s.getscannos() # get a list of scan numbers
sn=list(scanns) # convert it to a list
print "No. scans to be processed:", len(scanns)

res=sd.calfs(s,sn) # calibrate all scans listed using frequency
# switched calibration method

print ’--Save calibrated data--’
res.save(’FLS3a_calfs’, ’MS2’) # Save the dataset as a MeasurementSet

print ’--Image data--’

im.open(’FLS3a_calfs’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the dataa
spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
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im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters
phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

# gridding function used
# (default=prolate spheroidal wave function)

im.makeimage(type=’singledish’,image=’FLS3a_HI.image’) # make the image

Figure 8.4: FLS3a HI emission. The display illustrates the visualization of the data cube (left) and
the profile display of the cube at the cursor location (right); the Tools menu of the Viewer Display
Panel has a Spectral Profile button which brings up this display. By default, it grabs the left-mouse
button. Pressing down the button and moving in the display will show the profile variations.

8.4 Known Issues, Problems, Deficiencies and Features

The Single-Dish calibration and analysis package within CASA is still very much under develop-
ment. Not surprisingly, there are a number of issues with ASAP that are known and are under
repair. Some of these are non-obvious ”features” of the way ASAP or sd is implemented, or
limitations of the current Python tasking environment. Some are functions that have yet to be
implemented. These currently include:
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1. sd.plotter

Currently you can get hardcopy only after making a viewed plot. Ideally, ASAP should allow
you to choose the device for plotting when you set up the plotter.

Multi-panel plotting is poor. Currently you can only add things (like lines, text, etc.) to the
first panel. Also, sd.plotter.set range() sets the same range for multiple panels, while we
would like it to be able to set the range for each independently, including the default ranges.

The appearance of the plots need to be made a lot better. In principle matplotlib can make
”publication quality” figures, but in practice you have to do alot of work to make it do that,
and our plots are not good.

The sd.plotter object remembers things throughout the session and thus can easily get con-
fused. For example you have to reset the range sd.plotter.set range() if you have ever
set it manually. This is not always the expected behavior but is a consequence of having
sd.plotter be its own object that you feed data and commands to.

Eventually we would like the capability to interactively set things using the plots, like select
frequency ranges, identify lines, start fitting.

2. sd.selector

The selector object only allows one selection of each type. It would be nice to be able to make
a union of selections (without resorting to query) for the set name - note that the others like
scans and IFs work off lists which is fine. Should make set name work off lists of names.

3. sd.scantable

There is no useful inline help on the scantable constructor when you do help sd.scantable,
nor in help sd.

The inline help for scantable.summary claims that there is a verbose parameter, but there is
not. The scantable.verbosesummary asaprc parameter (e.g. in sd.rcParams) does nothing.

GBT data has incorrect fluxunit (’Jy’, should be ’K’), freqframe (’LSRK’, is really ’TOPO’)
and reference frequency (set to that of the first IF only).

You cannot set the rest frequencies for GBT data. THIS IS THE MOST SERIOUS BUG
RIGHT NOW.

The sd.scantable.freq align does not yet work correctly.

Need to add to scantable.stats: ’maxord’, ’minord’ - the ordinate (channel, vel, freq) of
the max/min

4. sd general issues

There should be a sdhelp equivalent of toolhelp and tasklist for the sd tools and tasks.

The current output of ASAP is verbose, and is controlled by setting sd.rcParams[’verbose’]=False
(or True). At the least we should make some of the output less cryptic.

Strip off leading and trailing whitespace on string parameters.
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