
CASA Synthesis & Single Dish
Reduction Cookbook

Version: September 5, 2007

Contents

1 Introduction 13
1.1 CASA Basics — Information for First-Time Users 15

1.1.1 Before Starting CASA . 15
1.1.2 Starting CASA . 16
1.1.3 Ending CASA . 16
1.1.4 What happens if something goes wrong? . 16
1.1.5 Python Basics for CASA . 17

1.1.5.1 Variables . 17
1.1.5.2 Lists and Ranges . 18
1.1.5.3 Indexes . 18
1.1.5.4 Indentation . 19
1.1.5.5 System shell access . 19
1.1.5.6 Executing Python scripts . 19

1.1.6 Getting Help in CASA . 20
1.1.6.1 TAB key . 20
1.1.6.2 help <taskname> . 20
1.1.6.3 help and PAGER . 21
1.1.6.4 help par.<parameter> . 21
1.1.6.5 Python help . 22

1.2 Tasks and Tools in CASA . 23
1.2.1 Further Details About Tasks . 24
1.2.2 Setting Parameters and Invoking Tasks . 26

1.2.2.1 The default Command . 28
1.2.2.2 The go Command . 28
1.2.2.3 The inp Command . 29
1.2.2.4 The restore Command . 32
1.2.2.5 The saveinputs Command . 32
1.2.2.6 The .last file . 34

1.3 Getting the most out of CASA . 34
1.3.1 Your command line history and the logger 35
1.3.2 Where are my data in CASA? . 36
1.3.3 What’s in my data? . 37
1.3.4 Data Selection in CASA . 38

1.4 From Loading Data to Images . 38

2

1.4.1 Loading Data into CASA . 39
1.4.1.1 VLA: Filling data from VLA archive format 40
1.4.1.2 Filling data from UVFITS format 40
1.4.1.3 Loading FITS images . 40
1.4.1.4 Concatenation of multiple MS . 41

1.4.2 Data Examination, Editing, and Flagging . 41
1.4.2.1 Interactive X-Y Plotting and Flagging 41
1.4.2.2 Flag the Data Non-interactively . 41
1.4.2.3 Viewing and Flagging the MS . 42

1.4.3 Calibration . 42
1.4.3.1 Setting the flux density scale . 43
1.4.3.2 Gain Calibration . 43
1.4.3.3 Bandpass Calibration . 43
1.4.3.4 Examining Calibration Solutions . 43
1.4.3.5 Bootstrapping Flux Calibration . 43
1.4.3.6 Calibration Accumulation . 44
1.4.3.7 Correcting the Data . 44
1.4.3.8 Splitting the Data . 44

1.4.4 Synthesis Imaging . 44
1.4.4.1 Making a “dirty” image . 45
1.4.4.2 Cleaning a single-field image . 45
1.4.4.3 Cleaning a mosaic . 45
1.4.4.4 Feathering in a Single-Dish image 45

1.4.5 Self Calibration . 46
1.4.6 Data and Image Analysis . 46

1.4.6.1 What’s in an image? . 46
1.4.6.2 Moments of an Image Cube . 46
1.4.6.3 Regridding an Image . 47
1.4.6.4 Displaying Images . 47

1.4.7 Getting data and images out of CASA . 47

2 Visibility Data Import, Export, and Selection 48
2.1 CASA Measurement Sets . 48

2.1.1 Under the Hood: Structure of the Measurement Set 49
2.2 Data Import and Export . 51

2.2.1 UVFITS Import and Export . 52
2.2.2 VLA: Filling data from archive format (importvla) 53
2.2.3 ALMA: Filling ALMA Science Data Model (ASDM) observations 55

2.3 Summarizing your MS (listobs) . 56
2.4 Concatenating multiple datasets (concat) . 59
2.5 Data Selection . 60

2.5.1 General selection syntax . 61
2.5.1.1 String Matching . 61

2.5.2 The field Parameter . 62
2.5.3 The spw Parameter . 63

2.5.3.1 Channel selection in the spw parameter 64
2.5.4 The selectdata Parameters . 65

2.5.4.1 The antenna Parameter . 65
2.5.4.2 The scan Parameter . 66
2.5.4.3 The timerange Parameter . 66
2.5.4.4 The uvrange Parameter . 67
2.5.4.5 The msselect Parameter . 68

3 Data Examination and Editing 69
3.1 Plotting and Flagging Visibility Data in CASA . 69
3.2 Managing flag versions with flagmanager . 69
3.3 Flagging auto-correlations with flagautocorr . 71
3.4 X-Y Plotting and Editing of the Data . 71

3.4.1 Plot control . 73
3.4.2 plotoptions . 74

3.4.2.1 plotsymbol . 74
3.4.2.2 Iteration . 75
3.4.2.3 Subplots . 76

3.4.3 Interactive Flagging in plotxy . 76
3.4.4 Exiting plotxy . 77
3.4.5 Example session using plotxy . 77

3.5 Non-Interactive Flagging using flagdata . 80
3.5.1 Flag Antenna/Channels . 81

3.5.1.1 Clipping in flagdata . 81
3.6 Interactive flagging using the viewer . 82
3.7 Browse the Data . 82

4 Synthesis Calibration 91
4.1 Calibration Tasks . 91
4.2 Calibration models for absolute flux density (setjy) 92

4.2.1 Dealing with resolved calibrators . 94
4.3 Complex Gain Calibration (gaincal) . 95

4.3.1 “A priori” gain curve calibration . 97
4.3.2 “A priori” atmospheric opacity correction . 98

4.3.2.1 Determining opacity corrections for VLA data 98
4.3.3 Other a priori Calibrations and Corrections 98
4.3.4 Polarization-dependent Gain (G) . 99
4.3.5 Polarization-independent Gain (T) . 100
4.3.6 GSPLINE solutions . 100

4.4 Flux density scale calibration . 101
4.4.1 Resolved flux density calibrators . 103

4.5 Spectral Bandpass Calibration (bandpass) . 104
4.5.1 B solutions . 105
4.5.2 BPOLY solutions . 106

4.6 Instrumental Polarization Calibration (D) . 107

4.7 Manipulating Calibration Tables . 108
4.7.1 Calibration Smoothing (smoothcal) . 108
4.7.2 Calibration Interpolation and Accumlation (accum) 109

4.7.2.1 Interpolation using (accum) . 109
4.7.2.2 Incremental Calibration using (accum) 110

4.8 Plotting Calibration Solutions (plotcal) . 113
4.9 Listing calibration solutions with (listcal) . 115
4.10 Application of Calibration (applycal) . 117

4.10.1 Examine calibrated source data . 118
4.11 Resetting the Calibration using (clearcal) . 119
4.12 Optional: Split out Calibrated uv data (split) . 119
4.13 Advanced Calibration and UV-Plane Analysis . 119

4.13.1 UV-Plane Continuum Subtraction (uvcontsub) 119
4.13.2 Baseline-based Calibration (blcal) . 121
4.13.3 Fringe Fitting (fringecal) . 122
4.13.4 UV-Plane Model Fitting (uvmodelfit) . 123

4.14 Example of Calibration . 125

5 Synthesis Imaging 136
5.1 Imaging Tasks Overview . 136
5.2 Common Imaging Task Parameters . 137

5.2.1 The cell Parameter . 137
5.2.2 The field Parameter . 138
5.2.3 The imagename Parameter . 138
5.2.4 The imsize Parameter . 138
5.2.5 The mode Parameter . 138
5.2.6 The restfreq Parameter . 140
5.2.7 The spw Parameter . 140
5.2.8 The stokes Parameter . 140
5.2.9 The uvfilter Parameter . 141
5.2.10 The weighting Parameter . 141

5.2.10.1 ’natural’ weighting . 142
5.2.10.2 ’uniform’ weighting . 142
5.2.10.3 ’superuniform’ weighting . 142
5.2.10.4 ’radial’ weighting . 142
5.2.10.5 ’briggs’ weighting . 143

5.2.11 The vis Parameter . 143
5.3 Making a Dirty Image and PSF (invert) . 144
5.4 Deconvolution using CLEAN (clean) . 144

5.4.1 Specific clean Parameters . 147
5.4.1.1 The alg Parameter . 147
5.4.1.2 The cleanbox Parameter . 148
5.4.1.3 The gain Parameter . 149
5.4.1.4 The mask Parameter . 149
5.4.1.5 The niter Parameter . 149

5.4.1.6 The threshold Parameter . 149
5.4.2 Interactive Cleaning . 149

5.5 Mosaic Deconvolution using CLEAN (mosaic) . 150
5.5.1 The cyclefactor Parameter . 151
5.5.2 The cyclespeedup Parameter . 152
5.5.3 The ftmachine Parameter . 152
5.5.4 The minpb Parameter . 152
5.5.5 The modelimage Parameter . 152
5.5.6 The mosweight Parameter . 153
5.5.7 The phasecenterid Parameter . 153
5.5.8 The scaletype Parameter . 153
5.5.9 The sdimage Parameter . 153

5.6 Combined Single Dish and Interferometric Imaging (feather) 153
5.7 Making Deconvolution Masks (makemask) . 154
5.8 Transforming an Image Model (ft) . 156
5.9 Image-plane deconvolution (deconvolve) . 156
5.10 Self-Calibration . 157
5.11 Example of Imaging . 157

6 Displaying Images 161
6.1 Starting the viewer . 161

6.1.1 Starting the casaviewer outside of casapy 161
6.2 The viewer GUI . 162
6.3 Viewing a raster map . 165
6.4 Viewing a contour map . 165
6.5 Viewing a MeasurementSet with visibility data . 165
6.6 Adjusting Display Parameters . 165
6.7 Adjusting Canvas Parameters/Multi-panel displays 166
6.8 Overlay contours on a raster map . 166

7 Image Analysis 175
7.1 Summary of an Image and Headers . 175
7.2 Computing the Moments of an Image Cube (immoments) 177
7.3 Regridding an Image (regridimage) . 178
7.4 Image display in the viewer . 178

7.4.1 Image statistics . 178
7.5 Image Import/Export to FITS . 179

8 Single Dish Data Processing 180
8.1 Guidelines for Use of ASAP and SDtasks in CASA 180

8.1.1 Environment Variables . 180
8.1.2 Assignment . 181
8.1.3 Lists . 181
8.1.4 Dictionaries . 182
8.1.5 Line Formatting . 182

8.2 Single Dish Analysis Tasks . 183
8.2.1 SDtask Summaries . 184
8.2.2 A Single Dish Analysis Use Case With SDTasks 195

8.3 Using The ASAP Toolkit Within CASA . 208
8.3.1 Environment Variables . 210
8.3.2 Import . 211
8.3.3 Scantable Manipulation . 213

8.3.3.1 Data Selection . 213
8.3.3.2 State Information . 213
8.3.3.3 Masks . 215
8.3.3.4 Scantable Management . 215
8.3.3.5 Scantable Mathematics . 215
8.3.3.6 Scantable Save and Export . 216

8.3.4 Calibration . 216
8.3.4.1 Tsys scaling . 216
8.3.4.2 Flux and Temperature Unit Conversion 217
8.3.4.3 Gain-Elevation and Atmospheric Optical Depth Corrections 217
8.3.4.4 Calibration of GBT data . 217

8.3.5 Averaging . 218
8.3.6 Spectral Smoothing . 220
8.3.7 Baseline Fitting . 220
8.3.8 Line Fitting . 221
8.3.9 Plotting . 222
8.3.10 Single Dish Spectral Analysis Use Case With ASAP Toolkit 222

8.4 Single Dish Imaging . 224
8.4.1 Single Dish Imaging Use Case With ASAP Toolkit 225

8.5 Known Issues, Problems, Deficiencies and Features 226

A Appendix: Obtaining and Installing CASA 233
A.1 Installation Script . 233
A.2 Startup . 233

B Appendix: Python and CASA 234
B.1 Automatic parentheses . 234
B.2 Indentation . 235
B.3 Lists and Ranges . 235
B.4 System shell access . 236
B.5 Logging . 238
B.6 History and Searching . 239
B.7 Macros . 241
B.8 On-line editing . 241
B.9 Executing Python scripts . 242
B.10 How do I exit from CASA? . 242

C Appendix: Annotated Example Scripts 243
C.1 NGC 5921 — VLA red-shifted HI emission . 243

C.1.1 NGC 5921 data summary . 255
C.2 Jupiter — VLA continuum polarization . 257

D Appendix: CASA Dictionaries 282
D.1 AIPS – CASA dictionary . 282
D.2 MIRIAD – CASA dictionary . 282
D.3 CLIC – CASA dictionary . 282

List of Tables

2.1 Common MS Columns . 51
2.2 Commonly accessed MAIN Table columns . 52

4.1 Recognized Flux Density Calibrators. 93

D.1 MIRIAD – CASA dictionary . 283
D.2 CLIC–CASA dictionary . 284

9

List of Figures

1.1 Issue/Defect Tracking system. Left: http://bugs.aoc.nrao.edu page showing login
entry fields. Right: Screen after selecting the ”Create New Issue” tab along the top. 17

1.2 Screen shot of the default CASA inputs for task clean. 30
1.3 The clean inputs where some parameters have been set to non-default values (blue).

Note that some of the boldface ones have opened up new dependent sub-parameters
(indented green). 31

1.4 The clean inputs where some parameters have been set to invalid values. These are
drawn in red to draw attention to the problem. 32

1.5 CASA Logger GUI window . 35
1.6 CASA Logger - Search example: Specify a string in the entry box to have all instances

of the found string highlighted. 36
1.7 CASA Logger - Filter facility: The log output can be sorted by Priority, Time,

Origin. One can also filter for a string found in the Message. 37
1.8 CASA Logger - Insert facility: The log output can be augmented by adding notes

or comments during the reduction. The file should then be saved to disk to retain
these changes. 38

1.9 Flow chart of the data processing operations that a general user will carry out in an
end-to-end CASA reduction session. 39

2.1 The contents of a Measurement Set. These tables compose a Measurement Set
named ngc5921.ms on disk. This display is obtained by using the File:Open menu
in browsetable. 50

3.1 The plotxy plotter. The bottom set of buttons on the lower left are: 1,2,3)
Home, Back, and Forward. Click to navigate between previously defined views
(akin to web navigation). 4) Pan. Click and drag to pan to a new position. 5) Zoom.
Click to define a rectangular region for zooming. 6) Subplot Configuration. Click
to configure the parameters of the subplot and spaces for the figures. 7) Save. Click
to launch a file save dialog box. The upper set of buttons in the lower left
are: 1) Mark Region. Press this to begin marking regions (rather than zooming or
panning). 2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the
data within the marked regions. 5) Next. Click to move to the next in a series of
iterated plots. Finally, the cursor readout is on the bottom right. 83

3.2 plotxy iteration plot: The first set of plots from the example in § 3.4.2.2. Each time
you press the Next button, you get the next series of plots. 84

10

3.3 Multi-panel display of visibility versus channel (top), antenna array configuration
(bottom left) and the resulting uv coverage (bottom right). The commands to
make these three panels respectively are: 1) plotxy(’n5921.ms’, xaxis=’channel’,
datacolumn=’corrected’, field=’0’, subplot=211, plotcolor=’’, plotsymbol=’go’),
2) plotxy(xaxis=’x’, subplot=223, plotsymbol=’r.’), 3) plotxy(xaxis=’u’,
yaxis=’v’, subplot=224, plotsymbol=’b,’). 85

3.4 Plot of amplitude versus uv distance, before (left) and after (right) flagging two
marked regions. The call was: plotxy(vis=’n5921.ms’,xaxis=’uvdist’, plotsymbol=’b,’,
subplot=111, datacolumn=’data’, field=’1445*’). 86

3.5 flagdata: Example showing before and after displays using a selection of one an-
tenna and a range of channels. Note that each invocation of the flagdata task repre-
sents a cumulative selection, i.e., running antenna=’0’ will flag all data with antenna
0, while antenna=’0’, spw=’0:10 15’ will flag only those channels on antenna 0. . . 87

3.6 flagdata: Flagging example using the clip facility. 87
3.7 browsetable: The browser displays the main table within a frame. Hit the expand

button to fill the browser frame (this has been done for this figure). You can scroll
through the data (x=columns of the MAIN table, and y=the rows) or select a specific
page or row as desired. 88

3.8 browsetable: You can use the Menu option View to look at other tables within an
MS. If you select on View:Table Keywords you get the image displayed. You can
then select on a table to view its contents. 89

3.9 browsetable: View the SOURCE table of the MS. 90

4.1 plotcal: Display of the amplitude solutions for short solution interval table (0.5
seconds: top) and the smoothed table using a smoothtime of 1000 seconds. 109

4.2 plotcal: Display of the amplitude solutions for NGC 5921; original (left), interpolated
solutions-20s sampling (right). 110

4.3 plotcal: Display of the amplitude and phase gain solutions (for all data). 114
4.4 plotcal: Display of the amplitude and phase bandpass solutions (for all data). 115
4.5 plotcal: Display of a 3x2 grid of bandpass solutions, iterating over antenna identifier

index. 116
4.6 Use of plotxy to display corrected data (red points) and uv model fit data (blue

circles). 126

5.1 Screenshot of the interactive clean window during deconvolution of the VLA 6m
Jupiter dataset. We have already cleaned 100 iterations in the region previously
marked, and are ready to extend the mask to pick up the newly revealed emission.
Note the boxes at the top right where the npercycle, niter, and threshold can be
changed. 160

6.1 Viewer Display Panel with no data loaded. Each section of the GUI is explained below167
6.2 casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the

Load Data panel (right). 168
6.3 casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the

Load Data panel (right). 169
6.4 casaviewer: Display of visibility data. The default axes are time vs. baseline. 170

6.5 casaviewer: Data display options. In the left panel, the Display axes, Hidden axes,
and Basic Settings options are shown; in the right panel, the Position tracking and
Axis labels options are shown. 171

6.6 casaviewer: Data display options. In this final, third panel , the Axis label properties
are shown. 172

6.7 casaviewer: A multi-panel display set up through the Viewer Canvas Manager. . . . 173
6.8 casaviewer: Display contour overlay on top of a raster image. 174

8.1 Wiring diagram for the SDtask sdcal. The stages of processing within the task are
shown, along with the parameters that control them. 229

8.2 Multi-panel display of the scantable. There are two plots per scan indicating the
psr (reference position data) and the ps (source data). 230

8.3 Two panel plot of the calibrated spectra. The GBT data has a separate scan for the
SOURCE and REFERENCE positions so scans 20,21,22 and 23 result in these two
spectra. 230

8.4 Calibrated spectrum with a line at zero (using histograms). 231
8.5 FLS3a HI emission. The display illustrates the visualization of the data cube (left)

and the profile display of the cube at the cursor location (right); the Tools menu of
the Viewer Display Panel has a Spectral Profile button which brings up this display.
By default, it grabs the left-mouse button. Pressing down the button and moving in
the display will show the profile variations. 232

Chapter 1

Introduction

This document describes how to calibrate and image interferometric and single-dish radio astro-
nomical data using the CASA (Common Astronomy Software Application) package. CASA is a
suite of astronomical data reduction tools and tasks that can be run via the IPython interface to
Python. CASA is being developed in order to fulfill the data post-processing requirements of the
ALMA and EVLA projects, but also provides basic and advanced capabilities useful for the analysis
of data from other radio, millimeter, and submillimeter telescopes.

Alpha Alert!
Boxes like this will bring to your at-
tention some of the features (or lack
thereof) in the current Alpha relase
version of CASA.

Currently, CASA is in an Alpha Release stage. This
means that only a small subset of the eventual functional-
ity is available. Furthermore, the package is under intense
development, and some features might change in future re-
leases. This should be taken into account as users begin
to learn the package. We will do our best to point out
commands, tasks, and parameters that are likely to change
underfoot. Unfortunately, bugs and crashes also come along with the Alpha territory. We will do
our best to stamp these out as soon as we find them, but sometimes known bugs will persist until
we can find the right time to fix them (like in a task that we know we want to make a big change
to next month). See the release notes for the current version for more details. In this cookbook,
we will try to point out known pitfalls and workarounds in the Alpha Alert boxes, or in ALPHA
ALERTs in the text.

Inside the Toolkit:
Throughout this Cookbook, we will
occasionally intersperse boxed-off
pointers to parts of the toolkit that
power users might want to explore.

This cookbook is a task-based walkthrough of interferomet-
ric data reduction and analysis. In CASA, tasks represent
the more streamlined operations that a typical user would
carry out. The idea for having tasks is that they are simple
to use, provide a more familiar interface, and are easy to
learn for most astronomers who are familiar with radio in-
terferometric data reduction (and hopefully for novice users
as well). In CASA, the tools provide the full capability of
the package, and are the atomic functions that form the basis of data reduction. These tools aug-
ment the tasks, or fill in gaps left by tasks that are under development but not yet available. See

13

CHAPTER 1. INTRODUCTION 14

the CASA Toolkit Guide for more details on the tools. Note that in most cases, the tasks are
Python interface scripts to the tools, but with specific, limited access to them and a standard-
ized interface for parameter setting. The tasks and tools can be used together to carry out more
advanced data reduction operations.

For the moment, the audience is assumed to have some basic grasp of the fundamentals of synthesis
imaging, so details of how a radio interferometer or telescope works and why the data needs to
undergo calibration in order to make synthesis images are left to other documentation — a good
place to start might be Synthesis Imaging in Radio Astronomy II (1999, ASP Conference Series
Vol. 180, eds. Taylor, Carilli & Perley).

This cookbook is broken down by the main phases of data analysis:

• data import and export (Chapter 2),

• examination and flagging of data (Chapter 3),

• interferometric calibration (Chapter 4),

• interferometric imaging (Chapter 5),

• image display (Chapter 6), and

• image analysis (Chapter 7).

There is also a special chapter on Single Dish data analysis (Chapter 8).

The appendices provide more details on what’s happening under the hood of CASA, as well as
supplementary material on tasks, scripts, and relating CASA to other packages. These appendices
include:

• obtaining and installing CASA (Appendix A),

• more details about Python and CASA (Appendix B),

• annotated scripts for typical data reduction cases (Appendix C), and

• CASA dictionaries to AIPS, MIRIAD, and CLIC (Appendix D).

The CASA User Documentation includes:

• CASA Synthesis & Single Dish Reduction Cookbook — this document, a task-based
data analysis walk-through and instructions;

• CASA in-line help — accessed using help in the casapy interface;

• The CASA Toolkit Guide — useful when the tasks do not have everything you want
and you need more power and functionality. Also contains more detailed descriptions of the
philosophy of data analysis;

CHAPTER 1. INTRODUCTION 15

• The CASA User Reference Manual — details on a specific task or tool does and how to
use it. ALPHA ALERT: Currently the Reference Manual describes only tools, not tasks.

The CASA home page can be found at:

• http://casa.nrao.edu

From there you can find documentation and assistance for the use of the package, including the
User Documentation.

1.1 CASA Basics — Information for First-Time Users

This section assumes that CASA has been installed on your LINUX or OSX system. See Appendix A
for instructions on how to obtain and install CASA.

1.1.1 Before Starting CASA

To define environment variables and the casapy alias, you will need to run one of the casainit
shell scripts. The location of the startup scripts for CASA will depend upon where you installed
CASA on your system. Sometimes, you will have multiple versions (for example, various released
versions).

For example, NRAO-AOC testers would do the following on an AOC RHE4 machine:

In bash:
> . /home/casa/casainit.sh
or for csh:
> source /home/casa/casainit.csh

depending on what shell you are running (Bourne or [t]csh).

Before starting up casapy, you should set or reset any environment varibles needed, as CASA
will adopt these on startup. For example, the PAGER environment variable determines how help is
displayed in the CASA terminal window (see § 1.1.6.3). The choices are (in bash):

PAGER=less
PAGER=more
PAGER=cat

or in csh or tcsh:

setenv PAGER less
setenv PAGER more
setenv PAGER cat

http://casa.nrao.edu

CHAPTER 1. INTRODUCTION 16

The actions of these are as if you were using the equivalent Unix shell command to view the help
material. See § 1.1.6.3 for more information on these choices. We recommend using the cat option
for most users, as this works smoothly both interactively and in scripts.

Note: there is currently no way within CASA to change these environment variables.

1.1.2 Starting CASA

After having run the appropriate casainit script, CASA is started by typing
casapy
on the command line. After startup information, you should get an IPython
CASA <1>:
command prompt in the xterm window where you started CASA. CASA will take approximately 10
seconds to initialize at startup in a new working directory; subsequent startups are faster. CASA
is active when you get a
CASA <1>
prompt in the command line interface.

1.1.3 Ending CASA

You can exit CASA by typing:

CTRL-D, %exit, or quit.

If you don’t want to see the question "Do you really want to exit [y]/n?", then just type

Exit

and CASA will stop right then and there.

1.1.4 What happens if something goes wrong?

First, always check that your inputs are correct; use the help <taskname> or help par.<parameter name>
to review the inputs/output.

You can submit a question/bug/enhancement via the site:

http://bugs.aoc.nrao.edu

Login (or register yourself if you don’t have a login/password); click the ’Create New Issue’ along
the top tabs to file a question/bug/enhancement.

If something has gone wrong and you want to stop what is executing, then typing ’Control-C’ will
usually cleanly abort the application.

http://bugs.aoc.nrao.edu

CHAPTER 1. INTRODUCTION 17

Figure 1.1: Issue/Defect Tracking system. Left: http://bugs.aoc.nrao.edu page showing login
entry fields. Right: Screen after selecting the ”Create New Issue” tab along the top.

1.1.5 Python Basics for CASA

Within CASA, you use Python to interact with the system. This does not mean an extensive
Python course is necessary - basic interaction with the system (assigning parameters, running
tasks) is straightforward. At the same time, the full potential of Python is at the more experienced
user’s disposal. Some further details about Python, IPython, and the interaction between Python
and CASA can be found in Appendix B.

The following are some examples of helpful hints and tricks on making Python work for you in
CASA.

1.1.5.1 Variables

Python variables are set using the <parameter> = <value> syntax. Python assigns the type
dynamically as you set the value, and thus you can easily give it a non-sensical value, e.g.

vis = ’ngc5921.ms’
vis = 1

The CASA parameter system will check types when you run a task or tool, or more helpfully when
you set inputs using inp (see below). CASA will check and protect the assignments of the global
parameters in its namespace.

Note that Python variable names are case-sensitive:

CHAPTER 1. INTRODUCTION 18

CASA <109>: Foo = ’bar’
CASA <110>: foo = ’Bar’
CASA <111>: foo
Out[111]: ’Bar’

CASA <112>: Foo
Out[112]: ’bar’

so be careful.

Also note that mis-spelling a variable assignment will not be noticed (as long as it is a valid Python
variable name) by the interface. For example, if you wish to set correlation=’RR’ but instead
type corellation=’RR’ you will find correlation unset and a new corellation variable set.
Command completion (see § 1.1.6.1) should help you avoid this.

1.1.5.2 Lists and Ranges

Sometimes, you need to give a task a list of indices. If these are consecutive, you can use the
Python range function to generate this list:

CASA <1>: iflist=range(4,8)
CASA <2>: print iflist
[4, 5, 6, 7]
CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

See Appendix B.3 for more information.

1.1.5.3 Indexes

As in C, Python indices are 0-based. For example, the first element in a list antlist would be
antlist[0]:

CASA <113>: antlist=range(5)
CASA <114>: antlist
Out[114]: [0, 1, 2, 3, 4]

CASA <115>: antlist[0]
Out[115]: 0

CASA <116>: antlist[4]
Out[116]: 4

CASA also uses 0-based indexing internally for elements in the Measurement Set (MS – the basic
construct that contains visibility and/or single dish data; see Chapter 2). Thus, we will often talk
about Field or Antenna “ID”s which will be start at 0. For example, the first field in an MS would
have FIELD ID==0 in the MSselect syntax, and can be addressed as be indexed as field=’0’ in
most tasks, as well as by name field=’0137+331’ (assuming thats the name of the first field).
You will see these indices in the MS summary from the task listobs.

CHAPTER 1. INTRODUCTION 19

1.1.5.4 Indentation

Python pays attention to the indentation of lines, as it uses indentation to determine the level
of nesting in loops. Be careful when cutting and pasting: if you get the wrong indentation, then
unpredictable things can happen (usually it just gives an error).

See Appendix B.2 for more information.

1.1.5.5 System shell access

Any input line beginning with a ’ !’ character is passed verbatim (minus the ’ !’, of course) to the
underlying operating system (the sole exception to this is the ’cd’ command which must be executed
without the ’!’). Also, several common commands (ls, pwd, cd, less) may be executed with or
without the ’ !’.

Example:

CASA <5>: !rm -r mydata.ms

Note that if you want to access a Unix environment variable, you will need to prefix with a double
$$ instead of a single $ — for example, to print the value of the $PAGER variable, you would use

CASA <6>: !echo $$PAGER

See Appendix B.4 for more information.

1.1.5.6 Executing Python scripts

You can execute Python scripts (ASCII text files containing Python or casapy commands) using
the execfile command. For example, to execute the script contained in the file myscript.py (in
the current directory), you would type

CASA <7>: execfile(’myscript.py’)

or

CASA <8>: execfile ’myscript.py’

which will invoke the IPython auto-parenthesis feature.

NOTE: in some cases, you can use the IPython run command instead, e.g.

CASA <9>: run myscript.py

In this case, you do not need the quotes around the filename. This is most useful for re-initializing
the task parameters, e.g.

CHAPTER 1. INTRODUCTION 20

CASA <10>: run clean.last

(see § 1.2.2.6).

See Appendix B.9 for more information.

1.1.6 Getting Help in CASA

1.1.6.1 TAB key

At any time, hitting the <TAB> key will complete any available commands or variable names and
show you a list of the possible completions if there’s no unambiguous result. It will also complete
filenames in the current directory if no CASA or Python names match.

For example, it can be used to list the available functionality using minimum match; once you have
typed enough characters to make the command unique, <TAB> will complete it.

CASA <15>: cle<TAB>
clean clean_description clearcal_check_params
clearplot clearstat
clean_check_params clear clearcal_defaults
clearplot_defaults clearstat_defaults
clean_defaults clearcal clearcal_description
clearplot_description clearstat_description

1.1.6.2 help <taskname>

Basic information on an application, including the parameters used and their defaults, can be ob-
tained by typing help task (pdoc task and task? are equivalent commands with some additional
programming information returned). help task provides a one line description of the task and
then lists all parameters, a brief description of the parameter, the parameter default, an example
setting the parameter and any options if there are limited allowed values for the parameter.

CASA <45>: help uvcontsub
--------> help(uvcontsub)
Help on function uvcontsub in module uvcontsub:

uvcontsub(vis=None, field=None, spw=None, channels=None, solint=None,
fitorder=None, fitmode=None, async=None)

Continuum fitting and subtraction in the uv plane:

Keyword arguments:
vis -- Name of input visibility file (MS)

default: <unset>; example: vis=’ngc5921.ms’
field -- Field name(s); this will use a minimum match on the strings

default: field = ’’ means use all sources
field = 1 # will get field_id=1 (if you give it an

CHAPTER 1. INTRODUCTION 21

integer, it will retrieve the source with that index.
field = ’1328+307’ specifies source ’1328+307’

minimum match can be used, egs field = ’13*’ will
retrieve ’1328+307’ if unique or exists.
source names with imbedded blanks cannot be included.

spw -- Spectral window index identifier
default=0; example: spw=1

channels -- Range of channels to fit
default:; example: channels=range(4,7)+range(50,60)

solint -- Averaging time (seconds)
default: 0.0 (scan-based); example: solint=10

fitorder -- Polynomial order for the fit
default: 0; example: fitorder=1

fitmode -- Use of the continuum fit model
default: ’subtract’; example: fitmode=’replace’
<Options:
’subtract’-store continuum model and subtract from data,
’replace’-replace vis with continuum model,
’model’-only store continuum model>

1.1.6.3 help and PAGER

Your PAGER environment variable (§ 1.1.1) determines how help is displayed in the terminal window
where you start CASA. If you set your bash environment variable PAGER=less (setenv PAGER less
in csh) then typing help <taskname> will show you the help but the text will vanish and return
you to the command line when you are done viewing it. Setting PAGER=more (setenv PAGER more)
will scroll the help onto your command window and then return you to your prompt (but leaving
it on display). Setting PAGER=cat (setenv PAGER cat) will give you the more equivalent without
some extra formatting baggage and is the recommended choice.

If you have set PAGER=more or PAGER=less, the help display will be fine, but the display of
’taskname?’ will often have confusing formatting content at the beginning (lots of ESC surrounding
the text). This can be remedied by exiting casapy and doing an ’unset PAGER’ (unsetenv PAGER
in [t]csh) at the Unix command line.

You can see the current value of the PAGER environment variable with CASA by typing:

!echo $$PAGER

(note the double $$). This will show what command paging is pointed to.

1.1.6.4 help par.<parameter>

Typing help par.<parameter> provides a brief description of a given parameter <parameter>.

CASA <46>: help par.robust

CHAPTER 1. INTRODUCTION 22

Help on function robust in module parameter_dictionary:

robust()
Brigg’s robustness parameter.

Options: -2.0 (close to uniform) to 2.0 (close to natural)

1.1.6.5 Python help

Typing help at the casapy prompt with no arguments will bring up the native Python help facility,
and give you the help> prompt for further information; hitting <RETURN> at the help prompt
returns you to the CASA prompt. You can also get the short help for a CASA method by typing
’help tool.method’ or ’help task’.

CASA <2>: help
--------> help()

Welcome to Python 2.5! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://www.python.org/doc/tut/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word
such as "spam", type "modules spam".

help> keywords

Here is a list of the Python keywords. Enter any keyword to get more
help.

and else import raise
assert except in return
break exec is try
class finally lambda while
continue for not yield
def from or
del global pass
elif if print

help>

hit <RETURN> to return to CASA prompt

CHAPTER 1. INTRODUCTION 23

You are now leaving help and returning to the Python interpreter.
If you want to ask for help on a particular object directly from the
interpreter, you can type "help(object)". Executing
"help(’string’)" has the same effect as typing a particular string
at the help> prompt.

CASA <3>: help gaincal
--------> help(gaincal)
Help on function gaincal in module gaincal:

gaincal(vis=None, caltable=None, field=None, spw=None, selectdata=None,
timerange=None, uvrange=None, antenna=None, scan=None, msselect=None,
solint=None, preavg=None, refant=None, minsnr=None, solnorm=None,
gaintype=None, calmode=None, append=None, splinetime=None, npointaver=None,
phasewrap=None, gaincurve=None, opacity=None, tau=None, gaintable=None,
bptable=None, pointtable=None, async=None)

Determine temporal gains from calibrator observations:

The complex gains for each antenna/spwid are determined from
the data column (raw data) and the model column for the
specified calibrator sources. A solution interval or a
spline fit can be obtained. Previous calibrations can be
applied on the fly.

Keyword arguments:
vis -- Name of input visibility file

default: none; example: vis=’ngc5921.ms’
caltable -- Name of output gain calibration table

default: none; example: caltable=’ngc5921.gcal’

--- Data Selection (see help par.selectdata for more detailed information)

field -- Select field using field id(s) or field name(s).
[run listobs to obtain the list id’s or names]

default: ’’=all fields

etc. etc.

For a full list of keywords associated with the various tasks, see the CASA User Reference
Manual. Further help in working within the Python shell is given in Appendix B. ALPHA
ALERT: The User Reference Manual currently covers only tools, not tasks.

1.2 Tasks and Tools in CASA

Originally, CASA consisted of a collection of tools, combined in the so-called toolkit. Since the
majority of prospective users is far more familiar with the concept of tasks, an effort is underway

CHAPTER 1. INTRODUCTION 24

to replace most - if not all - toolkit functionality by tasks.

While running CASA, you will have access to and be interacting with tasks, either indirectly
by providing parameters to a task, or directly by running a task. Each task has a well defined
purpose, and a number of associated parameters, the values of which are to be supplied by the
user. Technically speaking, tasks are built on top of tools - when you are running a task, you are
running tools in the toolkit, though this should be transparent.

As more tasks are being written, and the functionality of each task is enhanced, there will be less
and less reason to run tools in the toolkit. We are working toward a system in which direct access
to the underlying toolkit is unnecessary for all standard data processing.

1.2.1 Further Details About Tasks

As mentioned in the introduction, tasks in CASA are python interfaces to the more basic toolkit.
Tasks are executed to perform a single job, such as loading, plotting, flagging, calibrating, and
imaging the data.

Basic information on tasks, including the parameters used and their defaults, can be obtained by
typing help <taskname> or <taskname>? at the CASA prompt, where <taskname> is the name
of a given task. As described above in § 1.1.6.2, help <taskname> provides a description of the
task and then lists all parameters, a brief description of the parameter, the parameter default, an
example setting the parameter and any options if there are limited allowed values for the parameter.

To see what tasks are available in CASA, use tasklist.

CASA <4>: tasklist()
Available tasks:

Import/Export Information Editing Display/Plot
------------- ----------- ------- ------------
importvla listcal flagautocorr clearplot
importasdm listhistory flagdata plotants
importfits listobs flagmanager plotcal
importuvfits imhead plotxy plotxy
exportfits viewer
exportuvfits

Calibration Imaging Modelling Utility
----------- ------- --------- -------
accum clean setjy help task
applycal feather uvcontsub help par.parameter
bandpass ft uvmodelfit taskhelp
blcal invert tasklist
gaincal (G) makemask browsetable
fluxscale mosaic clearplot
fringecal (K) clearstat
clearcal concat
listcal filecatalog

CHAPTER 1. INTRODUCTION 25

pointcal startup
smoothcal split
Image Analysis Simulation restore
-------------- ----------
(imcontsub) almasimmos
imhead
immoments
regridimage

Typing taskhelp provides a one line description of all available tasks.

CASA <5>: taskhelp()
Available tasks:

accum : Accumulate calibration solutions into a cumulative table
almasimmos : ALMA mosaic simulation task (prototype)
applycal : Apply calculated calibration solutions
bandpass : Calculate a bandpass calibration solution
blcal : Calculate a baseline-based calibration solution
browsetable : Browse a visibility data set or calibration table
clean : Calculate a deconvolved image with selected clean algorithm
clearcal : Re-initialize visibility data set calibration data
clearplot : Clear matplotlib plotter and all layers
clearstat : Clear all read/write locks on tables
concat : Concatenate two visibility data sets
deconvolve : Image based deconvolver
exportfits : Convert a CASA image to a FITS image
exportuvfits : Export MS to UVFITS file
feather : Feather together an interferometer and a single dish image in the Fourier plane
filecatalog : File Catalog GUI
flagautocorr : Flag autocorrelations (typically in a filled VLA data set)
flagdata : Flag data based on time, baseline, antenna, clip, etc
flagmanager : Enable list, save, restore and delete of flag versions
fluxscale : Bootstrap the flux density scale from standard calibraters
fringecal : Calculate a baseline-based fringe-fitting solution (phase, delay, delay-rate)
ft : Fourier transform the specified model (or component list)
gaincal : Calculate gain calibration solutions
imhead : List/set image header properties
immoments : Compute moments from an image (see URM for mathematical details)
importasdm : Convert an ALMA Science Data Model directory to a CASA visibility data set (MS)
importfits : Convert a FITS image to a CASA image
importuvfits : Convert a UVFITS file to a CASA visibility data set (MS)
importvla : Convert VLA archive file(s) to a CASA visibility data set (MS)
invert : Calculate a dirty image and dirty beam
listcal : List calibration solutions to terminal
listhistory : List the processing history of a data set
listobs : List the observations in a data set
makemask : Calculate mask from image or visibility data set
mosaic : Calculate a multi-field deconvolved image with selected clean algorithm

CHAPTER 1. INTRODUCTION 26

plotants : Plot the antenna distribution in local reference frame
plotcal : Plot calibration solutions
plotxy : Plot points for selected X and Y axes
pointcal : Calculate pointing error calibration
regridimage : Grid image to same shape and coordinates as template
restore : Restore all parameters to defaults
setjy : Compute the model visibility for a specified source flux density
smoothcal : Produce a smoothed calibration table
split : Create a new data set (MS) from a subset of an existing data set (MS)
uvcontsub : Continuum fitting and subtraction in the uv plane
uvmodelfit : Fit a single component source model to the uv data
viewer : View an image or visibility data set

Typing startup will provide the startup page displayed when entering CASA.

Details on individual tasks are also presented in the CASA User Reference Manual. ALPHA
ALERT: The User Reference Manual currently covers only tools, not tasks.

1.2.2 Setting Parameters and Invoking Tasks

Inside the Toolkit:
In the current version of CASA,
you cannot use the task parameter
setting features, such as the inp,
default, or go commands, for the
tools.

Tasks require input parameters (sometimes called key-
words). A task, like a tool, is a function under Python
and may be written in Python, C, or C++ (the CASA
toolkit is made up of C++ functions). Tasks and tools can
be executed in several ways.

First, one may call tasks and tools by name with parame-
ters set on the same line. Parameters may be set either as
explicit <parameter>=<value> arguments, or as a series of
comma delimited <value>s in the correct order for that task or tool. Note that missing parameters
will retain the values previously given to those parameters – use default <taskname> to avoid this
behavior. For example, the following are equivalent:

Specify parameter names for each keyword input:
plotxy(vis=’ngc5921.ms’,xaxis=’channel’,yaxis=’amp’,datacolumn=’data’)

when specifying the parameter name, order doesn’t matter, e.g.:
plotxy(xaxis=’channel’,vis=’ngc5921.ms’,datacolumn=’data’,yaxis=’amp’)

use parameter order for invoking tasks
plotxy(’ngc5921.ms’,’channel’,’amp’,’data’)

Second, one can set parameters for tasks (but currently not for tools) by performing the assigment
within the CASA shell and then inspecting them using the inp command:

CASA <30>: default(plotxy)
CASA <31>: vis = ’ngc5921.ms’
CASA <32>: xaxis = ’channel’
CASA <33>: yaxis = ’amp’

CHAPTER 1. INTRODUCTION 27

CASA <34>: datacolumn = ’data’
CASA <35>: inp(plotxy)
vis = ’ngc5921.ms’ # Name of input visibility
xaxis = ’channel’ # azimuth,elevation,hourangle,baseline,channel,time,u,v,w,uvdist,x
yaxis = ’amp’ # azimuth,elevation,hourangle,baseline,amp,pha,u,v,w,uvdist
datacolumn = ’data’ # data (raw), corrected, model
field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
selectdata = False # Select a subset of the data - opens selection params
average = ’’ # Select averaging mode: time or channel
subplot = 111 # Panel number on display screen (yxn)
overplot = False # Overplot values on current plot (if possible)
showflags = False # Show flagged data
iteration = ’’ # Plot separate panels by field, antenna, baseline, scan, feed
plotsymbol = ’.’ # pylab plot symbol
plotcolor = ’darkcyan’ # pylab plot color
markersize = 5.0 # Size of plotted marks
linewidth = 1.0 # Width of plotted lines
connect = ’none’ # Specifies which points are connected with lines
plotrange = [-1, -1, -1, -1] # The range of data to be plotted, can be time values
skipnpoints = 1 # Plot every nth point
multicolor = False # Plot polarizations and channels in different colors
replacetopplot = False # Replace the last plot or not when overplotting
removeoldpanels = True # Turn on/of automatic clearing of panels
title = ’’ # Plot title (above plot)
xlabels = ’’ # Label for x-axis
ylabels = ’’ # Label for y-axis
fontsize = 10.0 # Font size for labels
windowsize = 1.0 # Window size

See § 1.2.2.3 below for more details on the use of the inputs command.

Alpha Alert!
The restore command has been dis-
abled for now. It will return in a
later patch.

All task parameters have global scope within CASA: the
parameter values are common to all tasks and also at the
CASA command line. This allows the convenience of not
changing parameters that are shared between tasks but
does require care when chaining together sequences of task
invocations (to ensure proper values are provided).

If you want to reset the input keywords for a single task,
use the default command (§ 1.2.2.1). For example, to set the defaults for the clean task, type:

CASA <12>: default(’clean’)

To inspect a single parameter value just type it at the command line:

CASA <16>: alg # type ’alg’ to see the what the algorithm keyword is set to
Out[16]: ’clark’ # CASA tells you it is set to use the Clark algorithm

CHAPTER 1. INTRODUCTION 28

CASA parameters are just Python variables.

Parameters for a given task can be saved by using the saveinputs command (see § 1.2.2.5) and
restored using the execfile ’<filename>’ command. Note that if the task is successfully exe-
cuted, then a <taskname>.last file is created in the working directory containing the parameter
values (see § 1.2.2.6).

We now describe the individual CASA task parameter interface commands and features in more
detail.

1.2.2.1 The default Command

Each task has a special set of default parameters defined for its parameters. You can use the
default command to reset the parameters for a specified task (or the current task as defined by
the taskname variable) to their default.

For example, suppose we have been runing CASA on a particular dataset, e.g.

CASA <40>: inp clean
---------> inp(’clean’)
vis = ’ngc5921.ms’ # Name of input visibility file
imagename = ’ngc5921’ # Pre-name of output images
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
alg = ’csclean’ # Algorithm to use (hogbom, clark, csclean, multiscale)
niter = 1000 # Number of iterations
...

and now we wish to switch to a different one. We can reset the parameter values using default:

CASA <41>: default
---------> default()

CASA <42>: inp
---------> inp()
vis = ’’ # Name of input visibility file
imagename = ’’ # Pre-name of output images
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
alg = ’clark’ # Algorithm to use (hogbom, clark, csclean, multiscale)
niter = 500 # Number of iterations
...

It is good practice to use default before running a task if you are unsure what state the CASA
global variables are in.

1.2.2.2 The go Command

You can execute a task using the go command, either explicitly

CHAPTER 1. INTRODUCTION 29

CASA <44>: go listobs
---------> go(listobs)
Executing: listobs()
...

or implicitly if taskname is defined (e.g. by previous use of default or inp)

CASA <45>: taskname = ’clean’
CASA <46>: go
---------> go()
Executing: clean()
...

You can also execute a task simply by typing the taskname.

CASA <46>: clean
---------> clean()
Executing: clean()
...

1.2.2.3 The inp Command

You can set the values for the parameters for tasks (but currently not for tools) by performing the
assigment within the CASA shell and then inspecting them using the inp command. This command
can be invoked in any of three ways: via function call inp(’<taskname>’) or inp(<taskname>),
without parentheses inp ’<taskname>’ or inp <taskname>, or using the current taskname vari-
able setting with inp. For example,

CASA <1>: inp(’clean’)
...
CASA <2>: inp ’clean’
----------> inp(’clean’)
...
CASA <3>: inp(clean)
...
CASA <4>: inp clean
----------> inp(clean)
...
CASA <5>: taskname = ’clean’
CASA <6>: inp
----------> inp()

all do the same thing.

When you invoke the task inputs via inp, you see a list of the parameters, their current values, and
a short decription of what that parameters does. For example, starting from the default values,

CHAPTER 1. INTRODUCTION 30

CASA <18>: inp(’clean’)
vis = ’’ # Name of input visibility file
imagename = ’’ # Pre-name of output images
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)
alg = ’clark’ # Algorithm to use (hogbom, clark, csclean, multiscale)
niter = 500 # Number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = 0.0 # Flux level to stop cleaning (mJy)
mask = [’’] # Name of mask image used in cleaning
cleanbox = [] # clean box regions or file name or ’interactive’
imsize = [256, 256] # Image size in pixels (nx,ny)
cell = [’1.0arcsec’, ’1.0arcsec’] # Cell size in arcseconds (x,y)
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’’ # Field name
spw = ’’ # Spectral window identifier
weighting = ’natural’ # Weighting to apply to visibilities

(natural, uniform, briggs, radial, superuniform)
uvfilter = False # Apply additional filtering/uv tapering of the visibilities
selecttime = ’1960/01/01/00:00:00~2020/12/31/23:59:59’ # range of time to select from data
restfreq = ’’ # restfrequency to use in image
async = False # if True run in the background, prompt is freed

Figure 1.2 shows how this will look to you on your terminal. Note that some parameters are in
boldface with a gray background. This means that some values for this parameter will cause it to
expand, revealing new sub-parameters to be set.

Figure 1.2: Screen shot of the default CASA inputs for task clean.

CASA uses color and font to indicate different properties of parameters and their values:

Parameter and Values in CASA inp

CHAPTER 1. INTRODUCTION 31

Text Font Text Color Highlight Indentation Meaning
Parameters:

plain black none none standard parameter
bold black grey none expandable parameter
plain green none yes sub-parameter

Values:
plain black none none default value
plain blue none none non-default value
plain red none none invalid value

Figure 1.3 shows what happens when you set some of the clean parameters to non-default values.
Some have opened up sub-parameters, which can now be seen and set. Figure 1.4 shows what
happens when you set a parameter, in this case vis and mode, to an invalid value. Its value
now appears in red. Reasons for invalidation include incorrect type, an invalid menu choice, or a
filename that does not exist. For example, since vis expects a filename, it will be invalidated (red)
if it is set to a non-string value, or a string that is not the name of a file that can be found. The
mode=’happy’ is invalid because its not a supported choice (’mfs’, ’channel’, ’velocity’, or
’frequency’).

Figure 1.3: The clean inputs where some parameters have been set to non-default values (blue).
Note that some of the boldface ones have opened up new dependent sub-parameters (indented
green).

CHAPTER 1. INTRODUCTION 32

Figure 1.4: The clean inputs where some parameters have been set to invalid values. These are
drawn in red to draw attention to the problem.

1.2.2.4 The restore Command

Alpha Alert!
In the current version of CASA,
the restore command has been dis-
abled, as it is still difficult to keep the
list of CASA globals stored in differ-
ent places. When we sort out our
parameter handling mechanisms, we
will probably bring back restore.

If you want to reset all input keywords for all tasks to the
global default values, use the restore command:

CASA <10>: restore

Note that the global default values for many parameters
are different than the task-specific default values. This
is because some parameters have different default values
in the different tasks they appear in! Using the default
<taskname> command is much safer.

1.2.2.5 The saveinputs Command

The saveinputs command will save the current values of
a given task parameters to Python (plain ascii) file. It can
take up to two arguments. The first is the usual taskname parameter. The second is the name for
the output Python file. If there is no second argument, a file with name <taskname>.saved will
be created (or overwritten if extant). If invoked with no arguments, it will use the current values
of the taskname variable.

For example, starting from default values

CASA <1>: default listobs
---------> default(listobs)

CHAPTER 1. INTRODUCTION 33

CASA <2>: inp
---------> inp()
vis = ’’ # Name of input visibility file (MS)
verbose = False # Extended summary list of data set in logger

Now set and run again

CASA <3>: vis=’ngc5921.ms’

CASA <4>: inp
--------> inp()
vis = ’ngc5921.ms’ # Name of input visibility file (MS)
verbose = False # Extended summary list of data set in logger

Now save them, using the default name ’listobs.saved’, and then look at the file:

CASA <5>: saveinputs
---------> saveinputs()

CASA <6>: !more ’listobs.saved’ # view the listobs.saved file on disk.
IPython system call: more ’listobs.saved’
taskname = "listobs"
vis = "ngc5921.ms"
verbose = False
#listobs(vis="ngc5921.ms",verbose=False)

To read these back in, use the Python execfile command. For example,

CASA <7>: vis=’someotherfile.ms’

CASA <8>: inp
---------> inp()
vis = ’someotherfile.ms’ # Name of input visibility file (MS)
verbose = False # Extended summary list of data set in logger

CASA <9>: execfile ’listobs.saved’
---------> execfile(’listobs.saved’)

CASA <10>: inp
---------> inp()
vis = ’ngc5921.ms’ # Name of input visibility file (MS)
verbose = False # Extended summary list of data set in logger

and we are back.

You can also save to a custom named file:

CASA <11>: verbose = True

CHAPTER 1. INTRODUCTION 34

CASA <12>: saveinputs ’listobs’,’ngc5921_listobs.par’
---------> saveinputs(’listobs’,’ngc5921_listobs.par’)

CASA <13>: !more ’ngc5921_listobs.par’
IPython system call: more ’ngc5921_listobs.par’
taskname = "listobs"
vis = "ngc5921.ms"
verbose = True
#listobs(vis="ngc5921.ms",verbose=False)

1.2.2.6 The .last file

Whenever you successfully execute a CASA task, a Python script file called <taskname>.last will
be written (or over-written) into the current working directory. For example, if you ran the listobs
task as detailed above, then

CASA <14>: vis = ’ngc5921.ms’

CASA <15>: verbose = True

CASA <16>: listobs()

CASA <17>: !more ’listobs.last’
IPython system call: more listobs.last
taskname = "listobs"
vis = "ngc5921.ms"
verbose = True
#listobs(vis="ngc5921.ms",verbose=False)

You can restore the parameter values from the save file using

CASA <18>: execfile(’listobs.last’)

or

CASA <19>: run listobs.last

Note that the .last file in generally not created until the task actually finished (successfully), so
it is often best to manually create a save file beforehand using the saveinputs command if you are
running a critical task that you strongly desire to have the inputs saved for.

1.3 Getting the most out of CASA

There are some other general things you should know about using CASA in order to make things
go smoothly during your data reduction.

CHAPTER 1. INTRODUCTION 35

1.3.1 Your command line history and the logger

Your command line history is automatically maintained and stored in the local directory as ipython.log.
This file can be edited and re-executed as appropriate using the execfile ’<filename>’ feature.

The output from CASA commands is sent to the file casapy.log, also in your local directory.

The ouput contained in casapy.log is also displayed in a separate window using the logger. Gen-
erally, the logger window will be brought up when casapy is started. If you do not want the logger
GUI to appear, then start casapy using the --nolog option,

casapy --nolog

which will run CASA in the terminal window.

Figure 1.5: CASA Logger GUI window

The CASA logger is shown in Figures 1.5–1.8. The logger has a range of features, which include:

• Search — search messages by entering text in the Search window and clicking the search
icon. The search currently just matches the exact text you type anywhere in the message.
See Figure 1.6 for an example.

• Filter — a filter to sort by message priority, time, task/tool of origin, and message contents.
Enter text in the Filter window and click the filter icon to the right of the window. Use the
pull-down at the left of the Filter window to choose what to filter. The matching is for the
exact text currently (no regular expressions). See Figure 1.7 for an example.

• View — show and hide columns (Time, Priority, Origin, Message) by checking boxes under
the View menu pull-down. You can also change the font here.

• Insert Message — insert additional comments as “notes” in the log. Enter the text into the
“Insert Message” box at the bottom of the logger, and click on the Add (+) button, or choose

CHAPTER 1. INTRODUCTION 36

Figure 1.6: CASA Logger - Search example: Specify a string in the entry box to have all instances
of the found string highlighted.

to enter a longer message. The entered message will appear with a priority of “NOTE” with
the Origin as your username. See Figure 1.8 for an example.

• Copy — left-click on a row, or click-drag a range of rows, or click at the start and shift click
at the end to select. Use the Copy button or Edit menu Copy to put the selected rows into
the clipboard. You can then (usually) paste this where you wish. ALPHA ALERT: this does
not work routinely in the current version. You are best off going to the casapy.log file if
you want to grab text.

• Open — ALPHA ALERT: there is an Open function in the File menu, and an Open button,
but these are “grayed-out” in the Alpha. Sorry!

Other operations are also possible from the menu or buttons. Mouse “flyover” will reveal the
operation of buttons, for example.

1.3.2 Where are my data in CASA?

Interferometric data are filled into a so-called Measurement Set (or MS). In its logical structure,
the MS looks like a generalized description of data from any interferometric or single dish telescope.
Physically, the MS consists of several tables in a directory on disk.

Tables in CASA are actually directories containing files that are the sub-tables. For example, when
you create a MS called AM675.ms, then the name of the directory where all the tables are stored will
be called AM675.ms/. See Chapter 2 for more information on Measurement Set and Data Handling
in CASA.

The data that you originally get from a telescope can be put in any directory that is convienent to
you. Once you ”fill” the data into a measurement set that can be accessed by CASA, it is generally

CHAPTER 1. INTRODUCTION 37

Figure 1.7: CASA Logger - Filter facility: The log output can be sorted by Priority, Time, Origin.
One can also filter for a string found in the Message.

best to keep that MS in the same directory where you started CASA so you can get access to it
easily (rather than constantly having to specify a full path name).

When you generate calibration solutions or images (again these are in table format), these will also
be written to disk. It is a good idea to keep them in the directory in which you started CASA.
Note that when you delete a measurement set, calibration table, or image, you must delete the top
level directory, and all underlying directories and files, using the file delete method of the operating
system you started CASA from. For example, when running CASA on a Linux system, in order to
delete the measurement set named AM675.ms type:

CASA <5>: !rm -r AM675.ms

from within CASA. The ! tells CASA that a system command follows (see § 1.1.5.5), and the -r
makes sure that all subdirectories are deleted recursively.

It is convenient to prefix all MS, calibration tables, and output files produced in a run with a
common string. For example, one might prefix all files from VLA project AM675 with AM675, e.g.
AM675.ms, AM675.cal, AM675.clean. Then,

CASA <6>: !rm -r AM675*

will clean up all of these.

1.3.3 What’s in my data?

The actual data is in a large MAIN table that is organized in such a way that you can access
different parts of the data easily. This table contains a number of “rows”, which are effectively a
single timestamp for a single spectral window (like an IF from the VLA) and a single baseline (for
an interferometer).

CHAPTER 1. INTRODUCTION 38

Figure 1.8: CASA Logger - Insert facility: The log output can be augmented by adding notes or
comments during the reduction. The file should then be saved to disk to retain these changes.

There are a number of “columns” in the MS, the most important of which for our purposes is the
DATA column — this contains the original visibility data from when the MS was created or filled.
There are other helpful “scratch” columns which hold useful versions of the data or weights for fur-
ther processing: the CORRECTED DATA column, which is used to hold calibrated data; the MODEL DATA
column, which holds the Fourier inversion of a particular model image; and the IMAGING WEIGHT
column which can hold the weights to be used in imaging. The creation and use of the scratch
columns is generally done behind the scenes, but you should be aware that they are there (and
when they are used). We will occasionally refer to the rows and columns in the MS.

More on the contents of the MS can be found in § 2.1.

1.3.4 Data Selection in CASA

We have tried to make the CASA task interface as uniform as possible. If a given parameter appears
in multiple tasks, it should, as far as is possible, mean the same thing and be used in the same way
in each. There are groups of parameters that appear in a number of tasks to do the same thing,
such as for data selection.

The parameters field, spw, and selectdata (which if True expands to a number of sub-parameters)
are commonly used in tasks to select data on which to work. These common data selection param-
eters are described in § 2.5.

1.4 From Loading Data to Images

The subsections below provide a brief overview of the steps you will need to load data into CASA
and obtain a final, calibrated image. Each subject is covered in more detail in Chapters 2 through

CHAPTER 1. INTRODUCTION 39

7.

An end-to-end workflow diagram for CASA data reduction for interferometry data is shown in
Figure 1.9. This might help you chart your course through the package. In the following sub-
sections, we will chart a rough course through this process, with the later chapters filling in the
individual boxes.

Figure 1.9: Flow chart of the data processing operations that a general user will carry out in an
end-to-end CASA reduction session.

Note that single-dish data reduction (for example with the ALMA single-dish system) follows a
similar course. This is detailed in Chapter 8.

1.4.1 Loading Data into CASA

The key data and image import tasks are:

CHAPTER 1. INTRODUCTION 40

• importuvfits — import visibility data in UVFITS format (§ 2.2.1)

• importvla — import data from VLA that is in export format (§ 2.2.2)

• importasdm — import data in ALMA ASDM format (§ 2.2.3)

• importfits — import a FITS image into a CASA image format table (§ 7.5)

These are used to bring in your interferometer data, to be stored as a CASA Measurement set
(MS), and any previously made images or models (to be stored as CASA image tables).

The data import tasks will create a MS with a path and name specified by the vis parameter. See
§ 1.3.2 for more information on MS in CASA. The measurement set is the internal data format used
by CASA, and conversion from any other native format is necessary for most of the data reduction
tasks.

Once data is imported, there are other operations you can use to manipulate the datasets:

• concat — concatenate a second MS into a given MS (§ 2.4)

Data import, export, concatenation, and selection detailed in Chapter 2.

1.4.1.1 VLA: Filling data from VLA archive format

VLA data in “archive” format are read into CASA from disk using the importvla task (see § 2.2.2).
This filler supports the new naming conventions of EVLA antennas when incorporated into the old
VLA system.

Note that future data from the EVLA in ASDM format will use a different filler. This will be made
available in a later release.

1.4.1.2 Filling data from UVFITS format

For UVFITS format, use the importuvfits task. A subset of popular flavors of UVFITS (in
particular UVFITS as written by AIPS) is supported by the CASA filler. See § 2.2.1 for details.

1.4.1.3 Loading FITS images

For FITS format images, such as those to be used as calibration models, use the importfits task.
Most, though not all, types of FITS images written by astronomical software packages can be read
in.

See § 7.5 for more information.

CHAPTER 1. INTRODUCTION 41

1.4.1.4 Concatenation of multiple MS

ONce you have loaded data into measurement sets on disk, you can use the concat task to combine
them. Currently, concat will add a second MS to an existing MS (not producing a new one). This
would be run multiple times if you had more than two sets to combine.

See § 2.4 for details.

1.4.2 Data Examination, Editing, and Flagging

The main data examination and flagging tasks are:

• listobs — summarize the contents of a MS (§ 2.3)

• flagmanager — save and manage versions of the flagging entries in the measurement set
(§ 3.2)

• flagautocorr — non-interactive flagging of auto-correlations (§ 3.3)

• plotxy — interactive X-Y plotting and flagging of visibility data (§ 3.4)

• flagdata — non-interactive flagging (and unflagging) of specified data (§ 3.5)

• viewer — the CASA viewer can display (as a raster image) MS data, with some editing
capabilities (§ 3.6)

These tasks allow you to list, plot, and/or flag data in a CASA MS.

There will eventually be tasks for “automatic” flagging to data based upon statistical criteria. Stay
tuned.

Examination and editing of synthesis data is described in Chapter 3.

1.4.2.1 Interactive X-Y Plotting and Flagging

The principal tool for making X-Y plots of visibility data is plotxy (see § 3.4). Amplitudes and
phases (among other things) can be plotted against several x-axis options.

Interactive flagging (i.e., “see it – flag it”) is possible on the plotxy X-Y displays of the data
(§ 3.4.3). Since flags are inserted into the measurement set, it is useful to backup (or make a copy)
of the current flags before further flagging is done, using flagmanager (§ 3.2). Copies of the flag
table can also be restored to the MS in this way.

1.4.2.2 Flag the Data Non-interactively

The flagdata task (§ 3.5) will flag the visibility data set based on the specified data selections.
The listobs task (§ 2.3) may be run (e.g. with verbose=True) to provide some of the information
needed to specify the flagging scope.

CHAPTER 1. INTRODUCTION 42

1.4.2.3 Viewing and Flagging the MS

The CASA viewer can be used to display the data in the MS as a (grayscale or color) raster image.
The MS can also be edited. Use of the viewer on an MS is detailed in § 3.6.

1.4.3 Calibration

The major calibration tasks are:

• setjy — Computes the model visibility for a specified source flux density (§ 4.2)

• bandpass — Solves for frequency-dependent (bandpass) complex gains (§ 4.5)

• gaincal — Solves for time-dependent complex gains (§ 4.3)

• fluxscale — Bootstraps the flux density scale from standard calibrators (§ 4.4)

• accum — Accumulates incremental calibration solutions into a cumulative calibration table
(§ 4.7.2)

• smoothcal— Smooths calibration solutions derived from one or more sources (§ 4.7.1)

• applycal — Applies calculated calibration solutions (§ 4.10)

• clearcal — Re-initializes calibration data for a given visibility data set (§ 4.11)

• listcal — Lists calibration solutions (§ 4.9)

• plotcal — Plots (and optionally flags) calibration solutions (§ 4.8)

• uvcontsub — carry out uv-plane continuum subtraction for spectral-line data (§ 4.13.1)

• split — write out a new (calibrated) MS for specified sources (§ 4.12)

During the course of calibration, the user will specify a set of calibrations to pre-apply before
solving for a particular type of effect, for example gain or bandpass or polarization. The solutions
are stored in a calibration table (subdirectory) which is specified by the user, not by the task: care
must be taking in naming the table for future use. The user then has the option, as the calibration
process proceeds, to accumulate the current state of calibration in a new cumulative table. Finally,
the calibration can be applied to the dataset.

Synthesis data calibration is described in detail in Chapter 4.

CHAPTER 1. INTRODUCTION 43

1.4.3.1 Setting the flux density scale

The setjy task places the Fourier transform of a standard calibration source model in the MODEL DATA
column of the measurement set. This can then be used in later calibration tasks. Currently, setjy
knows the flux density as a function of frequency for several standard VLA flux calibrators, and
the value of the flux density can be manually inserted for any other source. If the source is not
well-modeled as a point source, then a model image of that source structure can be used (with the
total flux density scaled by the values given or calculated above for the flux density). Models are
provided for the standard VLA calibrators.

See § 4.2 for more details.

1.4.3.2 Gain Calibration

The gaincal task determines solutions for the time-based complex antenna gains, for each spectral
window, from the specified calibration sources. A solution interval may be specified. For the VLA,
antenna gain curves may be pre-applied before solving for the gains.

A spline fit for the solution (solution type GSPLINE) may be carried out instead of the default
time-slot based solutions.

See § 4.3 for more on gain calibration.

1.4.3.3 Bandpass Calibration

The bandpass task calculates a bandpass calibration solution: that is, it solves for gain variations
in frequency as well as in time. Since the bandpass (relative gain as a function of frequency)
generally varies much more slowly than the changes in overall (mean) gain solved for by gaincal,
one generally uses a long time scale when solving for the bandpass.

Bandpass calibration is discussed in detail in § 4.5.

1.4.3.4 Examining Calibration Solutions

The plotcal task (§ 4.8) will plot the solutions in a calibration table as a function of time (and
channel for bandpass calibration). The plotcal interface and plotting surface is similar to that
in plotxy. Eventually, plotcal will allow you to flag and unflag calibration solutions in the same
way that data can be edited in plotxy.

The listcal task (§ 4.9) will print out the calibration solutions in a specified table.

1.4.3.5 Bootstrapping Flux Calibration

The fluxscale task bootstraps the flux density scale from “primary” standard calibrators to
the “secondary” calibration sources. Note that the flux density scale must have been previously

CHAPTER 1. INTRODUCTION 44

established on the “primary” calibrator(s), typically using setjy, and of course a calibration table
containing valid solutions for all calibrators must be available.

See § 4.4 for more.

1.4.3.6 Calibration Accumulation

The accum task applies an incremental solution table to a previous calibration table, and writes
out a cumulative solution table. Different interpolation schemes may be selected.

A description of this process is given in § 4.7.2.

1.4.3.7 Correcting the Data

The final step in the calibration process, applycal may be used to apply several calibration tables
(e.g., gaincal, bandpass, pointing). The corrections are applied to the DATA column of the visibility,
writing the CORRECTED DATA column which can then be plotted (e.g. in plotxy), split out as
the DATA column of a new MS, or imaged (e.g. using clean). Any existing corrected data are
overwritten.

See § 4.10 for details.

1.4.3.8 Splitting the Data

After a suitable calibration is achieved, it may be desirable to create one or more new measurement
sets containing the data for selected sources. This can be done using the split task (§ 4.12).

Further imaging and calibration (e.g. self-calibration) can be carried out on these split MSs.

1.4.4 Synthesis Imaging

The key synthesis imaging tasks are:

• invert — Creates a dirty image and dirty beam (point spread function) (§ 5.3)

• clean — Calculates a deconvolved image based on the visibility data, using one of several
clean algorithms (§ 5.4)

• mosaic — Calculates a multi-field deconvolved image based on visibility data, using one of
several deconvolution algorithms (§ 5.5)

• feather — Combines a single dish and synthesis image in the Fourier plane (§ 5.6)

Most of these tasks are used to take calibrated interferometer data, with the possible addition of a
single-dish image, and reconstruct a model image of the sky.

There are several other utility imaging tasks of interest:

CHAPTER 1. INTRODUCTION 45

• makemask — Makes a mask image from a cleanbox blc, trc region (§ 5.7)

• ft — Fourier transforms the specified model (or component list) and insert the source model
into the MODEL DATA column of the MS (§ 5.8)

• deconvolve — Deconvolve an input image from a provided PSF, using one of several image-
plane deconvolution algorithms (§ 5.9)

These are not discussed in this walk-through — see the individual Cookbook entries for details.

See Chapter 5 for more on synthesis imaging.

1.4.4.1 Making a “dirty” image

Often, the first step in imaging is to make a simple gridded Fourier inversion of the calibrated data
to make a “dirty” image. This can then be examined to look for the presence of noticeable emission
above the noise, and to assess the quality of the calibration by searching for artifacts in the image.

The invert task is provided for this purpose. See § 5.3 for details.

1.4.4.2 Cleaning a single-field image

The CLEAN algorithm is the most popular and widely-studied method for reconstructing a model
image based on interferometer data. It effectively iteratively removes at each step a fraction of the
flux in the brightest pixel in a defined region of the current “dirty” image as a point source, placing
this in the model image. The clean task implements the CLEAN algorithm for single-field data.
The user can choose from a number of options for the particular flavor of CLEAN to use.

See § 5.4 for an in-depth discussion of the clean task.

1.4.4.3 Cleaning a mosaic

The mosaic task generalizes the clean task to allow CLEAN deconvolution for a mosaic of observed
fields.

See § 5.5 for more on mosaic CLEANing.

1.4.4.4 Feathering in a Single-Dish image

If you have a single-dish image of the large-scale emission in the field, this can be “feathered” in
to the image obtained from the interferometer data. This is carried out using the feather tasks
as the weighted sum in the uv-plane of the gridded transforms of these two images. While not as
accurate as a true joint reconstruction of an image from the synthesis and single-dish data together,
it is sufficient for most purposes.

See § 5.6 for details on the use of the feather task.

CHAPTER 1. INTRODUCTION 46

1.4.5 Self Calibration

Once a calibrated dataset is obtained, and a first deconvolved model image is computed, a “self-
calibration” loop can be performed. Effectively, the model (not restored) image is passed back to
another calibration process (on the target data). This refines the calibration of the target source,
which up to this point has had (usually) only external calibration applied. This process follows the
regular calibration procedure outlined above.

Any number of self-calibration loops can be performed. As long as the images are improving, it is
usually prudent to continue the self-calibration iterations.

This process is described in § 5.10.

1.4.6 Data and Image Analysis

The key data and image analysis tasks are:

• imhead — summarize and manipulate the “header” information in a CASA image (§ 7.1)

• immoments — compute the moments of an image cube (§ 7.2)

• regridimage — regrid an image onto the coordinate system of another image (§ 7.3)

• viewer — there are useful region statistics and image cube slice and profile capabilities in
the viewer (§ 7.4)

1.4.6.1 What’s in an image?

The imhead task will print out a summary of whats in an image (the “header” entries). This task
can also be used to change the header values.

See § 7.1 for more.

1.4.6.2 Moments of an Image Cube

The immoments task will compute a “moments” image of an input image cube. A number of options
are available, from the traditional true moments (zero, first, second) and variations thereof, to other
images such as median, minimum, or maximum along the moment axis.

See § 7.2 for details.

CHAPTER 1. INTRODUCTION 47

1.4.6.3 Regridding an Image

It is occasionally necessary to regrid an image onto a new coordinate system. The regridimage
task can be used to regrid an input image onto the coordinate system of an existing template image,
creating a new output image.

See § 7.3 for a description of this task.

1.4.6.4 Displaying Images

To display an image use the viewer task. The viewer will display images in raster, contour, or
vector form. Blinking and movies are available for spectral-line image cubes. To start the viewer,
type:

viewer

Executing the viewer task will bring up two windows: a viewer screen showing the data or image,
and a file catalog list. Click on an image or ms from the file catalog list, choose the proper display,
and the image should pop up on the screen. Clicking on the wrench tool (second from left on upper
left) will obtain the data display options. Most functions are self-documenting.

The viewer can be run outside of casapy by typing casaviewer.

See § 7.4 for more on viewing images.

1.4.7 Getting data and images out of CASA

The key data and image export tasks are:

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.1)

• exportfits — export a CASA image table as FITS (§ 7.5)

These tasks can be used to export a CASA MS or image to UVFITS or FITS respectively. See the
individual sections referred to above for more on each.

Chapter 2

Visibility Data Import, Export, and
Selection

To use CASA to process your data, you first will need to get it into a form that is understood
by the package. These are “measurement sets” for synthesis (and single dish) data, and “image”
tables for images.

There are a number of tasks used to fill telescope-specific data, to import/export standard formats,
to list data contents, and to concatenate multiple datasets. These are:

• importuvfits — import visibility data in UVFITS format (§ 2.2.1)

• importvla — import data from VLA that is in export format (§ 2.2.2)

• importasdm — import data in ALMA ASDM format (§ 2.2.3)

• importfits — import a FITS image into a CASA image format table (§ 7.5)

• exportuvfits — export a CASA MS in UVFITS format (§ 2.2.1)

• exportfits — export a CASA image table as FITS (§ 7.5)

• listobs — summarize the contents of a MS (§ 2.3)

• concat — concatenate a second MS into a given MS (§ 2.4)

In CASA, there is a standard syntax for selection of data that is employed by multiple tasks. This
is described in this chapeter (§ 2.5).

2.1 CASA Measurement Sets

Data is handled in CASA via the table system. In particular, visibility data are stored in a CASA
table known as a Measurement Set (MS). Details of the physical and logical MS structure are given

48

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 49

below, but for our purposes here an MS is just a construct that contains the data. An MS can also
store single dish data (essentially a set of auto-correlations of a 1-element interferometer), though
there are also data formats more suitable for single-dish spectra (see § 8).

Inside the Toolkit:
Measurement sets are handled in
the ms tool. Import and export
methods include ms.fromfits and
ms.tofits.

Note that images are handled through special image tables,
although standard FITS I/O is also supported. Images and
image data are described in a separate chapter.

Unless your data was previously processed by CASA or
software based upon its predecessor aips++, you will need
to import it into CASA as an MS. Supported formats in-
clude some “standard” flavors of UVFITS, the VLA “Ex-
port” archive format, and most recently, the ALMA Science Data Model (ASDM) format. These
are described below in § 2.2.

Once in Measurement Set form, your data can be accessed through various tools and tasks with a
common interface. The most important of these is the data selection interface (§ 2.5) which allows
you to specify the subset of the data on which the tasks and tools will operate.

2.1.1 Under the Hood: Structure of the Measurement Set

It is not necessary that a casual CASA user know the specific details on how the data in the
MS is stored and the contents of all the sub-tables. However, we will occasionally refer to specific
“columns” of the MS when describing the actions of various tasks, and thus we provide the following
synopsis to familiarize the user with the necessary nomenclature.

All CASA data files, including Measurement Sets, are written into the current working directory by
default, with each CASA table represented as a separate sub-directory. MS names therefore need
only comply with UNIX file or directory naming conventions, and can be referred to from within
CASA directly, or via full path names.

An MS consists of a MAIN table containing the visibility data and associated sub-tables containing
auxiliary or secondary information. The various MS tables and sub-tables can be seen by listing
the contents of the MS directory itself (e.g. using Unix ls), or via the browsetable task (§ 3.7).
See Fig 2.1 for an example of the contents of a MS directory. Or, from the casapy prompt,

CASA <1>: ls ngc5921.ms
IPython system call: ls -F ngc5921.ms
ANTENNA POLARIZATION table.f1 table.f3_TSM1 table.f8
DATA_DESCRIPTION PROCESSOR table.f10 table.f4 table.f8_TSM1
FEED SORTED_TABLE table.f10_TSM1 table.f5 table.f9
FIELD SOURCE table.f11 table.f5_TSM1 table.f9_TSM1
FLAG_CMD SPECTRAL_WINDOW table.f11_TSM1 table.f6 table.info
HISTORY STATE table.f2 table.f6_TSM0 table.lock
OBSERVATION table.dat table.f2_TSM1 table.f7
POINTING table.f0 table.f3 table.f7_TSM1

Note that the MAIN table information is contained in table.dat file. Each of the sub-table sub-
directories contain their own table.dat and other files, e.g.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 50

CASA <2>: ls ngc5921.ms/SOURCE
IPython system call: ls -F ngc5921.ms/SOURCE
table.dat table.f0 table.f0i table.info table.lock

Figure 2.1: The contents of a Measurement Set. These tables compose a Measurement Set named
ngc5921.ms on disk. This display is obtained by using the File:Open menu in browsetable.

Each “row” in a table contains entries for a number of specified “columns”. For example, in the
MAIN table of the MS, the original visibility data is contained in the DATA column — each “cell”
contains a matrix of observed complex visibilities for that row at a single time stamp, for a single
baseline in a single spectral window. The shape of the data matrix is given by the number of
channels and the number of correlations (voltage-products) formed by the correlator for an array.

Table 2.1 lists the non-data columns of the MAIN table that are most important during a typical
data reduction session. Table 2.2 lists the key data columns of the MAIN table of an interferome-
ter MS. The MS produced by fillers for specific instruments may insert special columns, such as
ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW for ALMA data filled using
the importasdm filler (§ 2.2.3).

Note that when you examine table entries for IDs such as FIELD ID or DATA DESC ID, you will see
0-based numbers.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 51

Table 2.1: Common columns in the MAIN table of the MS.

Parameter Contents
ANTENNA1 First antenna in baseline
ANTENNA2 Second antenna in baseline
FIELD ID Field (source no.) identification
DATA DESC ID Spectral window number, polarization identifier pair (IF no.)
ARRAY ID Subarray number
OBSERVATION ID Observation identification
POLARIZATION ID Polarization identification
SCAN NUMBER Scan number
TIME Integration midpoint time
UVW UVW coordinates

The MS can contain a number of “scratch” columns, which are used to hold hold useful versions
of other columns such as the data or weights for further processing. The most common scratch
columns are:

• CORRECTED DATA — used to hold calibrated data for imaging or display;

• MODEL DATA — holds the Fourier inversion of a particular model image for calibration or
imaging;

• IMAGING WEIGHT —holds the gridding weights to be used in imaging.

The creation and use of the scratch columns is generally done behind the scenes, but you should
be aware that they are there (and when they are used).

The most recent specification for the MS is Aips++ MeasurementSet definition version 2.0
(http://casa.nrao.edu/Memos/229.html).

2.2 Data Import and Export

There are a number of tasks available to bring data in various forms into CASA as a Measurement
Set:

• UVFITS format can be imported into and exported from CASA (importuvfits and exportuvfits)

• VLA Archive format data can be imported into CASA (importvla)

• ALMA and EVLA Science Data Model format data can be imported into CASA (importasdm)

http://casa.nrao.edu/Memos/229.html

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 52

Table 2.2: Commonly accessed MAIN Table data-related columns. Note that the columns
ALMA PHASE CORR, ALMA NO PHAS CORR and ALMA PHAS CORR FLAG ROW are specific to ALMA data
filled using the importasdm filler.

Column Format
Comments

DATA Complex(Nc, Nf)
Complex visibility matrix
=ALMA PHASE CORR by default

FLAG Bool(Nc, Nf)
cumulative data flags

WEIGHT Float(Nc)
Weight for a row

WEIGHT SPECTRUM Float(Nc, Nf)
Weight for whole data matrix

ALMA PHASE CORR Complex(Nc, Nf)
On-line phase corrected complex visibility matrix
(Not in VLA data)

ALMA NO PHAS CORR Bool(Nc, Nf)
Complex visibility matrix that has not been phase corrected
(Not in VLA data)

ALMA PHAS CORR FLAG ROW Bool(Nc, Nf)
Flag to use phase-corrected data or not, Default=F
(not in VLA data)

MODEL DATA Complex(Nc, Nf)
Scratch: created by calibrater or imager tools

CORRECTED DATA Complex(Nc, Nf)
Scratch: created by calibrater or imager tools

IMAGING WEIGHT Float(Nc)
Scratch: created by calibrater or imager tools

2.2.1 UVFITS Import and Export

To import UVFITS format data into CASA, use the importuvfits task:

CASA <1>: inp(importuvfits)
fitsfile = ’’ # Name of input UVFITS file
vis = ’’ # Name of output visibility file (MS)
async = False # if True run in the background, prompt is freed

This is straightforward, since all it does is read in a UVFITS file and convert it as best it can into
a MS.

The exportuvfits task will take a MS and write it out in UVFITS format.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 53

CASA <2>: inp(exportuvfits)
vis = ’’ # Name of input visibility file
fitsfile = ’’ # Name of output UVFITS file)
datacolumn = ’corrected’ # which data to write (data, corrected, model)
fieldid = -1 # Field index identifier)
field = ’’ # Field name list
spwid = -1 # Spectral window identifier
nchan = -1 # Number of channels to select
start = 0 # Start channel
width = 1 # Channel averaging width (value>1 indicates averaging)
writesyscal = False # Write GC and TY tables
multisource = True # Write in multi-source format
combinespw = True # Combine spectral windows (True for AIPS)
writestation = False # Write station name instead of antenna name
async = False # if True run in the background, prompt is freed

ALPHA ALERT: This will be upgraded to use the common data selection parameters (§ 2.5).

2.2.2 VLA: Filling data from archive format (importvla)

VLA data in archive format (i.e., as downloaded from the VLA data archive) are read into CASA
from disk using the importvla task. The inputs are:

archivefiles = ’’ # Name of input VLA archive file(s)
vis = ’’ # Name of output visibility file
bandname = ’’ # VLA frequency band name: ’’ => obtain all bands in archive files
frequencytol = 150000.0 # Tolerance in frequency shift to define

a unique spectral window (Hz).
project = ’’ # Project name: (’’) => all projects in file
starttime = ’1970/1/31/00:00:00’ # start time to search for data
stoptime = ’2199/1/31/23:59:59’ # end time to search for data
autocorr = False # import autocorrelations to ms, if set to True
antnamescheme = ’new’ # ’old’ or ’new’; if ’new’, antenna names are

’VA04’ for VLA antenna 4, ’EA13’ for EVLA antenna 13
async = False # if True run in the background, prompt is freed

The parameters are:

Import VLA archive file(s) to a measurement set:

Imports an arbitrary number of VLA archive-format data sets into
a casa measurement set. If more than one band is present, they
will be put in the same measurement set but in a separate spectral
window.

Keyword arguments:
archivefiles -- Name of input VLA archive file(s)

default: none. Must be supplied
example: archivefiles=[’AP314_A950519.xp1’,’AP314_A950519.xp2’]

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 54

vis -- Name of output visibility file
default: none. Must be supplied.
example: vis=’NGC7538.ms’
Will not over-write existing ms of same name.

bandname -- VLA Frequency band
default: ’’ = all bands
example: bandname=’K’
Options: ’4’=48-96 MHz,’P’=298-345 MHz,’L’=1.15-1.75 GHz,
’C’=4.2-5.1 GHz,’X’=6.8-9.6 GHz,’U’=13.5-16.3 GHz,
’K’=20.8-25.8 GHz,’Q’=38-51 GHz

frequencytol -- Tolerance in frequency shift in making spectral windows
default: 150000 (Hz). For Doppler shifted data, <10000 Hz may
may produce too many unnecessary spectral windows.
example: frequencytol = 1500000.0 (units = Hz)

project -- Project name to import from archive files:
default: ’’ => all projects in file
example: project=’AL519’
project = ’al519’ will work, but
project = ’AL0519’ will not.

starttime -- Time after which data will be considered for importing
default: ’1970/1/31/00:00:00’

stoptime -- Time before which data will be considered for importing
default: ’2199/1/31/23:59:59’

autocorr -- import autocorrelations to ms
default = False (no autocorrelations)

antnamescheme -- ’old’ or ’new’ antenna names.
default = ’new’ gives antnenna names

’VA04’ for VLA telescope 4 or
’EA13’ for EVLA telescope 13.

’old’ gives names ’4’ and ’13’
asynch -- Run asynchronously

default = false; do not run asychronously

Note that autocorrelations are filled into the data set if autocorr=True. Generally for the VLA,
autocorrelation data is not useful, and furthermore the imaging routine will try to image the
autocorrelation data (it assumes it is single dish data) which will swamp any real signal. Thus, if
you do fill the autocorrelations, you will have to flag them before imaging.

The importvla task allows selection on frequency band. Suppose that you have 1.3 cm line obser-
vations in K-band and you have copied the archive data files AP314 A95019.xp* to your working
directory and started casapy. Then,

importvla(
archivefiles=[’AP314_A950519.xp1’,’AP314_A950519.xp2’,’AP314_A950519.xp3’],
vis=’ngc7538.ms’,
bandname=’K’,
frequencytol=10e6)

If the data is located in a different directory on disk, then use the full path name to specify each
archive file, e.g.:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 55

archivefiles=[’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp1’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp2’,\
’/home/rohir2/jmcmulli/ALMATST1/Data/N7538/AP314_A950519.xp3’]

The antnamescheme parameter controls whether importvla will try to use a naming scheme where
EVLA antennas are prefixed with EA (e.g. ’EA16’) and old VLA antennas have names prefixed
with VA (e.g. ’VA11’). Our method to detect whether an antenna is EVLA is not yet perfected,
and thus unless you require this feature, simply use antnamescheme=’old’.

2.2.3 ALMA: Filling ALMA Science Data Model (ASDM) observations

The importasdm task will fill an ASDM into a CASA visibility data set (MS).

ALPHA ALERT: Note that ASDM data are not available at this time. Soon they will be obtained
at the ALMA Test Facility (ATF); right now, some simulated data exist. Thus, this filler is in a
development stage.

Currently there are no options for filling the data (you get the whole data set!). For example:

CASA <1>: importasdm ’/home/basho3/jmcmulli/ASDM/ExecBlock3’
--------> importasdm(’/home/basho3/jmcmulli/ASDM/ExecBlock3’)

Parameter: asdm is: /home/basho3/jmcmulli/ASDM/ExecBlock3 and has type <type ’str’>.
Taking the dataset /home/basho3/jmcmulli/ASDM/ExecBlock3 as input.
Time spent parsing the XML medata :1.16 s.
The measurement set will be filled with complex data
About to create a new measurement set ’/home/basho3/jmcmulli/ASDM/ExecBlock3.ms’
The dataset has 4 antennas...successfully copied them into the measurement set.
The dataset has 33 spectral windows...successfully copied them into the measurement set.
The dataset has 4 polarizations...successfully copied them into the measurement set.
The dataset has 41 data descriptions...successfully copied them into the measurement set.
The dataset has 125 feeds...successfully copied them into the measurement set.
The dataset has 2 fields...successfully copied them into the measurement set.
The dataset has 0 flags...
The dataset has 0 historys...
The dataset has 1 execBlock(s)...successfully copied them into the measurement set.
The dataset has 12 pointings...successfully copied them into the measurement set.
The dataset has 3 processors...successfully copied them into the measurement set.
The dataset has 72 sources...successfully copied them into the measurement set.
The dataset has 3 states...
The dataset has 132 calDevices...
The dataset has 72 mains...
Processing row # 0 in MainTable
Entree ds getDataCols
About to clear
About to getData
About to new VMSData
Exit from getDataCols
ASDM Main table row #0 transformed into 40 MS Main table rows

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 56

Processing row # 1 in MainTable
Entree ds getDataCols
About to clear
About to getData
About to new VMSData
Exit from getDataCols
ASDM Main table row #1 transformed into 40 MS Main table rows
...
ASDM Main table row #71 transformed into 40 MS Main table rows

...successfully copied them into the measurement set.
About to flush and close the measurement set.
Overall time spent in ASDM methods to read/process the ASDM Main table : cpu = 5.31 s.
Overall time spent in AIPS methods to fill the MS Main table : cpu = 1.3

2.3 Summarizing your MS (listobs)

Once you import your data into a CASA Measurement Set, you can get a summary of the MS
contents with the listobs task.

The inputs are:

vis = ’’ # Name of input visibility file (MS)
verbose = True # Extended summary list of data set in logger

The summary will be written to the logger and to the casapy.log file. For example, using
verbose=False:

listobs(’n5921.ms’,False)

results in the logger messages:

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:

MeasurementSet Name: /home/scamper/CASA/N5921/n5921.ms MS Version 2

Observer: TEST Project:
Observation: VLA(28 antennas)

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:
Data records: 22653 Total integration time = 5280 seconds

Observed from 09:19:00 to 10:47:00

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:
Fields: 3
ID Name Right Ascension Declination Epoch
0 1331+30500002_013:31:08.29 +30.30.32.96 J2000
1 1445+09900002_014:45:16.47 +09.58.36.07 J2000

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 57

2 N5921_2 15:22:00.00 +05.04.00.00 J2000

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:
Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:
Antennas: 27

ID= 0-3: ’1’=’VLA:N7’, ’2’=’VLA:W1’, ’3’=’VLA:W2’, ’4’=’VLA:E1’,
ID= 4-7: ’5’=’VLA:E3’, ’6’=’VLA:E9’, ’7’=’VLA:E6’, ’8’=’VLA:W8’,
ID= 8-11: ’9’=’VLA:N5’, ’10’=’VLA:W3’, ’11’=’VLA:N4’, ’12’=’VLA:W5’,
ID= 12-15: ’13’=’VLA:N3’, ’14’=’VLA:N1’, ’15’=’VLA:N2’, ’16’=’VLA:E7’,
ID= 16-19: ’17’=’VLA:E8’, ’18’=’VLA:W4’, ’19’=’VLA:E5’, ’20’=’VLA:W9’,
ID= 20-24: ’21’=’VLA:W6’, ’22’=’VLA:E4’, ’24’=’VLA:E2’, ’25’=’VLA:N6’,
ID= 25-26: ’26’=’VLA:N9’, ’27’=’VLA:N8’

Thu Jul 5 17:20:55 2007 NORMAL ms::summary:

Tables(rows): (-1 = table absent)
MAIN(22653)
ANTENNA(28) DATA_DESCRIPTION(1) DOPPLER(-1) FEED(28) FIELD(3)
FLAG_CMD(0) FREQ_OFFSET(-1) HISTORY(310) OBSERVATION(1) POINTING(168)
POLARIZATION(1) PROCESSOR(0) SOURCE(3) SPECTRAL_WINDOW(1) STATE(0)
SYSCAL(-1) WEATHER(-1)

Thu Jul 5 17:20:55 2007 NORMAL ms::summary ""

Thu Jul 5 17:20:55 2007 NORMAL ms::close:
Readonly measurement set: just detaching from file.

If you choose the (default) verbose=True option, there will be more information. For example,

listobs(’n5921.ms’,True)

will result in the logger messages:

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:

MeasurementSet Name: /home/scamper/CASA/N5921/n5921.ms MS Version 2

Observer: TEST Project:
Observation: VLA

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:
Data records: 22653 Total integration time = 5280 seconds

Observed from 09:19:00 to 10:47:00

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 58

ObservationID = 0 ArrayID = 0
Date Timerange Scan FldId FieldName SpwIds
13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+30500002_0 [0]

09:27:30.0 - 09:29:30.0 2 1 1445+09900002_0 [0]
09:33:00.0 - 09:48:00.0 3 2 N5921_2 [0]
09:50:30.0 - 09:51:00.0 4 1 1445+09900002_0 [0]
10:22:00.0 - 10:23:00.0 5 1 1445+09900002_0 [0]
10:26:00.0 - 10:43:00.0 6 2 N5921_2 [0]
10:45:30.0 - 10:47:00.0 7 1 1445+09900002_0 [0]

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:
Fields: 3
ID Name Right Ascension Declination Epoch
0 1331+30500002_013:31:08.29 +30.30.32.96 J2000
1 1445+09900002_014:45:16.47 +09.58.36.07 J2000
2 N5921_2 15:22:00.00 +05.04.00.00 J2000

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:
Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:
Feeds: 28: printing first row only
Antenna Spectral Window # Receptors Polarizations
1 -1 2 [R, L]

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:
Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 59

20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8

Thu Jul 5 17:23:55 2007 NORMAL ms::summary:

Tables:
MAIN 22653 rows
ANTENNA 28 rows
DATA_DESCRIPTION 1 row
DOPPLER <absent>
FEED 28 rows
FIELD 3 rows
FLAG_CMD <empty>
FREQ_OFFSET <absent>
HISTORY 310 rows
OBSERVATION 1 row
POINTING 168 rows
POLARIZATION 1 row
PROCESSOR <empty>
SOURCE 3 rows
SPECTRAL_WINDOW 1 row
STATE <empty>
SYSCAL <absent>
WEATHER <absent>

Thu Jul 5 17:23:55 2007 NORMAL ms::summary ""

Thu Jul 5 17:23:55 2007 NORMAL ms::close:
Readonly measurement set: just detaching from file.

The most useful extra information that verbose=True gives is the list of the scans in the dataset.

2.4 Concatenating multiple datasets (concat)

Once you have your data in the form of CASA Measurement Sets, you can go ahead and process
your data using the editing, calibration, and imaging tasks. In some cases, you will most efficiently
operate on single MS for a particular session (such as calibration). Other tasks will (eventually)
take multiple MS as input. For others, it is easiest to combine your multiple data files into one.

If you need to combine multiple datasets, you can use the concat task. The default inputs are:

concat :: Concatenate two visibility data sets:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 60

vis = ’’ # Name of input visibility file
concatvis = ’’ # Name of visibility file to append to input
freqtol = ’’ # Frequency shift tolerance for combining same spectral window
dirtol = ’’ # Pointing direction tolerance for combining the same field
async = False # if True run in the background, prompt is freed

This currently will add the second MS (given by concatvis) into an existing MS (given by vis).
The parameters freqtol and dirtol control how close together in frequency and angle on the sky
spectral windows or field locations need to be before calling them the same.

2.5 Data Selection

Alpha Alert!
Data selection is being changed over
to this new unified system. In vari-
ous tasks, you may find relics of the
old way, such as fieldid or spwid.

Once in MS form, subsets of the data can be operated on
using the tasks and tools. In CASA, there are three com-
mon data selection parameters used in the various tasks:
field, spw, and selectdata. In addition, the selectdata
parameter, if set to True, will open up a number of other
sub-parameters for selection. The selection operation is
unified across all the tasks. The available selectdata pa-
rameters may not be the same in all tasks. But if present,
the same parameters mean the same thing and behave in the same manner when used in any task.

For example:

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = False # Other data selection parameters

versus

field = ’’ # field names or index of calibrators ’’==>all
spw = ’’ # spectral window:channels: ’’==>all
selectdata = True # Other data selection parameters

timerange = ’’ # time range: ’’==>all
uvrange = ’’ # uv range’’=all
antenna = ’’ # antenna/baselines: ’’==>all
scan = ’’ # scan numbers: Not yet implemented
msselect = ’’ # Optional data selection (Specialized. but see help)

The following are the general syntax rules and descriptions of the individual selection parameters
of particular interest for the tasks:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 61

2.5.1 General selection syntax

Most of the selections are effected through the use of selection strings. This sub-section describes
the general rules used in constructing and parsing these strings. Note that some selections are done
though the use of numbers or lists. There are also parameter-specific rules that are described under
each parameter.

All lists of basic selection specification-units are comma separated lists and can be of any length.
White-spaces before and after the commas (e.g. ’3C286, 3C48, 3C84’) are ignored, while white-
space within sub-strings is treated as part of the sub-string (e.g. ’3C286, VIRGO A, 3C84’).

All integers can be of any length (in terms of characters) composed of the characters 0–9. Floating
point numbers can be in the standard format (DIGIT.DIGIT, DIGIT., or .DIGIT) or in the mantissa-
exponent format (e.g. 1.4e9). Places where only integers make sense (e.g. IDs), if a floating point
number is given, only the integer part is used (it is truncated).

Range of numbers (integers or real numbers) can be given in the format ’N0~N1’. For integer
ranges, it is expanded into a list of integers starting from N0 (inclusive) to N1 (inclusive). For real
numbers, it is used to select all values present for the appropriate parameter in the Measurement
Set between N0 and N1 (including the boundaries). Note that the ’~’ character is used rather than
the more obvious ’-’ in order to accomodate hyphens in strings and minus signs in numbers.

Wherever appropriate, units can be specified. The units are used to convert the values given to
the units used in the Measurement Set. For ranges, the unit is specified only once (at the end) and
applies to both the range boundaries.

2.5.1.1 String Matching

String matching can be done in three ways. Any component of a comma separated list that cannot
be parsed as a number, a number range, or a physical quantity is treated as a regular expression
or a literal string. If the string does not contain the characters ’*’, ’{’, ’}’ or ’?’, it is treated
as a literal string and used for exact matching. If any of the above mentioned characters are part
of the string, they are used as a regular expression. As a result, for most cases, the user does not
need to supply any special delimiters for literal strings and/or regular expressions. For example:

field = ’3’ # match field ID 3 and not select field named "3C286".

field = ’3*’ # used as a pattern and matched against field names. If
names like "3C84", "3C286", "3020+2207" are found,
all will match. Field ID 3 will not be selected
(unless of course one of the above mentioned field
names also correspond to field ID 3!).

field = ’30*’ # will match only with "3020+2207" in above set.

However if it is required that the string be matched exclusively as a regular expression, it can be
supplied within a pair of ’/’ as delimiters (e.g. ’/.+BAND.+/’). A string enclosed within double
quotes (’"’) is used exclusively for pattern matching (patterns are a simplified form of regular

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 62

expressions - used in most UNIX commands for string matching). Patterns are internally converted
to equivalent regular expressions before matching. See the Unix command "info regex", or visit
http://www.regular-expressions.info, for details of regular expressions and patterns.

Strings can include any character except the following:

’,’ ’;’ ’"’ ’/’ NEWLINE

(since these are part of the selection syntax). Strings that do not contain any of the characters
used to construct regular expressions or patterns are used for exact matches. Although it is highly
discouraged to have name in the MS containing the above mentioned reserved characters, if one
does choose to include the reserved characters as parts of names etc., those names can only be
matched against quoted strings (since regular expression and patterns are a super-set of literal
strings – i.e., a literal string is also a valid regular expression).

This leaves ’"’, ’*’, ’{’, ’}’ or ’?’ as the list of printable character that cannot be part of a
name (i.e., a name containing this character can never be matched in a MSSelection expression).
These will be treated as pattern-matching even inside double double quotes (’" "’). There is
currently no escape mechanism (e.g. via a backslash).

Some examples of strings, regular expressions, and patterns:

• The string ’LBAND’ will be used as a literal string for exact match. It will match only the
exact string LBAND.

• The wildcarded string ’*BAND*’ will be used as a string pattern for matching. This will
match any string which has the sub-string BAND in it.

• The string ’"*BAND*"’ will also be used as a string pattern, matching any string which has
the sub-string BAND in it.

• The string ’/.+BAND.+/’ will be used as a regular expression. This will also match any string
which as the sub-string BAND in it. (the .+ regex operator has the same meaning as the *
wildcard operator of patterns).

2.5.2 The field Parameter

The field parameter is a string that specifies which field names or ids will be processed in the
task or tool. The field selection expression consists of comma separated list of field specifications
inside the string.

Field specifications can be literal field names, regular expressions or patterns (see § 2.5.1.1). Those
fields for which the entry in the NAME column of the FIELD MS sub-table match the literal field
name/regular expression/pattern are selected. If a field name/regular expression/pattern fails to
match any field name, the given name/regular expression/pattern are matched against the field
code. If still no field is selected, an exception is thrown.

http://www.regular-expressions.info

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 63

Field specifications can also be give by their integer IDs. IDs can be a single or a range of IDs.
Field ID selection can also be done as a boolean expression. For a field specification of the form
’>ID’, all field IDs greater than ID are selected. Similarly for ’<ID’ all field IDs less than the ID
are selected.

For example, if the MS has the following observations:

MS summary:
==========
FIELDID SPWID NChan Pol NRows Source Name

0 0 127 RR 10260 0530+135
1 0 127 RR 779139 05582+16320
2 0 127 RR 296190 05309+13319
3 0 127 RR 58266 0319+415
4 0 127 RR 32994 1331+305
5 1 1 RR,RL,LL,RR 23166 KTIP

one might select

field = ’0~2,KTIP’ # FIELDID 0,1,2 and field name KTIP
field = ’0530+135’ # field 0530+135
field = ’05*’ # fields 0530+135,05582+16320,05309+13319

2.5.3 The spw Parameter

The spw parameter is a string that indicates the specific spectral windows and the channels within
them to be used in subsequent processing. Spectral window selection (’SPWSEL’) can be given as a
spectral window integer ID, a list of integer IDs, a spectral window name specified as a literal string
(for exact match) or a regular expression or pattern. A range of frequencies are used to select all
spectral windows which are within the given range. Frequencies can be specified with an optional
unit — the default unit being Hz.

The spw can also be selected via comparison for integer IDs. For example, ’>ID’ will select all
spectral windows with ID greater than the specified value, while ’<ID’ will select those with ID
lesser than the specified value.

Spectral window selection using strings follows the standard rules:

spw = ’1’ # SPWID 1
spw = ’1,3,5’ # SPWID 1,3,5
spw = ’0~3’ # SPWID 0,1,2,3
spw = ’0~3,5’ # SPWID 0,1,2,3 and 5
spw = ’<4,5’ # SPWID 0,1,2,3 and 5
spw = ’*’ # All spectral windows

In some cases, the spectral windows may allow specification by name. For example,

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 64

spw = ’3mmUSB, 3mmLSB’ # choose by names (if available)

might be meaningful for the dataset in question.

Note that the order in which multiple spws are given may be important for other parameters. For
example, the mode = ’channel’ in clean uses the first spw as the origin for the channelization of
the resulting image cube.

2.5.3.1 Channel selection in the spw parameter

Alpha Alert!
Not all options are available yet, such
as percentages or velocities. Stay
tuned!

Channel selection can be included in the spw string in the
form ’SPWSEL:CHANSEL’ where CHANSEL is the channel se-
lector. In the end, the spectral selection within a given
spectral window comes down to the selection of specific
channels. We provide a number of shorthand selection op-
tions for this. These CHANSEL options include:

• Channel ranges: ’START~STOP’

• Frequency ranges: ’FSTART~FSTOP’

• Velocity ranges: ’VSTART~VSTOP’ (not yet available)

• Bandwidth percentages: ’PSTART~PSTOP’ or ’PWIDTH’ (not yet available)

• Channel striding/stepping: ’START~STOP^STEP’ or ’START^STEP’ or ’^STEP’

The most common selection is via specifying channel, frequency or velocity ranges ’START~STOP’:

spw = ’2:16~40’ # spw 2, channels 16-40, inclusive
spw = ’2:5134~5138MHz’ # spw 2, 5134-5138MHz section only
spw = ’2:51~76km/s’ # spw 2, 51-76km/s section only

All ranges are inclusive, with the channel given by, or containing the frequency or velocity given
by, START and STOP plus all channels between included in the selection.

You can also specify multiple spectral window or channel ranges, e.g.

spw = ’2:16, 3:32~34’ # spw 2, channel 16 plus spw 3 channels 32-34
spw = ’2:1~3;57~63’ # spw 2, channels 1-3 and 57-63
spw = ’1~3:10~20’ # spw 1-3, channels 10-20
spw = ’*:4~56’ # all spw, channels 4-56

Note the use of the wildcard in the last example.

A step can be also be included using ’^STEP’ as a postfix:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 65

spw = ’0:10~100^2’ # chans 10,12,14,...,100 of spw 0
spw = ’:^4’ # chans 0,4,8,... of all spw
spw = ’:100~150GHz^10GHz’ # closest chans to 100,110,...,150GHz

A step in frequency or velocity will pick the channel in which that frequency or velocity falls, or
the nearest channel.

2.5.4 The selectdata Parameters

The selectdata parameter, if set to True, will expand the inputs to include a number of sub-
parameters, given below and in the individual task descriptions (if different). If selectdata =
False, then the sub-parameters are treated as blank for selection by the task. The default for
selectdata is False.

The common selectdata expanded sub-parameters are:

2.5.4.1 The antenna Parameter

The antenna selection string is a semi-colon (’;’) separated list of baseline specifications. A
baseline specification is of the form:

• ’ANT1’ — select all baselines including the antenna(s) specified by the selector ANT1,

• ’ANT1&’ — select only baselines between the antennas specified by the selector ANT1,

• ’ANT1&ANT2’ — select only baselines between the antennas specified by selector ANT1 and
antennas specified by selector ANT2. Thus ’ANT1&’ is an abbreviation for ’ANT1&ANT1’.

The selectors ANT1 and ANT2 are comma-separated lists of antenna integer-IDs or literal antenna
names, patterns, or regular expressions. The ANT strings are parsed and converted to a list of
antenna integer-IDs or IDs of antennas whose name match the given names/pattern/regular ex-
pression. Baselines corresponding to all combinations of the elements in lists on either side of
ampersand are selected.

Integer IDs can be specified as single values or a range of integers. When items of the list are parsed
as literal strings or regular expressions or patterns (see § 2.5.1 for more details on strings). All
antenna names that match the given string (exact match)/regular expression/pattern are selected.

The comma is used only as a separator for the list of antenna specifications. The list of baselines
specifications is a semi-colon separated list, e.g.

antenna = ’1~3 & 4~6 ; 10&11’

will select baselines between antennas 1,2,3 and 4,5,6 (’1&4’, ’1&5’, . . . , ’3&6’) plus baseline
’10&11’.

The wildcard operator (’*’) will be the most often used pattern. To make it easy to use, the
wildcard (and only this operator) can be used without enclosing it in quotes. For example, the
selection

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 66

antenna = ’VA*’

will match all antenna names which have ’VA’ as the first 3 characters in the name (irrespective
of what follows after these characters).

Antenna numbers as names: Needless to say, naming antennas such that the names can also be
parsed as a valid token of the syntax is a bad idea. Nevertheless, antenna names that contain any
of the reserved characters and/or can be parsed as integers or integer ranges can still be used by
enclosing the antenna names in double quotes (’ "ANT" ’). E.g. the string

antenna = ’10~15,21,VA22’

will expand into an antenna ID list 10,11,12,13,14,15,21,22 (assuming the index of the antenna
named ’VA22’ is 22). If the antenna with ID index 50 is named ’21’, the string

antenna = ’10~15,"21",VA22’

will expand into an antenna ID list of 10,11,12,13,14,15,50,22.

Read elsewhere (e.g. info regex under Unix) for details of regular expression and patterns.

2.5.4.2 The scan Parameter

The scan parameter selects the scan ID numbers of the data. There is currently no naming
convention for scans. The scan ID is filled into the MS depending on how the data was obtained,
so use this with care.

Examples:

scan = ’3’ # scan number 3.
scan = ’1~8’ # scan numbers 1 through 8, inclusive
scan = ’1,2,4,6’ # scans 1,2,4,6
scan = ’<9’ # scans <9 (1-8)

NOTE: ALMA and VLA/EVLA number scans starting with 1 and not 0. You can see what the
numbering is in your MS using the listobs task with verbose=True (see § 2.3).

2.5.4.3 The timerange Parameter

The time strings in the following (T0, T1 and dT) can be specified as YYYY/MM/DD/HH:MM:SS.FF.
The time fields (i.e., YYYY, MM, DD, HH, MM, SS and FF), starting from left to right, may be omitted
and they will be replaced by context sensitive defaults as explained below.

Some examples:

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 67

1. timerange=’T0~T1’: Select all time stamps from T0 to T1.

Fields missing in T0 are replaced by the fields in the time stamp of the first valid row in the
MS. Fields missing in T1 are replaced by the corresponding fields of T0 (after its defaults are
set).

2. timerange=’T0’: Select all time stamps that are within an integration time of T0.

Integration time is determined from the first valid row (more rigorously, an average integration
time should be computed). Default settings for the missing fields of T0 are as in (1).

3. timerange=’T0+dT’: Select all time stamps starting from T0 and ending with time stamp
T0+dT.

Defaults of T0 are set as usual. Defaults for dT are set from the time corresponding to MJD=0.
Thus, dT is a specification of length of time from the assumed nominal ”start of time”.

4. timerange=’>T0’: Select all times greater than T0.

5. timerange=’<T1’: Select all times less than T1.

Default settings for T0 and T1 are as above.

For example, a typical timerange selection might be

timerange = ’25/22:40:0 ~ 26/03:30:0’

where the YY/MM/ part of the selection has been defaulted to the start of the MS. An ultra-
conservative selection might be:

timerange = ’1960/01/01/00:00:00~2020/12/31/23:59:59’

which would choose all possible data!

2.5.4.4 The uvrange Parameter

Rows in the MS can also be selected based on the uv-distance or physical baseline length that the
visibilities in each row correspond to. This uvrange can be specified in various formats.

The basic building block of uv-distance specification is a valid number with optional units in the
format N[UNIT] (the unit in square brackets is optional). We refer to this basic building block as
UVDIST. The default unit is meter. Units of length (such as ’m’ and ’km’) select physical baseline
distances (independent of wavelength). The other allowed units are in wavelengths (such as ’l’,
’kl’ and ’Ml’ for lambda, kilo-lambda and mega-lambda respectively) and are true uv-plane radii

ruv =
√

u2 + v2. (2.1)

If only a single UVDIST is specified, all rows, the uv-distance of which exactly matches the given
UVDIST, are selected.

CHAPTER 2. VISIBILITY DATA IMPORT, EXPORT, AND SELECTION 68

UVDIST can be specified as a range in the format ’N0~N1[UNIT]’ (where N0 and N1 are valid
numbers). All rows corresponding to uv-distance between N0 and N1 (inclusive) when converted
the specified units are selected.

UVDIST can also be selected via comparison operators. When specified in the format ’>UVDIST’, all
visibilities with uv-distances greater than the given UVDIST are selected. Likewise, when specified
in the format ’<UVDIST’, all rows with uv-distances less than the given UVDIST are selected.

Any number of above mentioned uv-distance specifications can be given as a comma-separated list.

Examples:

uvrange = ’100~200km’ # an annulus in physical baseline length
uvrange = ’24~35Ml, 40~45Ml’ # two annuli in units of mega-wavelengths
uvrange = ’< 45kl’ # less than 45 kilolambda
uvrange = ’> 0l’ # greater than zero length (no auto-corrs)
uvrange = ’100km’ # baselines of length 100km
uvrange = ’100kl’ # visibilities with uv-radius 100 kilolambda

2.5.4.5 The msselect Parameter

More complicated selections within the MS structure are possible using the Table Query Language
(TaQL). This is accessed through the msselect parameter.

Note that the TaQL syntax does not follow the rules given in § 2.5.1 for our other selection strings.
TaQL is explained in more detail in Aips++ NOTE 199 — Table Query Language (http:
//aips2.nrao.edu/docs/notes/199/199.html). This will eventually become a CASA document.
The specific columns of the MS are given in the most recent MS specification document: Aips++
NOTE 229 — MeasurementSet definition version 2.0 (http://aips2.nrao.edu/docs/
notes/229/229.html). This documentation will eventually be updated to the CASA document
system.

Most selection can be carried out using the other selection parameters. However, these are merely
shortcuts to the underlying TaQL selection. For example, field and spectral window selection can
be done using msselect rather than through field or spw:

msselect=’FIELD_ID == 0’ # Field id 0 only
msselect=’FIELD_ID <= 1’ # Field id 0 and 1
msselect=’FIELD_ID IN [1,2]’ # Field id 1 and 2
msselect=’FIELD_ID==0 && DATA_DESC_ID==3’ # Field id 0 in spw id 3 only

http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/199/199.html
http://aips2.nrao.edu/docs/notes/229/229.html
http://aips2.nrao.edu/docs/notes/229/229.html

Chapter 3

Data Examination and Editing

3.1 Plotting and Flagging Visibility Data in CASA

The tasks available for plotting and flagging of data are:

• flagmanager — manage versions of data flags

• flagautocorr — non-interactive flagging of auto-correlations

• plotxy — create X-Y plots of data in MS, flag data

• flagdata — non-interactive flagging of data

• viewer — use viewer to look at and flag MS

• browsetable — browse data in any CASA table (including a MS)

The following sections describe the use of these tasks.

Information on other related operations can be found in:

• listobs — list what’s in a MS (§ 2.3)

• selectdata — general data selection syntax (§ 2.5)

3.2 Managing flag versions with flagmanager

The flagmanager task will allow you to manage different versions of flags in your data. These are
stored inside a CASA flagversions table, under the name of the MS <msname>.flagversions. For
example, for the MS jupiter6cm.usecase.ms, there will need to be jupiter6cm.usecase.ms.flagversions
on disk. This is created when flagging is first done, such as with plotxy.

The inputs for flagmanager are:

69

CHAPTER 3. DATA EXAMINATION AND EDITING 70

vis = ’’ # Name of input visibility file (MS)
mode = ’list’ # Flag management operation (list,save,restore,delete)

The mode=’list’ option will list the available flagversions from the <msname>.flagversions file.
For example:

CASA <103>: vis = ’jupiter6cm.usecase.ms’
CASA <104>: mode = ’list’
CASA <105>: flagmanager()
See logger for flag versions for this file

Tue Jun 26 20:52:55 2007 NORMAL : Table : /home/sandrock2/smyers/jupiter6cm.usecase.ms
Tue Jun 26 20:52:55 2007 NORMAL : main : working copy in main table
Tue Jun 26 20:52:55 2007 NORMAL : xyflags : Plotxy flags

The mode parameter expands the options. For example, if you wish to save the current flagging
state of vis=<msname>,

mode = ’save’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
comment = ’’ # Short description of flag version
merge = ’replace’ # Merge option (replace, and, or)

with the output version name specified by versionname. For example, the above xyflags version
was written using:

default(’flagmanager’)
vis = ’jupiter6cm.usecase.ms’
mode = ’save’
versionname = ’xyflags’
comment = ’Plotxy flags’
flagmanager()

and you can see that there is now a sub-table in the flagversions directory

CASA <106>: ls jupiter6cm.usecase.ms.flagversions/
IPython system call: ls -F jupiter6cm.usecase.ms.flagversions/
flags.xyflags/ FLAG_VERSION_LIST

It is recommended that you use this facility regularly to save versions during flagging.

You can restore a previously saved set of flags using the mode=’restore’ option:

mode = ’restore’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)
merge = ’replace’ # Merge option (replace, and, or)

CHAPTER 3. DATA EXAMINATION AND EDITING 71

The merge sub-parameter will control the action. For merge=’replace’, the flags in versionname
will replace those in the MAIN table of the MS. For merge=’and’, only data that is flagged in
BOTH the current MAIN table and in versionname will be flagged. For merge=’or’, data flagged
in EITHER the MAIN or in versionname will be flagged.

The mode=’delete’ option can be used to remove versionname from the flagversions:

mode = ’delete’ # Flag management operation (list,save,restore,delete)
versionname = ’’ # Name of flag version (no spaces)

3.3 Flagging auto-correlations with flagautocorr

The flagautocorr task can be used if all you want to do is to flag the auto-correlations out of the
MS. Nominally, this can be done upon filling from the VLA for example, but you may be working
from a dataset that still has them.

This task has a single input, the MS file name:

vis = ’’ # Name of input visibility file (MS)

To use it, just set and go:

CASA <90>: vis = ’jupiter6cm.usecase.ms’
CASA <91>: flagautocorr()

Note that the auto-correlations can also be flagged using flagdata (§ 3.5) but the flagautocorr
task is an handy shortcut for this common operation.

3.4 X-Y Plotting and Editing of the Data

Inside the Toolkit:
Access to matplotlib is also pro-
vided through the pl tool. See be-
low for a description of the pl tool
functions.

The principal way to get X-Y plots of visibility data is using
the plotxy task. This task also provides editing capability.
CASA uses the matplotlib plotting library to display its
plots. You can find information on matplotlib at http:
//matplotlib.sourceforge.net/.

The plotxy plotter is shown in figure 3.1.

To bring up this plotter use the plotxy task. The inputs
are:

plotxy :: Plot points for selected X and Y axes:

vis = ’’ # Name of input visibility
xaxis = ’time’ # azimuth,elevation,hourangle,baseline,channel,time,u,v,w,uvdist,x

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

CHAPTER 3. DATA EXAMINATION AND EDITING 72

yaxis = ’amp’ # azimuth,elevation,hourangle,baseline,amp,pha,u,v,w,uvdist
datacolumn = ’data’ # data (raw), corrected, model, residual (corrected - model)
field = ’’ # field names or index of calibrators:
spw = ’’ # spectral window:channels: ’’==>all, spw=’1:5~57’
selectdata = False # Other data selection parameters
average = ’’ # Select averaging mode: time or channel
subplot = 111 # Panel number on display screen (yxn)
overplot = False # Overplot values on current plot (if possible)
showflags = False # Show flagged data
iteration = ’’ # Separate panels by: field, antenna, baseline, scan, feed
plotsymbol = ’.’ # pylab plot symbol
plotcolor = ’darkcyan’ # pylab plot color
markersize = 5.0 # Size of plotted marks
linewidth = 1.0 # Width of plotted lines
connect = ’none’ # Specifies which points are connected with lines
plotrange = [-1, -1, -1, -1] # The range of data to be plotted, can be time values
skipnpoints = 1 # Plot every nth point
multicolor = ’none’ # Plot polarizations and channels in different colors
replacetopplot = False # Replace the last plot or not when overplotting
removeoldpanels = True # Turn on/of automatic clearing of panels
title = ’’ # Plot title (above plot)
xlabels = ’’ # Label for x-axis
ylabels = ’’ # Label for y-axis
fontsize = 10.0 # Font size for labels
windowsize = 1.0 # Window size

Setting selectdata=True opens up several sub-parameters:

selectdata = True # Select a subset of the data - opens selection params
antenna = ’’ # Select data based on antenna/baseline
timerange = ’’ # Select data based on time
correlation = ’’ # Correlation(s) to plot (RR,LL,RR LL,XX,YY,XX YY)
scan = ’’ # Select data based on scan number
feed = ’’ # Select data based on feed number - NOT IMPLEMENTED
array = ’’ # Select data based on the array
uvrange = ’’ # Select data based on uv range

The parameter average is used to request averaging either by time or by frequency. Option
average=’time’ leads to the option of setting the sub-parameter averagenpoints, which sets
the number of rows to average when plotting. This is somewhat like time averaging. Option
average=’channel’ affects the interpretation of the spw parameter, with 5 meaning ”average 5
channels” rather than ”show every 5th channel.” ALPHA ALERT: the averaging options are in
the process of being refined and extended.

For example:

plotxy(vis=’n75.ms’, # channel plot for the n75.ms data set
xaxis=’channel’, # plot channels on x-axis
yaxis=’amp’, # plot amplitude on y-axis
plotsymbol=’,’, # use red, slightly large dots

CHAPTER 3. DATA EXAMINATION AND EDITING 73

datacolumn=’corrected’, # plot corrected data
selectdata=True, # open data selection
field=’1328’, # Plot only source 1328+307 (minimum match)
spw=’2’, # Plot channels in spectral window 2.
correlation=’RR LL’, # Plot RR and LL correlations
multicolor=True) # Allow plotxy to plot different colors.

3.4.1 Plot control

You can use the various buttons on the plotxy GUI to control its operation – in particular, to
determine flagging and unflagging behaviors.

There is a standard row of buttons at the bottom. These include (left to right):

• Home — The “house” button (1st on left) returns to the original zoom level.

• Step — The left and right arrow buttons (2nd and 3rd from left) step through the zoom
settings you’ve visited.

• Pan — The “four-arrow button” (4th from left) lets you pan in zoomed plot.

• Zoom — The most useful is the “magnifying glass” (5th from the left) which lets you draw
a box and zoom in on the plot.

• Panels — The “window-thingy” button (second from right) brings up a menu to adjust the
panel placement in the plot.

• Save – The “disk” button (last on right) saves a .png copy of the plot to a generically named
file on disk.

In a row above these, there are a set of other buttons (left to right):

• Mark Region — If depressed lets you draw rectangles to mark points in the panels. This
is done by left-clicking and dragging the mouse. You can Mark multiple boxes before doing
something. Clicking the button again will un-depress it and forget the regions. ESC will
remove the last region marked.

• Flag — Click this to Flag the points in a marked region.

• Unflag — Click this to Unflag any flagged point that would be in that region (even if
invisible).

• Locate — Print out some information to the logger on points in the marked regions.

• Next — Step to the next plot in an iteration.

• Quit — Exit plotcal, clear the window and detach from the MS.

These buttons are shared with the plotcal tool.

CHAPTER 3. DATA EXAMINATION AND EDITING 74

3.4.2 plotoptions

Inside the Toolkit:
For even more functionality, you can
access the pl tool directly using Py-
lab functions that allow one to an-
notate, alter, or add to any plot
displayed in the matplotlib plot-
ter (e.g. plotxy). See the CASA
Toolkit Guide.

The plotoptions parameters work in concert with the na-
tive matplotlib functionality to enable flexible represen-
tations of data displays. In particular, the parameters
overplot, subplot, and plotsymbol allow visual com-
parisons of data results for analysis during the reduction
process.

3.4.2.1 plotsymbol

The plotsymbol parameter defines both the line or symbol
for the data being drawn as well as the color; from the
matplotlib online documentation (e.g., type pl.plot? for
help):

The following line styles are supported:
- : solid line
-- : dashed line
-. : dash-dot line
: : dotted line
. : points
, : pixels
o : circle symbols
^ : triangle up symbols
v : triangle down symbols
< : triangle left symbols
> : triangle right symbols
s : square symbols
+ : plus symbols
x : cross symbols
D : diamond symbols
d : thin diamond symbols
1 : tripod down symbols
2 : tripod up symbols
3 : tripod left symbols
4 : tripod right symbols
h : hexagon symbols
H : rotated hexagon symbols
p : pentagon symbols
| : vertical line symbols
_ : horizontal line symbols
steps : use gnuplot style ’steps’ # kwarg only

The following color abbreviations are supported
b : blue
g : green
r : red
c : cyan

CHAPTER 3. DATA EXAMINATION AND EDITING 75

m : magenta
y : yellow
k : black
w : white

In addition, you can specify colors in many weird and
wonderful ways, including full names ’green’, hex strings
’#008000’, RGB or RGBA tuples (0,1,0,1) or grayscale
intensities as a string ’0.8’.
Line styles and colors are combined in a single format string, as in
’bo’ for blue circles.

3.4.2.2 Iteration

There are currently four iteration options available: ’antenna’,’time’,’baseline’, and ’field id’. If
one of these options is chosen, the data will be split into separate plot displays for each value of
the iteration axis (e.g., for the VLA, the ’antenna1’ option will get you 27 displays, one for each
antenna).

An example iteration session:

CASA <1>: default plotxy
CASA <1>: plotxy(’n5921.ms’,’channel’,datacolumn=’corrected’,subplot=311,iteration=’antenna1’)

Number of rows in the selected Measurement Set : 22653
Thu Jul 5 20:49:44 2007 WARN :
Iterating on ANTENNA1 instead of ANTENNA
plotsymbols: .
connect: none
Attaching the main selected MS
Thu Jul 5 20:49:44 2007 WARN :

May need to read 2854278 values from disk.
Preparing the plotter..
Reading data...
Time spent reading X and Y data from disk : 0.09 sec.
Time to extract Flags : 0.02
Number of new points being plotted : 195651
Number of new points not being plotted : 8343
Total Plotting time : 1.013 sec.
Preparing the plotter..
Reading data...
Time spent reading X and Y data from disk : 0.08 sec.
Time to extract Flags : 0.01
Number of new points being plotted : 188290
Number of new points not being plotted : 8144
Total Plotting time : 1.507 sec.
Preparing the plotter..
Reading data...
Time spent reading X and Y data from disk : 0.08 sec.

CHAPTER 3. DATA EXAMINATION AND EDITING 76

Time to extract Flags : 0.01
Number of new points being plotted : 181111
Number of new points not being plotted : 7763
Total Plotting time : 1.934 sec.

etc.

3.4.2.3 Subplots

The plotxy argument subplot takes three numbers. The first is the number of y panels (stacking
vertically), the second is the number of xpanels (stacking horizontally) and the third is the number
of the panel you want to draw into. For example, subplot=212 would draw into the lower of two
panels stacked vertically in the figure.

An example use of subplot capability is shown in Fig 3.3. These were drawn with the commands
(for the top, bottom left, and bottom right panels respectively):

plotxy(’n5921.ms’,’channel’, # plot channels for the n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
plotcolor=’’, # over-ride default plot color
plotsymbol=’go’, # use green circles
subplot=211) # plot to the top of two panels

plotxy(’n5921.ms’,’x’, # plot antennas for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=223, # plot to 3rd panel (lower left) in 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’r.’) # red dots

plotxy(’n5921.ms’,’u’,’v’, # plot uv-coverage for n5921.ms data set
field=’0’, # plot only first field
datacolumn=’corrected’, # plot corrected data
subplot=224, # plot to the lower right in a 2x2 grid
plotcolor=’’, # over-ride default plot color
plotsymbol=’b,’) # blue, somewhat larger dots

NOTE: You can change the gridding and panel
size by manipulating the ny x nx grid.

3.4.3 Interactive Flagging in plotxy

Hint!
In the plotting environments such as
plotxy, the ESC key can be used to
remove the last region box drawn.

Interactive flagging, on the principle of “see it — flag it”, is
possible on the X-Y display of the data plotted by plotxy.
The user can use the cursor to mark one or more regions,
and then flag, unflag, or list the data that falls in these
zones of the display.

CHAPTER 3. DATA EXAMINATION AND EDITING 77

There is a row of buttons below the plot in the window. You
can punch the Mark Region button (which will appear
to depress), then mark a region by left-clicking and dragging the mouse (each click and drag will
mark an additional region). You can get rid of all your regions by clicking again on the Mark
Region button (which will appear to un-depress), or you can use the ESC key to remove the last
box you drew. Once regions are marked, you can then click on one of the other buttons to take
action:

1. Flag — flag the points in the region(s),

2. Unflag — unflag flagged points in the region(s),

3. Locate — spew out a list of the points in the region(s) to the logger (Warning: this could
be a long list!).

Whenever you click on a button, that action occurs without forcing a diskwrite (unlike previous
versions). If you quit plotxy and re-enter, you will see your previous edits.

A table with the name <msname>.flagversions (where vis=<msname>) will be created in the same
directory if it does not exist already.

It is recommended that you save important flagging stages using the flagmanager task (§ 3.2).

3.4.4 Exiting plotxy

You can use the Quit button to clear the plot from the window and detach from the MS. You can
also dismiss the window by killing it with the X on the frame, which will also detach the MS.

You can also just leave it alone. The plotter pretty much keeps running in the background even
when it looks like it’s done! You can keep doing stuff in the plotter window, which is where the
overplot parameter comes in. Note that the plotcal task (§ 4.8) will use the same window, and
can also overplot on the same panel.

If you leave plotxy running, beware of (for instance) deleting or writing over the MS without
stopping. It may work from a memory version of the MS or crash.

3.4.5 Example session using plotxy

The following is an example of interactive plotting and flagging using plotxy on the Jupiter 6cm
continuum VLA dataset. This is extracted from the script jupiter6cm usecase.py available in
the script area.

This assumes that the MS jupiter6cm.usecase.ms is on disk with flagautocorr already run.

ALPHA ALERT: Exact syntax may be slightly different in your version as the Alpha Patches
progress.

CHAPTER 3. DATA EXAMINATION AND EDITING 78

default(’plotxy’)

vis = ’jupiter6cm.usecase.ms’

The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

First we do the primary calibrator
field = ’1331+305’

Plot only the RR and LL for now
correlation = ’RR LL’

Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’
multicolor = ’both’

The easiest thing is to iterate over antennas
iteration = ’antenna’

plotxy()

You’ll see lots of low points as you step through RR LL RL LR
A basic clip at 0.75 for RR LL and 0.055 for RL LR will work
If you want to do this interactively, set
iteration = ’’

plotxy()

You can also use flagdata to do this non-interactively
(see below)

Now look at the cross-polar products
correlation = ’RL LR’

plotxy()

#---
Now do calibrater 0137+331
field = ’0137+331’
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’’
iteration = ’’
antenna = ’’

plotxy()

You’ll see a bunch of bad data along the bottom near zero amp
Draw a box around some of it and use Locate

CHAPTER 3. DATA EXAMINATION AND EDITING 79

Looks like much of it is Antenna 9 (ID=8) in spw=1

xaxis = ’time’
spw = ’1’
correlation = ’’

Note that the strings like antenna=’9’ first try to match the
NAME which we see in listobs was the number ’9’ for ID=8.
So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()

YES! the last 4 scans are bad. Box ’em and flag.

Go back and clean up
xaxis = ’uvdist’
spw = ’’
antenna = ’’
correlation = ’RR LL’

plotxy()

Box up the bad low points (basically a clip below 0.52) and flag

Note that RL,LR are too weak to clip on.

#---
Finally, do JUPITER
field = ’JUPITER’
correlation = ’’
iteration = ’’
xaxis = ’time’

plotxy()

Here you will see that the final scan at 22:00:00 UT is bad
Draw a box around it and flag it!

Now look at whats left
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’1’
antenna = ’’
iteration = ’antenna’

plotxy()

As you step through, you will see that Antenna 9 (ID=8) is often
bad in this spw. If you box and do Locate (or remember from
0137+331) its probably a bad time.

CHAPTER 3. DATA EXAMINATION AND EDITING 80

The easiset way to kill it:

antenna = ’9’
iteration = ’’
xaxis = ’time’
correlation = ’’

plotxy()

Draw a box around all points in the last bad scans and flag ’em!

Now clean up the rest
xaxis = ’uvdist’
correlation = ’RR LL’
antenna = ’’
spw = ’’

You will be drawing many tiny boxes, so remember you can
use the ESC key to get rid of the most recent box if you
make a mistake.

plotxy()

Note that the end result is we’ve flagged lots of points
in RR and LL. We will rely upon imager to ignore the
RL LR for points with RR LL flagged!

3.5 Non-Interactive Flagging using flagdata

Task flagdata will flag the visibility data set based on the specified data selections, most of the
information coming from a run of the listobs task (with/without verbose=True). Currently you
can select based on any combination of:

• antennas (antenna)

• baselines (antenna)

• spectral windows and channels (spw)

• correlation types (correlation)

• field ids or names (field)

• uv-ranges (uvrange)

• times (timerange) or scan numbers (scan)

CHAPTER 3. DATA EXAMINATION AND EDITING 81

• antenna arrays (array)

and choose to flag, unflag, clip (setclip and sub-parameters), and remove the first part of each
scan (setquack) and/or the autocorrelations (autocorr).

The inputs to flagdata are:

vis = ’’ # Name of input visibility file
antenna = ’’ # Select data based on antenna/baseline
spw = ’’ # Select data based on spectral-window/frequency/channel
correlation = ’’ # Select data based on correlation
field = ’’ # Select data based on field name or index
uvrange = ’’ # Select data based on uv range
timerange = ’’ # Select data based on time
scan = ’’ # Select data based on scan number
feed = ’’ # Select data based on feed number - NOT ENABLED
array = ’’ # Select data based on the array
mode = ’manualflag’ # manualflag

autocorr = False # Flag autocorrelations
unflag = False # Unflag the data specified
setclip = [’’, [], True] # Setup Clipping [clipexpr,[min,max],outside(T/F)]
setquack = [] # Setup VLA Quack [quack interval, quack length] - NOT TESTED

ALPHA ALERT: the modes ’autoflag’, ’summary’, ’query’, and ’extend’ are not currently
supported.

————————-

3.5.1 Flag Antenna/Channels

The following commands give the results shown in Figure 3.5:

default plotxy
plotxy(’ngc5921.ms’,’channel’,iteration=’antenna1’,subplot=311)
default flagdata
flagdata(vis=’ngc5921.ms’,antenna=’0’,spw=’0:10~15’)
default plotxy
plotxy(’ngc5921.ms’,’channel’,iteration=’antenna1’,subplot=311)

3.5.1.1 Clipping in flagdata

The following commands give the results shown in Figure 3.6:

default plotxy
plotxy(’ngc5921.ms’,’uvdist’)
default flagdata
flagdata(vis=’ngc5921.ms’,setclip=[’LL’,[0.0,1.6],True])
plotxy(’ngc5921.ms’,’uvdist’)

CHAPTER 3. DATA EXAMINATION AND EDITING 82

3.6 Interactive flagging using the viewer

Coming soon.

3.7 Browse the Data

The browsetable task is available for viewing data directly (and handles all CASA tables, including
MeasurementSets, calibration tables, and images).

The default inputs are:

browsetable :: Browse a table (MS, calibration table, image)

tablename = ’’ # Name of input table

Currently, its single input is the tablename, so an example would be:

CASA <2>: browsetable(’ngc5921.ms’)

For an MS such as this, it will come up with a browser of the MAIN table (see Fig 3.7). If you want
to look at sub-tables, use the View:Table Keywords to bring up a panel with the sub-tables
listed (Fig 3.8), then choose (left-click) a table and View:Details to bring it up (Fig 3.9). You
can left-click on a cell in a table to view the contents.

ALPHA ALERT: The browsetable task brings up the CASA Java Tablebrowser, which is a sep-
arate program. You may encounter some crashes, particularly if you use the File:Open menu to
browse sub-tables or MS.

CHAPTER 3. DATA EXAMINATION AND EDITING 83

Figure 3.1: The plotxy plotter. The bottom set of buttons on the lower left are: 1,2,3) Home,
Back, and Forward. Click to navigate between previously defined views (akin to web navigation).
4) Pan. Click and drag to pan to a new position. 5) Zoom. Click to define a rectangular region for
zooming. 6) Subplot Configuration. Click to configure the parameters of the subplot and spaces
for the figures. 7) Save. Click to launch a file save dialog box. The upper set of buttons in
the lower left are: 1) Mark Region. Press this to begin marking regions (rather than zooming
or panning). 2,3,4) Flag, Unflag, Locate. Click on these to flag, unflag, or list the data within
the marked regions. 5) Next. Click to move to the next in a series of iterated plots. Finally, the
cursor readout is on the bottom right.

CHAPTER 3. DATA EXAMINATION AND EDITING 84

Figure 3.2: plotxy iteration plot: The first set of plots from the example in § 3.4.2.2. Each time
you press the Next button, you get the next series of plots.

CHAPTER 3. DATA EXAMINATION AND EDITING 85

Figure 3.3: Multi-panel display of visibility versus channel (top), antenna array config-
uration (bottom left) and the resulting uv coverage (bottom right). The commands
to make these three panels respectively are: 1) plotxy(’n5921.ms’, xaxis=’channel’,
datacolumn=’corrected’, field=’0’, subplot=211, plotcolor=’’, plotsymbol=’go’), 2)
plotxy(xaxis=’x’, subplot=223, plotsymbol=’r.’), 3) plotxy(xaxis=’u’, yaxis=’v’,
subplot=224, plotsymbol=’b,’).

CHAPTER 3. DATA EXAMINATION AND EDITING 86

Figure 3.4: Plot of amplitude versus uv distance, before (left) and after (right) flagging two
marked regions. The call was: plotxy(vis=’n5921.ms’,xaxis=’uvdist’, plotsymbol=’b,’,
subplot=111, datacolumn=’data’, field=’1445*’).

CHAPTER 3. DATA EXAMINATION AND EDITING 87

Figure 3.5: flagdata: Example showing before and after displays using a selection of one antenna
and a range of channels. Note that each invocation of the flagdata task represents a cumulative se-
lection, i.e., running antenna=’0’ will flag all data with antenna 0, while antenna=’0’, spw=’0:10 15’
will flag only those channels on antenna 0.

Figure 3.6: flagdata: Flagging example using the clip facility.

CHAPTER 3. DATA EXAMINATION AND EDITING 88

Figure 3.7: browsetable: The browser displays the main table within a frame. Hit the expand
button to fill the browser frame (this has been done for this figure). You can scroll through the
data (x=columns of the MAIN table, and y=the rows) or select a specific page or row as desired.

CHAPTER 3. DATA EXAMINATION AND EDITING 89

Figure 3.8: browsetable: You can use the Menu option View to look at other tables within an
MS. If you select on View:Table Keywords you get the image displayed. You can then select on
a table to view its contents.

CHAPTER 3. DATA EXAMINATION AND EDITING 90

Figure 3.9: browsetable: View the SOURCE table of the MS.

Chapter 4

Synthesis Calibration

Inside the Toolkit:
The workhorse for synthesis calibra-
tion is the cb tool.

This chapter explains how to calibrate interferometer data
within the CASA task system. Calibration is the process
of determining the complex correction factors that must be
applied to each visibility in order to make them as close as
possible to what an idealized interferometer would measure,
such that when the data is imaged an accurate picture of the sky is obtained. This is not an
arbitrary process, and there is a methodology that has been developed to carry out synthesis
calibration and an algebra to describe the various corruptions that data might be subject to: the
Hamaker-Bregman-Sault Measurement Equation (ME).1 The user need not worry about the details
of this mathematics as the CASA software does that for you! Anyway, its just matrix algebra, and
your familiar scalar methods of calibration (such as in AIPS) are encompassed in this more general
approach! However, the curious can find a detailed description of the ME and calibration in the
CASA Toolkit Guide.

4.1 Calibration Tasks

The standard set of calibration tasks are:

• accum — Accumulate incremental calibration solutions into a cumulative cal table (§ 4.7.2),

• applycal — Apply calculated calibration solutions (§ 4.10),

• bandpass — B calibration solving; supports pre-apply of other calibrations (§ 4.5),

• clearcal — Re-initialize visibility data set calibration data (§ 4.11),

• fluxscale — Bootstrap the flux density scale from standard calibration sources (§ 4.4),

• gaincal — G calibration solving; supports pre-apply of other calibrations (§ 4.3),
1Hamaker, J.P., Bregman, J.D. & Sault, R.J. (1996), Astronomy and Astrophysics Supplement, v.117, p.137-147

91

CHAPTER 4. SYNTHESIS CALIBRATION 92

• listcal — list calibration solutions (§ 4.9),

• plotcal — Plot calibration solutions (§ 4.8),

• setjy — Compute the model visibility for a specified source flux density (§ 4.2),

• smoothcal— Smooth calibration solutions derived from one or more sources (§ 4.7.1)

• split— Write out new MS containing calibrated data from a subset of the original MS
(§ section:cal.split).

There are also more advanced and experimental calibration tasks available in this release:

• blcal — baseline-based G (or B) calibration; supports pre-apply of other calibrations (§ 4.13.2),

• fringecal — Experimental: baseline-based fringe-fitting calibration solving; supports pre-
apply of other calibrations (§ 4.13.3),

• uvcontsub— uv-plane continuum fitting and subtraction (§ 4.13.1),

• uvmodelfit— Fit a component source model to the uv data (§ 4.13.4).

The following sections outline the use of these tasks in standard calibration processes.

Information on other useful tasks and parameter setting can be found in:

• listobs — list whats in a MS (§ 2.3),

• plotxy — X-Y plotting and editing (§ 3.4),

• flagdata — non-interactive data flagging (§ 3.5),

• data selection — general data selection syntax (§ 2.5).

4.2 Calibration models for absolute flux density (setjy)

When solving for visibility-plane calibration, CASA calibration applications compare the observed
DATA column with the MODEL DATA column. The first time that an imaging or calibration task
is executed for a given MS, the MODEL DATA column is created and initialized with unit point
source flux density visibilities (unpolarized) for all sources (e.g. AMP=1, phase=0◦). The setjy
task is then used to set the proper flux density for flux calibrators. For sources that are recognized
flux calibrators (listed in Table 4.1), setjy will calculate the flux densities, Fourier transform the
data and write the results to the MODEL DATA column. For the VLA, the default source models
are customarily point sources defined by the Baars or Perley-Taylor flux density scales, or point
sources of unit flux density if the flux density is unknown. The MODEL DATA column can also be
filled with a model generated from an image of the source (e.g. the Fourier transform of an image
generated after initial calibration of the data).

The inputs for setjy are:

CHAPTER 4. SYNTHESIS CALIBRATION 93

Table 4.1:

3C Name B1950 Name J2000 Name
3C286 1328+307 1331+305
3C48 0134+329 0137+331
3C147 0538+498 0542+498
3C138 0518+165 0521+166

– 1934-638 –
3C295 1409+524 1411+522

setjy :: Place flux density of sources in the measurement set:

vis = ’’ # Name of input visibility file
field = ’’ # Field name list or field ids list
spw = ’’ # Spectral window identifier (list)
modimage = ’’ # Model image name
fluxdensity = -1 # Specified flux density [I,Q,U,V]
standard = ’Perley-Taylor 99’ # Flux density standard

By default the setjy task will cycle through all fields and spectral windows, setting the flux density
either to 1 Jy (unpolarized), or if the source is recognized as one of the calibrators in the above table,
to the flux density (assumed unpolarized) appropriate to the observing frequency. For example, to
run setjy on a measurement set called data.ms:

setjy(vis=’data.ms’) # This will set all fields and spectral windows

To limit this operation to certain fields and spectral windows, use the field and/or spw parameters,
which take the usual data selection strings (§ 2.5). For example, to set the flux density of the first
field (all spectral windows)

setjy(vis=’data.ms’,field=’0’)

or to set the flux density of the second field in spectral window 17

setjy(vis=’data.ms’,field=’1’,spw=’17’)

The full-polarization flux density (I,Q,U,V) may also be explicitly provided:

setjy(vis=’data.ms’,
field=’1’,spw=’16’, # Run setjy on field id 1, spw id 17
fluxdensity=[3.5,0.2,0.13,0.0]) # and set I,Q,U,V explicitly

CHAPTER 4. SYNTHESIS CALIBRATION 94

4.2.1 Dealing with resolved calibrators

If the flux density calibrator is resolved at the observing frequency, the point source model generated
by setjy will not be appropriate. If available, a model image of the resolved source at the observing
frequency may be used to generate the appropriate visibilities using the modimage parameter (or
in older versions explicitly with the ft task).

Model images for some flux density calibrators are provided with CASA:

• RPM RHE4: located in /usr/lib/casapy/data/nrao/VLA/CalModels

• MAC OSX .dmg: located in /opt/casa/data/nrao/VLA/CalModels

• NRAO-AOC stable: /home/casa/data/nrao/VLA/CalModels

• NRAO-AOC daily: /home/ballista/casa/daily/data/nrao/VLA/CalModels

The models available are:

3C138_C.im/ 3C138_Q.im/ 3C147_K.im/ 3C286_C.im/ 3C286_Q.im/ 3C48_C.im/ 3C48_Q.im/
3C138_K.im/ 3C138_U.im/ 3C147_Q.im/ 3C286_K.im/ 3C286_U.im/ 3C48_K.im/ 3C48_U.im/
3C138_L.im/ 3C138_X.im/ 3C147_U.im/ 3C286_L.im/ 3C286_X.im/ 3C48_L.im/ 3C48_X.im/

These are all un-reconvolved images of AIPS CC lists, properly scaled to the Perley-Taylor 1999
flux density for the frequencies at which they were observed.

It is important that the model image not be one convolved with a finite beam; it must have units
of Jy/pixel (not Jy/beam). Also, the frequency range of the image must cover the frequencies in
the dataset. Finally, the amplitude scale in the image must be correct (beware of variation due to
non-zero spectral index).

Copy the model image to the working directory; the following illustrates its use.

Import the data
importvla(archivefiles=’AS776_A031015.xp2’, vis=’ngc7538_XBAND.ms’,

freqtol=10000000.0, bandname=’X’)

Flag the ACs
flagautocorr(’ngc7538_XBAND.ms’)

METHOD 1: Use point source model for 3C48, plus uvrange in solve

Use point source model for 3C48
setjy(field=’0’);

Limit 3C48 (fieldid=0) solutions to uvrange = 0-40 klambda
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’0’,

solint=60.0, refant=10, uvrange=[0,40],
append=False, gaincurve=False, opacity=False)

CHAPTER 4. SYNTHESIS CALIBRATION 95

Append phase-calibrator’s solutions (no uvrange) to the same table
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, field=’2’,

solint=60.0, refant=10, uvrange=[0], append=True,
gaincurve=False, opacity=False)

Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.Gflx’, append=False)

METHOD 2: use a resolved model copied from the data respository
for 3C48, and no uvrange
(NB: detailed freq-dep flux scaling TBD)

setjy(field=’0’, modimage=’3C48_X.im’)

Solutions on both calibrators with no uvrange
gaincal(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, field=’0,2’,

solint=60.0, refant=10, uvrange=[0],
append=False, gaincurve=False, opacity=False)

Fluxscale
fluxscale(vis=’ngc7538_XBAND.ms’, caltable=’cal.G2’, reference=[’0137+331’],

transfer=[’2230+697’], fluxtable=’cal.G2flx’, append=False)

Both methods give 2230 flux densities ~0.7 Jy, in good agreement with
AIPS

4.3 Complex Gain Calibration (gaincal)

The fundamental calibration to be done on your interferometer data is to calibrate the antenna-
based gains as a function of time in the various frequency channels and polarization products.
Some of these calibrations are known beforehand (“a priori”) and others must be determined from
observations of calibrators, or from observations of the target itself (“self-calibration”).

The gaincal task has the following default inputs:

gaincal :: Determine temporal gains from calibrator observations:

vis = ’’ # Name of input visibility file
caltable = ’’ # Name of output calibration table
field = ’’ # Select data based on field name or index
spw = ’’ # Select spectral window and channels (’’=all)
selectdata = False # Activate data selection details
gaintype = ’G’ # Type of solution (G, T, or GSPLINE)
solint = 0.0 # Solution interval (sec); 0 = scan
refant = ’’ # Reference antenna name or ID number

CHAPTER 4. SYNTHESIS CALIBRATION 96

minsnr = 0.0 # Reject solutions below this SNR
solnorm = False # Normalize solution amplitudes (G,T) post-solve.
append = False # Append to (existing) table. False==>overwrite
calmode = ’ap’ # Type of solution (a,p,ap)
append = False # Append solutions to (existing) table
gaintable = ’’ # Previous gain calibration solutions to apply
bptable = ’’ # Previous bandpass calibration solutions to apply
pointtable = ’’ # Previous pointing calibration solutions to apply
gaincurve = True # Apply VLA antenna gain curve correction
opacity = False # Apply an opacity correction (True/False)
preavg = -1.0 # Pre-averaging interval (sec)
async = False # if True run in the background, prompt is freed

Data selection is done through the standard field, spw and selectdata expandable sub-parameters
(see § 2.5). Several other parameters are also expandable:

gaintype = ’GSPLINE’ # Type of solution (G, T, or GSPLINE)
splinetime = 10800.0 # Spline timescale (sec), default=3 hours
npointaver = 10 # Points to average for phase wrap
phasewrap = 180 # Wrap phase when greater than this

and

opacity = True # Apply an opacity correction (True/False)
tau = 0.001 # Opacity value to apply (if opacity=True)

which can be used to pre-apply atmospheric opacity corrections (see below).

There are controls for applying previous calibration

gaincurve = True # Apply VLA antenna gain curve correction
opacity = False # Apply an opacity correction (True/False)
gaintable = ’’ # Previous gain calibration solutions to apply
bptable = ’’ # Previous bandpass calibration solutions to apply
pointtable = ’’ # Previous pointing calibration solutions to apply

ALPHA ALERT: These will likely eventually required to be pre-applied to a single input cal
table using accum.

Data selection is done through a series of standard parameters. These are general among the various
calibration tasks. These are described in § 2.5. For example, a typical simple selection might be:

field = ’1331+305’
spw = ’0:2~56’

to select channels 2–56 in spectral window 0 for the calibrator 1331+305. See § 2.5.3.1 for a
description of the combined spectral window / channel selection syntax.

Setting selectdata = True expands the selection possibilities further:

CHAPTER 4. SYNTHESIS CALIBRATION 97

selectdata = True # Activate data selection details
timerange = ’’ # Select data based on time
uvrange = ’’ # Select data based on uv range
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Select data based on scan number
msselect = ’’ # Optional data selection (see help)

In the current scheme, the msselect parameter is key to choosing which sources, fields, and anten-
nas are included in the calibration. From the help gaincal in-line help:

msselect -- Optional data selection (field,spw,time,etc)
default:’’ means select all; example:msselect=’FIELD_ID==0’,
msselect=’FIELD_ID IN [0,1,2]’ means select fields 0,1 and 2
msselect=’FIELD_ID <= 1 means select fields 0, 1
msselect=’FIELD_ID==0 && ANTENNA1 IN [0] && ANTENNA2 IN [2:26]’

means select field 0 and antennas 0 to 26, except antenna 1.
Other msselect fields are: ’DATA_DESC_ID’, ’SPECTRAL_WINDOW_ID’,
’POLARIZATION_ID’, ’SCAN_NUMBER’, ’TIME’, ’UVW’

4.3.1 “A priori” gain curve calibration

Gain curve calibration involves compensating for the effects of elevation on the amplitude of the
received signals at each antenna. Antennas are not absolutely rigid, and so their effective collecting
area and net surface accuracy vary with elevation as gravity deforms the surface. This calibration
is especially important at higher frequencies where the deformations represent a greater fraction
of the observing wavelength. By design, this effect is usually minimized (i.e., gain maximized) for
elevations between 45 and 60 degrees, with the gain decreasing at higher and lower elevations. Gain
curves are most often described as 2nd- or 3rd-order polynomials in zenith angle.

At this writing, gain curve calibration has been implemented in CASA for the VLA, with gain
curve polynomial coefficients available directly from the CASA data repository. To make gain
curve corrections for VLA data, set the gaincurve parameter to True for any of the calibration
tasks, e.g.,:

gaincal(’data.ms’,’cal.G0’,gaincuve=True, solint=0.,refant=11)

Note gaincurve=True is the default so this parameter can be omitted for VLA data:

gaincal(’data.ms’,’cal.G0’,solint=0.,refant=11)

is equivalent. NOTE: Set gaincurve=False if you are not using VLA data.

The gain curve will be calculated per timestamp. Upon execution of a calibration task (e.g.,
gaincal, bandpass, correct, etc), the gain curve data appropriate to the observing frequencies will
be automatically retrieved from the data repository and applied.

CHAPTER 4. SYNTHESIS CALIBRATION 98

4.3.2 “A priori” atmospheric opacity correction

The troposphere is not completely transparent. At high radio frequencies (>15 GHz), water vapor
and molecular oxygen begin to have a substantial effect on radio observations. According to the
physics of radiative transmission, the effect is threefold. First, radio waves from astronomical
sources are absorbed (and therefore attenuated) before reaching the antenna. Second, since a good
aborber is also a good emitter, significant noise-like power will be added to the overall system noise.
Finally, the optical path length through the troposphere introduces a time-dependent phase error.
In all cases, the effects become worse at lower elevations due to the increased air mass through
which the antenna is looking. In CASA, the opacity correction described here compensates only
for the first of these effects, tropospheric attenuation, using a plane-parallel approximation for the
troposphere to estimate the elevation dependence.

Opacity corrections are a component of calibration type ’T’. To make opacity corrections in CASA,
an estimate of the zenith opacity is required (see observatory-specific chapters for how to measure
zenith opacity). With a value for zenith opacity in hand (0.1 nepers, say), use the following
parameters:

gaincal(’data.ms’, ’cal.G0’, solint=0., refant=11, opacity=True, tau=0.1)

The calibration task in this example will apply an elevation-dependent opacity correction (scaled
to 0.1 nepers at the zenith for all antennas for this example) calculated at each scan (solint=0).
Set solint=-1 instead to get a solution every timestamp.

Generalizations to antenna- and time-dependent opacities, including derivation (from weather in-
formation) and solving (directly from the visibility data) capabilities, will be made available in the
future.

4.3.2.1 Determining opacity corrections for VLA data

For VLA data, zenith opacity can be measured at the frequency and during the time observations
are made using a VLA tipping scan in the observe file. Historical tipping data are available at:

http://www.vla.nrao.edu/astro/calib/tipper

Choose a year, and click Go to get a list of all tipping scans that have been made for that year.

If a tipping scan was made for your observation, then select the appropriate file. Go to the bottom
of the page and click on the button that says Press here to continue.. The results of the tipping
scan will be displayed. Go to the section called ’Overall Fit Summary’ to find the fit quality and
the fitted zenith opacity in percent. If the zenith opacity is reported as 6%, then the actual zenith
opacity value is tau=0.060 for gaincal.

4.3.3 Other a priori Calibrations and Corrections

Other a priori calibrations will be added to the calibrater tool in the near future. These will include
antenna-position (phase) corrections, system temperature normalization (amplitude) corrections,

http://www.vla.nrao.edu/astro/calib/tipper

CHAPTER 4. SYNTHESIS CALIBRATION 99

tropospheric phase corrections derived from Water Vapor Radiometry (WVR) measurements, in-
strumental line-length corrections, etc. Where appropriate, solving capabilities for these effects will
also be added.

4.3.4 Polarization-dependent Gain (G)

Systematic time-dependent complex gain errors are almost always the dominant calibration effect,
and a solution for them is almost always necessary before proceeding with any other calibration.
Traditionally, this calibration type has been a catch-all for a variety of similar effects, including: the
relative amplitude and phase gain for each antenna, phase and amplitude drifts in the electronics
of each antenna, amplitude response as a function of elevation (gain curve), and tropospheric
amplitude and phase effects. In CASA, it is possible to handle many of these effects separately, as
available information and circumstances warrant, but it is still possible to solve for the net effect
using calibration type G.

Generally speaking, type G can represent any per-spectral window multiplicative polarization- and
time-dependent complex gain effect downstream of the polarizers. (Polarization independent effects
upstream of the polarizers may also be treated with G.) Multi-channel data (per spectral window)
will be averaged in frequency before solving (use calibration type B to solve for frequency-dependent
effects within each spectral window).

To solve for G on, say, fields 1 & 2, on a 90s timescale, and apply, e.g., gain curve corrections:

gaincal(’data.ms’,
caltable=’cal.G’, # Write solutions to disk file ’cal.G’
field=’0,1’, # Restrict field selection
solint=90, # Solve for phase and amp on a 90s timescale
refant=3) #

Note: gaincurve=True by default

plotcal(’cal.G’,’amp’) # Inspect solutions

These G solution will be referenced to antenna 4. Choose a well-behaved antenna that is located
near the center of the array for the reference antenna. For non-poloarization datasets, reference
antennas need not be specified although you can if you want. If no reference antenna is specified, an
effective phase reference that is an average over the data will be calculated and used. For data that
requires polarization calibration, you must choose a reference antenna that has a constant phase
difference between the right and left polarizations (e.g. no phase jumps or drifts). If no reference
antenna (or a poor one) is specified, the phase reference may have jumps in the R–L phase, and
the resulting polarization angle response will vary during the observation, thus corrupting the
polarization imaging.

To apply this solution to the calibrators and the target source (field 2, say):

correct(’data.ms’,
field=’0,1,2’, # Restrict field selection (cals + src)
opacity=False, # Don’t apply opacity correction

CHAPTER 4. SYNTHESIS CALIBRATION 100

gaintable=’cal.G’) # Apply G solutions and correct data
(written to the CORRECTED_DATA column)
Note: calwt=True by default

plotxy(’data.ms’,xaxis=’channel’,datacolum=’data’,subplot=211)
plotxy(’data.ms’,xaxis=’channel’,datacolumn=’corrected’,subplot=212)

4.3.5 Polarization-independent Gain (T)

At high frequencies, it is often the case that the most rapid time-dependent gain errors are intro-
duced by the troposphere, and are polarization-independent. It is therefore unnecessary to solve
for separate time-dependent solutions for both polarizations, as is the case for G. Calibration type
T is available to calibrate such tropospheric effects, differing from G only in that a single common
solution for both polarizations is determined. In cases where only one polarization is observed,
type T is adequate to describe the time-dependent complex multiplicative gain calibration.

In the following example, we assume we have a ’G’ solution obtained on a longish timescale (longer
than a few minutes, say), and we want a residual T solution to track the polarization-independent
variations on a very short timescale:

gaincal(’data.ms’, # Visibility dataset
caltable=’cal.T’, # Specify output table name
gaintype=’T’, # Solve for T
field=’0,1’, # Restrict data selection to calibrators
solint=3., # Obtain solutions on a 3s timescale
gaintable=’cal120.G’) # Pre-apply prior G solution

For dual-polarization observations, it will always be necesary to obtain a G solution to account for
differences and drifts between the polarizations (which traverse different electronics), but solutions
for rapidly varying polarization-independent effects such as those introduced by the troposphere
will be optimized by using T. Note that T can be used in this way for self-calibration purposes,
too.

4.3.6 GSPLINE solutions

At high radio frequencies, where tropospheric phase fluctuates rapidly, it is often the case that
there is insufficient SNR to obtain a robust G or T solution on timescales short enough to track the
variation. In this case it is desirable to solve for a best-fit functional form for each antenna using
the GSPLINE solver. The GSPLINE solver fits time-series of cubic B-splines to the phase and/or
amplitude of the calibrator visbilities. Unlike ordinary G, a single common GSPLINE solution will
be determined from data for all selected spectral windows and fields specified in msselect, and the
resulting solution will be applicable to any field or spectral window in the same Measurement Set.
An important consequence of this is that all fields used to obtain a GSPLINE amplitude solution
must have models with accurate relative flux densities. (Use of incorrect relative flux densities will
introduce spurious variations in the GSPLINE amplitude solution.)

CHAPTER 4. SYNTHESIS CALIBRATION 101

The GSPLINE solver requires a number of unique additional parameters, compared to ordinary G
and T solving.

gaintype = ’GSPLINE’ # Type of solution (G, T, or GSPLINE)
splinetime = 10800.0 # Spline timescale (sec), default=3 hours
npointaver = 10 # Points to average for phase wrap
phasewrap = 180 # Wrap phase when greater than this

The duration of each spline segment is controlled by splinetime. The actual splinetime will be
adjusted such that an integral number of equal-length spline segments will fit within the overall
range of data.

Phase splines require that cycle ambiguities be resolved prior to the fit; this operation is controlled
by npointaver and phasewrap. The npointaver parameter controls how many contiguous points
in the time-series are used to predict the cycle ambiguity of the next point in the time-series, and
phasewrap sets the threshold phase jump (in degrees) that would indicate a cycle slip. Large values
of npointaver improve the SNR of the cycle estimate, but tend to frustrate ambiguity detection if
the phase rates are large. The phasewrap parameter may be adjusted to influence when cycles are
detected. Generally speaking, large values (> 180◦) are useful when SNR is high and phase rates
are low. Smaller values for phasewrap can force cycle slip detection when low SNR conspires to
obscure the jump, but the algorithm becomes significantly less robust. More robust algorithms for
phase-tracking are under development (including fringe-fitting).

To solve for GSPLINE phase and amplitudes, with splines of duration 600s:

gaincal(’data.ms’,
caltable=’cal.spline.ap’,
gaintype=’GSPLINE’ # Solve for GSPLINE
calmode=’ap’ # Solve for amp & phase
field=’0,1’, # Restrict data selection to calibrators
splinetime=600.) # Set spline timescale to 10min

The GSPLINE solutions can not yet be plotted using plotcal.

4.4 Flux density scale calibration

The ’G’ or ’T’ solutions obtained from calibrators for which the flux density was unknown and
assumed to be 1 Jy are correct in a time- and antenna- relative sense, but are mis-scaled by a
factor equal to the inverse of the square root of the true flux density. This scaling can be corrected
by enforcing the constraint that mean gain amplitudes determined from calibrators of unknown flux
density should be the same as determined from those with known flux densities. The fluxscale
task exists for this purpose.

The inputs for fluxscale are:

CHAPTER 4. SYNTHESIS CALIBRATION 102

vis = ’’ # Name of input visibility file
caltable = ’’ # Name of input calibration table
fluxtable = ’’ # Name of output, flux-scaled calibration table
reference = ’’ # Reference field name (transfer flux scale from)
transfer = ’’ # Transfer field name(s)
append = False # Append solutions?
refspwmap = [-1] # Scale across spectral window boundaries

Before running fluxscale, one will have first setjy for the reference sources and run a gaincal
on both reference and transfer fields. After running fluxscale the output fluxtable caltable
will have been scaled such that the correct scaling will be applied to the transfer sources.

Given a ’G’ table, ’cal.G’, containing solutions for a flux density calibrator (3C286, say) and for
one or more random calibrator sources with unknown flux densities (0234+285 and 0323+022, say)
use the fluxscale task as follows:

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258, 0323+022’) # Select calibrators to scale

The output table, ’cal.Gflx’, contains solutions that are properly scaled for all calibrators.

Note that the assertion that the gain solutions are independent of the calibrator includes the as-
sumption that the gain amplitudes are strictly not systematically time dependent. While synthesis
antennas are designed as much as possible to achieve this goal, in practice, a number of effects con-
spire to frustrate it. When relevant, it is advisable to pre-apply gain curve and opacity corrections
when solving for the ’G’ solutions that will be fluxscaled. When the G solutions are essentially
constant for each calibrator separately, the fluxscale operation is likely to be robust.

The fluxscale task can be executed on either ’G’ or ’T’ solutions, but it should only be used on
one of these types if solutions exist for both. GSPLINE solutions do not yet support fluxscale.

If the reference and transfer fields were observed in different spectral windows, the refspwmap
parameter may be used to achieve the scaling calculation across spectral window boundaries. The
refspwmap parameter takes a vector of indices indicating the spectral window mapping for the
reference fields, such that refspwmap[i]=j means that reference field amplitudes from spectral
window j will be used for spectral window i.

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable= ’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator
transfer=’0234+258,0323+022’ # Select calibrators to scale
refspwmap=[0,0,0]) # Use spwid 0 scaling for spwids 1 & 2

will use spw=0 to scale the others, while in

CHAPTER 4. SYNTHESIS CALIBRATION 103

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Select input table
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # 3C286 = flux calibrator,
transfer=’0234+285, 0323+022’, # select calibrators to scale,
refspwmap=[0,0,1,1]) # select spwids for scaling,

the reference amplitudes from spectral window 0 will be used for spectral windows 0 and 1 and
reference amplitudes from spectral window 2 will be used for spectral windows 2 and 3.

4.4.1 Resolved flux density calibrators

If the flux density calibrator is resolved, the assumption that it is a point source will cause solutions
on outlying antennas to be biased in amplitude. In turn, the flux-density scaling step will be biased
on these antennas as well. In general, it is best to use model for the calibrator, but if such a model
is not available, it is important to limit the solution on the flux density calibrator to only the subset
of antennas that have baselines short enough that the point-source assumption is valid. This can
be done by using antenna and uvrange selection when solving for the flux density calibrator. For
example, if antennas 1 through 8 are the antennas among which the baselines are short enough
that the point-source assumption is valid, and we want to be sure to limit the solutions to the use
of baselines shorter than 15000 wavelengths, then we can assemble properly scaled solutions for the
other calibrator as follows (note: specifying both an antenna and a uvrange constraint prevents
inclusion of antennas with only a small number of baselines within the specified uvrange from being
included in the solution; such antennas will have poorly constrained solutions):

As an example, we first solve for gain solutions for the flux density calibrator (3C286 observed in
field 1) using a subset of antennas

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’0’ # Select the flux density calibrator
selectdata=True, # Expand other selectors
antenna=’0~7’, # antennas 0-7,
uvrange=’0~15kl’, # limit uvrange to 0-15klambda

solint=90) # on 90s timescales, write solutions
to table called cal.G

Now solve for other calibrator (0234+285 in field 2) using all antennas (implicitly) and append
these solutions to the same table

gaincal(vis=’data.ms’,
caltable=’cal.G’, # write solutions to cal.G
field=’1’,
solint=90,
append=T) # Set up to write to the same table

Finally, run fluxscale to adjust scaling

CHAPTER 4. SYNTHESIS CALIBRATION 104

fluxscale(vis=’data.ms’,
caltable=’cal.G’, # Input table with unscaled cal solutions
fluxtable=’cal.Gflx’, # Write scaled solutions to cal.Gflx
reference=’3C286’, # Use 3c286 as ref with limited uvrange
transfer=’0234+285’) # Transfer scaling to 0234+285

The fluxscale calculation will be performed using only the antennas common to both fields, but the
result will be applied to all antennas on the transfer field.

4.5 Spectral Bandpass Calibration (bandpass)

For channelized data, it is often desirable to solve for the gain variations in frequency as well as in
time. Variation in frequency arises as a result of non-uniform filter passbands or other dispersive
effects in signal transmission. It is usually the case that these frequency-dependent effects vary
on timescales much longer than the time-dependent effects handled by types ’G’ and ’T’. Thus, it
makes sense to solve for them as a separate term: ’B’, using the bandpass task.

The inputs to bandpass are:

CASA <42>: inp(’bandpass’)
vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Name of output bandpass calibration table
field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
mode = ’none’ # Frequency data selection (none,channel,velocity)
selectdata = True # Activate data selection details

timerange = ’’ # Select data based on time
uvrange = ’’ # Select data based on uv range
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Select data based on scan number
msselect = ’’ # Optional data selection (see help)

solint = 864000.0 # Solution interval (sec)
refant = ’’ # Reference antenna name (not ID number)
solnorm = False # Normalize bandpass amplitudes and phases
bandtype = ’B’ # Type of bandpass solution (B or BPOLY)
append = False # Append solutions to (existing) table
visnorm = False # Normalize data prior to BPOLY solution
gaincurve = False # Apply VLA antenna gain curve correction
opacity = False # Apply an opacity correction (True/False)
gaintable = ’’ # Previous gain calibration solutions to apply
gainselect = ’’ # Select subset of calibration solutions from gaintable
bptable = ’’ # Previous bandpass calibration solutions to apply
pointtable = ’’ # Previous pointing calibration solutions to apply
async = False # if True run in the background, prompt is freed

There are two non-selection expandable parameters:

CHAPTER 4. SYNTHESIS CALIBRATION 105

bandtype = ’BPOLY’ # Type of bandpass solution (B or BPOLY)
degamp = 3 # Polynomial degree for BPOLY amplitude solution
degphase = 3 # Polynomial degree for BPOLY phase solution
maskcenter = 0 # Number of channels in BPOLY to avoid in center of band
maskedge = 0 # Percent of channels in BPOLY to avoid at each band edge

and

opacity = True # Apply an opacity correction (True/False)
tau = 0.001 # Opacity value to apply (if opacity=True)

As in gaincal (§ 4.3), there are the standard selection parameters (§ 2.5),

field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
selectdata = True # Activate data selection details

timerange = ’’ # Select data based on time
uvrange = ’’ # Select data based on uv range
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Select data based on scan number
msselect = ’’ # Optional data selection (see help)

There are also controls for applying previous calibration

gaincurve = True # Apply VLA antenna gain curve correction
opacity = False # Apply an opacity correction (True/False)
gaintable = ’’ # Previous gain calibration solutions to apply
gainselect = ’’ # Select subset of calibration solutions from gaintable
bptable = ’’ # Previous bandpass calibration solutions to apply
pointtable = ’’ # Previous pointing calibration solutions to apply

Note that opacity will expand to input tau if set to True. ALPHA ALERT: These will likely
eventually required to be pre-applied to a single input cal table using accum.

4.5.1 B solutions

Calibration type ’B’ differs from ’G’ only in that it is determined for each channel in each spectral
window. It is possible to solve for it as a function of time, but it is most efficient to keep the ’B’
solving timescale as long as possible, and use ’G’ or ’T’ for rapid timesscale variations.

’B’ solutions are limited by the SNR available per channel, which may be quite small. It is therefore
important that the data be coherent over the time-range of the ’B’ solutions. As a result, ’B’
solutions are almost always preceded by a ’G’ or ’T’ solve. In turn, if the ’B’ solution improves the
frequency domain coherence significantly, a ’G’ or ’T’ solution following it will be better than the
original.

To solve for ’B’ (on a very long timescale, i.e., constant for an observation shorter than 1 day),
using a prior G solution:

CHAPTER 4. SYNTHESIS CALIBRATION 106

bandpass(vis=’data.ms’, # input data set
caltable=’cal.B’, #
spw=’0:2~56’, # Use channels 2-56 (avoid end channels)
field=’0’, # Select bandpass calibrater (field 0)
gaintable=’cal.G’, # Pre-apply gain solutions derived previously
solint=86400., # Setup a long timescale (assumes bandpass
refant=’14’) # is constant over this length).

Note that the solution has only been obtained for the subset of 55 channels starting with channel 2.
Explicit channel selection like this is only necessary if it is desired that some channels be avoided
(e.g., end channels that may not be well-behaved). The default is to obtain a solution for every
channel.

4.5.2 BPOLY solutions

For some observations, it may be the case that the SNR per channel is insufficient to obtain a usable
per-channel ’B’ solution. In this case it is desirable to solve instead for a best-fit functional form
for each antenna using the BPOLY solver. The ’BPOLY’ solver fits polynomials to the amplitude
and phase of the calibrator visibilities as a function of frequency. Unlike ordinary ’B’, a single
common BPOLY solution will be determined for all spectral windows specified (or implicit) in the
setdata execution. As such, it is usually most meaningful to select individual spectral windows
for BPOLY solves, unless groups of adjacent spectral windows are known a priori to share a single
continuous bandpass response over their combined frequency range (e.g., PdBI data). Currently,
BPOLY solutions cannot be solved for in a time-dependent manner.

The ’BPOLY’ solver requires a number of unique parameters:

bandtype = ’BPOLY’ # Type of bandpass solution (B or BPOLY)
degamp = 3 # Polynomial degree for BPOLY amplitude solution
degphase = 3 # Polynomial degree for BPOLY phase solution
maskcenter = 0 # Number of channels in BPOLY to avoid in center of band
maskedge = 0 # Percent of channels in BPOLY to avoid at each band edge

The degamp and degphase parameters indicate the polynomial degree desired for the amplitude
and phase solutions. The maskcenter parameter is used to indicate the number of channels in the
center of the band to avoid passing to the solution (e.g., to avoid Gibbs ringing in central channels
for PdBI data).

For example, to solve for a BPOLY (5th order in amplitude, 7th order in phase), using data from
field 2, with G corrections pre-applied:

bandpass(vis=’data.ms’, # input data set
caltable=’cal.BPOLY’, #
spw=’0:2~56’, # Use channels 3-57 (avoid end channels)
field=’0’, # Select bandpass calibrater (field 0)
bandtype=’BPOLY’, # Select bandpass polynomials
degamp=5, # 5th order amp

CHAPTER 4. SYNTHESIS CALIBRATION 107

degphase=7, # 7th order phase
gaintable=’cal.G’, # Pre-apply gain solutions derived previously
refant=’14’) #

Note that all available spectral windows will be used to obtain a single solution spanning them all.
If separate solutions for each spectral window are desired, solve for each separately, e.g., if there
are 3 spectral windows (0,1,2):

bandpass(vis=’data.ms’,
caltable=’cal.BPOLY.0’,
spw=’0:2~56’,
field=’0’,
bandtype=’BPOLY’,
degamp=5,
degphase=7,

gaintable=’cal.G’,
refant=’14’)

bandpass(vis=’data.ms’,
caltable=’cal.BPOLY.1’,
spw=’1:2~56’,
bandtype=’BPOLY’,
degamp=5,
degphase=7,

gaintable=’cal.G’,
refant=’14’)

bandpass(vis=’data.ms’,
caltable=’cal.BPOLY.2’,
spw=’2:2~56’,
field=’0’,
bandtype=’BPOLY’,
degamp=5,
degphase=7,

gaintable=’cal.G’,
refant=’14’)

Each solution is stored in a separate table. As a result, subsequent calibration operations must be
undertaken for each spectral window separately.

The BPOLY solutions can not yet be plotted using plotcal.

4.6 Instrumental Polarization Calibration (D)

The polcal task has not yet been created. You can use the toolkit to do polarization calibration
if necessary, or wait for us to catch up.

CHAPTER 4. SYNTHESIS CALIBRATION 108

4.7 Manipulating Calibration Tables

Calibration tables can be manipulated in various ways, such as by interpolating between times (and
sources), smoothing of solutions, and accumulating various separate calibrations into a single table.

4.7.1 Calibration Smoothing (smoothcal)

ALPHA ALERT: This task may be called smooth in older patches.

The smoothcal task will smooth calibration solutions (most usefully G or T) over a longer time
interval to reduce noise and outliers. The inputs are:

vis = ’’ # Name of input visibility file
tablein = ’’ # Input calibration table
caltable = ’’ # Output calibration table
field = ’’ # Field name list
smoothtype = ’median’ # Smoothing filter to use
smoothtime = 60.0 # Smoothing time (sec)
async = False # if True run in the background, prompt is freed

The smoothing will use the smoothtime and smoothtype parameters to determine the new data
points which will replace the previous points on the same time sampling grid as for the tablein
solutions. The currently supported smoothtype options:

1. ’mean’ — use the mean of the points within the window defined by smoothtime (a “boxcar”
average),

2. ’median’ — use the median of the points within the window defined by smoothtime (most
useful when many points lie in the interval).

Note that smoothtime defines the width of the time window that is used for the smoothing.

An example using the smoothcal task to smooth an existing table:

gaincal(vis=’ngc5921.ms’,
caltable=’ngc5921_05s.gcal’,
spw=’0:2~56’,
field=’0,1’,
solint=0.5) #

Note: we use the defaults for other parameters

plotcal(’ngc5921_05s.gcal’,’amp’) # Plot the amplitudes

smoothcal(vis=’ngc5921.ms’,
tablein=’ngc5921_05s.gcal’, # input calibration table
caltable=’ngc5921_sm.gcal’, # output calibration table (smoothed)
smoothtime=1000.) # use 1000 seconds for the smoothing time and

the default smoothtype=’median’

plotcal(’ngc5921_sm.gcal’,’amp’) # Plot the smoothed amplitudes

CHAPTER 4. SYNTHESIS CALIBRATION 109

Figure 4.1: plotcal: Display of the amplitude solutions for short solution interval table (0.5 seconds:
top) and the smoothed table using a smoothtime of 1000 seconds.

4.7.2 Calibration Interpolation and Accumlation (accum)

The accum task is used to interpolate calibration solutions onto a different time grid, or to accu-
mulate incremental calibrations into a cumulative calibration table.

Its inputs are:

vis = ’’ # Name of input visibility file (MS)
tablein = ’’ # Input (cumulative) calibration table
incrtable = ’’ # Input incremental calibration table
caltable = ’’ # Output (cumulative) calibration table
field = ’’ # List of field names to process from tablein
calfield = ’’ # List of field names to use from incremental table
interp = ’linear’ # Interpolation mode to use on incremental
accumtime = -1.0 # Cumulative table timescale when creating
spwmap = [-1] # Spectral window combinations to apply

We now describe the two uses of accum.

4.7.2.1 Interpolation using (accum)

Calibration solutions (most notably G or T) must be interpolated onto the timestamps of the science
target observations. Currently, the time-dependent interpolation options available for specification
in the interp parameter are:

1. ’nearest’ — apply the calibration factor nearest in time to each datum,

2. ’linear’— apply to each datum an amplitude and phase (separately) linearly interpolated
or extrapolated from the two nearest (in time) calibration solutions,

CHAPTER 4. SYNTHESIS CALIBRATION 110

3. ’aipslin’ — emulates the on-the-fly calibration interpolation in classic AIPS, with amplitude
interpolated linearly (as in ’linear’), and phase interpolated from linear interpolation of the
real and imaginary parts.

For most purposes, the ’linear’ option should suffice.

The ’linear’ and ’aipslin’ options differ in how they treat phase interpolation. Using the
linear option, it is assumed that there is no phase cycle ambiguity to consider, i.e., the direction
of the smaller phase difference (necessarily always < 180 degrees) between the two solutions is
considered the correct direction for interpolation. The aipslin option avoids the complication
of determining the minimum phase ambiguity, but the result is decidedly non-linear in phase for
interpolations over more than a few 10s of degrees. As the phase difference between interpolating
solutions approaches 180 degrees, aipslin tends toward nearest for the phase interpolation.

An example using accum to interpolate an existing table onto a new time grid.

accum(vis=’ngc5921.ms’, #
incrtable=’ngc5921.gcal’, # this is the table that will be interpolated
caltable=’ngc5921_20s.gcal’, # this will be the interpolated output table
interp=’linear’, # linear interpolation
accumtime=20.0) # timescale for sampling the output table

Figure 4.2: plotcal: Display of the amplitude solutions for NGC 5921; original (left), interpolated
solutions-20s sampling (right).

4.7.2.2 Incremental Calibration using (accum)

It is occasionally desirable to solve for and apply calibration incrementally. This is the case when
a calibration table of a certain type already exists (from a previous solve), an incremental solution
of the same type and relative to the first is required, and it is not possible to recover the cumulative
solution by a single solve.

CHAPTER 4. SYNTHESIS CALIBRATION 111

Much of the time, it is, in fact, possible to recover the cumulative solution. This is because the
equation describing the solution for the incremental solution (using the original solution), and that
describing the solution for their product are fundamentally the same equation—the cumulative
solution, if unique, must always be the same no matter what initial solution is. One circumstance
where an incremental solution is necessary is the case of phase-only self-calibration relative to a full
amplitude and phase calibration already obtained (from a different field).

For example, a phase-only “G” self-calibration on a target source may be desired to tweak the full
amplitude and phase “G” calibration already obtained from a calibrator. The initial calibration
(from the calibrator) contains amplitude information, and so must be carried forward, yet the
phase-only solution itself cannot (by definition) recover this information, as a full amplitude and
phase self-calibration would. In this case, the initial solution must be applied while solving for the
phase-only solution, then the two solutions combined to form a cumulative calibration embodying
the net effect of both. In terms of the Measaurement Equation, the net calibration is the product
of the initial and incremental solutions.

The analog of accumulate in classic AIPS is the use of CLCAL to combine a series of (incremental)
SN calibration tables to form successive (cumulative) CL calibration tables.

Cumulative calibration tables also provide a means of generating carefully interpolated calibration,
on variable user-defined timescales, that can be examined prior to application to the data with
correct. The solutions for different fields and/or spectral windows can be interpolated in different
ways, with all solutions stored in the same table.

The only difference between incremental and cumulative calibration tables is that incremental tables
are generated directly from the calibration solving tasks (gaincal, bandpass, etc), and cumulative
tables are generated from other cumulative and incremental tables via accum. In all other respects
(internal format, application to data with correct, plotting with plotcal, etc.), they are the
same, and therefore interchangable. Thus, accumulate and cumulative calibration tables need only
be used when circumstances require it.

The accum task represents a generalization on the classic AIPS CLCAL model of cumulative cal-
ibration in that its application is not limited to accumulation of “G” solutions (SN/CL tables in
classic AIPS are the analog of “G” (and, implicitly, “T”) in aips++). In principle, any basic cal-
ibration type can be accumulated (onto itself), as long as the result of the accumulation (matrix
product) is of the same type. This is true of all the basic types, except “D”. Accumulation is
currently supported for “B”, “G”, and “T”, and, in future, “F” (ionospheric Faraday rotation), “J”
(generic full-polarization calibration), fringe-fitting, and perhaps others. Accumulation of certain
specialized types (e.g., “GSPLINE”, “TOPAC”, etc.) onto the basic types will be supported in the
near future. The treatment of various calibration from ancilliary data (e.g., system temperatures,
weather data, WVR, etc.), as they become available, will also make use of accumulate to achieve
the net calibration.

Note that accumulation only makes sense if treatment of a uniquely incremental solution is required
(as described above), or if a careful interpolation or sampling of a solution is desired. In all other
cases, re-solving for the type in question will suffice to form the net calibration of that type. For
example, the product of an existing “G” solution and an amplitude and phase “G” self-cal (solved
with the existing solution applied), is equivalent to full amplitude and phase “G” selfcal (with no

CHAPTER 4. SYNTHESIS CALIBRATION 112

prior solution applied), as long as the timescale of this solution is at least as short as that of the
existing solution.

The tablein parameter is used to specify the existing cumulative calibration table to which an
incremental table is to be applied. Initially, no such table exists, and accumulate will generate one
from scratch (on-the-fly), using the timescale (in seconds) specified by the parameter accumtime.
These nominal solutions will be unit-amplitude, zero-phase (i.e., unit matrix) calibration, ready to
be adjusted by accumulation according to the settings of other parameters. When accumtime is
negative (the default), the table name specified in tablein must exist and will be used.

The incrtable parameter is used to specify the incremental table that should be applied to
tablein. The calibration type of incrtable sets the type assumed in the operation, so tablein
(if specified) must be of the same type. If it is not, accum will exit with an error message. (Certain
combinations of types and subtypes will be supported by accum in the future.)

The caltable parameter is used to specify the name of the output table to write. If un-specified (or
“”), then tablein will be overwritten. Use this feature with care, since an error here will require
building up the cumulative table from the most recent distinct version (if any).

The field parameter specifies those field names in tablein to which the incremental solution
should be applied. The solutions for other fields will be passed to caltable unaltered. If the
cumulative table was created from scratch in this run of accumulate, then the solutions for these
other fields will be unit-amplitude, zero-phase, as described above.

The calfield parameter is used to specify the fields to select from incrtable to use when applying
to tablein. Together, use of field and calfield permit completely flexible combinations of
calibration accumulation with respect to fields. Multiple runs of accum can be used to generate a
single table with many combinations. In future, a “self” mode will be enabled that will simplify
the accumulation of field-specific solutions.

The interp parameter is used to specify the interpolation type to use on the incremental solutions.
The currently available interpolation types are “nearest”, “linear”, and “aipslin”.

Here is an example:

obtain G solutions from calibrator
gaincal(vis=’ap366.sim’,

caltable=’cal.G0’,
field=’9,11’,
solint=300);

obtain proper flux density scale
fluxscale (vis=’ap366.sim’,

caltable=’cal.G0’,
fluxtable=’cal.G1’,
reference=’1328+307’)

generate cumulative table for target source on 20s timescale
accum(vis=’ap366.sim’,

tablein=’’,

CHAPTER 4. SYNTHESIS CALIBRATION 113

incrtable=’cal.G1’,
caltable=’cal.cG0’,
field=’0957+561’, # calibrate target...
calfield=’0917+624’, # ...with calibrator
interp=’linear’,
accumtime=20)

apply this calibration to target
correct(vis=’ap366.sim’,

gaintable=’cal.cG0’)

(image target with imager tool)

phase-selfcal target on (faster) 60s timescale
gaincal(vis=’ap366.sim’,

caltable=’cal.G2’,
field=’10’,
calmode=’p’, # phase-only
solint=60,
gaintable=’cal.cG0’);

accumulate new solution onto existing one
accum(vis=’ap366.sim’,

tablein=’cal.cG0’, # existing cumulative (input)
incrtable=’cal.G2’, # new incremental (input)
caltable=’cal.cG1’, # new cumulative (output)
field=’0957+561’, # calibrate target...
calfield=’0957+561’, # ...with its own solutions
interp=’linear’)

apply new cumulative solution to data
correct(vis=’ap366.sim’,

gaintable=’cal.cG1’)

(another round of imaging, etc.)

4.8 Plotting Calibration Solutions (plotcal)

The plotcal task is available for examining solutions of all of the basic solvable types (G, T, B,
D, M, MF, K). The inputs are:

tablein = ’’ # Name of input calibration table
yaxis = ’amp’ # Value to plot along yaxis (amp, phase, delay, delayrate)
poln = ’’ # Polarization to plot (RL,R,L,XY,X,Y,R/L,R-L)
field = ’’ # Field selection
baseline = ’’ # Antenna selection
spw = ’’ # Spectral Window selection
subplot = 111 # Panel number on display screen (yxn)
multiplot = False # Plot data on separate plots

CHAPTER 4. SYNTHESIS CALIBRATION 114

plotsymbol = ’.’ # pylab plot symbol
overplot = False # Overplot data display on existing display

The controls for the plotcal window are the same as for plotxy (see § 3.4.1).

The plot types available are:

• ’amp’ — amplitude,

• ’phase’ — phase,

• ’delay’ – the phase delay,

• ’delayrate’ — the phase delay rate.

while poln determines what polarization or combination of polarization is being plotted. The
poln=’RL’ plots both R and L polarizations on the same plot, while the poln=’R-L’ and poln=’R-L’
options do the same thing and amplitude ratios or phase differences between R and L. The respective
XY options do equivalent things. The field, spw, and antenna selection parameters are available
to obtain plots of subsets of solutions. (ALPHA ALERT: antenna may be named baseline in
older versions.)

For example, to plot amplitude or phase as a function of time for G solutions:

plotcal(’cal.G’,’amp’)
plotcal(’cal.G’,’phase’)

Figure 4.3: plotcal: Display of the amplitude and phase gain solutions (for all data).

Similarly, to plot amplitude or phase as a function of channel for B solutions:

plotcal(’cal.B’,’amp’)
plotcal(’cal.B’,’phase’)

CHAPTER 4. SYNTHESIS CALIBRATION 115

Figure 4.4: plotcal: Display of the amplitude and phase bandpass solutions (for all data).

The previous examples will show the solutions for all antennas and spectral windows on a single
plot. If per-antenna solution plots are desired, use multiplot=True, and specify the number of
plots to appear on each page using subplot. The format is subplot=yxn where yxn is an integer
with digit y representing the number of plots in the y-axis, digit x the number of panels along the
x-axis, and digit n giving the location of the plot in the panel array (where n = 1, ..., xy, in
order upper left to right, then down). If multiplot=True then set n to 1.

For example to show 5 plots per page (arranged vertically) of G phase solutions on each page,
arranged vertically:

plotcal(’cal.B’,’amp’, # show antennas bandpasses
subplot=511, # 5 vertical panels per page
multiplot=True) # draw separate plots

Use the Next button on the plotcal window to advance to the next set of plots. ALPHA ALERT:
iteration in older versions may be done through a terminal query.

Note that if there is more than one timestamp in a B table, the user will be queried to interactively
advance the plot to each timestamp, or if multiplot=True, the antennas plots will be cylced
through for each timestamp in turn.

To show 6 plots per page of B amplitudes on a 3x2 grid:

plotcal(’cal.B’,’amp’,subplot=231,multiplot=True)

See Figure 4.5 for this example.

4.9 Listing calibration solutions with (listcal)

The listcal task will list the solutions in a specified calibration table.

The inputs are:

CHAPTER 4. SYNTHESIS CALIBRATION 116

Figure 4.5: plotcal: Display of a 3x2 grid of bandpass solutions, iterating over antenna identifier
index.

listcal :: List data set summary in the logger:

vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Input calibration table to list
field = ’’ # Select data based on field name or index
antenna = ’’ # Select data based on antenna name or index
spw = ’’ # Spectral window, channel to list

An example listing is:

Listing CalTable: jupiter6cm.usecase.split.ms.smoothcal2 (G Jones)

SpwId = 0, channel = 0.
Time Field Ant : Amp Phase Amp Phase
--------------------- ---------- -------- --------------- ---------------
1999/04/16/14:10:43.5 ’JUPITER’ ’1’ : 1.016 -11.5 1.016 -9.2

’2’ : 1.013 -5.3 0.993 -3.1
’3’ : 0.993 -0.8 0.990 -5.1
’4’ : 0.997 -10.7 0.999 -8.3
’5’ : 0.985 -2.7 0.988 -4.0
’6’ : 1.005 -8.4 1.009 -5.3
’7’ : 0.894 -8.7 0.897 -6.8
’8’ : 1.001 -0.1 0.992 -0.7

CHAPTER 4. SYNTHESIS CALIBRATION 117

’9’ : 0.989 -12.4 0.992 -13.5
’10’ : 1.000F -4.2F 1.000F -3.2F
’11’ : 0.896 -0.0 0.890 -0.0
’12’ : 0.996 -10.6 0.996 -4.2
’13’ : 1.009 -8.4 1.011 -6.1
’14’ : 0.993 -17.6 0.994 -16.1
’15’ : 1.002 -0.8 1.002 -1.1
’16’ : 1.010 -9.9 1.012 -8.6
’17’ : 1.014 -8.0 1.017 -7.1
’18’ : 0.998 -3.0 1.005 -1.0
’19’ : 0.997 -39.1 0.994 -38.9
’20’ : 0.984 -5.7 0.986 3.0
’21’ : 1.000F -4.2F 1.000F -3.2F
’22’ : 1.003 -11.8 1.004 -10.4
’23’ : 1.007 -13.8 1.009 -11.7
’24’ : 1.000F -4.2F 1.000F -3.2F
’25’ : 1.000F -4.2F 1.000F -3.2F
’26’ : 0.992 3.7 1.000 -0.2
’27’ : 0.994 -5.6 0.991 -4.3
’28’ : 0.993 -10.7 0.997 -3.8

ALPHA ALERT: It is likely that the format of this listing will change to better present it to the
user.

4.10 Application of Calibration (applycal)

ALPHA ALERT: in older versions this task may be named correct.

After all relevant calibration types have been determined, they must be applied to the target
source(s) before splitting off to a new MS or before imaging. This is currently done by explicitly
taking the data in the DATA column in the MAIN table of the MS, applying the relevant calibration
tables, and creating the CORRECTED DATA scratch column. The original DATA column is untouched.

The applycal task does this. The inputs are:

vis = ’’ # Name of input visibility file
field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
selectdata = False # Activate data selection details
gaincurve = False # Apply VLA antenna gain curve correction
opacity = False # Apply an opacity correction (True/False)
gaintable = ’’ # Gain calibration solutions to apply
gainselect = ’’ # Select subset of calibration solutions from gaintable
bptable = ’’ # Bandpass calibration solutions to apply
blbased = False # Apply baseline-based solutions (from blcal)
pointtable = ’’ # Pointing or other additional calibration solutions to apply
calwt = True # Apply calibration also to the WEIGHTS

CHAPTER 4. SYNTHESIS CALIBRATION 118

spwmap = [-1] # Spectral window map of solutions
async = False # if True run in the background, prompt is freed

As in other tasks, setting selectdata=True will open up the other selection sub-parameters (see
§ 2.5).

For example, to apply G and B solutions to source fields 2,3,4:

applycal(vis=’ngc5921.ms’, # Visibility set to correct
field=’2,3,4’, # restrict correction to specified fields
gaintable=’cal.Gflx’, # gain solutions to apply (time dependent)
bptable=’cal.B’) # bandpass solutions to apply (freq dependent)

Different detailed combinations of calibration application can be achieved by running this sequence
more than once, and including specific field and/or spectral window selections as appropriate. For
example, to limit the G solutions applied to field 3 to those obtained from field 1 (otherwise, same
as above):

applycal(vis=’ngc5921.ms’,
field=’2,4’,
gaintable=’cal.Gflx’,
bptable=’cal.B’)

applycal(vis=’ngc5921.ms’,
field=’3’,
gaintable=’cal.Gflx’,
gainselect=’FIELD_ID==1’,
bptable=’cal.B’)

It is important to remember the relative nature of each calibration term. A term solved for in the
presence of others is, in effect, residual to the others, and so must be used in combination with
them (or new versions of them) in subsequent processing. At the same time, it is important to
avoid isolating the same calibration effects in more than one term, e.g., by solving for both G and
T separately (without applying the other), and then using them together. It is always a good idea
to examine the corrected data after calibration (using plotxy to compare the raw (’data’) and
corrected (’corrected’) visibilities).

4.10.1 Examine calibrated source data

Once the source data is calibrated using applycal, you should examine the uv data and flag
anything that looks bad. If you find source data that has not been flanked by calibration scans,
delete it (it will not be calibrated).

For example:

plotxy(’data.ms’,’uvdist’,’amp’) # Display data for flagging

will show the CORRECTED DATA column by default.

See Chapter on Data Editing for descriptions of how to display/edit the data in plotxy and in the
viewer.

CHAPTER 4. SYNTHESIS CALIBRATION 119

4.11 Resetting the Calibration using (clearcal)

The applycal task will set the CORRECTED DATA column. The clearcal task will reset it.

There is only a single input to clearcal:

clearcal :: Re-initializes calibration for an ms

vis = ’’ # Name of input visibility file

4.12 Optional: Split out Calibrated uv data (split)

The split task will apply calibration and output a new sub-MS containing a specified list of sources
(usually a single source). The inputs are:

split :: Create a visibility subset from an existing visibility set:

vis = ’’ # Name of input visibility file
outputvis = ’’ # Name of output visibility file
field = ’’ # Field name list
spw = ’’ # Spectral window identifier
antenna = ’’ # Antenna selection
timebin = ’-1s’ # time averaging of data
timerange = ’’ # time range for subset of data
datacolumn = ’corrected’ # which column to split (data, corrected, model)
async = False # if True run in the background, prompt is freed

It is usual to run with the default datacolumn=’corrected’ as previous operations (e.g. applycal)
will have placed the calibrated data in the CORRECTED DATA column of the MS.

For example, to split out 46 channels (5-50) from spw 1:

split(vis=’ngc5921.ms’, # input MS
outputvis=’ngc5921_src.split.ms’, # Output just the source data
field=’2’, # Select the third source (0-based)
spw=’0:5~50’, # Select 46 channels from the first spectral window
datacolumn=’CORRECTED_DATA’) # Take the calibrated data column

ALPHA ALERT: The ability to average channels in split is on the way.

4.13 Advanced Calibration and UV-Plane Analysis

4.13.1 UV-Plane Continuum Subtraction (uvcontsub)

ALPHA ALERT: this was contsub in older patches.

CHAPTER 4. SYNTHESIS CALIBRATION 120

At this point, consider whether you are likely to need continuum subtraction. If there is significant
continuum emission present in what is intended as a spectral line observation, continuum subtrac-
tion may be desirable. You can estimate and subtract continuum emission in the uv-plane prior
to imaging or wait and subtract an estimate of it in the image-plane. Note that neither method is
ideal, and the choice depends primarily upon the distribution and strength of the continuum emis-
sion. Subtraction in the uv-plane is desirable if continuum emission dominates the source, since
deconvolution of the line emission will be more robust if not subject to errors in deconvolution of
the brighter continuum. There is also a performance benefit since the continuum is probably the
same in each channel of the observation, and it is desirable to avoid duplication of effort. However,
the main drawback of subtraction in the uv-plane is that it is only strictly correct for the phase
center, since without the Fourier transform, the visibilities only describe the phase center. Thus,
uv-plane continuum subtraction will be increasingly poor for emission distributed further from the
phase center. If the continuum emission is relatively weak, it is usually adequate to subtract it in
the image plane; this is described in the Image Analysis section of this cookbook. Here, we describe
how to do continuum subtraction in the uv-plane.

The uv-plane continuum subtraction is performed by the uvcontsub task. First, determine which
channels in your data cube do not have line emission, perhaps by forming a preliminary image as
described in the next chapter. This image will also help you decide whether or not you need to
come back and do uv-plane continuum subtraction at all.

The inputs are:

vis = ’’ # Name of input visibility file (MS)
field = ’’ # Field name(s)-min matches; use spaces to separate fields
spw = ’’ # Spectral window identifier (0-based)
channels = [] # Range of channels to fit
solint = 0.0 # Averaging time (sec)
fitorder = 0 # Polynomial order for the fit
fitmode = ’subtract’ # Use of continuum fit (subtract,replace,model)
splitdata = False # Split out continuum, continuum-subtracted data
async = False # if True run in the background, prompt is freed

ALPHA ALERT: The spw parameter can currently only be used to specify the Spectral Window,
not channelization. For now, we provide the channel parameter (see the example below).

For each baseline, and over the timescale specified in solint, uvcontsub will provide a simple
linear fit to the real and imaginary parts of the (continuum-only) channels specified in channels,
and subtract this model from all channels. Choose the timescale to be shorter than the timescale
for changes in the visibility function of the continuum, but be careful not to make it so short that
the SNR of the estimated continuum suffers substantially. For example:

uvcontsub(vis=’data.ms’, # Select visibility data set
field=’2’, # Choose the source data (field 3),
spw=’0’, # spectral window 0,
channels=range(4,7)+range(50,60), # line free channels 4-6 & 50-59,
solint=0.0, # estimate/subtract per scan
fitmode=’subtract’); # & subtract cont. from line data.

CHAPTER 4. SYNTHESIS CALIBRATION 121

Line-only data will be written into
the CORRECTED_DATA column.

Running uvcontsub with fitmode=’subtract’ will replace the CORRECTED DATA column in the MS
with continuum-subtracted line data and the MODEL DATA column with the continuum model. You
can use fitmode=’replace’ to replace the CORRECTED DATA column with the continuum model;
however, it is probably better to use fitmode=’subtract’ and then use split to select the
MODEL DATA and form a dataset appropriate for forming an image of the estimated continuum.
Note that a continuum image formed from this model will only be strictly correct near the phase
center, for the reasons described above.

The splitdata parameter can be used to have uvcontsub write out split MS for both the continuum-
subtracted data and the continuum. It will leave the input MS in the state as if fitmode=’subtract’
was used. Note that the entire channel range of the MS will be written out, so do split man-
ually if you want to restrict the output channel range. If splitdata=True, then uvcontsub will
make two output MS with names <input msname>.contsub and <input msname>.cont. ALPHA
ALERT: be sure to run with fitmode=’subtract’ if setting splitdata=True.

Note that it is currently the case that uvcontsub will overwrite the CORRECTED DATA column.
Therefore, it is desirable to first split the relevant corrected data into a new Measurement Set. If
you run uvcontsub on the original dataset, you will have to re-apply the calibration as described
in the previous chapter.

So, the recommended procedure is as follows:

• Finish calibration as described in the previous chapter.

• Use split to form a separate dataset.

• Use the invert or clean task on the split result to form an exploratory image that is useful
for determining the line-free channels.

• Use uvcontsub with mode=’subtract’ to subtract the continuum from the CORRECTED DATA
in the MS, and write the continuum model in the MODEL DATA column. Set splitdata=True
to have it automatically split out continuum-subtracted and continuum datasets, else do this
manually.

• Image the line-only emission with the clean task.

• If an image of the estimated continuum is desired, and you did not use splitdata=True, then
run split again (on the uvcontsub’d dataset), and select the MODEL DATA; then run clean to
image it.

4.13.2 Baseline-based Calibration (blcal)

You can use the blcal task to solve for baseline-dependent (non-closing) errors. WARNING: this
is in general a very dangerous thing to do, since baseline-dependent errors once introduced are

CHAPTER 4. SYNTHESIS CALIBRATION 122

difficult to remove. You must be sure you have an excellent model for the source (better than the
magnitude of the baseline-dependent errors).

The inputs are:

blcal :: Calculate a baseline-based calibration solution (gain or bandpass)

vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Name of output bandpass calibration table
field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
selectdata = True # Activate data selection details

timerange = ’’ # Select data based on time
uvrange = ’’ # Select data based on uv range
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Select data based on scan number
msselect = ’’ # Optional data selection

freqdep = False # Solve for frequency dependent solutions
gaincurve = False # Apply VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
gaintable = ’’ # Gain calibration solutions to apply
gainselect = ’’ # Select subset of calibration solutions from gaintable
solint = 0.0 # Solution interval (sec)

The freqdep parameter controls whether blcal solves for “gain” (freqdep=True) or “bandpass”
(freqdep=False) style calibration.

Other parameters are the same as in other calibration tasks.

4.13.3 Fringe Fitting (fringecal)

WARNING: This is an experimental calibration task, and has not been extensively tested!

The fringecal task provides the capability for solving for baseline-based phase, phase-delay, and
delay-rate terms in the gains (G-type). This is not full antenna-based “fringe-fitting” as is commonly
used in VLBI. The main use is to calibrate ALMA or EVLA commissioning data where the delays
may be improperly set, and to test “fringe” solutions as a way for dealing with non-dispersive
atmospheric terms.

The inputs are:

fringecal :: BL-based fringe-fitting solution:

vis = ’’ # Name of input visibility file (MS)
caltable = ’’ # Name of output bandpass calibration table
field = ’’ # Select data based on field name or index
spw = ’’ # Select data based on spectral window
selectdata = True # Activate data selection details

CHAPTER 4. SYNTHESIS CALIBRATION 123

timerange = ’’ # Select data based on time
uvrange = ’’ # Select data based on uv range
antenna = ’’ # Select data based on antenna/baseline
scan = ’’ # Select data based on scan number
msselect = ’’ # Optional data selection (see help)

gaincurve = True # Apply VLA antenna gain curve correction
opacity = 0.0 # Opacity correction to apply (nepers)
gaintable = ’’ # Gain calibration solutions to apply
gainselect = ’’ #
solint = 0.0 # Solution interval (sec)
refant = ’’ # Reference antenna
async = False # if True run in the background, prompt is freed

The action of the parameters in fringecal is the same as in the other calibration “solver” tasks
(such as gaincal and bandpass).

4.13.4 UV-Plane Model Fitting (uvmodelfit)

It is often desirable to fit simple analytic source component models directly to visibility data. Such
fitting has its origins in early interferometry, especially VLBI, where arrays consisted of only a few
antennas and the calibration and deconvolution problems were poorly constrained. These methods
overcame the calibration uncertainties by fitting the models to calibration-independent closure
quantities and the deconvolution problem by drastically limiting the number of free parameters
required to describe the visibilities. Today, even with larger and better calibrated arrays, it is still
desirable to use visibility model fitting in order to extract geometric properties such as the positions
and sizes of discrete components in radio sources. Fits for physically meaningful component shapes
such as disks, rings, and optically thin spheres, though idealized, enable connecting source geometry
directly to the physics of the emission regions.

Visibility model fitting is controlled entirely by the uvmodelfit task, which allows fits for a sin-
gle component point or Gaussian. The user specifies the number of non-linear solution itera-
tions (niter), the component type (comptype), an initial guess for the component parameters
(sourcepar), and optionally, a vector of Booleans selecting which component parameters should
be allowed to vary (fixpar), and a filename in which to store a CASA componentlist for use in
other applications (file). The function returns a vector containing the resulting parameter list.
This vector can be edited at the command line, and specified as input (sourcepar) for another
round of fitting.

The sourcepar parameter is currently the only way to specify the starting parameters for the fit.
For points, there are three parameters: I (total flux density), and relative direction (RA, Dec)
offsets (in arcsec) from the observation’s phase center. For Gaussians, there are three additional
parameters: the Gaussian’s semi-major axis width (arcsec), the aspect ratio, and position angle
(degrees). It should be understood that the quality of the result is very sensitive to the starting
parameters provided by the user. If this first guess is not sufficiently close to the global χ2 mini-
mum, the algorithm will happily converge to an incorrect local minimum. In fact, the χ2 surface,
as a function of the component’s relative direction parameters, has a shape very much like the

CHAPTER 4. SYNTHESIS CALIBRATION 124

inverse of the absolute value of the dirty image of the field. Any peak in this image (positive or
negative) correponds to a local χ2 minimum that could conceivable capture the fit. It is the user’s
responsibility to ensure that the correct minimum does the capturing.

Currently, uvmodelfit relies on the likelihood that the source is very near the phase center (within
a beamwidth) and/or the user’s savvy in specifying the starting parameters. This fairly serious
constraint will soon be relieved somewhat by enabling a rudimentary form of uv-plane weighting
to increase the likelihood that the starting guess is on a slope in the correct χ2 valley.

Improvements in the works for visibility model fitting include:

• User-specifiable uv-plane weighting

• Additional component shapes, including elliptical disks, rings, and optically thin spheroids.

• Optional calibration pre-application

• Multiple components. The handling of more than one component depends mostly on efficient
means of managing the list itself (not easy in command line options), which are currently
under development.

• Combined component and calibration fitting.

Example (See Figure 4.6):

#
Note: It’s best to channel average the data if many channels
before running a modelfit
#
uvmodelfit(’1445_avg.ms’, # use averaged data

niter=5, # Do 5 iterations
comptype=’P’, # P=Point source, G=Gaussian, D=Disk
sourcepar=[2.0,.1,.1],# Source parameters for a point source

[flux, long offset, lat offset]
spw=’0’, #
file=’gcal.cl’) # Output component list file

Initial guess is that it’s close to the phase center
and has a flux of 2.0 (a priori we know it’s 2.47)

Output looks like:
CASA <25>:
uvmodelfit(’1445_avg.ms/’, niter=5, comptype=’P’,

sourcepar=[2.0,.1,.1], file=’gcal.cl’, spw=’0’)

Tue Dec 12 23:02:05 2006 WARN Calibrater::setdata:
Selection is empty: reverting to sorted MeasurementSet
There are 19656 - 3 = 19653 degrees of freedom.
iter=0: reduced chi2=0.0413952: I=2, dir=[0.1, 0.1] arcsec
iter=1: reduced chi2=0.0011285: I=2.48495, dir=[-0.0265485, -0.0189735] arcsec
iter=2: reduced chi2=0.00112653: I=2.48547, dir=[-0.00196871, 0.00409329] arcsec
iter=3: reduced chi2=0.00112653: I=2.48547, dir=[-0.00195744, 0.00411176] arcsec

CHAPTER 4. SYNTHESIS CALIBRATION 125

iter=4: reduced chi2=0.00112653: I=2.48547, dir=[-0.00195744, 0.00411178] arcsec
iter=5: reduced chi2=0.00112653: I=2.48547, dir=[-0.00195744, 0.00411178] arcsec

If data weights are arbitrarily scaled, the following formal errors
will be underestimated by at least a factor sqrt(reduced chi2). If
the fit is systematically poor, the errors are much worse.

I = 2.48547 +/- 0.0172627
x = -0.00195744 +/- 0.159619 arcsec
y = 0.00411178 +/- 0.170973 arcsec

Writing componentlist to file: /Users/jmcmulli/ALMA/TST5/Regression/Scripts/gcal.cl

Looks reasonable - got the right flux around the phase center
chi2 went down: expect chi2 = 2*number of visibilities/number of degrees of freedom
degrees of freedom = 3 for point source (flux and long,lat offsets)
Now use the component list to generate model data

ft(’1445_avg.ms’,
complist=’gcal.cl’) # Fourier transform the component list -

this writes it into the MODEL_DATA column
of the MS

plotxy(’data.ms’,
xaxis=’uvdist’, # Plot data versus uv distance
field=’1’, # Select 1445+0990
datacolumn=’corrected’) # Plot corrected data

plotxy(’data.ms’, #
xaxis=’uvdist’, #
field=’1’,
overplot=True, # Specify overplot
plotsymbol=’bo’) # Specify blue circles for model data

4.14 Example of Calibration

The following is an example calibration using the NGC5921 VLA observations as the demonstration.
This uses the CASA tasks as of Alpha Patch 1. This data is available with the CASA release and
so you can try this yourself.

The full NGC5921 example script can be found in Appendix C.1.

ALPHA ALERT: Note that the syntax has been changing recently and this may get out of date
quickly!

##
#
Use Case Script for NGC 5921
#
Converted by STM 2007-05-26

CHAPTER 4. SYNTHESIS CALIBRATION 126

Figure 4.6: Use of plotxy to display corrected data (red points) and uv model fit data (blue circles).

Updated STM 2007-06-15 (Alpha Patch 1)
Last Updated STM 2007-09-05 (Alpha Patch 2+)
#
##

import time
import os

#
Set up some useful variables
#
Get to path to the CASA home and stip off the name
pathname=os.environ.get(’AIPSPATH’).split()[0]

This is where the NGC5921 UVFITS data will be
fitsdata=pathname+’/data/demo/NGC5921.fits’

The prefix to use for all output files
prefix=’ngc5921.usecase’

Clean up old files
os.system(’rm -rf ’+prefix+’*’)

CHAPTER 4. SYNTHESIS CALIBRATION 127

#
#===
#
Import the data from FITS to MS
#
print ’--Import--’

Safest to start from task defaults
default(’importuvfits’)

Set up the MS filename and save as new global variable
msfile = prefix + ’.ms’

Use task importuvfits
fitsfile = fitsdata
vis = msfile
importuvfits()

#
Note that there will be a ngc5921.usecase.ms.flagversions
there containing the initial flags as backup for the main ms
flags.
#
#===
#
List a summary of the MS
#
print ’--Listobs--’

Don’t default this one and make use of the previous setting of
vis. Remember, the variables are GLOBAL!

You may wish to see more detailed information, like the scans.
In this case use the verbose = True option
verbose = True

listobs()

You should get in your logger window and in the casapy.log file
something like:
#
MeasurementSet Name: /home/sandrock2/smyers/Testing2/Sep07/ngc5921.usecase.ms
MS Version 2
#
Observer: TEST Project:
Observation: VLA
#
Data records: 22653 Total integration time = 5280 seconds
Observed from 09:19:00 to 10:47:00
#
ObservationID = 0 ArrayID = 0

CHAPTER 4. SYNTHESIS CALIBRATION 128

Date Timerange Scan FldId FieldName SpwIds
13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+30500002_0 [0]
09:27:30.0 - 09:29:30.0 2 1 1445+09900002_0 [0]
09:33:00.0 - 09:48:00.0 3 2 N5921_2 [0]
09:50:30.0 - 09:51:00.0 4 1 1445+09900002_0 [0]
10:22:00.0 - 10:23:00.0 5 1 1445+09900002_0 [0]
10:26:00.0 - 10:43:00.0 6 2 N5921_2 [0]
10:45:30.0 - 10:47:00.0 7 1 1445+09900002_0 [0]
#
Fields: 3
ID Code Name Right Ascension Declination Epoch
0 C 1331+30500002_013:31:08.29 +30.30.32.96 J2000
1 A 1445+09900002_014:45:16.47 +09.58.36.07 J2000
2 N5921_2 15:22:00.00 +05.04.00.00 J2000
#
Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL
#
Feeds: 28: printing first row only
Antenna Spectral Window # Receptors Polarizations
1 -1 2 [R, L]
#
Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8

CHAPTER 4. SYNTHESIS CALIBRATION 129

27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8
#
Tables:
MAIN 22653 rows
ANTENNA 28 rows
DATA_DESCRIPTION 1 row
DOPPLER <absent>
FEED 28 rows
FIELD 3 rows
FLAG_CMD <empty>
FREQ_OFFSET <absent>
HISTORY 273 rows
OBSERVATION 1 row
POINTING 168 rows
POLARIZATION 1 row
PROCESSOR <empty>
SOURCE 3 rows
SPECTRAL_WINDOW 1 row
STATE <empty>
SYSCAL <absent>
WEATHER <absent>
#
#
#===
#
Get rid of the autocorrelations from the MS
#
print ’--Flagautocorr--’

Don’t default this one either, there is only one parameter (vis)

flagautocorr()

#
#===
#
Set the fluxes of the primary calibrator(s)
#
print ’--Setjy--’
default(’setjy’)

vis = msfile

#
1331+305 = 3C286 is our primary calibrator
Use the wildcard on the end of the source name
since the field names in the MS have inherited the
AIPS qualifiers
field = ’1331+305*’

This is 1.4GHz D-config and 1331+305 is sufficiently unresolved

CHAPTER 4. SYNTHESIS CALIBRATION 130

that we dont need a model image. For higher frequencies
(particularly in A and B config) you would want to use one.
modimage = ’’

Setjy knows about this source so we dont need anything more

setjy()

#
You should see something like this in the logger and casapy.log file:
#
1331+30500002_0 spwid= 0 [I=14.76, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
#
So its using 14.76Jy as the flux of 1331+305 in the single Spectral Window
in this MS.
#
#===
#
Bandpass calibration
#
print ’--Bandpass--’
default(’bandpass’)

We can first do the bandpass on the single 5min scan on 1331+305
At 1.4GHz phase stablility should be sufficient to do this without
a first (rough) gain calibration. This will give us the relative
antenna gain as a function of frequency.

vis = msfile

set the name for the output bandpass caltable
btable = prefix + ’.bcal’
caltable = btable

No gain tables yet
gaintable = ’’

Use flux calibrator 1331+305 = 3C286 (FIELD_ID 0) as bandpass calibrator
field = ’0’
all channels
spw = ’’
No other selection
selectdata = False

In this band we do not need a-priori corrections for
antenna gain-elevation curve or atmospheric opacity
(at 8GHz and above you would want these)
gaincurve = False
opacity = 0.0

Choose bandpass solution type

CHAPTER 4. SYNTHESIS CALIBRATION 131

Pick standard time-binned B (rather than BPOLY)
bandtype = ’B’

set solution interval arbitrarily long (get single bpass)
solint = 86400.0

reference antenna Name 15 (15=VLA:N2) (Id 14)
refant = ’15’

bandpass()

You can use plotcal to examine the solutions
#default(’plotcal’)
#tablein = btable
#yaxis = ’amp’
#field = ’0’
#multiplot = True
#plotcal()
#
#yaxis = ’phase’
#plotcal()
#
Note the rolloff in the start and end channels. Looks like
channels 6-56 (out of 0-62) are the best

#===
#
Gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

Armed with the bandpass, we now solve for the
time-dependent antenna gains

vis = msfile

set the name for the output gain caltable
gtable = prefix + ’.gcal’
caltable = gtable

Use our previously determined bandpass
Note this will automatically be applied to all sources
not just the one used to determine the bandpass
bptable = btable

Gain calibrators are 1331+305 and 1445+099 (FIELD_ID 0 and 1)
field = ’0,1’

We have only a single spectral window (SPW 0)
Choose 51 channels 6-56 out of the 63

CHAPTER 4. SYNTHESIS CALIBRATION 132

to avoid end effects.
Channel selection is done inside spw
spw = ’0:6~56’

No other selection
selectdata = False

In this band we do not need a-priori corrections for
antenna gain-elevation curve or atmospheric opacity
(at 8GHz and above you would want these)
gaincurve = False
opacity = 0.0

scan-based G solutions for both amplitude and phase
gaintype = ’G’
solint = 0.
calmode = ’ap’

reference antenna 15 (15=VLA:N2)
refant = ’15’

gaincal()

You can use plotcal to examine the gain solutions
#default(’plotcal’)
#tablein = gtable
#yaxis = ’amp’
#field = ’0,1’
#multiplot = True
#plotcal()
#
#yaxis = ’phase’
#plotcal()
#
The amp and phase coherence looks good

#===
#
Bootstrap flux scale
#
print ’--Fluxscale--’
default(’fluxscale’)

vis = msfile

set the name for the output rescaled caltable
ftable = prefix + ’.fluxscale’
fluxtable = ftable

point to our first gain cal table
caltable = gtable

CHAPTER 4. SYNTHESIS CALIBRATION 133

we will be using 1331+305 (the source we did setjy on) as
our flux standard reference - note its extended name as in
the FIELD table summary above (it has a VLA seq number appended)
reference = ’1331*’

we want to transfer the flux to our other gain cal source 1445+099
transfer = ’1445*’

fluxscale()

In the logger you should see something like:
Flux density for 1445+09900002_0 in SpW=0 is:
2.48576 +/- 0.00123122 (SNR = 2018.94, nAnt= 27)

If you run plotcal() on the tablein = ’ngc5921.usecase.fluxscale’
you will see now it has brought the amplitudes in line between
the first scan on 1331+305 and the others on 1445+099

#===
#
Apply our calibration solutions to the data
(This will put calibrated data into the CORRECTED_DATA column)
#
print ’--ApplyCal--’
default(’applycal’)

vis = msfile

We want to correct the calibrators using themselves
and transfer from 1445+099 to itself and the target N5921

Start with the fluxscale/gain and bandpass tables
bptable = btable
gaintable = ftable

all channels
spw = ’’
selectdata = False

as before
gaincurve = False
opacity = 0.0

select the fields for 1445+099 and N5921
field = ’1,2’

pick the 1445+099 out of the gain table for transfer
(NOTE: this currently uses TaQL strings)
gainselect = ’FIELD_ID==1’

CHAPTER 4. SYNTHESIS CALIBRATION 134

applycal()

Now for completeness apply 1331+305 to itself

field = ’0’
gainselect = ’FIELD_ID==0’

The CORRECTED_DATA column now contains the calibrated visibilities

applycal()

#===
#
Split the gain calibrater data
#
print ’--Split (cal data)--’
default(’split’)

vis = msfile

We first want to write out the corrected data for the calibrator

Make an output vis file
calsplitms = prefix + ’.cal.split.ms’
outputvis = calsplitms

Select the 1445+099 field, all chans
field = ’1445*’
spw = ’’

pick off the CORRECTED_DATA column
datacolumn = ’corrected’

split()

#===
#
UV-plane continuum subtraction on the target
(this will update the CORRECTED_DATA column)
#
print ’--UV Continuum Subtract--’
default(’uvcontsub’)

vis = msfile

Pick off N5921
field = ’N5921*’

Use channels 4-6 and 50-59 for continuum
#spw = ’0:4~6;50~59’
ALPHA ALERT: still does not use standard notation

CHAPTER 4. SYNTHESIS CALIBRATION 135

spw = ’0’
channels = range(4,7)+range(50,60)

Averaging time (none)
solint = 0.0

Fit only a mean level
fitorder = 0

Do the uv-plane subtraction
fitmode = ’subtract’

Let it split out the data automatically for us
splitdata = True

uvcontsub()

You will see it made two new MS:
ngc5921.usecase.ms.cont
ngc5921.usecase.ms.contsub

srcsplitms = msfile + ’.contsub’

Note that ngc5921.usecase.ms.contsub contains the uv-subtracted
visibilities (in its DATA column), and ngc5921.usecase.ms.contsub
the pseudo-continuum visibilities (as fit).

The original ngc5921.usecase.ms now contains the uv-continuum
subtracted vis in its CORRECTED_DATA column and the continuum
in its MODEL_DATA column as per the fitmode=’subtract’

Chapter 5

Synthesis Imaging

Inside the Toolkit:
The im tool handles synthesis imag-
ing operations.

This chapter describes how to make and deconvolve images
starting from calibrated interferometric data, possibly sup-
plemented with single-dish data or an image made from
single-dish data. This data must be available in CASA
(see § 2 on importing data). See § 4 for information on
calibrating synthesis data. In the following sections, the
user will learn how to make various types of images from synthesis data, reconstruct images of the
sky using the available deconvolution techniques, include single-dish information in the imaging
process, and to prepare to use the results of imaging for improvement of the calibration process
(“self-calibration”).

5.1 Imaging Tasks Overview

At this intermediate stage of alpha-development, the imaging capabilities in CASA are being con-
verted from tools to tasks. Tasks that allow you to do most standard imaging have been created.
The current imaging tasks are:

• invert — create a dirty image and point-spread function (PSF) (§ 5.3)

• clean — calculate a deconvolved image with a selected clean algorithm (§ 5.4)

• mosaic — calculate a multi-field deconvolved image with selected clean algorithm (§ 5.5)

• feather — combine a single dish and synthesis image in the Fourier plane (§ 5.6)

• deconvolve — image-plane only deconvolution based on the dirty image and beam, using
one of several algorithms (§ 5.9)

There are also tasks that help you set up the imaging or interface imaging with calibration:

136

CHAPTER 5. SYNTHESIS IMAGING 137

• makemask - create “cleanbox” deconvolution regions (§ 5.7)

• ft - Fourier transform the specified model (or component list) and insert the source model
into the MODEL column of a visibility set (§ 5.8)

The full “tool kit” that allows expert-level imaging must still be used if you do not find enough
functionality within the tasks above.

Information on other useful tasks and parameter setting can be found in:

• listobs — list whats in a MS (§ 2.3),

• split— Write out new MS containing calibrated data from a subset of the original MS
(§ section:cal.split),

• data selection — general data selection syntax (§ 2.5).

5.2 Common Imaging Task Parameters

Inside the Toolkit:
The im.setimage method is used to
set many of the common image pa-
rameters. The im.advise method
gives helpful advice for setting up for
imaging.

We now describe some parameters are are common to the
imaging tasks. These should behave the same way in any
imaging task that they are found in. These are in alpha-
betical order.

NOTE: In the current version of CASA, there are a sub-
set of data selection parameters used in the imaging tasks:
field, spw, selecttime. In a later patch, we will unify
these across tasks into the standard data selection set
(§ 2.5).

5.2.1 The cell Parameter

The cell parameter defines the pixel size in the x and y axes for the output image. If given as
floats or integers, this is the cell size in arc seconds, e.g.

cell=[0.5,0.5]

make 0.5′′ pixels. You can also give the cell size in quantities, e.g.

cell=[’1arcmin’, ’1arcmin’]

If a single value is given, then square pixels of that size are assumed.

CHAPTER 5. SYNTHESIS IMAGING 138

5.2.2 The field Parameter

The field parameter selects the field indexes or names to be used in imaging. Unless you making
a mosaic, this is usually a single index or name:

field = ’0’ # First field (index 0)
field = ’1331+305’ # 3c286
field = ’*’ # all fields in dataset

The syntax for field selection is given in § 2.5.2.

5.2.3 The imagename Parameter

The value of the imagename parameter is used as the root name of the output image. Depending
on the particular task and the options chosen, one or more images with names built from that root
will be created. For example, the clean task run with imagename=’ngc5921 a series of output
images with names ngc5921.clean, ngc5921.residual, and ngc5921.model will be created.

If an image with that name already exists, it will in general be overwritten. Beware using names
of existing images however. If the clean is run using an imagename where <imagename>.residual
and <imagename>.model already exist then clean will continue starting from these (effectively
restarting from the end of the previous clean). Thus, if multiple runs of clean are run consecutively
with the same imagename, then the cleaning is incremental (as in the difmap package).

5.2.4 The imsize Parameter

The image size in numbers of pixels on the x and y axes is set by imsize. For example,

imsize = [256, 256]

makes a square image 256 pixels on a side. If a single value is given, then a square image of that
dimension is made. This need not be a power of two, but should not be a prime number.

5.2.5 The mode Parameter

The mode parameter defines how the frequency channels in the synthesis MS are mapped onto
the image. The allowed values are: mfs, channel, velocity, frequency. The mode parameter is
expandable, with some options uncovering a number of sub-parameters, depending upon its value.

The default mode=’mfs’ emulates multi-frequency synthesis in that each visibility-channel datum
k with baseline vector Bk at wavelength λk is gridded into the uv-plane at uk = Bk/λk. The result
is a single image plane, regardless of how many channels are in the input dataset. This image plane
is at the frequency given by the midpoint between the highest and lowest frequency channels in the

CHAPTER 5. SYNTHESIS IMAGING 139

input spw(s). Currently, there is no way to choose the center frequency of the output image plane
independently.

If mode=’channel’ is chosen, then an image cube will be created. This is an expandable parameter,
with dependent parameters:

mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)
nchan = -1 # Number of channels to select
start = 0 # Start channel
step = 1 # Increment between channels/velocity
width = 1 # Channel width (value > 1 indicates channel averaging)

The channelization of the resulting image is determined by the channelization in the first MS of vis
of the first spw specified (the “reference spw”). The resulting image cube will have nchan channels
spaced evenly in frequency. The first output channel will be located at the frequency of channel
start in the reference spw. The output channel spacing is given by every step in the reference
spw of the MS. Channels in spw beyond the first are mapped into the nearest output image channel
within half a channel (if any). Image channels that lie outside the MS frequency range or have no
data mapped to them will be blank in the output image, but will be in the cube. If width> 1,
then input MS channels with centers within a frequency range given by (width + 1)/2 times the
reference spw spacing will be gridded together (as in mode = ’mfs’ above) into the channels of the
output image cube.

For mode=’frequency’, an output image cube is created with nchan channels spaced evenly in
frequency.

mode = ’frequency’ # Type of selection (mfs, channel, velocity, frequency)
nchan = -1 # Number of channels to select
start = 0 # Frequency of first image channel: e.g ’1.4GHz’
step = 1 # image channel width in frequency units: e.g ’1.0kHz’

The frequency of the first output channel is given by start and spacing by step. The sign of step
determines whether the output channels ascend or descend in frequency. Output channels have a
width also given by step. Data from the input MS with centers that lie within one-half an input
channel overlap of the frequency range of ±step/2 centered on the output channels are gridded
together.

If mode=’velocity’ is chosen, then an output image cube with nchan channels will be created,
with channels spaced evenly in velocity. Parameters are:

mode = ’velocity’ # Type of selection (mfs, channel, velocity, frequency)
nchan = -1 # Number of channels to select
start = 0 # Velocity of first image channel: e.g ’0.0km/s’
step = 1 # image channel width in velocity units: e.g ’-1.0km/s’

The velocity of the first output channel is given by start and spacing by step. Note that the
velocity frame is given by the rest frequency in the MS header, which can be overridden by the
restfreq parameter. Averaging is as in mode=’frequency’.

CHAPTER 5. SYNTHESIS IMAGING 140

5.2.6 The restfreq Parameter

The value of the restfreq parameter, if set, will over-ride the rest frequency in the header of the
first input MS to define the velocity frame of the output image.

5.2.7 The spw Parameter

The spw parameter selects the spectral windows that will be used to form the image, and possibly
a subset of channels within these windows.

The syntax for spw selection is given in § 2.5.3.

The spw parameter is a string or an integer or a list of integers, e.g.

spw = ’1’
spw = 1
spw = ’0,1,2,3’

Note that the order in which multiple spws are given is important for mode = ’channel’, as this
defines the origin for the channelization of the resulting image.

5.2.8 The stokes Parameter

The stokes parameter specifies the Stokes parameters for the resulting images. Note that forming
Stokes Q and U images requires the presence of cross-hand polarizations (e.g. RL and LR for circularly
polarized systems such as the VLA) in the data. Stokes V requires both parallel hands (RR and
:LL) for circularly polarized systems or the cross-hands (XY and YX) for linearly polarized systems
such as ALMA and ATCA.

This parameter is specified as a string of up to four letters (IQUV). For example,

stokes = ’I’ # Intensity only
stokes = ’IQU’ # Intensity and linear polarization
stokes = ’IV’ # Intensity and circular polarization
stokes = ’IQUV’ # All Stokes imaging

are common choices. () The output image will have planes (along the “polarization axis”) corre-
sponding to the chosen Stokes parameters.

If the stokes parameter is being input to deconvolution tasks such as clean, then the chosen
Stokes images will be deconvolved jointly rather than sequentially as in AIPS. This is strictly true
for alg=’clark’, and ’cs’, but cleaning is sequential for ’hogbom’ clean.

ALPHA ALERT: The stokes = ’QU’ for linear polarization only is not currently an option. There
is also no option to make single polarization product (e.g. separate RR and LL, or XX and YY) images
from data with dual polarizations available. You currently would have to make stokes=’I’ images
from data with a single polarization product (e.g. RR or LL) split out.

CHAPTER 5. SYNTHESIS IMAGING 141

5.2.9 The uvfilter Parameter

This controls the radial weighting of visibilities in the uv-plane (see § 5.2.10 below) through the
multiplication of the visibilities by the Fourier transform of an elliptical Gaussian. This is itself a
Gaussian, and thus the visibilities are “tapered” with weights decreasing as a function of uv-radius.

The uvfilter parameter expands the menu upon setting uvfilter=True to reveal the following
sub-parameters:

uvfilter = True # Apply additional filtering/uv tapering of the visibilities
uvfilterbmaj = 1.0 # Major axis of filter (arcseconds)
uvfilterbmin = 1.0 # Minor axis of filter (arcseconds)
uvfilterbpa = 0.0 # Position angle of filter (degrees)

The sub-parameters specify the size and orientation of this Gaussian in the image plane (in arc-
seconds). Note that since this filter effectively multiplies the intrinsic visibility weights, the resulting
image will not have a PSF given by the size of the filter, but a PSF given by its intrinsic size
convolved by the filter. Thus you should end up with a synthesized beam of size equal to the
quadratic sum of the original beam and the filter.

5.2.10 The weighting Parameter

Inside the Toolkit:
The im.weight method has more
weighting options than available in
the imaging tasks. See the User
Reference Manual for more infor-
mation on imaging weights.

In order to image your data, we must have a map from
the visibilities to the image. Part of that map, which is
effectively a convolution, is the weights by which each vis-
ibility is multiplied before gridding. The first factor in the
weighting is the “noise” in that visibility, represended by
the data weights in the MS (which is calibrated along with
the visibility data). The weighting function can also de-
pend upon the uv locus of that visibility (e.g. a “taper”
to change resolution). This is actually controlled by the
uvfilter parameter (see § 5.2.9). The weighting matrix also includes the convolutional kernel that
distributes that visibility onto the uv-plane during gridding before Fourier transforming to make
the image of the sky. This depends upon the density of visibilities in the uv-plane (e.g. “natural”,
“uniform”, “robust” weighting).

The user has control over all of these.

ALPHA ALERT: You can find a weighting description in the online User Reference Manual at:

http://casa.nrao.edu/docs/casaref/imager.weight.html

The weighting parameter expands the menu to include various sub-parameters depending upon
the mode chosen:

http://casa.nrao.edu/docs/casaref/imager.weight.html

CHAPTER 5. SYNTHESIS IMAGING 142

5.2.10.1 ’natural’ weighting

For weighting=’natural’, visibilities are weighted only by the data weights, which are calculated
during filling and calibration and should be equal to the inverse noise variance on that visibility.
Imaging weight wi of sample i is given by

wi = ωi =
1
σ2

k

(5.1)

where the dats weight ωi is determined from σi is the rms noise on visibility i. When data is gridded
into the same uv-cell for imaging, the weights are summed, and thus a higher uv density results in
higer imaging weights. No sub-parameters are linked to this mode choice. It is the default imaging
weight mode, and it should produce “optimum” image with with the lowest noise (highest signal-
to-noise ratio). Note that this generally produces images with the poorest angular resolution, since
the density of visibilities falls radially in the uv-plane

5.2.10.2 ’uniform’ weighting

For weighting = ’uniform’, the data weights are calculated as in ’natural’ weighting. The
data is then gridded to a number of cells in the uv-plane, and after all data is gridded the uv-cells
are re-weighted to have “uniform” imaging weights. This pumps up the influence on the image of
data with low weights (they are multiplied up to be the same as for the highest weighted data),
which sharpens resolution and reduces the sidelobe level in the field-of-view, but increases the rms
image noise. No sub-parameters are linked to this mode choice.

5.2.10.3 ’superuniform’ weighting

The weighting = ’superuniform’ mode is similar to the ’uniform’ weighting mode but there is
now an additional npixels sub-parameter that specifies a change to the number of cells on a side
(with respect to uniform weighting) to define a uv-plane patch for the weighting renormalization.
If npixels=0 you get uniform weighting.

5.2.10.4 ’radial’ weighting

The weighting = ’radial’ mode is a seldom-used option that increases the weight by the radius
in the uv-plane, ie.

wi = ωi ·
√

u2
i + v2

i . (5.2)

Technically, I would call that an inverse uv-taper since it depends on uv-coordinates and not on the
data per-se. Its effect is to reduce the rms sidelobes for an east-west synthesis array. This option
has limited utility.

CHAPTER 5. SYNTHESIS IMAGING 143

5.2.10.5 ’briggs’ weighting

The weighting = ’briggs’ mode is an implementation of the flexible weighting scheme developed
by Dan Briggs in his PhD thesis. See:

http://www.aoc.nrao.edu/dissertations/dbriggs/

This choice brings up four sub-parameters:

weighting = ’briggs’ # Weighting to apply to visibilities
(natural, uniform, briggs, radial, superuniform)

rmode = ’none’ # Robustness mode (for Briggs weighting)
robust = 0.0 # Briggs robustness parameter
noise = ’0.0Jy’ # noise parameter for briggs weighting when rmode=’abs’
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

The key parameter is the robust parameter, which sets R in the Briggs equations. The scaling of
R is such that R = 0 gives a good tradeoff between resolution and sensitivity. The robust R takes
value between −2.0 (close to uniform weighting) to 2.0 (close to natural).

Briggs sub-parameter rmode controls how the robust parameter is used. If rmode=’none’, Briggs
weighting is turned off and robust is not used.

If rmode=’norm’, a different Briggs weighting is used, with the sub-parameter noise factoring in
also.

Superuniform weighting can be combined with Briggs weighting using the npixels sub-parameter.
This works as in ’superuniform’ weighting (§ 5.2.10.3).

See http://casa.nrao.edu/docs/casaref/imager.weight.html for a more detailed description
of the Briggs weighting modes.

5.2.11 The vis Parameter

Alpha Alert!
Multi-MS handling is not percolated
to the tasks yet, as we are still work-
ing on this. Use single MS only.

The value of the vis parameter is either the name of a sin-
gle MS, or a list of strings containing the names of multiple
MSs, that should be processed to produce the image. The
MS referred to by the first name in the list (if more than
one) is used to determine properties of the image such as
channelization and rest frequency.

For example,

vis = ’ngc5921.ms’

set a single input MS, while

vis = [’ngc5921_day1.ms’, ’ngc5921_day2.ms’, ’ngc5921_day3.ms’]

http://www.aoc.nrao.edu/dissertations/dbriggs/
http://casa.nrao.edu/docs/casaref/imager.weight.html

CHAPTER 5. SYNTHESIS IMAGING 144

points to three separate measurement sets that will be gridded together to form the image. This
means that you do not have to concatenate datasets, for example from different configurations,
before imaging.

5.3 Making a Dirty Image and PSF (invert)

To create a “dirty” image of your calibrated uv data, and to make a point spread function (psf)
associated with that data, use the invert task.

The default inputs to invert are:

invert :: Calculate a dirty image and dirty beam:

vis = ’’ # Name of input visibility file (MS)
imagename = ’’ # Name of output image
mode = ’mfs’ # Type of selection (mfs, channel, velocity)
imsize = [256, 256] # Image size i spatial pixels [x,y]; symmetric for single value
cell = [’1arcsec’, ’1arcsec’] # Cell size in arcseconds [x,y];
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’0’ # Field name
spw = ’0’ # Spectral window identifier
weighting = ’natural’ # Weighting to apply to visibilities

(natural, uniform, briggs, radial, superuniform)
restfreq = ’’ # restfrequency to use in image
async = False # if True run in the background, prompt is freed

The invert task uses many of the common imaging parameters. These are described above in
§ 5.2. The output of invert will be a set of images named using the imagename string as the root
(see § 5.2.3).

5.4 Deconvolution using CLEAN (clean)

To create an image and then deconvolve it with the CLEAN algorithm, use the clean task. This
task will work for single-field data. If you want to deconvolve multi-field data, use the mosaic
task (§ 5.5) instead. The clean task uses many of the common imaging parameters. These are
described above in § 5.2. There are also a number of parameters specific to clean. These are listed
and described below.

The default inputs to clean are:

clean :: Calculates a deconvolved image with a selected clean algorithm

vis = ’’ # Name of input visibility file
imagename = ’’ # Pre-name of output images
mode = ’mfs’ # Type of selection (mfs, channel, velocity, frequency)

CHAPTER 5. SYNTHESIS IMAGING 145

alg = ’clark’ # Algorithm to use (hogbom, clark, csclean, multiscale)
niter = 500 # Number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = 0.0 # Flux level to stop cleaning (mJy)
mask = [’’] # Name of mask image used in cleaning
cleanbox = [] # clean box regions or file name or ’interactive’
imsize = [256, 256] # Image size in pixels [nx,ny]
cell = [’1.0arcsec’, ’1.0arcsec’] # Cell size in arcseconds [x,y]
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’0’ # Field name
spw = ’’ # Spectral window identifier
weighting = ’natural’ # Weighting to apply to visibilities

(natural, uniform, briggs, radial, superuniform)
uvfilter = False # Apply additional filtering/uv tapering of the visibilities
selecttime = ’1960/01/01/00:00:00~2020/12/31/23:59:59’ # range of time to select from data
restfreq = ’’ # restfrequency to use in image
async = False # if True run in the background, prompt is freed

A typical setup for clean on the NGC5921 dataset, after setting parameter values, might look like:

CASA <102>: inp(’clean’)
vis = ’ngc5921_src.split.ms’ # Name of input visibility file
imagename = ’ngc5921_im’ # Pre-name of output images
mode = ’channel’ # Type of selection (mfs, channel, velocity, frequency)

nchan = 46 # Number of channels to select
start = 0 # Start channel
step = 1 # Increment between channels/velocity
width = 1 # Channel width (value > 1 indicates channel averaging)

alg = ’csclean’ # Algorithm to use (hogbom, clark, csclean, multiscale)
niter = 6000 # Number of iterations
gain = 0.1 # Loop gain for cleaning
threshold = 8.0 # Flux level to stop cleaning (mJy)
mask = [’’] # Name of mask image used in cleaning
cleanbox = [] # clean box regions or file name
imsize = [512, 512] # Image size in pixels [nx,ny]
cell = [15.0, 15.0] # Cell size in arcseconds [x,y]
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’*’ # Field name
spw = ’’ # Spectral window identifier
weighting = ’briggs’ # Weighting to apply to visibilities

(natural, uniform, briggs, radial, superuniform)
rmode = ’norm’ # Robustness mode (for Briggs weighting)
robust = 0.5 # Briggs robustness parameter
noise = ’0.0Jy’ # noise parameter for briggs weighting when rmode=’abs’
npixels = 0 # number of pixels to determine uv-cell size 0=> field of view

uvfilter = False # Apply additional filtering/uv tapering of the visibilities
selecttime = ’’ # range of time to select from data
restfreq = ’’ # restfrequency to use in image
async = False # if True run in the background, prompt is freed

CHAPTER 5. SYNTHESIS IMAGING 146

Note that you can also execute the same thing directly using functional form

CASA <103>: clean(’ngc5921_src.split.ms’,’ngc5921_im’,’channel’,
.....: niter=6000,gain=0.1,threshold=8.0,mask=’’,
.....: nchan=46,start=0,step=1,field=’0’,imsize=[256,256],
.....: cell=[15.,15.],weighting=’briggs’,rmode=’norm’,robust=0.5)

An example of the clean task to create a continuum image from many channels is given below:

default(’clean’) # Make sure the inputs are set to their defaults first!

clean(vis=’source.split.ms’, # Use data in source.split.ms
imagename=’ggtau’, # Name output images ’ggtau.*’ on disk
alg=’clark’, # Use the Clark CLEAN algorithm
niter=1000, gain=0.1, # Iterate 1000 times using gain of 0.1
mode=’mfs’, # make a multi-frequency synthesis map (combine channels)
nchan=1, start=3, width=58, # Make 1 channel, starting with 5, using 58
imsize=[200,200]) # Set image size = 200x200 pixels
cell=[0.1,0.1], # Using 0.1 arcsec pixels
spw=’0,1,2’, # Combine channels from 3 spectral windows
field=’0’, # Use the first field in this split dataset
stokes=’I’, # Image stokes I polarization
weighting=’briggs’, # Use Briggs robust weighting with robustness
rmode=’norm’, # parameter of 0.5
robust=0.5)

This example will clean the entire inner quarter of the primary beam. However, if you want to
limit the region over which you allow the algorithm to find clean components then you can make a
deconvolution region (or mask). To create a deconvolution mask, use the makemask task and input
that mask as a keyword into the task above.

Inside the Toolkit:
The im.clean method is used for
CLEANing data. There are a num-
ber of methods used to set up the
clean, including im.setoptions.

Or you can set up a simple cleanbox region. To do this,
make a first cut at the image and clean the inner quarter.
Then use the viewer to look at the image and get an idea
of where the emission is located. You can use the viewer
adjustment panel to view the image in pixel coordinates
and read out the pixel locations of your cursor.

Then, you can use those pixel read-outs you just go to
define a clean box region where you specify the bottom-
left-corner (blc) x & y and top-right-corner x& y locations. For example, say you have a continuum
source near the center of your image between blcx, blcy, trcx, trcy = 80, 80, 120, 120.
Then to clean the same image above with this region:

default(’clean’) # Make sure the inputs are set to their defaults first!

clean(vis=’source.split.ms’, # Use data in source.split.ms
imagename=’ggtau’, # Name output images ’ggtau.*’ on disk
alg=’clark’, # Use the Clark CLEAN algorithm

CHAPTER 5. SYNTHESIS IMAGING 147

niter=1000, gain=0.1, # Iterate 1000 times using gain of 0.1
mode=’mfs’, # make a multi-frequency synthesis map (combine channels)
nchan=1, start=3, width=58, # Make 1 channel, starting with 5, using 58
imsize=[200,200]) # Set image size = 200x200 pixels
cell=[0.1,0.1], # Using 0.1 arcsec pixels
spw=’0,1,2’, # Combine channels from 3 spectral windows
field=’0’, # Use the first field in this split dataset
stokes=’I’, # Image stokes I polarization
weighting=’briggs’, # Use Briggs robust weighting with robustness
rmode=’norm’, # parameter of 0.5
robust=0.5,
cleanbox=[80,80,120,120]) # Set the deconvolution region as a simple box in the center.

5.4.1 Specific clean Parameters

The following are the clean specific parameters and their allowed values:

5.4.1.1 The alg Parameter

The alg parameter chooses the CLEAN “algorithm” that will be used. The value types are strings.
Allowed choices are: ’clark’, ’hogbom’, ’csclean’, and ’multiscale’. The default is alg =
’clark’. If ’multiscale’ is chosen, then the scales sub-parameter will be revealed.

The hogbom algorithm is the “Classic” image-plane CLEAN, where model pixels are found itera-
tively by searching for the peak. Each point is subtracted from the full residual image using the
shifted and scaled point spread function. In general, this is not a good choice for most imaging
problems (clark or csclean are preferred) as it does not calculate the residuals accurately.

In the ’clark’ algorithm, the cleaning is split into minor and major cycles. In the minor cycles
only the brightest points are cleaned, using a subset of the point spread function. In the major
cycle, the points thus found are subtracted correctly by using an FFT-based convolution. This
algorithm is reasonably fast.

The csclean choice specifies the Cotton-Schwab algorithm. Cleaning is split into minor and major
cycles. For each field, a Clark-style minor cycle is performed. In the major cycle, the points thus
found are subtracted from the original visibilities. A fast variant does a convolution using a FFT.
This will be faster for large numbers of visibilities. Double the image size from that used for the
Clark clean and set a mask to clean only the inner quarter. This is probably the best choice for
high-fidelity deconvolution of images without lots of large-scale structure.

Inside the Toolkit:
The im.setscales method sets the
multi-scale Gaussian widths. In ad-
dition to choosing a list of sizes in
pixels, you can just pick a number of
scales and get a geometric series of
sizes.

The multiscale algorithm uses “Multi-scale CLEAN” to
deconvolve using delta-functions and circular Gaussians as
the basis functions for the model, instead of just delta-
functions or pixels as in the other clean algorithms. This
algorithm is still in the experimental stage, mostly because
we are working on better algorithms for setting the scales

CHAPTER 5. SYNTHESIS IMAGING 148

for the Gaussians. The sizes of the Gaussians are set using
the scales sub-parameter.

The scale sub-parameter specifies a list of scales for
multiscale CLEAN. These are given in numbers of pixels, e.g.

scales = [0,3,10,30] # Four scales including point sources
scales = [0] # A delta-function, effectivley a Hogbom clean

Presumably, these are the FWHM of the Gaussians.

We are working on defining a better algorithm for scale setting. In the toolkit, there is an nscale
argument which sets scales

θi = θbmin 10(i−N/2)/2 (5.3)

where N =nscales and θbmin is the fitted FWHM of the minor axis of the CLEAN beam.

5.4.1.2 The cleanbox Parameter

If you set cleanbox=’interactive’’, then this will set the interactive mode (see below) where
you will get a window in which you can define mask regions while you clean. This also opens up
the npercycle sub-parameter.

You can give cleanbox a list giving the coordinates of a “box” region of the image to restrict the
search for components. The default is to restrict clean to the inner quarter of the image.

If cleanbox is given a list, these are taken to be pixel coordinates for the blc and trc (bottom-left
and top-right corners) of one or more rectangular boxes. For example,

cleanbox = [110,110,150,145, 180,70,190,80]

defines two boxes.

If cleanbox is given a string, then this should point to an ASCII file containing the BLC, TRC of
the boxes with one box per line. Each line should contain five numbers

<fieldindex> <blc-x> <blc-y> <trc-x> <trc-y>

with whitespace separators. Currently the <fieldindex> is ignored.

NOTE: In future patches we will include options for the specification of circular and polygonal
regions in the cleanbox file, as well as the use of world coordinates (not just pixel) and control
of plane ranges for the boxes. For now, use the mask mechanism for more complicated CLEAN
regions.

CHAPTER 5. SYNTHESIS IMAGING 149

5.4.1.3 The gain Parameter

The gain parameter sets the fraction of the flux density in the residual image that is removed and
placed into the clean model at each minor cycle iteration. The default value is gain = 0.1 and is
suitable for a wide-range of imaging problems. Setting it to a smaller gain per cycle, such as gain
= 0.05, can sometimes help when cleaning images with lots of diffuse emission. Larger values, up
to gain=1, are probably too agressive and are not recommended.

5.4.1.4 The mask Parameter

The mask parameter takes a string pointing to the name of a mask image to be used for CLEAN
to search for components. You can use the makemask task to construct this mask.

5.4.1.5 The niter Parameter

The niter parameter sets the maximum total number of minor-cycle CLEAN iterations to be
performed during this run of clean. If restarting from a previous state, it will carry on from where
it was. Note that the threshold parameter can cause the CLEAN to be terminated before the
requested number of iterations is reached.

5.4.1.6 The threshold Parameter

The threshold parameter instructs clean to terminate when the maximum (absolute?) residual
reaches this level or below. Note that it may not reach this residual level due to the value of the
niter parameter which may cause it to terminate early.

5.4.2 Interactive Cleaning

If cleanbox=’interactive’ is set, then an interactive window will appear at various “cycle” stages
while you clean, so you can set and change mask regions. These breakpoints are controlled by the
npercycle sub-parameter which sets the number of iterations of clean before stopping.

cleanbox = ’interactive’ # clean box regions or file name or ’interactive’
npercycle = 100 # number of iteration before interactive masking prompt

ALPHA ALERT: this is currently the only way (npercycle) to control the breakpoints in inter-
active clean.

The window controls are fairly self-explanatory. It is basically a form of the viewer. An example
is shown in Figure 5.1. You assign one of the drawing functions (rectangle or polygon, default is
rectangle) to the right-mouse button (usually), then use it to mark out regions on the image. Zoom
in if necessary (standard with the left-mouse button assignment). Double-click inside the marked
region to add it to the mask. If you want to reduce the mask, change “Clean Regions” to Erase,

CHAPTER 5. SYNTHESIS IMAGING 150

then mark and select as normal. When finished changing your mask, click the green “Masking”
Done button. If you want to finish your clean with no more changes to the mask, hit the yellow
“Masking” No More button. If you want to terminate the clean, click the red “Clean” Stop
button.

For strangely shaped emission regions, you may find using the polygon region marking tool (the
second from the right in the button assignment toolbar) the most useful.

For spectral cube images you can use the tapedeck to move through the channels.

See the example use-case script for the Jupiter dataset in Appendix C.2 for examples of using
interactive clean.

5.5 Mosaic Deconvolution using CLEAN (mosaic)

To create an image from multiple fields (observations of a region taken with separate pointings) and
perform a joint deconvolution on all fields at the same time then you will want to use the mosaic
task. In other respects, this behaves as the clean task (§ 5.4) and shares many of the same inputs.
It also uses the common imaging task parameters (§ 5.2).

The default inputs to mosaic are:

mosaic :: Calculate a multi-field deconvolved image with selected clean algorithm:

vis = ’’ # Name of input visibility file (MS)
imagename = ’’ # Name of output images: restored=imagename.restored

(residual=imagename.residual, model=imagename.model)
mode = ’mfs’ # image spectral definition (mfs, channel, velocity, frequency)
alg = ’clark’ # Algorithm for deconvolution: clark, hogbom, multiscale, entropy
imsize = [256, 256] # Image size in spatial pixels [x,y]; symmetric for single value
cell = [’1arcsec’, ’1arcsec’] # Cell size in arcseconds [x,y];
phasecenter = ’’ # Field Identifier or direction of the mosaic phase center
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
niter = 500 # Number of iterations; set to zero for no CLEANing
gain = 0.1 # Loop gain for CLEANing
threshold = 0.0 # Flux level to stop CLEANing (mJy)
mask = [’’] # Name(s) of mask image(s) used in CLEANing
cleanbox = [] # clean box regions or file name or ’interactive’
field = -1 # Field ids list to use in mosaic
spw = -1 # Spectral window identifier (0-based)
selecttime = ’’ # range of time to select from data (Not implemented)
restfreq = ’’ # restfrequency to use in image
sdimage = ’’ # Input Single Dish image to use as model
modelimage = ’’ # Output model image name (default=imagename.model)
weighting = ’natural’ # Weighting to apply to visibilities

(natural, uniform, briggs, radial, superuniform)
mosweight = False # Individually weight the fields of the mosaic
ftmachine = ’mosaic’ # Gridding option (ft, sd, both, mosaic)
cyclefactor = 1.5 # Change threshold for major cycles (lower=more often)

CHAPTER 5. SYNTHESIS IMAGING 151

cyclespeedup = -1 # Double clean threshold if not reached in this many iterations
scaletype = ’NONE’ # Image plane flux scale type (NONE, SAULT)
minpb = 0.1 # Minimum PB level to use
async = False # if True run in the background, prompt is freed

The alg, mode, cleanbox, and weighting parameters open up other sub-parameters. See the
clean task (§ 5.4) for information on these.

An example of a simple mosaic call is shown below:

default(’mosaic’) # Make sure the inputs are set to their defaults first!
mosaic(vis=’split.n75.ms’, # Use data in split.n75.ms

imagename=’n75’, # Name output images ’n75.*’ on disk
alg=’clark’, # Use Clark CLEAN algorithm
mode=’channel’, # Clean individual channel
niter=10000, gain=0.1, # Allow up to 10000 iterations with a gain of 0.1
threshold=1, # Clean down to a threshold of 1 mJy/beam
nchan=55, start=3, step=1, # Clean 55 channels, starting with 3
field=’0,1,2,3’, # Mosaic the 1st 4 fields in the dataset
spw=’0’, # Select first spectral window
imsize=[400,400], # Make an image that is 400x400 pixels
cell=[1.,1.], # using 1arcsec pixels
weighting=’briggs’, # Use Briggs robust weighting with robustness
rmode=’norm’, # parameter of 0.5
robust=0.5
mask=’n75.mask’) # You have a mask already made called n75.mask

We now describe the use of the mosaic specific parameters. See clean (§ 5.4) for a description of
the parameters in common with that task.

5.5.1 The cyclefactor Parameter

Inside the Toolkit:
The im.setmfcontrol method sets
the parameters that control the cy-
cles and primary beam used in mo-
saicing.

The cyclefactor parameter allows the user to change the
threshold at which the deconvolution cycle will stop and
then degrid and subtract the model from the visibilities
to form the residual. This is with respect to the breaks
between minor and major cycles that the clean part would
normally force. Larger values force a major cycle more
often.

If your uv-coverage results in a poor PSF, then you should
reconcile often (a cyclefactor of 4 or 5); For good PSFs, use cyclefactor in the range 1.5 to 2.0.

This parameter in effect controls the threshold used by CLEAN to test whether a major cycle break
and reconciliation occurs:

cycle threshold = cyclefactor * max sidelobe * max residual

CHAPTER 5. SYNTHESIS IMAGING 152

5.5.2 The cyclespeedup Parameter

The cyclespeedup parameter allows the user to let mosaic to raise the threshold at which a major
cycle is forced if it is not converging to that threshold. To do this, set cyclespeedup to an integer
number of iterations at which if the threshold is not reached, the threshold will be doubled. See
cyclefactor above for more details. By default this is turned off (cyclespeedup = -1).

5.5.3 The ftmachine Parameter

The ftmachine parameter controls the gridding method and kernel to be used to make the image.
A string value type is expected. Choices are: ’ft’, ’sd’, ’both’, or ’mosaic’ (the default).

The ’ft’ option uses the standard gridding kernel (as used in invert or clean).

The ’sd’ option forces gridding as in single-dish data.

For combining single-dish and interferometer MS in the imaging, the ’both’ option will allow
mosaic to choose the ‘ft’ or ’sd’ machines as appropriate for the data.

Inside the Toolkit:
The im.setoptions method sets the
parameters relevant to mosaic imag-
ing, such as the ftmachine.

The ’mosaic’ option (the default) uses the Fourier trans-
form of the primary beam (the aperture cross-correlation
function in the uv-plane) as the gridding kernel. This al-
lows the data from the multiple fields to be gridded down
to a single uv-plane, with a significant speed-up in per-
formance in most (non-memory limited) cases. The effect
of this extra convolution is an additional multiplication
(apodization) by the primary beam in the image plane. This can be corrected for, but does result
in an image with optimal signal to noise ratio across it.

5.5.4 The minpb Parameter

The minpb parameter sets the level down to which the primary beam (or more correctly the voltage
patterns in the array) can go and have a given pixel included in the image. This is important as it
defines where the edge of the visible mosaic is. The default is 0.1 or equivalent to the 10% response
level. If there is alot of emission near the edge of the mosaic, then set this lower if you want to be
able to clean it out.

5.5.5 The modelimage Parameter

The modelimage parameter specifies a name to use for the output model image, rather than de-
faulting from the imagename root. This is useful when a single-dish image is input using sdimage.

CHAPTER 5. SYNTHESIS IMAGING 153

5.5.6 The mosweight Parameter

The mosweight parameter expects a boolean (True/False) to control whether the individual mosaic
fields should receive independent weights (for optimum signal to noise ratio) or should be uniformly
weighted (to make the signal to nose ratio as uniform as possible across the mosaic).

5.5.7 The phasecenterid Parameter

The phasecenterid parameter indicates which of the field IDs should be used to define the phase
center of the mosaic image. The default action is to use the first one given in the fieldid list.

NOTE: This parameter will likely change when we finish updating to the unified selection system.

5.5.8 The scaletype Parameter

Inside the Toolkit:
The im.setmfcontrol method gives
more options for controlling the pri-
mary beam and noise across the im-
age.

The scaletype parameter controls weighting of pixels in
the image plane. The default action ’none’ does no scal-
ing. If scaletype=’sault’ then the image will be re-
weighted to have constant noise across it. In this case, the
image will also be rescaled to have the correct flux scale
across it. This option should be used with care, particu-
larly if your data has very different exposure times (and
hence intrinsic noise levels) between the mosaic fields.

5.5.9 The sdimage Parameter

The sdimage parameter should be used to indicate an image to be used as an input model. The
output model will contain this model plus clean components found during deconvolution. This is
meant as a way to incorporate single-dish data in the form of an image.

Inclusion of the SD image here is superior to feathering it in later. See § 5.6 for more information
on feathering.

5.6 Combined Single Dish and Interferometric Imaging (feather)

The term “feathering” is used in radio imaging to describe how to combine or “feather” two
images together by forming a weighted sum of their Fourier transforms in the (gridded) uv-plane.
Intermediate size scales are down-weighted to give interferometer resolution while preserving single-
dish total flux density. For a detaile description of the feathering algorithm see the CASA Toolkit
Guide.

The inputs for feather are:

CHAPTER 5. SYNTHESIS IMAGING 154

imagename = ’’ # Name of output feathered image
highres = ’’ # Name of high resolution (synthesis) image
lowres = ’’ # Name of low resolution (single dish) image

Note that the only inputs are for images. Note that feather does not do any deconvolution but
combines presumably deconvolved images after the fact.

Starting with a cleaned synthesis image and a low resolution image from a single dish telescope, the
following examples shows how they can be feathered. Note that the single dish image must have
a well-defined beam shape and the correct flux units so use task imhead first to set some image
header properties that are needed first.

default(’imhead’) # Make sure the inputs are set to their defaults first!
imhead(imagename=’single_dish.im’, # Select the single-dish image

brightnessunit=’Jy/beam’, # Set the brightness Unit in the header to be Jy/beam
restoringbeam=[’55arcsec’,’55arcsec’,’0deg’])

Given a known beam shape for this map,
set it as a 55 arcsec Gaussian beam.

default(’feather’) # Make sure the inputs are set to their defaults first!
feather(imagename=’feather.im’, # Create an image called feather.im

highres=’synth.im’, # The synthesis image is called synth.im
lowres=’single_dish.im’ # The SD image is called single_dish.im

All images reside in the directory in which
you started CASA.

5.7 Making Deconvolution Masks (makemask)

For most careful imaging, you will want to restrict the region over which you allow CLEAN com-
ponents to be found. To do this, you can create a ’deconvolution region’ or ’mask’ image using the
makemask task. This is useful if you have a complicated region over which you want to clean and
it will take many clean boxes to specify.

The parameter inputs for makemask are:

makemask :: Derive a mask image from a cleanbox and set of imaging parameters:

cleanbox = [] # Clean box file or regions
vis = ’’ # Name of input visibility file (if no input image)
imagename = ’’ # Name of output mask images
mode = ’mfs’ # Type of selection (mfs, channel, velocity)
imsize = [256, 256] # Image size in spatial pixels [x,y]
cell = [1, 1] # Cell size in arcseconds
phasecenter = ’’ # Field identifier or direction of the phase center
stokes = ’I’ # Stokes parameter to image (I,IV,IQU,IQUV)
field = ’0’ # Field ids list to use in mosaic
spw = ’0’ # Spectral window identifier (0-based)

CHAPTER 5. SYNTHESIS IMAGING 155

The majority of the parameters are the standard imaging parameters (§ 5.2). The cleanbox
parameter (see § 5.4.1.2 in clean above) gives the region to be masked. The imagename parameter
specifies the name for the output mask image.

You can use the viewer to figure out the cleanbox blc-trc x-y settings, make the mask image, and
then bring it into the viewer as a contour image over your deconvolved image to compare exactly
where your mask regions are relative to the actual emission. In this example, create a mask from
many cleanbox regions specified in a file on disk (cleanboxes.txt) containing

1 80 80 120 120
2 20 40 24 38
3 70 42 75 66

where each line specifies the field index and the blc x-y and trc x-y positions of that cleanbox. For
example, in casapy, you can do this easily:

CASA <29>: !cat > cleanboxes.txt
IPython system call: cat > cleanboxes.txt
1 80 80 120 120
2 20 40 24 38
3 70 42 75 66
<CNTL-D>
CASA <30>: !cat cleanboxes.txt
IPython system call: cat cleanboxes.txt
1 80 80 120 120
2 20 40 24 38
3 70 42 75 66

Then, in CASA,

default(’makemask’) # Make sure the inputs are set to their defaults first!

makemask(vis=’source.ms’,
imagename=’source.mask’,

cleanbox=’cleanboxes.txt’,
mode=’mfs’, # make a multi-frequency synthesis map (combine channels)
imsize=[200,200]) # Set image size = 200x200 pixels
cell=[0.1,0.1], # Using 0.1 arcsec pixels
spw=’0,1,2’, # Combine channels from 3 spectral windows
field=’0’, # Use the first field in this split dataset
stokes=’I’) # Image stokes I polarization

This task will then create a mask image that has the 3 cleanboxes specified in the cleanboxes.txt
file.

Note that you must specify a visibility dataset and create the image properties so the mask image
will have the same dimensions as the image you want to actually clean.

Eventually we will add functionality to deal with the creation of non-rectangular regions and with
multi-plane masks.

CHAPTER 5. SYNTHESIS IMAGING 156

5.8 Transforming an Image Model (ft)

Inside the Toolkit:
The im.ft method does what the ft
task does. Its main use is setting
the MODEL DATA column in the MS so
that the cb tool can use it for subse-
quent calibration.

The ft task will Fourier transform an image and insert the
resulting model into the MODEL DATA column of a Measure-
ment Set. You can also convert a CLEAN component list
to a model and insert that into the MODEL DATA column.
The MS MODEL DATA column is used, for example, to hold
the model for calibration purposes in the tasks and toolkit.
This is especially useful if you have a resolved calibrator
and you want to start with a model of the source before
you derive accurate gain solutions. This is also necessary
for self-calibration (see § 5.10 below).

The inputs for ft are:

vis = ’’ # Name of input visibility file
fieldid = 0 # Field index identifier
field = ’’ # Field name list
model = ’’ # Name of input model image
complist = ’’ # Name of component list
incremental = False # Add to the existing MODEL_DATA column?

An example of how to do this:

default(’ft’) # Make sure the inputs are set to their defaults first!

ft(vis=’n75.ms’, # Start with the visibility dataset n75.ms
field=’1328’, # Select field name ’1328+307’ (minimum match)
model=’1328.model.image’) # Name of the model image you have already

This task will Fourier transform the model image and insert the resulting model in the MODEL DATA
column of the rows of the MS corresponding to the source 1328+307.

Note that after clean, the transform of the final model is left in the MODEL DATA column so you
can go directly to a self-calibration step without explicitly using ft.

5.9 Image-plane deconvolution (deconvolve)

If you have only an image (obtained from some telescope) and an image of its point spread function,
then you can attempt a simple image-plane deconvolution. Note that for interferometer data, full
uv-plane deconvolution using clean or similar algorithm is superior!

The default inputs for deconvolve are:

deconvolve :: Deconvoving a point spread function from an image

CHAPTER 5. SYNTHESIS IMAGING 157

imagename = ’’ # Name of image to decolvolve
model = ’’ # Name of output image to which deconvolved components are stored
psf = ’’ # Name of psf or gaussian parameters if psf is assumed gaussian
alg = ’clark’ # Deconvolution alorithm to use
niter = 10 # number of iteration to use in deconvolution process
gain = 0.1 # CLEAN gain parameter
threshold = ’0.0Jy’ # level below which sources will not be deconvolved
mask = ’’ # Name of image that has mask to limit region of deconvolution
async = False # if True run in the background, prompt is freed

The algorithm (alg) options are: ’clark’, ’hogbom’, ’multiscale’ or ’mem’. The ’multiscale’
and ’mem’ options will open the usual set of sub-parametes for these methods.

5.10 Self-Calibration

Once you have a model image or set of model components reconstructed from your data using one
of the deconvolution techniques described above, you can use it to refine your calibration. This is
called self-calibration as it uses the data to determine its own calibration (rather than observations
of special calibration sources).

Hint:
The clearcal command can be used
during the self-calibration if you
need to clear the CORRECTED DATA
column and revert to the original
DATA.

In principle, self-calibration is no different than the cali-
bration process we described earlier (§ 4). In effect, you
alternate between calibration and imaging cycles, refining
the calibration and the model as you go. The trick is you
have to be careful, as defects in early stages of the calibra-
tion can get into the model, and thus prevent the calibra-
tion from improving. In practice, it is best to not clean
very deeply early on, so that the CLEAN model contains
correct components only.

The key imaging task to allow self-calibration is currently ft, which fills the MODEL DATA column
with the Fourier transform of the model (see § 5.8 above). NOTE: in later patches we will change
the tasks so that users need not worry what is contained in the MS scratch columns and how to
fill them. CASA will handle that underneath for you!

For now, we refer the user back to the calibration chapter for a reminder on how to run the
calibration tasks.

ALPHA ALERT: We will have more information here in later updates of this documentation.

5.11 Example of Imaging

The following is an example use of clean on the NGC5921 VLA data that we calibrated in the
previous Chapter (§ 4.14). This assumes you have already run that script and have all of the defined
variable in your session, as well as the split calibrated ms files on disk.

CHAPTER 5. SYNTHESIS IMAGING 158

The full NGC5921 example script can be found in Appendix C.1.

ALPHA ALERT: Note that the syntax has been changing recently and this may get out of date
quickly!

#===
#
Done with calibration
Now clean an image cube of N5921
#
print ’--Clean--’
default(’clean’)

Pick up our split source data
vis = srcsplitms

Make an image root file name
imname = prefix + ’.clean’
imagename = imname

Set up the output image cube
mode = ’channel’
nchan = 46
start = 5
step = 1

This is a single-source MS with one spw
field = ’0’
spw = ’’

Set the output image size and cell size (arcsec)
imsize = [256,256]
cell = [15.,15.]

Do a simple Hogbom clean, standard gain factor 0.1
alg = ’hogbom’
gain = 0.1

Fix maximum number of iterations
niter = 6000

Also set flux residual threshold (in mJy)
threshold=8.0

Set up the weighting
Use Briggs weighting (a moderate value, on the uniform side)
weighting = ’briggs’
rmode = ’norm’
robust = 0.5

No clean mask or cleanbox for now

CHAPTER 5. SYNTHESIS IMAGING 159

mask = ’’
cleanbox = []

But if you had a cleanbox saved in a file, e.g. "regionfile.txt"
you could use it:
#cleanbox=’regionfile.txt’
#
and if you wanted to use interactive clean
#cleanbox=’interactive’

clean()

Should find stuff in the logger like:
#
Fitted beam used in restoration: 51.5643 by 45.6021 (arcsec) at pa 14.5411 (deg)
#
It will have made the images:

ngc5921.usecase.clean.image
ngc5921.usecase.clean.model
ngc5921.usecase.clean.residual

clnimage = imname+’.image’

#===
#
Done with imaging
Now view the image cube of N5921
#
print ’--View image--’
viewer(clnimage,’image’)

Be sure to play through the cube using the tapedeck play button
and watch the emission move with channel.

#===

CHAPTER 5. SYNTHESIS IMAGING 160

Figure 5.1: Screenshot of the interactive clean window during deconvolution of the VLA 6m
Jupiter dataset. We have already cleaned 100 iterations in the region previously marked, and are
ready to extend the mask to pick up the newly revealed emission. Note the boxes at the top right
where the npercycle, niter, and threshold can be changed.

Chapter 6

Displaying Images

This chapter describes how to display data with the casaviewer either as a stand-alone or through
the viewer task. You can display both images and MeasurementSets.

6.1 Starting the viewer

Within the casapy environment, there is a viewer task which can be used to call up an image. The
inputs are:

viewer :: View an image or visibility data set.

infile = ’’ # Name of file to visualize
filetype = ’image’ # Type of file (ms, image, or vector)

Examples of starting the viewer:

CASA <4>: viewer()

CASA <5>: viewer(’ngc5921_task.image’)

CASA <6>: viewer(’ngc5921.ms’,’ms’)

ALPHA ALERT: the viewer task cannot currently figure out whether a given file is an image or
MS, so for now you need to specify filetype=’ms’ explicitly if you want to view an MS in raster
mode.

6.1.1 Starting the casaviewer outside of casapy

The casaviewer is the name of the stand-alone application that is available with a CASA instal-
lation. From outside casapy, you can call this command from the command line in the following
ways:

161

CHAPTER 6. DISPLAYING IMAGES 162

Start the casaviewer with no default image/MS loaded; it will pop up the Load Data frame and a
blank, standard ”Viewer Display Panel. Selecting a file on disk in the Load Data panel will provide
options for how to display the data. Images can be displayed as: 1) Raster Image, 2) Contour Map,
3) Vector map or 4) Marker Map. MS’s can only be displayed as raster.

> casaviewer &

Start the casaviewer with the selected image; the image will be displayed in the Viewer Display
Panel. If the image is a cube (more than one plane for frequency or polarization) then it will be
one the first plane of the cube.

> casaviewer image_filename &

Start the casaviewer with the selected MeasurementSet; note the additional parameter indicating
that it is an ms; the default is ’image’.

> casaviewer ms_filename ms &

6.2 The viewer GUI

The main parts of the GUI are the menus:

• Data

– Open - open an image from disk

– Register - register selected image (menu expands to the right containing all loaded im-
ages)

– Close - close selected image (menu expands to the right)

– Adjust - open the adjust panel

– Print - print the displayed image

– Close Panel - close the Viewer Display Panel

– Quit Viewer - currently disabled

• Display Panel

– New Panel - create a new Viewer Display Panel

– Panel Options - open the panel options frame

– Print - print displayed image

– Close Panel - close the Viewer Display Panel

• Tools

CHAPTER 6. DISPLAYING IMAGES 163

– Currently blank - will hold annotations and image analysis tools

Below this are icons for fast access to some of these menu items:

• folder - Data:Open shortcut – pulls up Load Data panel

• wrench - Data:Adjust shortcut – pulls up Data Display Options panel

• panels - Data:Register shortcut – pull up menu of loaded data

• delete - Data:Close shortcut – closes/unloads selected data

• panel - Display Panel:New Panel

• panel wrench - Display Panel:Panel Options – pulls up Viewer Canvas Manager

• print - Display Panel:Print – print data

Important Bug Note: Please use the icon buttons whenever possible instead of the
menus. The Register and Close menus especially are known to lead to viewer crashes in some
cases. You’ll usually find that the first four icon buttons are all you need. Click on the display
panel titlebar then hover over the buttons for brief reminders of their purpose.

Below this are the eight mouse control buttons. These allow/show the assignment of the mouse
buttons for different operations. Clicking in one of these buttons will re-assign a mouse button to
that operation.

• Zooming (magnifying glass icon) Zooming is accomplished by pressing down the selected
mouse button at the start point, dragging the mouse away from that point, and releasing the
selected mouse button when the zoom box encloses the desired zoom area. Once the button
is released, the zoom rectangle can be moved by clicking inside it with the selected mouse
button and dragging it around. To zoom in, simply double click with the selected button
inside the rectangle. Double clicking outside the rectangle will result in a zoom out.

• Panning (hand icon) Panning is accomplished by pressing down on the selected mouse
button at the point you wish to move, dragging the mouse to the position where you want
the first point moved to, and releasing the selected mouse button. Note: The arrow keys,
Page Up, Page Down, Home and End keys, and scroll wheel (if any) can also be used to
scroll through your data once you have zoomed in. For these to work, the mouse must be over
the display panel drawing area, but no mouse tool need be active. Note: this is currently not
enabled.

• Stretch-shift colormap fiddling

• Brightness-contrast colormap fiddling

CHAPTER 6. DISPLAYING IMAGES 164

• Positioning This enables the user to place a crosshair marker on the image to indicate a
position. Depending on the context, the positions may be used to flag MeasurementSet data
(not yet enabled) or display image spectral profiles (also not currently enabled). Click on
the position to place the crosshair; once placed you can drag it to move to another location.
Double click is not needed for this control.

• Rectangle and Polygon region drawing A rectangle region is generated exactly the same
way as the zoom rectangle, and is set by double clicking within the rectangle. Polygon
regions can be constructed by progressively clicking the selected mouse button at the desired
location of each vertex, and clicking in the same location twice to complete the polygon. Once
constructed, it can be moved by dragging inside the polygon, and reshaped by dragging the
various handles at the vertices.

• Polyline drawing A polyline can be constructed with this button selected. It is almost
identical to the polygon region tool. Create points by clicking at the positions wanted and
then double-click to finish the line.

Below this area is the actual display surface.

Below the display is the ’tape deck’ which provides basic movement between image planes along
a selected third dimension of an image cube. This set of buttons is only enabled when the first-
registered image reports that it has more than one plane along the ’Z axis’. In the most common
case, the animator controls the frequency channel being viewed. From left to right, the tape deck
controls allow the user to:

• rewind to the start of the sequence (i.e., the first plane)

• step backwards by one plane

• play backwards, or repetitively step backwards

• stop any current play

• play forward, or repetitively step forward

• step forward by one plane

• fast forward to the end of the sequence

To the right of the tape deck is an editable text box indicating the current frame number and a
sunken label showing the total number of frames. One can type a channel number into the current
frame to jump to that channel. Below this is a slider for controlling the animation speed. To the
right of this is the ’Full/Compact’ toggle. In full mode, additional controls for blinking and for
controlling the frame value and step are available; the default setting is for compact. In ’Blink’
mode, when more than one raster image is registered in the Viewer Display Panel, the tapedeck
will control which is being displayed at the moment. The images registered should cover the same
portion of the sky, using the same coordinate projection.

CHAPTER 6. DISPLAYING IMAGES 165

6.3 Viewing a raster map

A raster map of an image shows pixel intensities in a two-dimensional cross-section of gridded data
with colors selected from a finite set of (normally) smooth and continuous colors, i.e., a colormap.

Starting the casaviewer with an image as a raster map will look something like:

You will see the GUI which consists of two main windows, entitled ”Viewer Display Panel” and
”Load Data”. In the ”Load Data” panel, you will see all of the files in the current working directory
along with their type (Image, MeasurementSet, etc). After selecting a file, you are presented with
the available data types for these data. Clicking on the button Raster Map will create a display as
above. The main parts of the ”Viewer Display Panel” GUI are discussed in the following Section.

6.4 Viewing a contour map

Viewing a contour image is similar the process above. A contour map shows lines of equal pixel
intensity (e.g., flux density) in a two dimensional cross-section of gridded data. Contour maps are
particularly useful for overlaying on raster images so that two different measurements of the same
part of the sky can be shown simultaneously.

6.5 Viewing a MeasurementSet with visibility data

Visibility data can also be displayed and flagged directly from the viewer (Note: flagging is not
currently enabled). For MeasurementSet files the only option for display is ’Raster’ (similar to AIPS
task TVFLG).

Note: There is also a bug in the current MS viewing which disables display of the data and flags;
use the ’Adjust’ panel ’Flagging Options’ Menu to change the ’Show Flagged Regions’ option to
’Masked to Background’. This will be the default for Patch 2.

6.6 Adjusting Display Parameters

The data display can be adjusted by the user as needed. The following illustrate the available
options in the catagories of:

• Display axes

• Hidden axes

• Basic Settings

• Position tracking

• Axis labels

CHAPTER 6. DISPLAYING IMAGES 166

• Axis label properties

This older web page gives details of individual display options. Although it has not yet been
integrated into the reference manual for the newer CASA, it is accurate in most cases:

http://aips2.nrao.edu/daily/docs/user/Display/node267.html

6.7 Adjusting Canvas Parameters/Multi-panel displays

The display area or Canvas can also be manipulated through two sets of values:

• Margins - specify the spacing for the left, right, top, and bottom margins

• Number of panels - specify the number of panels in x and y and the spacing between those
panels.

The following illustrates a multi-panel display along with the Viewer Canvas Manager settings
which created it.

6.8 Overlay contours on a raster map

Contours of either a second data set or the same data set can be used for comparison or to enhance
visualization of the data. The Adjust Panel will have multiple tabs which allow adjusting each data
set individually (Note tabs along the top). To enable this simply open up the Load Data panel
(Use the Data menu or click on the Folder icon), select the data set and select Contour.

http://aips2.nrao.edu/daily/docs/user/Display/node267.html

CHAPTER 6. DISPLAYING IMAGES 167

Figure 6.1: Viewer Display Panel with no data loaded. Each section of the GUI is explained below

CHAPTER 6. DISPLAYING IMAGES 168

Figure 6.2: casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the
Load Data panel (right).

CHAPTER 6. DISPLAYING IMAGES 169

Figure 6.3: casaviewer: Illustration of a raster image in the Viewer Display Panel(left) and the
Load Data panel (right).

CHAPTER 6. DISPLAYING IMAGES 170

Figure 6.4: casaviewer: Display of visibility data. The default axes are time vs. baseline.

CHAPTER 6. DISPLAYING IMAGES 171

Figure 6.5: casaviewer: Data display options. In the left panel, the Display axes, Hidden axes, and
Basic Settings options are shown; in the right panel, the Position tracking and Axis labels options
are shown.

CHAPTER 6. DISPLAYING IMAGES 172

Figure 6.6: casaviewer: Data display options. In this final, third panel , the Axis label properties
are shown.

CHAPTER 6. DISPLAYING IMAGES 173

Figure 6.7: casaviewer: A multi-panel display set up through the Viewer Canvas Manager.

CHAPTER 6. DISPLAYING IMAGES 174

Figure 6.8: casaviewer: Display contour overlay on top of a raster image.

Chapter 7

Image Analysis

Inside the Toolkit:
Image analysis is handled in the ia
tool. Many options exist there, in-
cluding moments and image math.
See the CASA Toolkit Guide for
more information.

Once data has been calibrated (and imaged in the case of
synthesis data), the resulting image or image cube must be
displayed or analyzed in order to extract quantitative infor-
mation, such as statistics or moment images. In addition,
there need to be facilities for the coordinate conversion of
images for direct comparison.

ALPHA ALERT: We have assembled a skeleton of image
analysis tasks for this alpha release. Many more are still
under development.

The image analysis tasks are:

• imhead — summarize and manipulate the “header” information in a CASA image (§ 7.1)

• immoments — compute the moments of an image cube (§ 7.2)

• regridimage — regrid an image onto the coordinate system of another image (§ 7.3)

• viewer — there are useful region statistics and image cube slice and profile capabilities in
the viewer (§ 7.4)

7.1 Summary of an Image and Headers

To get a summary of the properties of your image, type:

imhead(imagename=’image.im’)

You will get 2 outputs: A nicely formatted summary in the log window, e.g.:

175

CHAPTER 7. IMAGE ANALYSIS 176

Sun Mar 4 22:20:09 2007 NORMAL image::summary:
Direction reference : J2000
Spectral reference : TOPO (-> LSRK)
Velocity type : RADIO
Pointing center : 23:13:43.815918 +61.27.00.178403
Telescope : VLA
Observer : unavailable
Date observation : 1995/05/19/09:23:45

Axis Coord Type Name Proj Shape Tile Coord value at pixel Coord incr Units
--
1 1 Direction Right Ascension SIN 128 64 23:13:43.816 65.00 -4.000000e+00 arcsec
2 1 Direction Declination SIN 128 32 +61.27.00.178 65.00 4.000000e+00 arcsec
3 2 Stokes Stokes 1 1 I
4 3 Spectral Frequency 55 11 2.36918e+10 1.00 9.765625e+04 Hz

along with a detailed list of header info on the command line:

CASA <27>: summary
Out[27]:

{’header’: {’axisnames’: array([’Right Ascension’, ’Declination’, ’Stokes’, ’Frequency’],
dtype=’|S16’),

’axisunits’: array([’rad’, ’rad’, ’’, ’Hz’],
dtype=’|S4’),

’defaultmask’: ’’,
’hasmask’: False,
’imagetype’: ’PagedImage’,
’incr’: array([-1.93925472e-05, 1.93925472e-05, 1.00000000e+00,

9.76562500e+04]),
’masks’: array([],

dtype=’|S1’),
’ndim’: 4,
’refpix’: array([65., 65., 1., 1.]),
’refval’: array([6.08129550e+00, 1.07250569e+00, 1.00000000e+00,

2.36917611e+10]),
’restoringbeam’: {’imagetype’: ’Intensity’,

’objectname’: ’’,
’restoringbeam’: {’major’: {’unit’: ’arcsec’,

’value’: 13.205469131469727},
’minor’: {’unit’: ’arcsec’,

’value’: 12.592819213867188},
’positionangle’: {’unit’: ’deg’,

’value’: -2.3764669895172119}}},
’shape’: array([128, 128, 1, 55]),
’tileshape’: array([64, 32, 1, 11]),
’unit’: ’Jy/beam’},

’return’: []}

All Python dictionaries have a range of functions to work with (do a summary.¡TAB¿ to see all the
options). For example:

CHAPTER 7. IMAGE ANALYSIS 177

summary.keys() # returns all the keys to the dictionary [’header’,’return’]
summary.get(’header’) # returns all the elements of the header
summary[’header’] # equivalent command

x=summary.values()[0] # set x = the header dictionary
x[’ndim’] # returns 4 for a standard CASA image

7.2 Computing the Moments of an Image Cube (immoments)

For spectral line datasets, the output of the imaging process is an image cube, with a frequency or
velocity channel axis in addition to the two sky coordinate axes. This can be most easily thought
of as a series of image planes stacked along the spectral dimension.

A useful product to compute is to collapse the cube into a moment image by taking a linear
combination of the individual planes:

Mm(xi, yi) =
N∑
k

wm(xi, yi, vk) I(xi, yi, vk) (7.1)

for pixel i and channel k in the cube I. There are a number of choices to form the m moment,
usually approximating some polynomial expansion of the intensity distribution over velocity mean
or sum, gradient, dispersion, skew, kurtosis, etc.). There are other possibilities (other than a
weighted sum) for calculating the image, such as median filtering, finding minima or maxima along
the spectral axis, or absolute mean deviations. And the axis along which to do these calculation
need not be the spectral axis (ie. do moments along Dec for a RA-Velocity image). We will treat
all of these as generalized instances of a “moment” map.

The immoments task will compute basic moment images from a cube. The default inputs are:

immoments :: Compute moments of an image cube:

imagename = ’’ # Input image name
moments = [0] # List of moments to compute
axis = 3 # Axis for moment calculation
planes = [’’] # Set of planes/channels to use for moment
includepix = [-1] # Range of pixel values to include
excludepix = [-1] # Range of pixel values to exclude
outfile = ’’ # Output image file name (or root for multiple moments)
async = False # if True run in the background, prompt is freed

The choices for the operation mode are:

moments=-1 - mean value of the spectrum
moments=0 - integrated value of the spectrum
moments=1 - intensity weighted coordinate;traditionally used to get

’velocity fields’
moments=2 - intensity weighted dispersion of the coordinate; traditionally

CHAPTER 7. IMAGE ANALYSIS 178

used to get ’velocity dispersion’
moments=3 - median of I
moments=4 - median coordinate
moments=5 - standard deviation about the mean of the spectrum
moments=6 - root mean square of the spectrum
moments=7 - absolute mean deviation of the spectrum
moments=8 - maximum value of the spectrum
moments=9 - coordinate of the maximum value of the spectrum
moments=10 - minimum value of the spectrum
moments=11 - coordinate of the minimum value of the spectrum

The meaning of these is described in the CASA Reference Manual (http://casa.nrao.edu/docs/
casaref/image.moments.html).

7.3 Regridding an Image (regridimage)

Inside the Toolkit:
More complex coordinate system
and image regridding operation can
be carried out in the toolkit. The cs
(coordsys) tool and the ia.regrid
method are the relevant components.

It is occasionally necessary to regrid an image onto a new
coordinate system. The regridimage task will regrid one
image onto the coordinate system of another, creating an
output image. In this task, the user need only specify the
names of the input, template, and output images.

If the user needs to do more complex operations, such as
regridding an image onto an arbitrary (but known) coor-
dinate system, changing from Equatorial to Galactic coor-
dinates, or precessing Equinoxes, the CASA toolkit can be
used (see sidebox). Some of these facilities will eventually be provided in task form.

The default inputs are:

regridimage :: Regrid imagename to have template image parameters

imagename = ’’ # Name of image to be regridded
template = ’’ # image having the parameters that is wanted in regridded image
output = ’’ # Name of image in which result of regridding is stored
async = False # if True run in the background, prompt is freed

7.4 Image display in the viewer

The viewer is the workhorse for the visual display of images, the analysis of slices through cubes,
and the statistics of regions.

7.4.1 Image statistics

You can use the viewer to interactively obtain image statistics on a region:

http://casa.nrao.edu/docs/casaref/image.moments.html
http://casa.nrao.edu/docs/casaref/image.moments.html

CHAPTER 7. IMAGE ANALYSIS 179

viewer(’imagename.im’)
Now use the right mouse button (default for region setting)
create a region and then double click inside to obtain statistics on that region
Currently this supports a single plane only and the output goes to your casapy
terminal window as:

ngc5921_task.image

n Std Dev RMS Mean Variance Sum
660 0.01262 0.0138 0.005622 0.0001592 3.711

Flux Med |Dev| Quartile Median Min Max
0.3119 0.003758 0.004586 0.001434 -0.009671 0.06105

7.5 Image Import/Export to FITS

To export your images to fits format use the exportfits task:

exportfits(imagename=’casa.im’, # select CASA format image, casa.im
fitsimage=’image.fits’) # write out a fits format image image.fits

You can also use the importfits task to import fits image into CASA format. Note, the CASA
viewer can read fits images so you don’t need to do this if you just want to look a the image.

importfits(fitsimage=’image.fits’, # select fits format image
imagename=’casa.im’) # write out a CASA format image

Chapter 8

Single Dish Data Processing

For single-dish spectral calibration and analysis, CASA uses the ATNF Spectral Analysis Package
(ASAP). This is imported as the sd tool, and forms the basis for a series of tasks (the “SDtasks”)
that encapsulate the functionality within the standard CASA task framework. ASAP was developed
to support the Australian telescopes such as Mopra, Parkes, and Tidbinbilla, and we have adapted
it for use within CASA for GBT and eventually ALMA data also. For details on ASAP, see the
ASAP home page at ATNF:

• http://www.atnf.csiro.au/computing/software/asap/

You can also download the ASAP User Guide and Reference Manual at this web site. There is
also a brief tutorial. Note that within CASA, the ASAP tools are prefaced with sd., e.g. where it
says in the ASAP User Guide to use scantable you will use sd.scantable in CASA. See § 8.3 for
more information on the tools.

All of the ASAP functionality is available with a CASA installation. In the following, we outline
how to access ASAP functionality within CASA with the tasks and tools, and the data flow for
standard use cases.

If you run into trouble, be sure to check the list of known issues and features of ASAP and the
SDtasks presented in § 8.5 first.

8.1 Guidelines for Use of ASAP and SDtasks in CASA

8.1.1 Environment Variables

There are a number of environment variables that the ASAP tools (and thus the SDtasks) use to
help control their operation. These are described in the ASAP User Guide as being in the .asaprc
file. Within CASA, these are contained in the Python dictionary sd.rcParams and are accessible
through its keys and values. For SDtask users, the most important are the verbose parameter
controlling the display of detailed messages from the tools. By default

180

http://www.atnf.csiro.au/computing/software/asap/

CHAPTER 8. SINGLE DISH DATA PROCESSING 181

sd.rcParams[’verbose’] = True

and you get lots of messages. Also), and the scantable.storage parameter controlling whether
scantable operations are done in memory or on disk. The default

sd.rcParams[’scantable.storage’] = ’memory’

does it in memory (best choice if you have enough), while to force the scantables to disk use

sd.rcParams[’scantable.storage’] = ’disk’

which might be necessary to allow processing of large datasets. See § 8.3.1 for more details on the
ASAP environment variables.

8.1.2 Assignment

Some ASAP methods and function require you to assign that method to a variable which you
can then manipulate. This includes sd.scantable and sd.selector, which make objects. For
example,

s = sd.scantable(’OrionS_rawACSmod’, average=False)

8.1.3 Lists

For lists of scans or IFs, such as in scanlist and iflist in the SDtasks, the tasks and functions
want a comma-separated Python list, e.g.

scanlist = [241, 242, 243, 244, 245, 246]

You can use the Python range function to generate a list of consecutive numbers, e.g.

scanlist = range(241,247)

giving the same list as above, e.g.

CASA <3>: scanlist=range(241,247)
CASA <4>: print scanlist
[241, 242, 243, 244, 245, 246]

You can also combine multiple ranges by summing lists

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254]

CHAPTER 8. SINGLE DISH DATA PROCESSING 182

Note that in the future, the sd tools and SDtasks will use the same selection language as in the
synthesis part of the package.

Spectral regions, such as those for setting masks, are pairs of min and max values for whatever
spectral axis unit is currently chosen. These are fed into the tasks and tools as a list of lists, with
each list element a list with the [min,max] for that sub-region, e.g.

masklist=[[1000,3000], [5000,7000]].

8.1.4 Dictionaries

Currently, the SDtasks use the Python dictionary xstat as a return variable for the results of line
fitting (in sdfit) and region statistics (in sdstat). You can then access the elements of these
through the keywords, e.g.

CASA <10>: sdstat()
Current fluxunit = K
No need to convert fluxunits
Using current frequency frame
Using current doppler convention

CASA <11>: xstat
Out[11]:

{’eqw’: 70.861755476162784,
’max’: 1.2750182151794434,
’mean’: 0.35996028780937195,
’median’: 0.23074722290039062,
’min’: -0.20840644836425781,
’rms’: 0.53090775012969971,
’stddev’: 0.39102539420127869,
’sum’: 90.350028991699219}

You can then use these values in scripts by accessing this dictionary, e.g.

CASA <12>: line_stat = xstat

CASA <13>: print "Line max = %5.3f K" % (line_stat[’max’])
Line max = 1.275 K

for example.

8.1.5 Line Formatting

The SDtasks trap leading and trailing whitespace on string parameters (such as infile and
sdfile), but ASAP does not, so be careful with setting string parameters. ASAP is also case-
sensitive, with most parameters being upper-case, such as ASAP for the sd.scantable.save file
format. The SDtasks are generally more forgiving.

Also, beware Python’s sensitivity to indenting.

CHAPTER 8. SINGLE DISH DATA PROCESSING 183

8.2 Single Dish Analysis Tasks

A set of single dish tasks is available for simplifying basic reduction activities. Currently the list
includes:

• sdcal — select, calibrate, average, smooth, and fit/remove spectral baselines from SD data

• sdfit — line fitting to SD spectra

• sdlist — print a summary of a SD dataset

• sdplot — plotting of SD spectra, including overlay of line catalog data

• sdstat — compute statistics of regions of SD spectra

All of the SDtasks work from a file on disk rather than from a scantable in memory as the ASAP
toolkit does (see § 8.3. Inside the tasks we invoke a call to sd.scantable to read in the data. The
scantable objects do not persist within CASA after completion of the tasks, and are destroyed to
free up memory.

The task sdcal is the workhorse for the calibration, selection, averaging, baseline fitting, smoothing,
and writing of datasets. It is the only SDtask that can write out a dataset. Its operation is
controlled by three main ”mode” parameters: calmode (which selects the type of calibration, if
any, to be applied), kernel (which selects the smoothing), and blmode (which selects baseline
fitting). There are also parameters controlling the selection such as scanlist, iflist, field,
scanaverage, timeaverage, and polaverage. Note that sdcal can be run with calmode=’none’
to allow re-selection or writing out of data that is already calibrated.

There is a ”wiring diagram” of the dataflow and control inputs for sdcal shown in Figure 8.1. This
might help you chart your course through the calibration.

The SDtasks support the import and export file formats supported by ASAP itself. For import,
this includes: ASAP (scantables), MS (casa measurement set), RPFITS and SDFITS. For export,
this includes: ASAP (scantables), MS (casa measurement set), ASCII (text file), SDFITS (a flavor
of SD FITS).

You can get a brief summary of the data in a file using the sdlist task.

Plotting of spectra is handled in the sdplot task. It also offers some selection, averaging and
smoothing options in case you are working from a dataset that has not been split or averaged.
Note that there is some rudimentary plotting capability in the sdcal and sdfit tasks, controlled
through the plotlevel parameter, to aid in the assessment of the performance of these tasks.

Basic statistics on spectral regions is available in the sdstat task. Results are passed in a Python
dictionary return variable xstat.

Basic Gaussian line-fitting is handled by the sdfit task. It can deal with the simpler cases, and
offers some automation, but more complicated fitting is best accomplished through the toolkit
(sd.fitter).

CHAPTER 8. SINGLE DISH DATA PROCESSING 184

8.2.1 SDtask Summaries

The following are the list of parameters and brief descriptions of each of the SDtasks. These
descriptions are also contained in the information produced by help <taskname>, once asap init
has been invoked. Note that you can use inp <taskname> on these as for other tasks.

• sdcal

Keyword arguments:
infile -- name of input SD dataset

options: (str) file name
default: ’’ (none set) REQUIRED
example: ’mopra-2005-05-08_0350.rpf’

Supported formats: ASAP,MS,RPFITS,SDFITS
telescope -- the telescope name or characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: telescope=’GBT’ for the GBT

telescope=’AT’ for one of the default scopes
known to ASAP.
telescope=[104.9,0.43] diameter(m), ap.eff.
telescope=[0.743] gain in Jy/K
telescope=’FIX’ to change default fluxunit
see description below

fluxunit -- units for line flux
options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’
default: ’channel’
example: this will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

calmode -- calibration mode
options: ’ps’,’nod’,’fs’,’fsotf’,’quotient’,’none’
default: ’none’
example: choose mode ’none’ if you have

already calibrated and want to

CHAPTER 8. SINGLE DISH DATA PROCESSING 185

try baselines or averaging
scanlist -- list of scan numbers to process

default: [] (use all scans)
example: [21,22,23,24]

this selection is in addition to field
and iflist

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
and iflist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

this selection is in addition to scanlist
and field

scanaverage -- average integrations within scans
options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
timeaverage -- average times for multiple scan cycles

options: (bool) True,False
default: False
example: if True, this happens after calibration

polaverage -- average polarizations
options: (bool) True,False
default: False

kernel -- type of spectral smoothing
options: ’hanning’,’gaussian’,’boxcar’,’none’
default: ’none’

kwidth -- width of spectral smoothing kernel
options: (int) in channels
default: 5
example: 5 or 10 seem to be popular for boxcar

ignored for hanning (fixed at 5 chans)
(0 will turn off gaussian or boxcar)

tau -- atmospheric optical depth
default: 0.0 (no correction)

blmode -- mode for baseline fitting
options: (str) ’auto’,’list’,’none’
default: ’none’
example: blmode=’none’ turns off baseline fitting

blmode=’auto’ uses AUTOPARS (see below)
in addition to blpoly to run linefinder

CHAPTER 8. SINGLE DISH DATA PROCESSING 186

to determine line-free regions
USE WITH CARE! May need to tweak AUTOPARS.

blpoly -- order of baseline polynomial
options: (int) (<0 turns off baseline fitting)
default: 5
example: typically in range 2-9 (higher values

seem to be needed for GBT)
interactive -- interactive mode for baseline fitting

options: (bool) True,False
default: False
WARNING: Currently this just asks whether you accept

the displayed fit and if not, continues
without doing any baseline fit.

masklist -- list of mask regions to INCLUDE in BASELINE fit
default: [] (entire spectrum)
example: [[1000,3000],[5000,7000]]

if blmode=’auto’ then this mask will be applied
before fitting

sdfile -- Name of output file
default: ’’ (<infile>_cal)
example: note that sdfile is the OUTPUT of sdcal and

is the INPUT filename param for the other
sdtasks to steamline processing

WARNING: output file will be overwritten
outform -- format of output file

options: ’ASCII’,’SDFITS’,’MS’,’ASAP’
default: ’ASAP’
example: the ASAP format is easiest for further sd

processing; use MS for CASA imaging.
If ASCII, then will append some stuff to
the sdfile name

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more, <0=hardcopy
default: 0 (no plotting)
example: plotlevel<0 as abs(plotlevel), e.g.

-1 => hardcopy of final plot (will be named
<sdfile>_calspec.eps)

WARNING: be careful plotting in fsotf mode!

AUTOPARS: the following parameters are used for blmode=’auto’ ONLY

thresh -- S/N threshold for linefinder

default: 5
example: a single channel S/N ratio above which the channel is

considered to be a detection

CHAPTER 8. SINGLE DISH DATA PROCESSING 187

avg_limit -- channel averaging for broad lines
default: 4
example: a number of consequtive channels not greater than

this parameter can be averaged to search for broad lines
edge -- channels to drop at beginning and end of spectrum

default: 0
example: [1000] drops 1000 channels at beginning AND end

[1000,500] drops 1000 from beginning and 500 from end

Note: For bad baselines threshold should be increased,
and avg_limit decreased (or even switched off completely by
setting this parameter to 1) to avoid detecting baseline
undulations instead of real lines.

DESCRIPTION:

Task sdcal performs data selection, calibration, and/or spectral baseline fitting for single-
dish spectra. By setting calmode=’none’ one can run sdcal on already calibrated data, for
further selection or baseline fitting. Likewise, one can set blmode=’none’ to bypass baseline
fitting.

If you give multiple IFs in iflist, then your scantable will have multiple IFs. This can be
handled, but there can be funny interactions later on. We recommend you split each IF out
into separate files by re-running sdcal with each IF in turn.

ASAP recognizes the data of the ”AT” telescopes, but currently does not know about the
GBT or any other telescope. This task does know about GBT. Therefore, if you wish to
change the fluxunit (see below), then you need to tell it what to do. If you set telescope =
’AT’ it will use its internal defaults. If you set telescope = ’GBT’, it will use an approximate
aperture efficiency conversion. If you give it a list instead of a string, then if the list has a
single float it is assumed to be the gain in Jy/K, if two or more elements they are assumed
to be telescope diameter (m) and aperture efficiency respectively.

Note that sdcal assumes that the fluxunit is set correctly in the data already. If not,
then set telescope = ’FIX’ and it will set the default units to fluxunit without conversion.
WARNING: If the data in infile is an ms from GBT, it will currently say its in ’Jy’ but it
is really ’K’, so set telescope = ’FIX’ and fluxunit=’K’ to fix this.

• sdfit

Keyword arguments:
sdfile -- name of input SD dataset

default: none - must input file name
example: ’mysd.asap’

See sdcal for allowed formats.
telescope -- the telescope name or characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)

CHAPTER 8. SINGLE DISH DATA PROCESSING 188

example: telescope=’GBT’ for the GBT
telescope=’AT’ for one of the default scopes
known to ASAP.
telescope=[104.9,0.43] diameter(m), ap.eff.
telescope=[0.743] gain in Jy/K
telescope=’FIX’ to change default fluxunit
see description below

fluxunit -- units for line flux
options: (str) ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (keep current specunit)

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
and iflist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

fitmode -- mode for fitting
options: (str) ’list’,’auto’
default: ’auto’
example: ’list’ will use maskline to define regions to

fit for lines with nfit in each
’auto’ will use the linefinder to fit for lines

using autopars (see below)
maskline -- list of mask regions to INCLUDE in LINE fitting

default: all
example: maskline=[[3900,4300]] for a single region, or

maskline=[[3900,4300],[5000,5400]] for two, etc.
invertmask -- invert mask (EXCLUDE masklist instead)

CHAPTER 8. SINGLE DISH DATA PROCESSING 189

options: (bool) True, False
default: False
example: invertmask=True, then will make one region that is

the exclusion of the maskline regions
nfit -- list of number of gaussian lines to fit in in maskline region

default: 0 (no fitting)
example: nfit=[1] for single line in single region,

nfit=[2] for two lines in single region,
nfit=[1,1] for single lines in each of two regions, etc.

fitfile -- name of output file for fit results
default: no output fit file
example: ’mysd.fit’

plotlevel -- control for plotting of results
options: (int) 0=none, 1=some, 2=more
default: 0 (no plotting)
example: plotlevel=1 plots fit and residual

no hardcopy available for fitter
WARNING: be careful plotting OTF data with lots of fields

AUTOPARS: the following parameters are used for fitmode=’auto’ ONLY

thresh -- S/N threshold for linefinder

default: 5
example: a single channel S/N ratio above which the channel is

considered to be a detection
min_nchan -- minimum number of consecutive channels for linefinder

default: 3
example: minimum number of consecutive channels required to pass threshold

avg_limit -- channel averaging for broad lines
default: 4
example: a number of consequtive channels not greater than

this parameter can be averaged to search for broad lines
box_size -- running mean box size

default: 0.2
example: a running mean box size specified as a fraction

of the total spectrum length
edge -- channels to drop at beginning and end of spectrum

default: 0
example: [1000] drops 1000 channels at beginning AND end

[1000,500] drops 1000 from beginning and 500 from end

Note: For bad baselines threshold should be increased,
and avg_limit decreased (or even switched off completely by
setting this parameter to 1) to avoid detecting baseline
undulations instead of real lines.

CHAPTER 8. SINGLE DISH DATA PROCESSING 190

xstat -- RETURN ONLY: a Python dictionary of line statistics

keys: ’peak’,’cent’,’fwhm’
example: each value is a list of lists with one list of

2 entries [fitvalue,error] per component.
e.g. xstat[’peak’]=[[234.9, 4.8],[234.2, 5.3]]
for 2 components.

DESCRIPTION:

Task sdfit is a basic line-fitter for single-dish spectra. It assumes that the spectra have been
calibrated in sdcal. Furthermore, it assumes that any selection of scans, IFs, polarizations,
and time and channel averaging/smoothing has also already been done (in sdcal) as there are
no controls for these. Note that you can run sdcal with calmode = ’none’ and do selection,
writing out a new scantable.

Note that multiple scans and IFs can in principle be handled, but we recommend that you
use scanlist, field, and iflist to give a single selection for each fit.

For complicated spectra, sdfit does not do a good job of ”auto-guessing” the starting model
for the fit. We recommend you use sd.fitter in the toolkit which has more options, such as
fixing components in the fit and supplying starting guesses by hand.

WARNING: sdfit will currently return the fit for the first row in the scantable. Does not
handle multiple polarizations.

See the sdcal description for information on fluxunit conversion and the telescope pa-
rameter.

• sdlist

Keyword arguments:
infile -- name of input SD dataset
scanaverage -- average integrations within scans

options: (bool) True,False
default: False
example: if True, this happens in read-in

For GBT, set False!
listfile -- Name of output file for summary list

default: ’’ (no output file)
example: ’mysd_summary.txt’
WARNING: output file will be overwritten

DESCRIPTION:

Task sdlist lists the scan summary of the dataset after importing as a scantable into ASAP.
It will optionally output this summary as file.

CHAPTER 8. SINGLE DISH DATA PROCESSING 191

Note that if your PAGER environment variable is set to ’less’ and you have set the ’verbose’
ASAP environment variable to True (the default), then the screen version of the summary
will page. You can disable this for sdlist by setting sd.rcParams[’verbose’]=False before
running sdlist. Set it back afterwards if you want lots of information.

• sdplot

Keyword arguments:
sdfile -- name of input SD dataset

default: none - must input file name
example: ’mysd.asap’

See sdcal for allowed formats.
telescope -- the telescope name or characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: telescope=’GBT’ for the GBT

telescope=’AT’ for one of the default scopes
known to ASAP.
telescope=[104.9,0.43] diameter(m), ap.eff.
telescope=[0.743] gain in Jy/K
telescope=’FIX’ to change default fluxunit
see description below

fluxunit -- units for line flux
options: ’K’,’Jy’,’’
default: ’’ (keep current unit)
WARNING: For GBT data, see description below.

specunit -- units for spectral axis
options: (str) ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (keep current specunit)
example: this will be the units for masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable
WARNING: frame=’REST’ not yet implemented

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist

CHAPTER 8. SINGLE DISH DATA PROCESSING 192

and iflist
iflist -- list of IF id numbers to select

default: [] (use all IFs)
example: [15]

scanaverage -- average integrations within scans
options: (bool) True,False
default: False
example: if True, this happens in read-in

timeaverage -- average times for multiple scans
options: (bool) True,False
default: True

polaverage -- average polarizations
options: (bool) True,False
default: True

kernel -- type of spectral smoothing
options: ’hanning’,’gaussian’,’boxcar’,’none’
default: ’none’

kwidth -- width of spectral smoothing kernel
options: (int) in channels
default: 5
example: 5 or 10 seem to be popular for boxcar

ignored for hanning (fixed at 5 chans)
(0 will turn off gaussian or boxcar)

stack -- code for stacking on single plot
options: ’p’,’b’,’i’,’t’,’s’ or

’pol’, ’beam’, ’if’, ’time’, ’scan’
default: ’p’
example: maximum of 25 stacked spectra

stack by pol, beam, if, time, scan
panel -- code for splitting into multiple panels

options: ’p’,’b’,’i’,’t’,’s’ or
’pol’, ’beam’, ’if’, ’time’, ’scan’

default: ’i’
example: maximum of 25 panels

panel by pol, beam, if, time, scan
flrange -- range for flux axis of plot

options: (list) [min,max]
default: [] (full range)
example: flrange=[-0.1,2.0] if ’K’

assumes current fluxunit
sprange -- range for spectral axis of plot

options: (list) [min,max]
default: [] (full range)
example: sprange=[42.1,42.5] if ’GHz’

assumes current specunit

CHAPTER 8. SINGLE DISH DATA PROCESSING 193

linecat -- control for line catalog plotting
options: (str) ’all’,’none’ or by molecule
default: ’none’ (no lines plotted)
example: linecat=’SiO’ for SiO lines

linecat=’*OH’ for alcohols
uses sprange to limit catalog

WARNING: specunit must be in frequency (*Hz)
to plot from the line catalog!
and must be ’GHz’ or ’MHz’ to use
sprange to limit catalog

linedop -- doppler offset for line catalog plotting
options: (float) doppler velocity (km/s)
default: 0.0
example: linedop=-30.0

plotfile -- file name for hardcopy output
options: (str) filename.eps,.ps,.png
default: ’’ (no hardcopy)
example: ’specplot.eps’,’specplot.png’

Note this autodetects the format from
the suffix (.eps,.ps,.png).

DESCRIPTION:

Task sdplot displays single-dish spectra. It assumes that the spectra have been calibrated
in sdcal. It does allow selection of scans, IFs, polarizations, and some time and channel
averaging/smoothing options also, but does not write out this data.

Some plot options, like annotation and changing titles, legends, colors, fonts, and the like are
not supported in this task. You should use sd.plotter from the ASAP toolkit directly for
this.

This task uses the JPL line catalog as supplied by ASAP. If you wish to use a different catalog,
or have it plot the line IDs from top or bottom (rather than alternating), then you will need
to explore the sd toolkit also.

Note that multiple scans and IFs can in principle be handled through stacking and panelling,
but this is fairly rudimentary at present and you have little control of what happens in
individual panels. We recommend that you use scanlist, field, and iflist to give a single
selection for each run.

Currently, setting specunit = ’GHz’ fixes the x-axis span of each IF panel to be the same
(an example of the limitations of ASAP plotting at present).

See the sdcal description for information on fluxunit conversion and the telescope pa-
rameter.

WARNING: be careful plotting OTF (on-the-fly) mosaic data with lots of fields!

• sdstat

CHAPTER 8. SINGLE DISH DATA PROCESSING 194

Keyword arguments:
sdfile -- name of input SD dataset

default: none - must input file name
example: ’mysd.asap’

See sdcal for allowed formats.
telescope -- the telescope name or characteristics

options: (str) name or (list) list of gain info
default: ’’ (none set)
example: telescope=’GBT’ for the GBT

telescope=’AT’ for one of the default scopes
known to ASAP.
telescope=[104.9,0.43] diameter(m), ap.eff.
telescope=[0.743] gain in Jy/K
telescope=’FIX’ to change default fluxunit
see description below

fluxunit -- units for line flux
options: ’K’,’Jy’,’’
default: ’’ (keep current fluxunit)
WARNING: For GBT data, see description below.

specunit -- units for spectral axis
options: ’channel’,’km/s’,’GHz’,’MHz’,’kHz’,’Hz’,’’
default: ’’ (keep current specunit)
example: make sure this is the same units of masklist

frame -- frequency frame for spectral axis
options: (str) ’LSRK’,’REST’,’TOPO’,’LSRD’,’BARY’,

’GEO’,’GALACTO’,’LGROUP’,’CMB’
default: currently set frame in scantable

doppler -- doppler mode
options: (str) ’RADIO’,’OPTICAL’,’Z’,’BETA’,’GAMMA’
default: currently set doppler in scantable

scanlist -- list of scan numbers to process
default: [] (use all scans)
example: [21,22,23,24]

field -- selection string for selecting scans by name
default: ’’ (no name selection)
example: ’FLS3a*’

this selection is in addition to scanlist
and iflist

iflist -- list of IF id numbers to select
default: [] (use all IFs)
example: [15]

masklist -- list of mask regions to INCLUDE in stats
default: [] (whole spectrum)
example: [4000,4500] for one region

[[1000,3000],[5000,7000]]

CHAPTER 8. SINGLE DISH DATA PROCESSING 195

these must be pairs of [lo,hi] boundaries
invertmask -- invert mask (EXCLUDE masklist instead)

options: (bool) True,False
default: false

xstat -- RETURN ONLY: a Python dictionary of line statistics

keys: ’rms’,’stddev’,’max’,’min’,’sum’,’median’,’mean’,
’eqw’

example: print "rms = ",xstat[’rms’]
these can be used for testing in scripts or
for regression

’eqw’ is equivalent width (sum/mag) where mag
is either max or min depending on which has
greater magnitude.

DESCRIPTION:

Task sdstat computes basic statistics (rms, mean, median, sum) for single-dish spectra. It
assumes that the spectra have been calibrated in sdcal. Furthermore, it assumes that any
selection of scans, IFs, polarizations, and time and channel averaging/smoothing has also
already been done (in sdcal) as there are no controls for these. Note that you can run sdcal
with calmode = ’none’ and do selection, writing out a new scantable.

Note that multiple scans and IFs can in principle be handled, but we recommend that you
use scanlist, field, and iflist to give a single selection for each run.

See the sdcal description for information on fluxunit conversion and the telescope pa-
rameter.

WARNING: If you do have multiple scantable rows, then xstat values will be lists.

8.2.2 A Single Dish Analysis Use Case With SDTasks

As an example, the following illustrates the use of the SDtasks for the Orion data set, which contains
the HCCCN line in one of its IFs. This walk-through contains comments about setting parameter
values and some options during processing.

#####################################
#
ORION-S SDtasks Use Case
Position-Switched data
Version STM 2007-03-04
#
This is a detailed walk-through
for using the SDtasks on a

CHAPTER 8. SINGLE DISH DATA PROCESSING 196

test dataset.
#
#####################################
import time
import os

NOTE: you should have already run
asap_init()
to import the ASAP tools as sd.<tool>
and the SDtasks

#
This is the environment variable
pointing to the head of the CASA
tree that you are running
casapath=os.environ[’AIPSPATH’]

#
This bit removes old versions of the output files
os.system(’rm -rf sdusecase_orions* ’)
#
This is the path to the OrionS GBT ms in the data repository
datapath=casapath+’/data/regression/ATST5/OrionS/OrionS_rawACSmod’
#
The follwing will remove old versions of the data and
copy the data from the repository to your
current directory. Comment this out if you already have it
and don’t want to recopy
os.system(’rm -rf OrionS_rawACSmod’)
copystring=’cp -r ’+datapath+’ .’
os.system(copystring)

This resets all of the CASA task parameters to their
global defaults. Note that these are not necessarily
the proper defaults for specific tasks (see below).
restore()

Now is the time to set some of the more useful
ASAP environment parameters (the ones that the
ASAP User Manual claims are in the .asaprc file).
These are in the Python dictionary sd.rcParams
You can see whats in it by typing:
#sd.rcParams
One of them is the ’verbose’ parameter which tells
ASAP whether to spew lots of verbiage during processing

CHAPTER 8. SINGLE DISH DATA PROCESSING 197

or to keep quiet. The default is
#sd.rcParams[’verbose’]=True
You can make ASAP run quietly (with only task output) with
#sd.rcParams[’verbose’]=False

Another key one is to tell ASAP to save memory by
going off the disk instead. The default is
#sd.rcParams[’scantable.storage’]=’memory’
but if you are on a machine with small memory, do
#sd.rcParams[’scantable.storage’]=’disk’

You can reset back to defaults with
#sd.rcdefaults

##########################
#
ORION-S HC3N
Position-Switched data
#
##########################
startTime=time.time()
startProc=time.clock()

##########################
List data
##########################
List the contents of the dataset
First reset parameter defaults (safe)
default(’sdlist’)

You can see its inputs with
#inp(’sdlist’)
or just
#inp
now that the defaults(’sdlist’) set the
taskname=’sdlist’
#
Set the name of the GBT ms file
infile = ’OrionS_rawACSmod’

Set an output file in case we want to
refer back to it
listfile = ’sdusecase_orions_summary.txt’
sdlist()

CHAPTER 8. SINGLE DISH DATA PROCESSING 198

You could also just type
#go

You should see something like:
#
#--
Scan Table Summary
#--
#Beams: 1
#IFs: 26
#Polarisations: 2 (linear)
#Channels: 8192
#
#Observer: Joseph McMullin
#Obs Date: 2006/01/19/01:45:58
#Project: AGBT06A_018_01
#Obs. Type: OffOn:PSWITCHOFF:TPWCAL
#Antenna Name: GBT
#Flux Unit: Jy
#Rest Freqs: [4.5490258e+10] [Hz]
#Abcissa: Channel
#Selection: none
#
#Scan Source Time Integration
Beam Position (J2000)
IF Frame RefVal RefPix Increment
#--
20 OrionS_psr 01:45:58 4 x 30.0s
0 05:15:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233
21 OrionS_ps 01:48:38 4 x 30.0s
0 05:35:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233
22 OrionS_psr 01:51:21 4 x 30.0s
0 05:15:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

CHAPTER 8. SINGLE DISH DATA PROCESSING 199

23 OrionS_ps 01:54:01 4 x 30.0s
0 05:35:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233
24 OrionS_psr 02:01:47 4 x 30.0s
0 05:15:13.5 -05.24.08.2
12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336
25 OrionS_ps 02:04:27 4 x 30.0s
0 05:35:13.5 -05.24.08.2
12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336
26 OrionS_psr 02:07:10 4 x 30.0s
0 05:15:13.5 -05.24.08.2
12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336
27 OrionS_ps 02:09:51 4 x 30.0s
0 05:35:13.5 -05.24.08.2
12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

The HC3N and CH3OH lines are in IFs 0 and 2 respectively
of scans 20,21,22,23. We will pull these out in our
calibration.

##########################
Calibrate data
##########################
We will use the sdcal task to calibrate the data.
Set the defaults
default(’sdcal’)

You can see the inputs with
#inp

CHAPTER 8. SINGLE DISH DATA PROCESSING 200

Set our infile (which would have been set from our run of
sdlist if we were not cautious and reset defaults).
infile = ’OrionS_rawACSmod’

Currently, the ASAP scantable filler does not fully recognize
data from the GBT, and it thinks that the data is in ’Jy’
(what it does when it doesn’t know any better) instead of
’K’, which is what it really is. So we tell sdcal to fix
this for us:
telescope = ’FIX’
fluxunit = ’K’

Lets leave the spectral axis in channels for now
specunit = ’channel’

This is position-switched data so we tell sdcal this
calmode = ’ps’

For GBT data, it is safest to not have scantable pre-average
integrations within scans.
scanaverage = False

We do want sdcal to average up scans and polarization after
calibration however.
timeaverage = True
polaverage = True

Do an atmospheric optical depth (attenuation) correction
Input the zenith optical depth at 43 GHz
tau = 0.09

Select our scans and IFs (for HC3N)
scanlist = [20,21,22,23]
iflist = [0]

We do not require selection by field name (they are all
the same except for on and off)
field = ’’

We will do some spectral smoothing
For this demo we will use boxcar smoothing rather than
the default
#kernel=’hanning’
We will set the width of the kernel to 5 channels
kernel = ’boxcar’

CHAPTER 8. SINGLE DISH DATA PROCESSING 201

kwidth = 5

We wish to fit out a baseline from the spectrum
The GBT has particularly nasty baselines :(
We will let ASAP use auto_poly_baseline mode
but tell it to drop the 1000 edge channels from
the beginning and end of the spectrum.
A 2nd-order polynomial will suffice for this test.
You might try higher orders for fun.
blmode = ’auto’
blpoly = 2
edge = [1000]

We will not give it regions as an input mask
though you could, with something like
#masklist=[[1000,3000],[5000,7000]]
masklist = []

By default, we will not get plots in sdcal (but
can make them using sdplot).
plotlevel = 0
But if you wish to see a final spectrum, set
#plotlevel = 1
or even
#plotlevel = 2
to see intermediate plots and baselining output.

Now we give the name for the output file
sdfile = ’sdusecase_orions_hc3n.asap’

We will write it out in ASAP scantable format
outform = ’asap’

You can look at the inputs with
#inp

Before running, lets save the inputs in case we want
to come back and re-run the calibration.
saveinputs(’sdcal’,’sdcal.orions.save’)
These can be recovered by
#execfile ’sdcal.orions.save’

We are ready to calibrate
sdcal()

CHAPTER 8. SINGLE DISH DATA PROCESSING 202

Note that after the task ran, it produced a file
sdcal.last which contains the inputs from the last
run of the task (all tasks do this). You can recover
this (anytime before sdcal is run again) with
#execfile ’sdcal.last’

##########################
List data
##########################
List the contents of the calibrated dataset
Set the input to the just created file
infile = sdfile
listfile = ’’
sdlist()

You should see:
#
#--
Scan Table Summary
#--
#Beams: 1
#IFs: 26
#Polarisations: 1 (linear)
#Channels: 8192
#
#Observer: Joseph McMullin
#Obs Date: 2006/01/19/01:45:58
#Project: AGBT06A_018_01
#Obs. Type: OffOn:PSWITCHOFF:TPWCAL
#Antenna Name: GBT
#Flux Unit: K
#Rest Freqs: [4.5490258e+10] [Hz]
#Abcissa: Channel
#Selection: none
#
#Scan Source Time Integration
Beam Position (J2000)
IF Frame RefVal RefPix Increment
#--
0 OrionS_ps 01:52:05 1 x 08:00.5
0 05:35:13.5 -05.24.08.2
0 LSRK 4.5489354e+10 4096 6104.233
#
Note that our scans are now collapsed (timeaverage=True) but
we still have our IF 0

CHAPTER 8. SINGLE DISH DATA PROCESSING 203

##########################
Plot data
##########################
default(’sdplot’)

The file we produced after calibration
(if we hadn’t reset defaults it would have
been set - note that sdplot,sdfit,sdstat use
sdfile as the input file, which is the output
file of sdcal).
sdfile = ’sdusecase_orions_hc3n.asap’

Lets just go ahead and plot it up as-is
sdplot()

Looks ok. Plot with x-axis in GHz
specunit=’GHz’
sdplot()

Note that the rest frequency in the scantable
is set correctly to the HCCCN line at 45.490 GHz.
So you can plot the spectrum in km/s
specunit=’km/s’
sdplot()

Zoom in
sprange=[-100,50]
sdplot()

Lets plot up the lines to be sure
We have to go back to GHz for this
(known deficiency in ASAP)
specunit=’GHz’
sprange=[45.48,45.51]
linecat=’all’
sdplot()

Too many lines! Focus on the HC3N ones
linecat=’HCCCN’
sdplot()

Finally, we can convert from K to Jy
using the aperture efficiencies we have
coded into the sdtasks

CHAPTER 8. SINGLE DISH DATA PROCESSING 204

telescope=’GBT’
fluxunit=’Jy’
sdplot()

Lets save this plot
plotfile=’sdusecase_orions_hc3n.eps’
sdplot()

##########################
Off-line Statistics
##########################
Now do some region statistics
First the line-free region
Set parameters
default(’sdstat’)
sdfile = ’sdusecase_orions_hc3n.asap’

Keep the default spectrum and flux units
K and channel
fluxunit = ’’
specunit = ’’

Pick out a line-free region
You can bring up a default sdplot again
to check this
masklist = [[5000,7000]]

This is a line-free region so we don’t need
to invert the mask
invertmask = False

You can check with
#inp

sdstat()

You see that sdstat returns some results in
the Python dictionary xstat. You can assign
this to a variable
off_stat = xstat

and look at it
off_stat
which should give
{’eqw’: 38.563105620704945,

CHAPTER 8. SINGLE DISH DATA PROCESSING 205

’max’: 0.15543246269226074,
’mean’: -0.0030361821409314871,
’median’: -0.0032975673675537109,
’min’: -0.15754437446594238,
’rms’: 0.047580458223819733,
’stddev’: 0.047495327889919281,
’sum’: -6.0754003524780273}

#You see it has some keywords for the various
#stats. We want the standard deviation about
#the mean, or ’stddev’
print "The off-line std. deviation = ",off_stat[’stddev’]
which should give
The off-line std. deviation = 0.0474953278899

or better formatted (using Python I/O formatting)
print "The off-line std. deviation = %5.3f K" %\

(off_stat[’stddev’])
which should give
The off-line std. deviation = 0.047 K

##########################
On-line Statistics
##########################
Now do the line region
Continue setting or resetting parameters
masklist = [[3900,4200]]

sdstat()

line_stat = xstat

look at these
line_stat
which gives
{’eqw’: 73.335154614280981,
’max’: 0.92909121513366699,
’mean’: 0.22636228799819946,
’median’: 0.10317134857177734,
’min’: -0.13283586502075195,
’rms’: 0.35585442185401917,
’stddev’: 0.27503398060798645,
’sum’: 68.135047912597656}

CHAPTER 8. SINGLE DISH DATA PROCESSING 206

of particular interest are the max value
print "The on-line maximum = %5.3f K" % (line_stat[’max’])
which gives
The on-line maximum = 0.929 K

and the estimated equivalent width (in channels)
which is the sum/max
print "The estimated equivalent width = %5.1f channels" %\

(line_stat[’eqw’])
which gives
The estimated equivalent width = 73.3 channels

##########################
Line Fitting
##########################
Now we are ready to do some line fitting
Default the parameters
default(’sdfit’)

Set our input file
sdfile = ’sdusecase_orions_hc3n.asap’

Stick to defaults
fluxunit = ’K’, specunit = ’channel’
fluxunit = ’’
specunit = ’’

We will try auto-fitting first
fitmode = ’auto’
A single Gaussian
nfit = [1]
Leave the auto-parameters to their defaults for
now, except ignore the edge channels
edge = [1000]

Lets see a plot while doing this
plotlevel = 1

Save the fit output in a file
fitfile = ’sdusecase_orions_hc3n.fit’

Go ahead and do the fit
sdfit()

If you had verbose mode on, you probably saw something

CHAPTER 8. SINGLE DISH DATA PROCESSING 207

like:
#
0: peak = 0.811 K , centre = 4091.041 channel, FWHM = 72.900 channel
area = 62.918 K channel
#

The fit is output in the dictionary xstat
fit_stat = xstat

fit_stat
#
{’cent’: [[4091.04052734375, 0.72398632764816284]],
’fwhm’: [[72.899894714355469, 1.7048574686050415]],
’nfit’: 1,
’peak’: [[0.81080442667007446, 0.016420882195234299]]}
#
So you can write them out or test them:
print "The line-fit parameters were:"
print " maximum = %6.3f +/- %6.3f K" %\

(fit_stat[’peak’][0][0],fit_stat[’peak’][0][1])
print " center = %6.1f +/- %6.1f channels" %\

(fit_stat[’cent’][0][0],fit_stat[’cent’][0][1])
print " FWHM = %6.2f +/- %6.2f channels" %\

(fit_stat[’fwhm’][0][0],fit_stat[’fwhm’][0][1])
#
Which gives:
The line-fit parameters were:
maximum = 0.811 +/- 0.016 K
center = 4091.0 +/- 0.7 channels
FWHM = 72.90 +/- 1.70 channels

We can do the fit in km/s also
specunit = ’km/s’
For some reason we need to help it along with a mask
maskline = [-50,0]

fitfile = ’sdusecase_orions_hc3n_kms.fit’
sdfit()
Should give (if in verbose mode)
0: peak = 0.811 K , centre = -27.134 km/s, FWHM = 2.933 km/s
area = 2.531 K km/s
#
or

fit_stat_kms = xstat

CHAPTER 8. SINGLE DISH DATA PROCESSING 208

with
fit_stat_kms
giving
{’cent’: [[-27.133651733398438, 0.016480101272463799]],
’fwhm’: [[2.93294358253479, 0.038807671517133713]],
’nfit’: 1,
’peak’: [[0.81080895662307739, 0.0092909494414925575]]}

print "The line-fit parameters were:"
print " maximum = %6.3f +/- %6.3f K" %\

(fit_stat_kms[’peak’][0][0],fit_stat_kms[’peak’][0][1])
print " center = %6.2f +/- %6.2f km/s" %\

(fit_stat_kms[’cent’][0][0],fit_stat_kms[’cent’][0][1])
print " FWHM = %6.4f +/- %6.4f km/s" %\

(fit_stat_kms[’fwhm’][0][0],fit_stat_kms[’fwhm’][0][1])

The line-fit parameters were:
maximum = 0.811 +/- 0.009 K
center = -27.13 +/- 0.02 km/s
FWHM = 2.9329 +/- 0.0388 km/s

##########################
#
End ORION-S Use Case
#
##########################

8.3 Using The ASAP Toolkit Within CASA

ASAP is included with the CASA installation/build. It is not loaded upon start-up, however, and
must be imported as a standard Python package. A convenience function exists for importing
ASAP along with a set of prototype tasks for single dish analysis:

CASA <1>: asap_init

Once this is done, all of the ASAP functionality is now under the Python ’sd’ tool. bf: Note: This
means that if you are following the ASAP cookbook or documentation, all of the commands should
be invoked with a ’sd.’ before the native ASAP command.

The ASAP interface is essentially the same as that of the CASA toolkit, that is, there are groups
of functionality (aka tools) which have the ability to operate on your data. Type:

CASA <4>: sd.<TAB>

CHAPTER 8. SINGLE DISH DATA PROCESSING 209

sd.__class__ sd._validate_bool sd.list_scans
sd.__date__ sd._validate_int sd.mask_and
sd.__delattr__ sd.asapfitter sd.mask_not
sd.__dict__ sd.asaplinefind sd.mask_or
sd.__doc__ sd.asaplog sd.merge
sd.__file__ sd.asaplotbase sd.os
sd.__getattribute__ sd.asaplotgui sd.plf
sd.__hash__ sd.asapmath sd.plotter
sd.__init__ sd.asapplotter sd.print_log
sd.__name__ sd.asapreader sd.quotient
sd.__new__ sd.average_time sd.rc
sd.__path__ sd.calfs sd.rcParams
sd.__reduce__ sd.calnod sd.rcParamsDefault
sd.__reduce_ex__ sd.calps sd.rc_params
sd.__repr__ sd.commands sd.rcdefaults
sd.__setattr__ sd.defaultParams sd.reader
sd.__str__ sd.dosigref sd.scantable
sd.__version__ sd.dototalpower sd.selector
sd._asap sd.fitter sd.simple_math
sd._asap_fname sd.is_ipython sd.sys
sd._asaplog sd.linecatalog sd.unique
sd._is_sequence_or_number sd.linefinder sd.version
sd._n_bools sd.list_files sd.welcome
sd._to_list sd.list_rcparameters sd.xyplotter

...to see the list of tools.

In particular, the following are essential for most reduction sessions:

• sd.scantable - the data structure for ASAP and the core methods for manipulating the
data; allows importing data, making data selections, basic operations (averaging, baselines,
etc) and setting data characteristics (e.g., frequencies, etc).

• sd.selector - selects a subset of data for subsequent operations

• sd.fitter - fit data

• sd.plotter - plotting facilities (uses matplotlib)

The scantable functions are used most often and can be applied to both the initial scantable and
to any spectrum from that scan table. Type

sd.scantable.<TAB>

(using TAB completion) to see the full list.

CHAPTER 8. SINGLE DISH DATA PROCESSING 210

8.3.1 Environment Variables

The asaprc environment variables are stored in the Python dictionary sd.rcParams in CASA.
This contains a number of parameters that control how ASAP runs, for both tools and tasks. You
can see what these are set to by typing at the CASA prompt:

CASA <2>: sd.rcParams
Out[2]:

{’insitu’: True,
’plotter.colours’: ’’,
’plotter.decimate’: False,
’plotter.ganged’: True,
’plotter.gui’: True,
’plotter.histogram’: False,
’plotter.linestyles’: ’’,
’plotter.panelling’: ’s’,
’plotter.papertype’: ’A4’,
’plotter.stacking’: ’p’,
’scantable.autoaverage’: True,
’scantable.freqframe’: ’LSRK’,
’scantable.save’: ’ASAP’,
’scantable.storage’: ’memory’,
’scantable.verbosesummary’: False,
’useplotter’: True,
’verbose’: True}

The use of these parameters is described in detail in the ASAP Users Guide.

You can also change these parameters through the sd.rc function. The use of this is described in
help sd.rc:

CASA <3>: help(sd.rc)
Help on function rc in module asap:

rc(group, **kwargs)
Set the current rc params. Group is the grouping for the rc, eg
for scantable.save the group is ’scantable’, for plotter.stacking, the
group is ’plotter’, and so on. kwargs is a list of attribute
name/value pairs, eg

rc(’scantable’, save=’SDFITS’)

sets the current rc params and is equivalent to

rcParams[’scantable.save’] = ’SDFITS’

Use rcdefaults to restore the default rc params after changes.

CHAPTER 8. SINGLE DISH DATA PROCESSING 211

8.3.2 Import

Data can be loaded into ASAP by using the scantable function which will read a variety of
recognized formats (RPFITS, varieties of SDFITS, and the CASA MeasurementSet). For example:

CASA <1>: scans = sd.scantable(’OrionS_rawACSmod’, average=False)
Importing OrionS_rawACSmod...

NOTE: It is important to use the average=False parameter setting as the calibration routines
supporting GBT data require all of the individual times and phases.

NOTE: GBT data may need some pre-processing prior to using ASAP. In particular, the program
which converts GBT raw data into CASA MeasurementSets tends to proliferate the number of
spectral windows due to shifts in the tracking frequency; this is being worked on by GBT staff. In
addition, GBT SDFITS is currently not readable by ASAP (in progress).

NOTE: The MeasurementSet to scantable conversion is able to deduce the reference and source
data and assigns an ’ r’ to the reference data to comply with the ASAP conventions.

NOTE: GBT observing modes are identifiable in scantable in the name assignment: position
switched (’ ps’), Nod (’ nod’), and frequency switched (’ fs’). These are combined with the reference
data assignment. (For example, the reference data taken in position switched mode observation
are assigned as ’ psr’.)

Use the summary function to examine the data and get basic information:

CASA <8>: scans.summary()
--
Scan Table Summary
--
Beams: 1
IFs: 26
Polarisations: 2 (linear)
Channels: 8192

Observer: Joseph McMullin
Obs Date: 2006/01/19/01:45:58
Project: AGBT06A_018_01
Obs. Type: OffOn:PSWITCHOFF:TPWCAL
Antenna Name: GBT
Flux Unit: Jy
Rest Freqs: [4.5490258e+10] [Hz]
Abcissa: Channel
Selection: none

Scan Source Time Integration
Beam Position (J2000)

IF Frame RefVal RefPix Increment
--

CHAPTER 8. SINGLE DISH DATA PROCESSING 212

20 OrionS_psr 01:45:58 4 x 30.0s
0 05:15:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

21 OrionS_ps 01:48:38 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

22 OrionS_psr 01:51:21 4 x 30.0s
0 05:15:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

23 OrionS_ps 01:54:01 4 x 30.0s
0 05:35:13.5 -05.24.08.2

0 LSRK 4.5489354e+10 4096 6104.233
1 LSRK 4.5300785e+10 4096 6104.233
2 LSRK 4.4074929e+10 4096 6104.233
3 LSRK 4.4166215e+10 4096 6104.233

24 OrionS_psr 02:01:47 4 x 30.0s
0 05:15:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

25 OrionS_ps 02:04:27 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

26 OrionS_psr 02:07:10 4 x 30.0s
0 05:15:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

27 OrionS_ps 02:09:51 4 x 30.0s
0 05:35:13.5 -05.24.08.2

12 LSRK 4.3962126e+10 4096 6104.2336
13 LSRK 4.264542e+10 4096 6104.2336
14 LSRK 4.159498e+10 4096 6104.2336
15 LSRK 4.3422823e+10 4096 6104.2336

CHAPTER 8. SINGLE DISH DATA PROCESSING 213

8.3.3 Scantable Manipulation

Within ASAP, data is stored in a scantable, which holds all of the observational information and
provides functionality to manipulate the data and information. The building block of a scantable
is an integration which is a single row of a scantable. Each row contains just one spectrum for each
beam, IF and polarization.

Once you have a scantable in ASAP, you can select a subset of the data based on scan numbers,
sources, or types of scan; note that each of these selections returns a new ’scantable’ with all of the
underlying functionality:

CASA <5>: scan27=scans.get_scan(27) # Get the 27th scan
CASA <6>: scans20to24=scans.get_scan(range(20,25)) # Get scans 20 - 24
CASA <7>: scans_on=scans.get_scan(’*_ps’) # Get ps scans on source
CASA <8>: scansOrion=scans.get_scan(’Ori*’) # Get all Orion scans

To copy a scantable, do:

CASA <15>: ss=scans.copy()

8.3.3.1 Data Selection

In addition to the basic data selection above, data can be selected based on IF, beam, polarization,
scan number as well as values such as Tsys. To make a selection you create a selector object
which you then define with various selection functions, e.g.,

sel = sd.selector() # initialize a selector object
sel.<TAB> will list all options

sel.set_ifs(0) # select only the first IF of the data
scans.set_selection(sel) # apply the selection to the data
print scans # shows just the first IF

8.3.3.2 State Information

Some properties of a scantable apply to all of the data, such as example, spectral units, frequency
frame, or Doppler type. This information can be set using the scantable set xxxx methods.
These are currently:

CASA <1>: sd.scantable.set_<TAB>
sd.scantable.set_dirframe sd.scantable.set_fluxunit sd.scantable.set_restfreqs
sd.scantable.set_doppler sd.scantable.set_freqframe sd.scantable.set_selection
sd.scantable.set_feedtype sd.scantable.set_instrument sd.scantable.set_unit

For example, sd.scantable.set fluxunit sets the default units that describe the flux axis:

CHAPTER 8. SINGLE DISH DATA PROCESSING 214

scans.set_fluxunit(’K’) # Set the flux unit for data to Kelvin

Choices are ’K’ or ’Jy’. Note: the scantable.set fluxunit function only changes the name of
the current fluxunit. To change fluxunits, use scantable.convert flux as described in § 8.3.4.2
instead (currently you need to do some gymnastics for GBT or non-AT telescopes).

Use sd.scantable.set unit to set the units to be used on the spectral axis:

scans.set_unit(’GHz’) # Use GHZ as the spectral axis for plots

The choices for the units are ’km/s’, ’channel’, or ’*Hz’ (e.g. ’GHz’, ’MHz’, ’kHz’, ’Hz’). This
does the proper conversion using the current frame and doppler reference as can be seen when the
spectrum is plotted.

You can use sd.scantable.set freqframe to set the frame in which the freqency (spectral) axis
is defined:

CASA <2>: help(sd.scantable.set_freqframe)
Help on method set_freqframe in module asap.scantable:

set_freqframe(self, frame=None) unbound asap.scantable.scantable method
Set the frame type of the Spectral Axis.
Parameters:

frame: an optional frame type, default ’LSRK’. Valid frames are:
’REST’, ’TOPO’, ’LSRD’, ’LSRK’, ’BARY’,
’GEO’, ’GALACTO’, ’LGROUP’, ’CMB’

Examples:
scan.set_freqframe(’BARY’)

The most useful choices here are frame = ’LSRK’ (the default for the function) and frame =
’TOPO’ (what the GBT actually observes in). Note that the ’REST’ option is not yet available.
The doppler frame is set with sd.scantable.set doppler:

CASA <3>: help(sd.scantable.set_doppler)
Help on method set_doppler in module asap.scantable:

set_doppler(self, doppler=’RADIO’) unbound asap.scantable.scantable method
Set the doppler for all following operations on this scantable.
Parameters:

doppler: One of ’RADIO’, ’OPTICAL’, ’Z’, ’BETA’, ’GAMMA’

Finally, there are a number of functions to query the state of the scantable. These can be found in
the usual way:

CASA <4>: sd.scantable.get<TAB>
sd.scantable.get_abcissa sd.scantable.get_restfreqs sd.scantable.getbeamnos
sd.scantable.get_azimuth sd.scantable.get_scan sd.scantable.getcycle
sd.scantable.get_column_names sd.scantable.get_selection sd.scantable.getif
sd.scantable.get_direction sd.scantable.get_sourcename sd.scantable.getifnos

CHAPTER 8. SINGLE DISH DATA PROCESSING 215

sd.scantable.get_elevation sd.scantable.get_time sd.scantable.getpol
sd.scantable.get_fit sd.scantable.get_tsys sd.scantable.getpolnos
sd.scantable.get_fluxunit sd.scantable.get_unit sd.scantable.getscan
sd.scantable.get_parangle sd.scantable.getbeam sd.scantable.getscannos

These include functions to get the current values of the states mentioned above, as well as as meth-
ods to query the number of scans, IFs, and polarizations in the scantable, and their designations.
See the inline help for the individual functions for more information.

8.3.3.3 Masks

Several functions (fitting, baseline subtraction, statistics, etc) may be run on a range of channels
(or velocity/frequency ranges). You can create masks of this type using the create mask function:

spave = an averaged spectrum
spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # create a region over channels 5000-7000
rms=spave.stats(stat=’rms’,mask=rmsmask) # get rms of line free region

rmsmask=spave.create_mask([3000,4000],invert=True) # choose the region
excluding the specified channels

The mask is stored in a simple Python variable (a list) and so may be manipulated using an Python
facilities.

8.3.3.4 Scantable Management

scantables can be listed via:

CASA <33>: sd.list_scans()
The user created scantables are:
[’scans20to24’, ’s’, ’scan27’]

As every scantable will consume memory, if you will not use it any longer, you can explicitly
remove it via:

del <scantable name>

8.3.3.5 Scantable Mathematics

It is possible to do simple mathematics directly on scantables from the CASA command line
using the +,−, ∗, / operators as well as their cousins + =,− =, ∗ =, / =

CHAPTER 8. SINGLE DISH DATA PROCESSING 216

CASA <10>: scan2=scan1+2.0 # add 2.0 to data
CASA <11>: scan *= 1.05 # scale spectrum by 1.05

NOTE: mathematics between two scantables is not currently available in ASAP.

8.3.3.6 Scantable Save and Export

ASAP can save scantables in a variety of formats, suitable for reading into other packages. The
formats are:

• ASAP – This is the internal format used for ASAP. It is the only format that allows the
user to restore the data, fits, etc, without loosing any information. As mentioned before, the
ASAP scantable is a CASA Table (memory-based table). This function just converts it to a
disk-based table. You can access this with the CASA browsetable task or any other CASA
table tasks.

• SDFITS – The Single Dish FITS format. This format was designed for interchange between
packages but few packages can actually read it.

• ASCII – A simple text based format suitable for the user to process using Python or other
means.

• MeasurementSet (V2: CASA format) – Saves the data in a MeasurementSet. All CASA tasks
which use an MS should work on this.

scans.save(’output_filename’,’format’), e.g.,
CASA <19>: scans.save(’FLS3a_calfs’,’MS2’)

8.3.4 Calibration

For some observatories, the calibration happens transparently as the input data contains the Tsys
measurements taken during the observations. The nominal ’Tsys’ values may be in Kelvin or Jansky.
The user may wish to apply a Tsys correction or apply gain-elevation and opacity corrections.

8.3.4.1 Tsys scaling

If the nominal Tsys measurement at the telescope is wrong due to incorrect calibration, the scale
function allows it to be corrected.

scans.scale(1.05,tsys=True) # by default only the spectra are scaled
(and not the corresponding Tsys) unless tsys=True

CHAPTER 8. SINGLE DISH DATA PROCESSING 217

8.3.4.2 Flux and Temperature Unit Conversion

To convert measurements in Kelvin to Jansky (and vice versa), the convert flux function may be
used. This converts and scales the data to the selected units. The user may need to supply the
aperture efficiency, telescope diameter or the Jy/K factor

scans.convert_flux(eta=0.48, d=35.) # Unknown telescope
scans.convert_flux(jypk=15) # Unknown telecope (alternative)
scans.convert_flux() # known telescope (mostly AT telescopes)
scans.convert_flux(eta=0.48) # if telescope diameter known

8.3.4.3 Gain-Elevation and Atmospheric Optical Depth Corrections

At higher frequencies, it is important to make corrections for atmospheric opacity and gain-elevation
effects. NOTE: Currently, the MS to scantable conversion does not adequately populate the
azimuth and elevation in the scantable. As a result, one must calculate these via:

scans.recalc_azel()
Computed azimuth/elevation using
Position: [882590, -4.92487e+06, 3.94373e+06]
Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

Time: 01:48:38 Direction: 05:35:13.5 -05.24.08.2
=> azel: 154.696 43.1847 (deg)

...

Once you have the correct Az/El, you can correct for a known opacity by:

scans.opacity(tau=0.09) # Opacity from which the correction factor:
exp(tau*zenith-distance)

8.3.4.4 Calibration of GBT data

Data from the GBT is uncalibrated and comes as sets of integrations representing the different
phases within a calibration cycle (e.g., on source, calibration on, on source, calibration off, on
reference, calibration on; on reference, calibration off). Currently, there are a number of routines
emulating the standard GBT calibration (in GBTIDL):

• calps - calibrate position switched data

CHAPTER 8. SINGLE DISH DATA PROCESSING 218

• calfs - calibrate frequency switched data

• calnod - calibration nod (beam switch) data

All these routines calibrate the spectral data to antenna temperature adopting the GBT calibration
method as described in the GBTIDL calibration document available at:

• http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf

There are two basic steps:

First: determine system temperature using a noise tube calibrator (sd.dototalpower())

For each integration, the system temperature is calculated from CAL noise on/off data as:

Tsys = Tcal x <refcaloff >
<refcalon−refcaloff > + Tcal

2

ref refers to reference data and the spectral data are averaged across the bandpass. Note that the
central 80% of the spectra are used for the calculation.

Second, determine antenna temperature (sd.dosigref())

The antenna temperature for each channel is calculated as:

Ta(ν) = Tsys x sig(ν)−ref(ν)
ref(ν)

where sig = 1
2(sigcalon + sigcaloff), ref = 1

2(sigcalon + sigcaloff).

Each calibration routine may be used as:

scans=sd.scantable(’inputdata’,False) # create a scantable called ’scans’
calibrated_scans = sd.calps(scans,[scanlist]) # calibrate scantable with position-switched

scheme

Note: For calps and calnod, the scanlist must be scan pairs in correct order as these routines only
do miminum checking.

8.3.5 Averaging

One can average polarizations in a scantable using the sd.scantable.average pol function:

averaged_scan = scans.average_pol(mask,weight)

where:
Parameters:

mask: An optional mask defining the region, where the
averaging will be applied. The output will have all
specified points masked.

weight: Weighting scheme. ’none’ (default), ’var’ (1/var(spec)

http://wwwlocal.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf

CHAPTER 8. SINGLE DISH DATA PROCESSING 219

weighted), or ’tsys’ (1/Tsys**2 weighted)

Example:

spave = stave.average_pol(weight=’tsys’)

One can also average scans over time using sd.average time:

sd.average_time(scantable,mask,scanav,weight,align)

where:

Parameters:
one scan or comma separated scans
mask: an optional mask (only used for ’var’ and ’tsys’ weighting)
scanav: True averages each scan separately.

False (default) averages all scans together,
weight: Weighting scheme.

’none’ (mean no weight)
’var’ (1/var(spec) weighted)
’tsys’ (1/Tsys**2 weighted)
’tint’ (integration time weighted)
’tintsys’ (Tint/Tsys**2)
’median’ (median averaging)

align: align the spectra in velocity before averaging. It takes
the time of the first spectrum in the first scantable
as reference time.

Example:

stave = sd.average_time(scans,weight=’tintsys’)

Note that alignment of the velocity frame should be done before averaging if the time spanned by
the scantable is long enough. This is done through the align=True option in sd.average time, or
explicity through the sd.scantable.freq align function, e.g.

CASA <62>: sc = sd.scantable(’orions_scan20to23_if0to3.asap’,False)
CASA <63>: sc.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <64>: av = sd.average_times(sc)

The time averaging can also be applied to multiple scantables. This might have been taken on differ-
ent days, for example. The sd.average time function takes multiple scantables as input. However,
if taken at significantly different times (different days for example) then sd.scantable.freq align
must be used to align the velocity scales to the same time, e.g.

CASA <65>: sc1 = sd.scantable(’orions_scan21_if0to3.asap’,False)
CASA <66>: sc2 = sd.scantable(’orions_scan23_if0to3.asap’,False)
CASA <67>: sc1.freq_align()
Aligned at reference Epoch 2006/01/19/01:49:23 (UTC) in frame LSRK
CASA <68>: sc2.freq_align(reftime=’2006/01/19/01:49:23’)
Aligned at reference Epoch 2006/01/19/01:54:46 (UTC) in frame LSRK
CASA <69>: scav = sd.average_times(sc1,sc2)

CHAPTER 8. SINGLE DISH DATA PROCESSING 220

8.3.6 Spectral Smoothing

Smoothing on data can be done as follows:

scantable.smooth(kernel, # type of smoothing: ’hanning’ (default), ’gaussian’, ’boxcar’
width, # width in pixls (ignored for hanning); FWHM for gaussian.
insitu) # if False (default), do smoothing in-situ; otherwise,

make new scantable

Example:
spave is an averaged spectrum
spave.smooth(’boxcar’,5) # do a 5 pixel boxcar smooth on the spectrum
sd.plotter.plot(spave) # should see smoothed spectrum

8.3.7 Baseline Fitting

The function sd.scantable.poly baseline carries out a baseline fit, given an mask of channels
(if desired):

msk=scans.create_mask([100,400],[600,900])
scans.poly_baseline(msk,order=1)

This will fit a first order polynomial to the selected channels and subtract this polynomial from the
full spectrum.

The auto poly baseline function can be used to automatically baseline your data without having
to specify channel ranges for the line free data. It automatically figures out the line-free emission
and fits a polynomial baseline to that data. The user can use masks to fix the range of channels or
velocity range for the fit as well as mark the band edge as invalid:

scans.auto_poly_baseline(mask,edge,order,threshold,chan_avg_limit,plot,insitu):

Parameters:
mask: an optional mask retreived from scantable
edge: an optional number of channel to drop at

the edge of spectrum. If only one value is
specified, the same number will be dropped from
both sides of the spectrum. Default is to keep
all channels. Nested tuples represent individual
edge selection for different IFs (a number of spectral
channels can be different)

order: the order of the polynomial (default is 0)
threshold: the threshold used by line finder. It is better to

keep it large as only strong lines affect the
baseline solution.

chan_avg_limit:
a maximum number of consequtive spectral channels to

CHAPTER 8. SINGLE DISH DATA PROCESSING 221

average during the search of weak and broad lines.
The default is no averaging (and no search for weak
lines). If such lines can affect the fitted baseline
(e.g. a high order polynomial is fitted), increase this
parameter (usually values up to 8 are reasonable). Most
users of this method should find the default value
sufficient.

plot: plot the fit and the residual. In this each
indivual fit has to be approved, by typing ’y’
or ’n’

insitu: if False a new scantable is returned.
Otherwise, the scaling is done in-situ
The default is taken from .asaprc (False)

Example:
scans.auto_poly_baseline(order=2,threshold=5)

8.3.8 Line Fitting

Multi-component Gaussian fitting is available. This is done by creating a fitting object, specifying
fit parameters and finally fitting the data. Fitting can be done on a scantable selection or an
entire scantable using the auto fit function.

#spave is an averaged spectrum
f=sd.fitter() # create fitter object
msk=spave.create_mask([3928,4255]) # create mask region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the scantable and region

#
Automatically guess start values

f.fit() # fit
f.plot(residual=True) # plot residual
f.get_parameters() # retrieve fit parameters
0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
area = 59.473 K channel
f.store_fit(’orions_hc3n_fit.txt’) # store fit

#
To specify initial guess:

f.set_function(gauss=1) # set a single gaussian component
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
(peak,center,fwhm)
#
For multiple components set
initial guesses for each, e.g.

f.set_function(gauss=2) # set two gaussian components
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian

,component=0) # for first component (0)
f.set_gauss_parameters(0.1,4200,100\ # set initial guesses for Gaussian

CHAPTER 8. SINGLE DISH DATA PROCESSING 222

,component=1) # for second component (1)

8.3.9 Plotting

The ASAP plotter uses the same Python matplotlib library as in CASA (for x-y plots). It is
accessed via the:

sd.plotter<TAB> # see all functions (omitted here)
sd.plotter.plot(scans) # the workhorse function
sd.plotter.set<TAB>
sd.plotter.set_abcissa sd.plotter.set_legend sd.plotter.set_range
sd.plotter.set_colors sd.plotter.set_linestyles sd.plotter.set_selection
sd.plotter.set_colours sd.plotter.set_mask sd.plotter.set_stacking
sd.plotter.set_font sd.plotter.set_mode sd.plotter.set_title
sd.plotter.set_histogram sd.plotter.set_ordinate
sd.plotter.set_layout sd.plotter.set_panelling

Spectra can be plotted at any time, and it will attempt to do the correct layout depending on
whether it is a set of scans or a single scan.

The details of the plotter display (matplotlib) are detailed in the earlier section.

8.3.10 Single Dish Spectral Analysis Use Case With ASAP Toolkit

Below is a script that illustrates how to reduce single dish data using ASAP within CASA. First a
summary of the dataset is given and then the script.

MeasurementSet Name: /home/rohir3/jmcmulli/SD/OrionS_rawACSmod MS Version 2
#
Project: AGBT06A_018_01
Observation: GBT(1 antennas)
#
#Data records: 256 Total integration time = 1523.13 seconds
Observed from 01:45:58 to 02:11:21
#
#Fields: 4
ID Name Right Ascension Declination Epoch
0 OrionS 05:15:13.45 -05.24.08.20 J2000
1 OrionS 05:35:13.45 -05.24.08.20 J2000
2 OrionS 05:15:13.45 -05.24.08.20 J2000
3 OrionS 05:35:13.45 -05.24.08.20 J2000
#
#Spectral Windows: (8 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 8192 LSRK 45464.3506 6.10423298 50005.8766 45489.3536 RR LL HC3N

CHAPTER 8. SINGLE DISH DATA PROCESSING 223

1 8192 LSRK 45275.7825 6.10423298 50005.8766 45300.7854 RR LL HN15CO
2 8192 LSRK 44049.9264 6.10423298 50005.8766 44074.9293 RR LL CH3OH
3 8192 LSRK 44141.2121 6.10423298 50005.8766 44166.2151 RR LL HCCC15N
12 8192 LSRK 43937.1232 6.10423356 50005.8813 43962.1261 RR LL HNCO
13 8192 LSRK 42620.4173 6.10423356 50005.8813 42645.4203 RR LL H15NCO
14 8192 LSRK 41569.9768 6.10423356 50005.8813 41594.9797 RR LL HNC18O
15 8192 LSRK 43397.8198 6.10423356 50005.8813 43422.8227 RR LL SiO

Scans: 21-24 Setup 1 HC3N et al
Scans: 25-28 Setup 2 SiO et al

casapath=os.environ[’AIPSPATH’]

#ASAP script # COMMENTS
#-------------------------------------- ---
import asap as sd #import ASAP package into CASA

#Orion-S (SiO line reduction only)
#Notes:
#scan numbers (zero-based) as compared to GBTIDL

#changes made to get to OrionS_rawACSmod
#modifications to label sig/ref positions

os.environ[’AIPSPATH’]=casapath #set this environment variable back - ASAP changes it

s=sd.scantable(’OrionS_rawACSmod’,False)#load the data without averaging

s.summary() #summary info
s.set_fluxunit(’K’) # make ’K’ default unit
scal=sd.calps(s,[20,21,22,23]) # Calibrate HC3N scans

scal.recalc_azel() # recalculate az/el to
scal.opacity(0.09) # do opacity correction
sel=sd.selector() # Prepare a selection
sel.set_ifs(0) # select HC3N IF
scal.set_selection(sel) # get this IF
stave=sd.average_time(scal,weight=’tintsys’) # average in time
spave=stave.average_pol(weight=’tsys’) # average polarizations;Tsys-weighted (1/Tsys**2) average
sd.plotter.plot(spave) # plot

spave.smooth(’boxcar’,5) # boxcar 5
spave.auto_poly_baseline(order=2) # baseline fit order=2
sd.plotter.plot(spave) # plot

spave.set_unit(’GHz’)
sd.plotter.plot(spave)
sd.plotter.set_histogram(hist=True) # draw spectrum using histogram
sd.plotter.axhline(color=’r’,linewidth=2) # zline
sd.plotter.save(’orions_hc3n_reduced.eps’)# save postscript spectrum

CHAPTER 8. SINGLE DISH DATA PROCESSING 224

spave.set_unit(’channel’)
rmsmask=spave.create_mask([5000,7000]) # get rms of line free regions
rms=spave.stats(stat=’rms’,mask=rmsmask)# rms

#--
#Scan[0] (OrionS_ps) Time[2006/01/19/01:52:05]:
IF[0] = 0.048
#--
LINE

linemask=spave.create_mask([3900,4200])
max=spave.stats(’max’,linemask) # IF[0] = 0.918
sum=spave.stats(’sum’,linemask) # IF[0] = 64.994
median=spave.stats(’median’,linemask) # IF[0] = 0.091
mean=spave.stats(’mean’,linemask) # IF[0] = 0.210

Fitting
spave.set_unit(’channel’) # set units to channel
sd.plotter.plot(spave) # plot spectrum
f=sd.fitter()
msk=spave.create_mask([3928,4255]) # create region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the data and region for the fitter
f.fit() # fit
f.plot(residual=True) # plot residual

f.get_parameters() # retrieve fit parameters
0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
area = 59.473 K channel

f.store_fit(’orions_hc3n_fit.txt’) # store fit

Save the spectrum
spave.save(’orions_hc3n_reduced’,’ASCII’,True) # save the spectrum

8.4 Single Dish Imaging

Single dish imaging is supported within CASA using standard tasks and tools. The data must be
in the MeasurementSet format. Once there, you can use the sdgrid task or the im (imager) tool
to create images:

Tool example:

CHAPTER 8. SINGLE DISH DATA PROCESSING 225

scans.save(’outputms’,’MS2’) # Save your data from ASAP into an MS

im.open(’outputms’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the dataa

spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters

phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

gridding function used
(default=prolate spheroidal wave function)

im.makeimage(type=’singledish’, # make the image
image=’FLS3a_HI.image’)

8.4.1 Single Dish Imaging Use Case With ASAP Toolkit

Again, the data summary and then the script is given below.

Project: AGBT02A_007_01
Observation: GBT(1 antennas)
#
Telescope Observation Date Observer Project
GBT [4.57539e+09, 4.5754e+09]Lockman AGBT02A_007_01
GBT [4.57574e+09, 4.57575e+09]Lockman AGBT02A_007_02
GBT [4.5831e+09, 4.58313e+09]Lockman AGBT02A_031_12
#
Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
Data records: 76860 Total integration time = 7.74277e+06 seconds
Observed from 22:05:41 to 12:51:56
#
Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
Fields: 2
ID Name Right Ascension Declination Epoch
0 FLS3a 17:18:00.00 +59.30.00.00 J2000
1 FLS3b 17:18:00.00 +59.30.00.00 J2000
#
Thu Feb 1 23:15:15 2007 NORMAL ms::summary:
Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 1024 LSRK 1421.89269 2.44140625 2500 1420.64269 XX YY
1 1024 LSRK 1419.39269 2.44140625 2500 1418.14269 XX YY

FLS3 data calibration
this is calibration part of FLS3 data
#

CHAPTER 8. SINGLE DISH DATA PROCESSING 226

casapath=os.environ[’AIPSPATH’]
import asap as sd
os.environ[’AIPSPATH’]=casapath

print ’--Import--’

s=sd.scantable(’FLS3_all_newcal_SP’,false) # read in MeasurementSet

print ’--Split--’

splitting the data for each field
s0=s.get_scan(’FLS3a*’) # split the data for the field of interest
s0.save(’FLS3a_HI.asap’) # save this scantable to disk (asap format)
del s0 # free up memory from scantable

print ’--Calibrate--’
s=sd.scantable(’FLS3a_HI.asap’) # read in scantable from disk (FLS3a)
s.set_fluxunit(’K’) # set the brightness units to Kelvin
scanns = s.getscannos() # get a list of scan numbers
sn=list(scanns) # convert it to a list
print "No. scans to be processed:", len(scanns)

res=sd.calfs(s,sn) # calibrate all scans listed using frequency
switched calibration method

print ’--Save calibrated data--’
res.save(’FLS3a_calfs’, ’MS2’) # Save the dataset as a MeasurementSet

print ’--Image data--’

im.open(’FLS3a_calfs’) # open the data set
im.selectvis(nchan=901,start=30,step=1, # choose a subset of the dataa
spwid=0,field=0) # (just the key emission channels)
dir=’J2000 17:18:29 +59.31.23’ # set map center
im.defineimage(nx=150,cellx=’1.5arcmin’, # define image parameters
phasecenter=dir,mode=’channel’,start=30, # (note it assumes symmetry if ny,celly
nchan=901,step=1) # aren’t specified)

im.setoptions(ftmachine=’sd’,cache=1000000000) # choose SD gridding
im.setsdoptions(convsupport=4) # use this many pixels to support the

gridding function used
(default=prolate spheroidal wave function)

im.makeimage(type=’singledish’,image=’FLS3a_HI.image’) # make the image

8.5 Known Issues, Problems, Deficiencies and Features

The Single-Dish calibration and analysis package within CASA is still very much under develop-
ment. Not surprisingly, there are a number of issues with ASAP and the SDtasks that are known

CHAPTER 8. SINGLE DISH DATA PROCESSING 227

and are under repair. Some of these are non-obvious ”features” of the way ASAP or sd is imple-
mented, or limitations of the current Python tasking environment. Some are functions that have
yet to be implemented. These currently include:

1. sd.plotter

Currently you can get hardcopy only after making a viewed plot. Ideally, ASAP should allow
you to choose the device for plotting when you set up the plotter.

Multi-panel plotting is poor. Currently you can only add things (like lines, text, etc.) to the
first panel. Also, sd.plotter.set range() sets the same range for multiple panels, while we
would like it to be able to set the range for each independently, including the default ranges.

The appearance of the plots need to be made a lot better. In principle matplotlib can make
”publication quality” figures, but in practice you have to do alot of work to make it do that,
and our plots are not good.

The sd.plotter object remembers things throughout the session and thus can easily get con-
fused. For example you have to reset the range sd.plotter.set range() if you have ever
set it manually. This is not always the expected behavior but is a consequence of having
sd.plotter be its own object that you feed data and commands to.

Eventually we would like the capability to interactively set things using the plots, like select
frequency ranges, identify lines, start fitting.

2. sd.selector

The selector object only allows one selection of each type. It would be nice to be able to make
a union of selections (without resorting to query) for the set name - note that the others like
scans and IFs work off lists which is fine. Should make set name work off lists of names.

3. sd.scantable

There is no useful inline help on the scantable constructor when you do help sd.scantable,
nor in help sd.

The inline help for scantable.summary claims that there is a verbose parameter, but there is
not. The scantable.verbosesummary asaprc parameter (e.g. in sd.rcParams) does nothing.

GBT data has incorrect fluxunit (’Jy’, should be ’K’), freqframe (’LSRK’, is really ’TOPO’)
and reference frequency (set to that of the first IF only).

You cannot set the rest frequencies for GBT data. THIS IS THE MOST SERIOUS BUG
RIGHT NOW.

The sd.scantable.freq align does not yet work correctly.

Need to add to scantable.stats: ’maxord’, ’minord’ - the ordinate (channel, vel, freq) of
the max/min

4. sd general issues

There should be a sdhelp equivalent of toolhelp and tasklist for the sd tools and tasks.

The current output of ASAP is verbose, and is controlled by setting sd.rcParams[’verbose’]=False
(or True). At the least we should make some of the output less cryptic.

CHAPTER 8. SINGLE DISH DATA PROCESSING 228

Strip off leading and trailing whitespace on string parameters.

5. SDtasks general issues

The SDtasks work off of files saved onto disk in one of the scantable supported formats. It
might be useful to be able to work off of scantables in memory (passing the objects) but this
would require changes to the tasking system. Note that this behavior is consistent throughout
the casapy tasks.

Need interactive region selection, baseline fitting, etc.

6. sdcal

Can crash if timeaverage=True and/or polaverage=True and you give a list of scans that
contain a combination of IFs. We need to make the tools smarter about this, but in the
meantime you should restrict your scanlist and iflist to scans with the same set of IFs.

7. sdfit

Handles multiple IFs poorly (a general problem currently in the package).

No way to input guesses.

8. sdplot

Only handles included JPL line catalog.

Also, see sd.plotter issues above.

9. sdstat

Cannot return the location (channel, frequency, or velocity) of the maximum or minimum.

CHAPTER 8. SINGLE DISH DATA PROCESSING 229

Figure 8.1: Wiring diagram for the SDtask sdcal. The stages of processing within the task are
shown, along with the parameters that control them.

CHAPTER 8. SINGLE DISH DATA PROCESSING 230

Figure 8.2: Multi-panel display of the scantable. There are two plots per scan indicating the psr
(reference position data) and the ps (source data).

Figure 8.3: Two panel plot of the calibrated spectra. The GBT data has a separate scan for the
SOURCE and REFERENCE positions so scans 20,21,22 and 23 result in these two spectra.

CHAPTER 8. SINGLE DISH DATA PROCESSING 231

Figure 8.4: Calibrated spectrum with a line at zero (using histograms).

CHAPTER 8. SINGLE DISH DATA PROCESSING 232

Figure 8.5: FLS3a HI emission. The display illustrates the visualization of the data cube (left) and
the profile display of the cube at the cursor location (right); the Tools menu of the Viewer Display
Panel has a Spectral Profile button which brings up this display. By default, it grabs the left-mouse
button. Pressing down the button and moving in the display will show the profile variations.

Appendix A

Obtaining and Installing CASA

A.1 Installation Script

Currently you must be able to log into your system as the root user or an administrator user to
install CASA.

The easiest way to install CASA on a RedHat Enterprise Linux (or compatible) system is to use
our installation script, load-casapy. This script will ftp the CASA RPMs and install them. To use
it, first use the link above to download it to your hard disk. Next, make sure execute permission is
set for the file.

Install CASA into /usr by logging in as root and running:

load-casapy –root

This option will install CASA into /usr, but it can only be run by the root user.

Alternatively, you can visit our FTP server, download the rpms, and install them by hand. Note:
you must be root/administrater to install CASA in this manner.

See the following for more details:

https://wikio.nrao.edu/bin/view/Software/ObtainingCASA

A.2 Startup

This section assumes that CASA has been installed on your LINUX or OSX system. For NRAO-
AOC testers, you should do the following on an AOC RHE4 machine:

> . /home/casa/casainit.sh
or
> source /home/casa/casainit.csh

233

Appendix B

Python and CASA

CASA uses Python, IPython and matplotlib within the package. IPython is an enhanced, inter-
active shell to Python which provides many features for efficient command line interaction, while
matplotlib is a Python 2-D plotting library for publication quality figures in different hardcopy
formats.

From www.python.org: ”Python is an interpreted, interactive, object-oriented programming lan-
guage”. Python is used as the underlying command line interface/scripting language to CASA.
Thus, CASA inherits the features and the annoyances of Python. For example, since Python is
inherently 0-based in its indexing of arrays, vectors, etc, CASA is also 0-based; any Index inputs
(e.g., start (for start channel), fieldIndex, antennaID, etc) will start with 0. Another example is
that indenting of lines means something to Python, of which users will have to be aware.

Some key links are:

• http://python.org – Main Python page

• http://python.org/doc/2.4.2/ref/ref.html – Python Reference

• http://python.org/doc/2.4.2/tut/tut.html – Python Tutorial

• http://ipython.scipy.org – IPython page

• http://matplotlib.sourceforge.net – matplotlib page

Each of the features of these components behave in the standard way within CASA . In the following
sections, we outline the key elements for analysis interactions; see the Python references and the
IPython page for the full suite of functionality.

B.1 Automatic parentheses

Automatic parenthesis is enabled for calling functions with argument lists; this feature is intended
to allow less typing for common situations. IPython will display the interpretation of the line,

234

http://python.org
http://python.org/doc/2.4.2/ref/ref.html
http://python.org/doc/2.4.2/tut/tut.html
http://ipython.scipy.org
http://matplotlib.sourceforge.net

APPENDIX B. APPENDIX: PYTHON AND CASA 235

beneath the one typed, as indicated by the ’-------->’. Default behavior in CASA is to have
automatic parenthesis enabled.

B.2 Indentation

Python pays attention to indentation of lines in scripts or when you enter them interactively. It
uses indentation to determine the level of nesting in loops. Be careful when cutting and pasting,
if you get the wrong indentation, then unpredictable things can happen (usually it just gives an
error).

A blank line can be used to return the indentation to a previous level. For example, expanded pa-
rameters in tasks cause indentation in subsequent lines in the interface. For example, the following
snippet of inputs from clean can be cut and pasted without error due to the blank line after the
indented parameters:

mode = ’channel’ # Type of selection
nchan = -1 # Number of channels to select
start = 0 # Start channel
step = 1 # Increment between channels/velocity
width = 1 # Channel width

alg = ’clark’ # Algorithm to use

If the blank line were not there, an error would result if you pasted this at the casapy prompt.

B.3 Lists and Ranges

Sometimes, you need to give a task a list of indices. For example, some tasks and tools expect a
comma-separated Python list, e.g.

scanlist = [241, 242, 243, 244, 245, 246]

You can use the Python range function to generate a list of consecutive numbers, e.g.

scanlist = range(241,247)

giving the same list as above, e.g.

CASA <1>: scanlist=range(241,247)
CASA <2>: print scanlist
[241, 242, 243, 244, 245, 246]

Note that range starts from the first limit and goes to one below the second limit (Python is
0-based, and range is designed to work in loop functions). If only a single limit is given, the first
limit is treated as 0, and the one given is used as the second, e.g.

APPENDIX B. APPENDIX: PYTHON AND CASA 236

CASA <3>: iflist=range(4)
CASA <4>: print iflist
[0, 1, 2, 3]

You can also combine multiple ranges by summing lists

CASA <5>: scanlist=range(241,247) + range(251,255)
CASA <6>: print scanlist
[241, 242, 243, 244, 245, 246, 251, 252, 253, 254]

B.4 System shell access

Any input line beginning with a ’ !’ character is passed verbatim (minus the ’ !’, of course) to the
underlying operating system (the sole exception to this is the ’cd’ command which must be executed
without the ’!’).

Several common commands (ls, pwd, cd, less) may be executed with or without the ’ !’.

CASA [1]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [2]: ls n*
ngc5921.ms ngc5921.py
CASA [3]: !cp -r ../test.py .

In addition, filesystem navigation is aided through the use of bookmarks to simplify access to
frequently-used directories:

CASA [4]: cd /home/ballista/jmcmulli/other_data
CASA [4]: pwd
/home/ballista/jmcmulli/other_data
CASA [5]: bookmark other_data
CASA [6]: cd /export/home/corsair-vml/jmcmulli/data
CASA [7]: pwd
/export/home/corsair-vml/jmcmulli/data
CASA [8]: cd -b other_data
(bookmark:data) -> /home/ballista/jmcmulli/other_data

Output from shell commands can be captured in two ways:

1. sx shell command, !!shell command - this captures the output to a list

CASA [1]: sx pwd # stores output of ’pwd’ in a list
Out[1]: [’/home/basho3/jmcmulli/pretest’]

CASA [2]: !!pwd # !! is a shortcut for ’sx’
Out[2]: [’/home/basho3/jmcmulli/pretest’]

APPENDIX B. APPENDIX: PYTHON AND CASA 237

CASA [3]: sx ls v* # stores output of ’pwd’ in a list
Out[3]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’,
’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [4]: x=_ # remember ’_’ is a shortcut for the output from the last command

CASA [5]: x
Out[5]:

[’vla_calplot.jpg’,
’vla_calplot.png’,
’vla_msplot_cals.jpg’,
’vla_msplot_cals.png’,
’vla_plotcal_bpass.jpg’,
’vla_plotcal_bpass.png’, ’vla_plotcal_fcal.jpg’,
’vla_plotcal_fcal.png’,
’vla_plotvis.jpg’,
’vla_plotvis.png’]

CASA [6]: y=Out[2] # or just refer to the enumerated output

CASA [7]: y
Out[7]: [’/home/basho3/jmcmulli/pretest’]

2. sc - captures the output to a variable; options are ’-l’ and ’-v’

CASA [1]: sc x=pwd # capture output from ’pwd’ to the variable ’x’

CASA [2]: x
Out[2]: ’/home/basho3/jmcmulli/pretest’

CASA [3]: sc -l x=pwd # capture the output from ’pwd’ to the variable ’x’ but
split newlines into a list (similar to sx command)

CASA [4]: x
Out[4]: [’/home/basho3/jmcmulli/pretest’]

CASA [5]: sc -v x=pwd # capture output from ’pwd’ to a variable ’x’ and
show what you get (verbose mode)

x ==
’/home/basho3/jmcmulli/pretest’

APPENDIX B. APPENDIX: PYTHON AND CASA 238

CASA [6]: x
Out[6]: ’/home/basho3/jmcmulli/pretest’

B.5 Logging

There are two components to logging within CASA. Logging of all command line inputs is done
via IPython.

Upon startup, CASA will log all commands to a file called ipython.log. This file can be changed
via the use of the ipythonrc file.

The following line sets up the logging for CASA . There are four options following the specification
of the logging file: 1) append, 2) rotate (each session of CASA will create a new log file with
a counter incrementing ipython.log.1, ipython.log.2 etc, 3) over (overwrite existing file), and 4)
backup (renames exising log file to log name).

logfile ./ipython.log append

The command logstate will provide details on the current logging setup:

CASA [12]: logstate

File: ipython.log
Mode: append
State: active

Logging can be turned on and off using the logon, logoff commands.

The second component is the output from applications which is directed to the file ./casapy.log.

Your command line history is automatically maintained and stored in the local directory as ipython.log;
this file can be edited and re-executed as appropriate using the execfile ’filename’ feature. In ad-
dition, logging of output from commands is sent to the file casapy.log, also in your local directory;
this is brought up automatically.

The logger has a range of features including the ability to filter messages, sort by Priority, Time,
etc, and the ability to insert additional comments.

* CASA logger: casalogger1.jpg Figure 1:

* CASA logger - Search facility: Specify a string in the entry box to have all instances of the found
string highlighted. casalogger select.jpg Figure 2:

* CASA logger - Filter facility: The log output can be sorted by Priority, Time, Origin. One can
also filter for a string found in the Message. casalogger filter.jpg Figure 3:

* CASA logger - Insert facility: The log output can be augmented by adding notes or comments
during the reduction. The file should then be saved to disk to retain these changes. casalog-
ger insert.jpg Figure 4:

APPENDIX B. APPENDIX: PYTHON AND CASA 239

B.6 History and Searching

Numbered input/output history is provided natively within IPython. Command history is also
maintained on-line.

CASA [11]: x=1

CASA [12]: y=3*x

CASA [13]: z=x**2+y**2

CASA [14]: x
Out[14]: 1

CASA [15]: y
Out[15]: 3

CASA [16]: z
Out[16]: 10

CASA [17]: Out[14] # Note: The ’Out’ vector contains command output
Out[17]: 1

CASA [18]: _15 # Note: The return value can be accessed by _number
Out[18]: 3

CASA [19]: ___ # Note: The last three return values can be accessed as:
Out[19]: 10 # _, __, ___

Command history can be accessed via the ’hist’ command. The history is reset at the beginning
of every CASA session, that is, typing ’hist’ when you first enter start CASA will not provide
any commands from the previous session; however, all of the commands are still available at the
command line and can be accessed through the up,down arrow keys, and through searching.

CASA [22]: hist
1 : __IP.system("vi temp.py") # Note:shell commands are designated in this way
2 : ipmagic("run -i temp.py") # Note:magic commands are designated in this way
3 : ipmagic("hist ")
4 : more temp.py
5 : __IP.system("more temp.py")
6 : quickhelp() # Note: autoparenthesis are added in the history
7 : im.open(’ngc5921.ms’)
8 : im.summary()
9 : ipmagic("pdoc im.setdata")
10: im.close()
11: quickhelp()
12: ipmagic("logstate ")
13: x=1

APPENDIX B. APPENDIX: PYTHON AND CASA 240

14: y=3*x
15: z=x**2+y**2
16: x
17: y
18: z
19: Out[16]
20: _17
21: ___

The history can be saved as a script or used as a macro for further use:

CASA [24]: save script.py 13:16
File ‘script.py‘ exists. Overwrite (y/[N])? y
The following commands were written to file ‘script.py‘:
x=1
y=3*x
z=x**2+y**2

CASA [25]: !more script.py
x=1
y=3*x
z=x**2+y**2

Note that the history commands will be saved up to, but not including the last value (i.e., history
commands 13-16 saves commands 13, 14, and 15).

There are two mechanisms for searching command history:

1. . Begin typing and use the Ctrl-p (previous,up) and Ctrl-n (next,down) to search through
only

The history items that match what you’ve typed so far. If you use Ctrl-p,Ctrl-n at a blank
prompt, they behave just like the normal arrow keys.

2. . Hit Ctrl-r; this opens a search prompt. Begin typing and the system searches your history
for

lines that contain what you’ve typed so far, completing what it can.

For example:

CASA [37]:

(reverse-i-search)‘’:

Typing anything after the colon will provide you with the last command matching the char-
acters, for example, typing ’op’ finds:

(reverse-i-search)‘op’: im.open(’ngc5921.ms’)

Subsequent hitting of Ctrl-r will search for the next command matching the characters.

APPENDIX B. APPENDIX: PYTHON AND CASA 241

B.7 Macros

Macros can be made for easy re-execution of previous commands. For example to store the com-
mands 13-15 to the macro ’example’:

CASA [31]: macro example 13:16
Macro ‘example‘ created. To execute, type its name (without quotes).
Macro contents:
x=1
y=3*x
z=x**2+y**2

CASA [32]: z
Out[32]: 6

CASA [33]: z=10

CASA [34]: example
Out[34]: Executing Macro...

CASA [35]: z
Out[35]: 6

CASA [36]:

B.8 On-line editing

You can edit files on-line in two ways:

1. Using the shell access via ’ !vi’

2. Using the ed function; this will edit the file but upon closing, it will try to execute the file;
using the ’script.py’ example above:

CASA [13]: ed script.py # this will bring up the file in your chosen editor
when you are finished editing the file,
it will automatically
execute it (as though you had done a
execfile ’script.py’

Editing... done. Executing edited code...

CASA [14]: x
Out[14]: 1

CASA [15]: y
Out[15]: 3

APPENDIX B. APPENDIX: PYTHON AND CASA 242

CASA [16]: z
Out[16]: 6

B.9 Executing Python scripts

Python scripts are simple text files containing lists of commands as if typed at the keyboard. Note:
the autoparentheses feature of IPython can not be used in scripts, that is, you should make sure
all function calls have any opening and closing parentheses.

file is script.py
My script to plot the observed visibilities
plotxy(’ngc5921.ms’,’uvdist’) #yaxis defaults to amplitude

This can be done by using the execfile command to execute this script. execfile will execute the
script as though you had typed the lines at the CASA prompt.

CASA [5]: execfile ’script.py’
--------> execfile(’script.py’)

B.10 How do I exit from CASA?

Hit <Cntl-d> or type at the CASA command line prompt:

CASA>%Exit

and press return.

Appendix C

Annotated Example Scripts

Note: These data sets are available with the full CASA rpm distribution. Other data sets can be
made available upon request. The scripts are intended to illustrate the types of commands needed
for different types of reduction/astronomical observations.

C.1 NGC 5921 — VLA red-shifted HI emission

Note: This script does not include any self-calibration steps.

##
#
Use Case Script for NGC 5921
#
Converted by STM 2007-05-26
Updated STM 2007-06-15 (Alpha Patch 1)
Last Updated STM 2007-09-05 (Alpha Patch 2+)
#
##

import time
import os

#
Set up some useful variables
#
Get to path to the CASA home and stip off the name
pathname=os.environ.get(’AIPSPATH’).split()[0]

This is where the NGC5921 UVFITS data will be
fitsdata=pathname+’/data/demo/NGC5921.fits’

The prefix to use for all output files
prefix=’ngc5921.usecase’

243

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 244

Clean up old files
os.system(’rm -rf ’+prefix+’*’)

#
#===
#
Import the data from FITS to MS
#
print ’--Import--’

Safest to start from task defaults
default(’importuvfits’)

Set up the MS filename and save as new global variable
msfile = prefix + ’.ms’

Use task importuvfits
fitsfile = fitsdata
vis = msfile
importuvfits()

#
Note that there will be a ngc5921.usecase.ms.flagversions
there containing the initial flags as backup for the main ms
flags.
#
#===
#
List a summary of the MS
#
print ’--Listobs--’

Don’t default this one and make use of the previous setting of
vis. Remember, the variables are GLOBAL!

You may wish to see more detailed information, like the scans.
In this case use the verbose = True option
verbose = True

listobs()

You should get in your logger window and in the casapy.log file
something like:
#
MeasurementSet Name: /home/sandrock2/smyers/Testing2/Sep07/ngc5921.usecase.ms
MS Version 2
#
Observer: TEST Project:
Observation: VLA
#

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 245

Data records: 22653 Total integration time = 5280 seconds
Observed from 09:19:00 to 10:47:00
#
ObservationID = 0 ArrayID = 0
Date Timerange Scan FldId FieldName SpwIds
13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+30500002_0 [0]
09:27:30.0 - 09:29:30.0 2 1 1445+09900002_0 [0]
09:33:00.0 - 09:48:00.0 3 2 N5921_2 [0]
09:50:30.0 - 09:51:00.0 4 1 1445+09900002_0 [0]
10:22:00.0 - 10:23:00.0 5 1 1445+09900002_0 [0]
10:26:00.0 - 10:43:00.0 6 2 N5921_2 [0]
10:45:30.0 - 10:47:00.0 7 1 1445+09900002_0 [0]
#
Fields: 3
ID Code Name Right Ascension Declination Epoch
0 C 1331+30500002_013:31:08.29 +30.30.32.96 J2000
1 A 1445+09900002_014:45:16.47 +09.58.36.07 J2000
2 N5921_2 15:22:00.00 +05.04.00.00 J2000
#
Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL
#
Feeds: 28: printing first row only
Antenna Spectral Window # Receptors Polarizations
1 -1 2 [R, L]
#
Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 246

23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8
#
Tables:
MAIN 22653 rows
ANTENNA 28 rows
DATA_DESCRIPTION 1 row
DOPPLER <absent>
FEED 28 rows
FIELD 3 rows
FLAG_CMD <empty>
FREQ_OFFSET <absent>
HISTORY 273 rows
OBSERVATION 1 row
POINTING 168 rows
POLARIZATION 1 row
PROCESSOR <empty>
SOURCE 3 rows
SPECTRAL_WINDOW 1 row
STATE <empty>
SYSCAL <absent>
WEATHER <absent>
#
#
#===
#
Get rid of the autocorrelations from the MS
#
print ’--Flagautocorr--’

Don’t default this one either, there is only one parameter (vis)

flagautocorr()

#
#===
#
Set the fluxes of the primary calibrator(s)
#
print ’--Setjy--’
default(’setjy’)

vis = msfile

#
1331+305 = 3C286 is our primary calibrator
Use the wildcard on the end of the source name
since the field names in the MS have inherited the

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 247

AIPS qualifiers
field = ’1331+305*’

This is 1.4GHz D-config and 1331+305 is sufficiently unresolved
that we dont need a model image. For higher frequencies
(particularly in A and B config) you would want to use one.
modimage = ’’

Setjy knows about this source so we dont need anything more

setjy()

#
You should see something like this in the logger and casapy.log file:
#
1331+30500002_0 spwid= 0 [I=14.76, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
#
So its using 14.76Jy as the flux of 1331+305 in the single Spectral Window
in this MS.
#
#===
#
Bandpass calibration
#
print ’--Bandpass--’
default(’bandpass’)

We can first do the bandpass on the single 5min scan on 1331+305
At 1.4GHz phase stablility should be sufficient to do this without
a first (rough) gain calibration. This will give us the relative
antenna gain as a function of frequency.

vis = msfile

set the name for the output bandpass caltable
btable = prefix + ’.bcal’
caltable = btable

No gain tables yet
gaintable = ’’

Use flux calibrator 1331+305 = 3C286 (FIELD_ID 0) as bandpass calibrator
field = ’0’
all channels
spw = ’’
No other selection
selectdata = False

In this band we do not need a-priori corrections for
antenna gain-elevation curve or atmospheric opacity
(at 8GHz and above you would want these)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 248

gaincurve = False
opacity = 0.0

Choose bandpass solution type
Pick standard time-binned B (rather than BPOLY)
bandtype = ’B’

set solution interval arbitrarily long (get single bpass)
solint = 86400.0

reference antenna Name 15 (15=VLA:N2) (Id 14)
refant = ’15’

bandpass()

You can use plotcal to examine the solutions
#default(’plotcal’)
#tablein = btable
#yaxis = ’amp’
#field = ’0’
#multiplot = True
#plotcal()
#
#yaxis = ’phase’
#plotcal()
#
Note the rolloff in the start and end channels. Looks like
channels 6-56 (out of 0-62) are the best

#===
#
Gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

Armed with the bandpass, we now solve for the
time-dependent antenna gains

vis = msfile

set the name for the output gain caltable
gtable = prefix + ’.gcal’
caltable = gtable

Use our previously determined bandpass
Note this will automatically be applied to all sources
not just the one used to determine the bandpass
bptable = btable

Gain calibrators are 1331+305 and 1445+099 (FIELD_ID 0 and 1)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 249

field = ’0,1’

We have only a single spectral window (SPW 0)
Choose 51 channels 6-56 out of the 63
to avoid end effects.
Channel selection is done inside spw
spw = ’0:6~56’

No other selection
selectdata = False

In this band we do not need a-priori corrections for
antenna gain-elevation curve or atmospheric opacity
(at 8GHz and above you would want these)
gaincurve = False
opacity = 0.0

scan-based G solutions for both amplitude and phase
gaintype = ’G’
solint = 0.
calmode = ’ap’

reference antenna 15 (15=VLA:N2)
refant = ’15’

gaincal()

You can use plotcal to examine the gain solutions
#default(’plotcal’)
#tablein = gtable
#yaxis = ’amp’
#field = ’0,1’
#multiplot = True
#plotcal()
#
#yaxis = ’phase’
#plotcal()
#
The amp and phase coherence looks good

#===
#
Bootstrap flux scale
#
print ’--Fluxscale--’
default(’fluxscale’)

vis = msfile

set the name for the output rescaled caltable
ftable = prefix + ’.fluxscale’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 250

fluxtable = ftable

point to our first gain cal table
caltable = gtable

we will be using 1331+305 (the source we did setjy on) as
our flux standard reference - note its extended name as in
the FIELD table summary above (it has a VLA seq number appended)
reference = ’1331*’

we want to transfer the flux to our other gain cal source 1445+099
transfer = ’1445*’

fluxscale()

In the logger you should see something like:
Flux density for 1445+09900002_0 in SpW=0 is:
2.48576 +/- 0.00123122 (SNR = 2018.94, nAnt= 27)

If you run plotcal() on the tablein = ’ngc5921.usecase.fluxscale’
you will see now it has brought the amplitudes in line between
the first scan on 1331+305 and the others on 1445+099

#===
#
Apply our calibration solutions to the data
(This will put calibrated data into the CORRECTED_DATA column)
#
print ’--ApplyCal--’
default(’applycal’)

vis = msfile

We want to correct the calibrators using themselves
and transfer from 1445+099 to itself and the target N5921

Start with the fluxscale/gain and bandpass tables
bptable = btable
gaintable = ftable

all channels
spw = ’’
selectdata = False

as before
gaincurve = False
opacity = 0.0

select the fields for 1445+099 and N5921
field = ’1,2’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 251

pick the 1445+099 out of the gain table for transfer
(NOTE: this currently uses TaQL strings)
gainselect = ’FIELD_ID==1’

applycal()

Now for completeness apply 1331+305 to itself

field = ’0’
gainselect = ’FIELD_ID==0’

The CORRECTED_DATA column now contains the calibrated visibilities

applycal()

#===
#
Split the gain calibrater data
#
print ’--Split (cal data)--’
default(’split’)

vis = msfile

We first want to write out the corrected data for the calibrator

Make an output vis file
calsplitms = prefix + ’.cal.split.ms’
outputvis = calsplitms

Select the 1445+099 field, all chans
field = ’1445*’
spw = ’’

pick off the CORRECTED_DATA column
datacolumn = ’corrected’

split()

#===
#
UV-plane continuum subtraction on the target
(this will update the CORRECTED_DATA column)
#
print ’--UV Continuum Subtract--’
default(’uvcontsub’)

vis = msfile

Pick off N5921
field = ’N5921*’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 252

Use channels 4-6 and 50-59 for continuum
#spw = ’0:4~6;50~59’
ALPHA ALERT: still does not use standard notation
spw = ’0’
channels = range(4,7)+range(50,60)

Averaging time (none)
solint = 0.0

Fit only a mean level
fitorder = 0

Do the uv-plane subtraction
fitmode = ’subtract’

Let it split out the data automatically for us
splitdata = True

uvcontsub()

You will see it made two new MS:
ngc5921.usecase.ms.cont
ngc5921.usecase.ms.contsub

srcsplitms = msfile + ’.contsub’

Note that ngc5921.usecase.ms.contsub contains the uv-subtracted
visibilities (in its DATA column), and ngc5921.usecase.ms.contsub
the pseudo-continuum visibilities (as fit).

The original ngc5921.usecase.ms now contains the uv-continuum
subtracted vis in its CORRECTED_DATA column and the continuum
in its MODEL_DATA column as per the fitmode=’subtract’

#===
#
Done with calibration
Now clean an image cube of N5921
#
print ’--Clean--’
default(’clean’)

Pick up our split source data
vis = srcsplitms

Make an image root file name
imname = prefix + ’.clean’
imagename = imname

Set up the output image cube

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 253

mode = ’channel’
nchan = 46
start = 5
step = 1

This is a single-source MS with one spw
field = ’0’
spw = ’’

Set the output image size and cell size (arcsec)
imsize = [256,256]
cell = [15.,15.]

Do a simple Hogbom clean, standard gain factor 0.1
alg = ’hogbom’
gain = 0.1

Fix maximum number of iterations
niter = 6000

Also set flux residual threshold (in mJy)
threshold=8.0

Set up the weighting
Use Briggs weighting (a moderate value, on the uniform side)
weighting = ’briggs’
rmode = ’norm’
robust = 0.5

No clean mask or cleanbox for now
mask = ’’
cleanbox = []

But if you had a cleanbox saved in a file, e.g. "regionfile.txt"
you could use it:
#cleanbox=’regionfile.txt’
#
and if you wanted to use interactive clean
#cleanbox=’interactive’

clean()

Should find stuff in the logger like:
#
Fitted beam used in restoration: 51.5643 by 45.6021 (arcsec) at pa 14.5411 (deg)
#
It will have made the images:

ngc5921.usecase.clean.image
ngc5921.usecase.clean.model
ngc5921.usecase.clean.residual

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 254

clnimage = imname+’.image’

#===
#
Done with imaging
Now view the image cube of N5921
#
#print ’--View image--’
#viewer(clnimage,’image’)

#===
#
Can do some image statistics if you wish
Treat this like a regression script
WARNING: currently requires toolkit
#
print ’ NGC5921 results ’
print ’ =============== ’

Pull the max cal amp value out of the MS
ms.open(calsplitms)
thistest_cal = max(ms.range(["amplitude"]).get(’amplitude’))
ms.close()
oldtest_cal = 34.0338668823
print ’ Cal Max amplitude should be ’,oldtest_cal
print ’ Found : Max = ’,thistest_cal
diff_cal = abs((oldtest_cal-thistest_cal)/oldtest_cal)
print ’ Difference (fractional) = ’,diff_cal

print ’’
Pull the max src amp value out of the MS
ms.open(srcsplitms)
thistest_src = max(ms.range(["amplitude"]).get(’amplitude’))
ms.close()
#oldtest_src = 1.37963354588 # This was in chans 5-50
oldtest_src = 46.2060050964 # now in all chans
print ’ Src Max amplitude should be ’,oldtest_src
print ’ Found : Max = ’,thistest_src
diff_src = abs((oldtest_src-thistest_src)/oldtest_src)
print ’ Difference (fractional) = ’,diff_src

print ’’
Pull the max and rms from the clean image
ia.open(clnimage)
statistics=ia.statistics()
thistest_immax=statistics[’max’][0]
oldtest_immax = 0.052414759993553162
print ’ Clean image max should be ’,oldtest_immax
print ’ Found : Image Max = ’,thistest_immax
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 255

print ’ Difference (fractional) = ’,diff_immax

print ’’
note thistest_imrms will be a list with one value
thistest_imrms=statistics[’rms’][0]
oldtest_imrms = 0.0020218724384903908
print ’ Clean image rms should be ’,oldtest_imrms
print ’ Found : Image rms = ’,thistest_imrms
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)
print ’ Difference (fractional) = ’,diff_imrms
ia.close()

print ’’
print ’--- Done ---’

C.1.1 NGC 5921 data summary

Summary created with listobs(’ngc5921.usecase.ms’,verbose=True): This is written to the
logger and the casapy.log file.

Observer: TEST Project:
Observation: VLA

Data records: 22653 Total integration time = 5280 seconds
Observed from 09:19:00 to 10:47:00

ObservationID = 0 ArrayID = 0
Date Timerange Scan FldId FieldName SpwIds
13-Apr-1995/09:19:00.0 - 09:24:30.0 1 0 1331+30500002_0 [0]

09:27:30.0 - 09:29:30.0 2 1 1445+09900002_0 [0]
09:33:00.0 - 09:48:00.0 3 2 N5921_2 [0]
09:50:30.0 - 09:51:00.0 4 1 1445+09900002_0 [0]
10:22:00.0 - 10:23:00.0 5 1 1445+09900002_0 [0]
10:26:00.0 - 10:43:00.0 6 2 N5921_2 [0]
10:45:30.0 - 10:47:00.0 7 1 1445+09900002_0 [0]

Fields: 3
ID Name Right Ascension Declination Epoch
0 1331+30500002_013:31:08.29 +30.30.32.96 J2000
1 1445+09900002_014:45:16.47 +09.58.36.07 J2000
2 N5921_2 15:22:00.00 +05.04.00.00 J2000

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 63 LSRK 1412.68608 24.4140625 1550.19688 1413.44902 RR LL

Feeds: 28: printing first row only
Antenna Spectral Window # Receptors Polarizations
1 -1 2 [R, L]

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 256

Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
1 2 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
2 3 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
3 4 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
4 5 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
5 6 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
6 7 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
7 8 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
8 9 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
11 12 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
12 13 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
13 14 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
14 15 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
15 16 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
16 17 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
17 18 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
18 19 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
19 20 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
20 21 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
21 22 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
23 24 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
24 25 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
25 26 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
26 27 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
27 28 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8

Tables:
MAIN 22653 rows
ANTENNA 28 rows
DATA_DESCRIPTION 1 row
DOPPLER <absent>
FEED 28 rows
FIELD 3 rows
FLAG_CMD <empty>
FREQ_OFFSET <absent>
HISTORY 353 rows
OBSERVATION 1 row
POINTING 168 rows
POLARIZATION 1 row
PROCESSOR <empty>
SOURCE 3 rows
SPECTRAL_WINDOW 1 row
STATE <empty>
SYSCAL <absent>
WEATHER <absent>

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 257

C.2 Jupiter — VLA continuum polarization

Note: This script includes interactive flagging and cleaning and self-calibration loops. Polarization
calibration and imaging is still missing.

##
#
Use Case Script for Jupiter 6cm VLA
#
Last Updated STM 2007-09-04 (Alpha Patch 2+)
#
##

import time
import os

#
#===
#
This script has some interactive commands: scriptmode = True
if you are running it and want it to stop during interactive parts.

scriptmode = True

#===
#
Set up some useful variables - these will be set during the script
also, but if you want to restart the script in the middle here
they are in one place:

pathname=os.environ.get(’AIPSPATH’).split()[0]
prefix=’jupiter6cm.usecase’

msfile = prefix + ’.ms’

gtable = prefix + ’.gcal’
ftable = prefix + ’.fluxscale’
atable = prefix + ’.accum’

srcsplitms = prefix + ’.split.ms’

clnimsize = [288,288]
clncell = [4.,4.]

imname1 = prefix + ’.clean1’
clnimage1 = imname1+’.image’
clnmodel1 = imname1+’.model’
clnresid1 = imname1+’.residual’
clnmask1 = imname1+’.clean_interactive.mask’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 258

selfcaltab1 = srcsplitms + ’.selfcal1’

imname2 = prefix + ’.clean2’
clnimage2 = imname2+’.image’
clnmodel2 = imname2+’.model’
clnresid2 = imname2+’.residual’
clnmask2 = imname2+’.clean_interactive.mask’

selfcaltab2 = srcsplitms + ’.selfcal2’
smoothcaltab2 = srcsplitms + ’.smoothcal2’

imname3 = prefix + ’.clean3’
clnimage3 = imname3+’.image’
clnmodel3 = imname3+’.model’
clnresid3 = imname3+’.residual’
clnmask3 = imname3+’.clean_interactive.mask’

#
#===
#
Get to path to the CASA home and stip off the name
pathname=os.environ.get(’AIPSPATH’).split()[0]

This is where the UVFITS data will be
#fitsdata=pathname+’/data/demo/jupiter6cm.fits’
fitsdata=’/home/sandrock2/smyers/NAUG2/Data/VLA_CONT/FLUX99-6CM.CBAND’

The prefix to use for all output files
prefix=’jupiter6cm.usecase’

Clean up old files
os.system(’rm -rf ’+prefix+’*’)

#
#===
Data Import and List
#===
#
Import the data from FITS to MS
#
print ’--Import--’

Safest to start from task defaults
default(’importuvfits’)

Set up the MS filename and save as new global variable
msfile = prefix + ’.ms’

Use task importuvfits
fitsfile = fitsdata
vis = msfile

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 259

importuvfits()

#===
#
List a summary of the MS
#
print ’--Listobs--’

Don’t default this one and make use of the previous setting of
vis. Remember, the variables are GLOBAL!

You may wish to see more detailed information, in this case
use the verbose = True option
verbose = True

listobs()

You should get in your logger window and in the casapy.log file
something like:
#
Observer: FLUX99 Project:
Observation: VLA
#
Data records: 2021424 Total integration time = 85133.2 seconds
Observed from 23:15:27 to 22:54:20
#
ObservationID = 0 ArrayID = 0
Date Timerange Scan FldId FieldName SpwIds
15-Apr-1999/23:15:26.7 - 23:16:10.0 1 0 0137+331 [0, 1]
23:38:40.0 - 23:48:00.0 2 1 0813+482 [0, 1]
23:53:40.0 - 23:55:20.0 3 2 0542+498 [0, 1]
16-Apr-1999/00:22:10.1 - 00:23:49.9 4 3 0437+296 [0, 1]
00:28:23.3 - 00:30:00.1 5 4 VENUS [0, 1]
00:48:40.0 - 00:50:20.0 6 1 0813+482 [0, 1]
00:56:13.4 - 00:57:49.9 7 2 0542+498 [0, 1]
01:10:20.1 - 01:11:59.9 8 5 0521+166 [0, 1]
01:23:29.9 - 01:25:00.1 9 3 0437+296 [0, 1]
01:29:33.3 - 01:31:10.0 10 4 VENUS [0, 1]
01:49:50.0 - 01:51:30.0 11 6 1411+522 [0, 1]
02:03:00.0 - 02:04:30.0 12 7 1331+305 [0, 1]
02:17:30.0 - 02:19:10.0 13 1 0813+482 [0, 1]
02:24:20.0 - 02:26:00.0 14 2 0542+498 [0, 1]
02:37:49.9 - 02:39:30.0 15 5 0521+166 [0, 1]
02:50:50.1 - 02:52:20.1 16 3 0437+296 [0, 1]
02:59:20.0 - 03:01:00.0 17 6 1411+522 [0, 1]
03:12:30.0 - 03:14:10.0 18 7 1331+305 [0, 1]
03:27:53.3 - 03:29:39.9 19 1 0813+482 [0, 1]
03:35:00.0 - 03:36:40.0 20 2 0542+498 [0, 1]
03:49:50.0 - 03:51:30.1 21 6 1411+522 [0, 1]
04:03:10.0 - 04:04:50.0 22 7 1331+305 [0, 1]
04:18:49.9 - 04:20:40.0 23 1 0813+482 [0, 1]

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 260

04:25:56.6 - 04:27:39.9 24 2 0542+498 [0, 1]
04:42:49.9 - 04:44:40.0 25 8 MARS [0, 1]
04:56:50.0 - 04:58:30.1 26 6 1411+522 [0, 1]
05:24:03.3 - 05:33:39.9 27 7 1331+305 [0, 1]
05:48:00.0 - 05:49:49.9 28 1 0813+482 [0, 1]
05:58:36.6 - 06:00:30.0 29 8 MARS [0, 1]
06:13:20.1 - 06:14:59.9 30 6 1411+522 [0, 1]
06:27:40.0 - 06:29:20.0 31 7 1331+305 [0, 1]
06:44:13.4 - 06:46:00.0 32 1 0813+482 [0, 1]
06:55:06.6 - 06:57:00.0 33 8 MARS [0, 1]
07:10:40.0 - 07:12:20.0 34 6 1411+522 [0, 1]
07:28:20.0 - 07:30:10.1 35 7 1331+305 [0, 1]
07:42:49.9 - 07:44:30.0 36 8 MARS [0, 1]
07:58:43.3 - 08:00:39.9 37 6 1411+522 [0, 1]
08:13:30.0 - 08:15:19.9 38 7 1331+305 [0, 1]
08:27:53.4 - 08:29:30.0 39 8 MARS [0, 1]
08:42:59.9 - 08:44:50.0 40 6 1411+522 [0, 1]
08:57:09.9 - 08:58:50.0 41 7 1331+305 [0, 1]
09:13:03.3 - 09:14:50.1 42 9 NGC7027 [0, 1]
09:26:59.9 - 09:28:40.0 43 6 1411+522 [0, 1]
09:40:33.4 - 09:42:09.9 44 7 1331+305 [0, 1]
09:56:19.9 - 09:58:10.0 45 9 NGC7027 [0, 1]
10:12:59.9 - 10:14:50.0 46 8 MARS [0, 1]
10:27:09.9 - 10:28:50.0 47 6 1411+522 [0, 1]
10:40:30.0 - 10:42:00.0 48 7 1331+305 [0, 1]
10:56:10.0 - 10:57:50.0 49 9 NGC7027 [0, 1]
11:28:30.0 - 11:35:30.0 50 10 NEPTUNE [0, 1]
11:48:20.0 - 11:50:10.0 51 6 1411+522 [0, 1]
12:01:36.7 - 12:03:10.0 52 7 1331+305 [0, 1]
12:35:33.3 - 12:37:40.0 53 11 URANUS [0, 1]
12:46:30.0 - 12:48:10.0 54 10 NEPTUNE [0, 1]
13:00:29.9 - 13:02:10.0 55 6 1411+522 [0, 1]
13:15:23.3 - 13:17:10.1 56 9 NGC7027 [0, 1]
13:33:43.3 - 13:35:40.0 57 11 URANUS [0, 1]
13:44:30.0 - 13:46:10.0 58 10 NEPTUNE [0, 1]
14:00:46.7 - 14:01:39.9 59 0 0137+331 [0, 1]
14:10:40.0 - 14:12:09.9 60 12 JUPITER [0, 1]
14:24:06.6 - 14:25:40.1 61 11 URANUS [0, 1]
14:34:30.0 - 14:36:10.1 62 10 NEPTUNE [0, 1]
14:59:13.4 - 15:00:00.0 63 0 0137+331 [0, 1]
15:09:03.3 - 15:10:40.1 64 12 JUPITER [0, 1]
15:24:30.0 - 15:26:20.1 65 9 NGC7027 [0, 1]
15:40:10.0 - 15:45:00.0 66 11 URANUS [0, 1]
15:53:50.0 - 15:55:20.0 67 10 NEPTUNE [0, 1]
16:18:53.4 - 16:19:49.9 68 0 0137+331 [0, 1]
16:29:10.1 - 16:30:49.9 69 12 JUPITER [0, 1]
16:42:53.4 - 16:44:30.0 70 11 URANUS [0, 1]
16:54:53.4 - 16:56:40.0 71 9 NGC7027 [0, 1]
17:23:06.6 - 17:30:40.0 72 2 0542+498 [0, 1]
17:41:50.0 - 17:43:20.0 73 3 0437+296 [0, 1]
17:55:36.7 - 17:57:39.9 74 4 VENUS [0, 1]

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 261

18:19:23.3 - 18:20:09.9 75 0 0137+331 [0, 1]
18:30:23.3 - 18:32:00.0 76 12 JUPITER [0, 1]
18:44:49.9 - 18:46:30.0 77 9 NGC7027 [0, 1]
18:59:13.3 - 19:00:59.9 78 2 0542+498 [0, 1]
19:19:10.0 - 19:21:20.1 79 5 0521+166 [0, 1]
19:32:50.1 - 19:34:29.9 80 3 0437+296 [0, 1]
19:39:03.3 - 19:40:40.1 81 4 VENUS [0, 1]
20:08:06.7 - 20:08:59.9 82 0 0137+331 [0, 1]
20:18:10.0 - 20:19:50.0 83 12 JUPITER [0, 1]
20:33:53.3 - 20:35:40.1 84 1 0813+482 [0, 1]
20:40:59.9 - 20:42:40.0 85 2 0542+498 [0, 1]
21:00:16.6 - 21:02:20.1 86 5 0521+166 [0, 1]
21:13:53.4 - 21:15:29.9 87 3 0437+296 [0, 1]
21:20:43.4 - 21:22:30.0 88 4 VENUS [0, 1]
21:47:26.7 - 21:48:20.1 89 0 0137+331 [0, 1]
21:57:30.0 - 21:59:10.0 90 12 JUPITER [0, 1]
22:12:13.3 - 22:14:00.1 91 2 0542+498 [0, 1]
22:28:33.3 - 22:30:19.9 92 4 VENUS [0, 1]
22:53:33.3 - 22:54:19.9 93 0 0137+331 [0, 1]
#
Fields: 13
ID Name Right Ascension Declination Epoch
0 0137+331 01:37:41.30 +33.09.35.13 J2000
1 0813+482 08:13:36.05 +48.13.02.26 J2000
2 0542+498 05:42:36.14 +49.51.07.23 J2000
3 0437+296 04:37:04.17 +29.40.15.14 J2000
4 VENUS 04:06:54.11 +22.30.35.91 J2000
5 0521+166 05:21:09.89 +16.38.22.05 J2000
6 1411+522 14:11:20.65 +52.12.09.14 J2000
7 1331+305 13:31:08.29 +30.30.32.96 J2000
8 MARS 14:21:41.37 -12.21.49.45 J2000
9 NGC7027 21:07:01.59 +42.14.10.19 J2000
10 NEPTUNE 20:26:01.14 -18.54.54.21 J2000
11 URANUS 21:15:42.83 -16.35.05.59 J2000
12 JUPITER 00:55:34.04 +04.45.44.71 J2000
#
Spectral Windows: (2 unique spectral windows and 1 unique polarization setups)
SpwID #Chans Frame Ch1(MHz) Resoln(kHz) TotBW(kHz) Ref(MHz) Corrs
0 1 TOPO 4885.1 50000 50000 4885.1 RR RL LR LL
1 1 TOPO 4835.1 50000 50000 4835.1 RR RL LR LL
#
Feeds: 28: printing first row only
Antenna Spectral Window # Receptors Polarizations
1 -1 2 [R, L]
#
Antennas: 27:
ID Name Station Diam. Long. Lat.
0 1 VLA:W9 25.0 m -107.37.25.1 +33.53.51.0
1 2 VLA:N9 25.0 m -107.37.07.8 +33.54.19.0
2 3 VLA:N3 25.0 m -107.37.06.3 +33.54.04.8
3 4 VLA:N5 25.0 m -107.37.06.7 +33.54.08.0

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 262

4 5 VLA:N2 25.0 m -107.37.06.2 +33.54.03.5
5 6 VLA:E1 25.0 m -107.37.05.7 +33.53.59.2
6 7 VLA:E2 25.0 m -107.37.04.4 +33.54.01.1
7 8 VLA:N8 25.0 m -107.37.07.5 +33.54.15.8
8 9 VLA:E8 25.0 m -107.36.48.9 +33.53.55.1
9 10 VLA:W3 25.0 m -107.37.08.9 +33.54.00.1
10 11 VLA:N1 25.0 m -107.37.06.0 +33.54.01.8
11 12 VLA:E6 25.0 m -107.36.55.6 +33.53.57.7
12 13 VLA:W7 25.0 m -107.37.18.4 +33.53.54.8
13 14 VLA:E4 25.0 m -107.37.00.8 +33.53.59.7
14 15 VLA:N7 25.0 m -107.37.07.2 +33.54.12.9
15 16 VLA:W4 25.0 m -107.37.10.8 +33.53.59.1
16 17 VLA:W5 25.0 m -107.37.13.0 +33.53.57.8
17 18 VLA:N6 25.0 m -107.37.06.9 +33.54.10.3
18 19 VLA:E7 25.0 m -107.36.52.4 +33.53.56.5
19 20 VLA:E9 25.0 m -107.36.45.1 +33.53.53.6
21 22 VLA:W8 25.0 m -107.37.21.6 +33.53.53.0
22 23 VLA:W6 25.0 m -107.37.15.6 +33.53.56.4
23 24 VLA:W1 25.0 m -107.37.05.9 +33.54.00.5
24 25 VLA:W2 25.0 m -107.37.07.4 +33.54.00.9
25 26 VLA:E5 25.0 m -107.36.58.4 +33.53.58.8
26 27 VLA:N4 25.0 m -107.37.06.5 +33.54.06.1
27 28 VLA:E3 25.0 m -107.37.02.8 +33.54.00.5
#
Tables:
MAIN 2021424 rows
ANTENNA 28 rows
DATA_DESCRIPTION 2 rows
DOPPLER <absent>
FEED 28 rows
FIELD 13 rows
FLAG_CMD <empty>
FREQ_OFFSET <absent>
HISTORY 7058 rows
OBSERVATION 1 row
POINTING 2604 rows
POLARIZATION 1 row
PROCESSOR <empty>
SOURCE <empty> (see FIELD)
SPECTRAL_WINDOW 2 rows
STATE <empty>
SYSCAL <absent>
WEATHER <absent>

#
#===
Data Examination and Flagging
#===
#
Get rid of the autocorrelations from the MS
#

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 263

print ’--Flagautocorr--’

Don’t default this one either

flagautocorr()

#
#===
#
Use Flagmanager to save a copy of the flags
#
print ’--Flagmanager--’
default(’flagmanager’)

vis = msfile

Save a copy of the MAIN table flags

mode = ’save’
versionname = ’flagautocorr’
comment = ’flagged autocorr’
merge = ’replace’

flagmanager()

If you look in the ’jupiter6cm.usecase.ms.flagversions/
you’ll see flags.flagautocorr there along with the
flags.Original that importuvfits made for you
Or use

mode = ’list’

flagmanager()

In the logger you will see something like:
#
MS : /home/sandrock2/smyers/Testing2/Aug07/jupiter6cm.usecase.ms
#
main : working copy in main table
Original : Original flags at import into CASA
flagautocorr : flagged autocorr
See logger for flag versions for this file

#
#===
#
Use Plotxy to interactively flag the data
#
print ’--Plotxy--’
default(’plotxy’)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 264

vis = msfile

The fields we are interested in: 1331+305,JUPITER,0137+331
selectdata = True

First we do the primary calibrator
field = ’1331+305’

Plot only the RR and LL for now
correlation = ’RR LL’

Plot amplitude vs. uvdist
xaxis = ’uvdist’
yaxis = ’amp’
multicolor = ’both’

The easiest thing is to iterate over antennas
iteration = ’antenna’

plotxy()

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

You’ll see lots of low points as you step through RR LL RL LR
A basic clip at 0.75 for RR LL and 0.055 for RL LR will work
If you want to do this interactively, set
iteration = ’’

plotxy()

You can also use flagdata to do this non-interactively
(see below)

Now look at the cross-polar products
correlation = ’RL LR’

plotxy()

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#---
Now do calibrater 0137+331
field = ’0137+331’
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’’
iteration = ’’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 265

antenna = ’’

plotxy()

You’ll see a bunch of bad data along the bottom near zero amp
Draw a box around some of it and use Locate
Looks like much of it is Antenna 9 (ID=8) in spw=1

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

xaxis = ’time’
spw = ’1’
correlation = ’’

Note that the strings like antenna=’9’ first try to match the
NAME which we see in listobs was the number ’9’ for ID=8.
So be careful here (why naming antennas as numbers is bad).
antenna = ’9’

plotxy()

YES! the last 4 scans are bad. Box ’em and flag.

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

Go back and clean up
xaxis = ’uvdist’
spw = ’’
antenna = ’’
correlation = ’RR LL’

plotxy()

Box up the bad low points (basically a clip below 0.52) and flag

Note that RL,LR are too weak to clip on.

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#---
Finally, do JUPITER
field = ’JUPITER’
correlation = ’’
iteration = ’’
xaxis = ’time’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 266

plotxy()

Here you will see that the final scan at 22:00:00 UT is bad
Draw a box around it and flag it!

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

Now look at whats left
correlation = ’RR LL’
xaxis = ’uvdist’
spw = ’1’
antenna = ’’
iteration = ’antenna’

plotxy()

As you step through, you will see that Antenna 9 (ID=8) is often
bad in this spw. If you box and do Locate (or remember from
0137+331) its probably a bad time.

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

The easiset way to kill it:

antenna = ’9’
iteration = ’’
xaxis = ’time’
correlation = ’’

plotxy()

Draw a box around all points in the last bad scans and flag ’em!

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

Now clean up the rest
xaxis = ’uvdist’
correlation = ’RR LL’
antenna = ’’
spw = ’’

You will be drawing many tiny boxes, so remember you can
use the ESC key to get rid of the most recent box if you
make a mistake.

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 267

plotxy()

Note that the end result is we’ve flagged lots of points
in RR and LL. We will rely upon imager to ignore the
RL LR for points with RR LL flagged!

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

#
#===
#
Use Flagmanager to save a copy of the flags so far
#
print ’--Flagmanager--’
default(’flagmanager’)

vis = msfile
mode = ’save’
versionname = ’xyflags’
comment = ’Plotxy flags’
merge = ’replace’

flagmanager()

#
#===
#
You can use Flagdata to explicitly clip the data also
#
print ’--Flagdata--’
default(’flagdata’)

vis = msfile

Set some clipping regions
mode = ’manualflag’
clipcolumn = ’DATA’
clipoutside = False

Clip calibraters
field = ’1331+305’
clipexpr = ’ABS RR’
clipminmax = [0.0,0.75]
flagdata()

clipexpr = ’ABS LL’
clipminmax = [0.0,0.75]

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 268

flagdata()

clipexpr = ’ABS RL’
clipminmax = [0.0,0.055]
flagdata()

clipexpr = ’ABS LR’
clipminmax = [0.0,0.055]
flagdata()

field = ’0137+331’
clipexpr = ’ABS RR’
clipminmax = [0.0,0.55]
flagdata()

clipexpr = ’ABS LL’
clipminmax = [0.0,0.55]
flagdata()

You can also do the antenna edits on 0137+331 and JUPITER
with flagdata

#
#===
Calibration
#===
#
Set the fluxes of the primary calibrator(s)
#
print ’--Setjy--’
default(’setjy’)

vis = msfile

#
1331+305 = 3C286 is our primary calibrator
field = ’1331+305’

Setjy knows about this source so we dont need anything more

setjy()

#
You should see something like this in the logger and casapy.log file:
#
1331+305 spwid= 0 [I=7.462, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
1331+305 spwid= 1 [I=7.51, Q=0, U=0, V=0] Jy, (Perley-Taylor 99)
#

#
#===

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 269

#
Initial gain calibration
#
print ’--Gaincal--’
default(’gaincal’)

vis = msfile

set the name for the output gain caltable
gtable = prefix + ’.gcal’
caltable = gtable

Gain calibrators are 1331+305 and 0137+331 (FIELD_ID 7 and 0)
We have 2 IFs (SPW 0,1) with one channel each

selection is via the field and spw strings
field = ’1331+305,0137+331’
spw = ’’

a-priori calibration application
atmospheric optical depth (turn off)
gaincurve = True
#opacity = False
#tau=0.0
opacity = 0.0

scan-based G solutions for both amplitude and phase
gaintype = ’G’
solint = 0.
calmode = ’ap’

reference antenna 11 (11=VLA:N1)
refant = ’11’

minimum SNR 3
minsnr = 3

gaincal()

#
#===
#
Bootstrap flux scale
#
print ’--Fluxscale--’
default(’fluxscale’)

vis = msfile

set the name for the output rescaled caltable
ftable = prefix + ’.fluxscale’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 270

fluxtable = ftable

point to our first gain cal table
caltable = gtable

we will be using 1331+305 (the source we did setjy on) as
our flux standard reference
reference = ’1331+305’

we want to transfer the flux to our other gain cal source 0137+331
to bring its gain amplitues in line with the absolute scale
transfer = ’0137+331’

fluxscale()

You should see in the logger something like:
#Flux density for 0137+331 in SpW=0 is: 5.42575 +/- 0.00285011 (SNR = 1903.7, nAnt= 27)
#Flux density for 0137+331 in SpW=1 is: 5.46569 +/- 0.00301326 (SNR = 1813.88, nAnt= 27)

#===
#
Interpolate the gains onto Jupiter (and others)
#
print ’--Accum--’
default(’accum’)

vis = msfile

tablein = ’’
incrtable = ftable
calfield = ’1331+305, 0137+331’

set the name for the output interpolated caltable
atable = prefix + ’.accum’
caltable = atable

linear interpolation
interp = ’linear’

make 10s entries
accumtime = 10.0

accum()

#===
#
Correct the data
(This will put calibrated data into the CORRECTED_DATA column)
#
print ’--ApplyCal--’
default(’applycal’)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 271

vis = msfile

Start with the interpolated fluxscale/gain table
bptable = ’’
gaintable = atable

Since we did gaincurve=True in gaincal, we need it here also
gaincurve = True
#opacity = False
#tau=0.0
opacity=0.0

select the fields
field = ’1331+305,0137+331,JUPITER’
spw = ’’
selectdata = False

do not need to select subset since we did accum
(note that correct only does ’nearest’ interp)
gainselect = ’’

applycal()

#
#===
#
Now split the Jupiter target data
#
print ’--Split Jupiter--’
default(’split’)

vis = msfile

Now we write out the corrected data for the calibrator

Make an output vis file
srcsplitms = prefix + ’.split.ms’
outputvis = srcsplitms

Select the Jupiter field
field = ’JUPITER’
spw = ’’

pick off the CORRECTED_DATA column
datacolumn = ’corrected’

split()

#
#===

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 272

FIRST CLEAN / SELFCAL CYCLE
#===
#
Now clean an image of Jupiter
#
print ’--Clean 1--’
default(’clean’)

Pick up our split source data
vis = srcsplitms

Make an image root file name
imname1 = prefix + ’.clean1’
imagename = imname1

Set up the output continuum image (single plane mfs)
mode = ’mfs’
stokes = ’I’

NOTE: current version field=’’ doesnt work
field = ’*’

Combine all spw
spw = ’’

This is D-config VLA 6cm (4.85GHz) obs
Check the observational status summary
Primary beam FWHM = 45’/f_GHz = 557"
Synthesized beam FWHM = 14"
RMS in 10min (600s) = 0.06 mJy (thats now, but close enough)

Set the output image size and cell size (arcsec)
4" will give 3.5x oversampling
280 pix will cover to 2xPrimaryBeam
clean will say to use 288 (a composite integer) for efficiency
clnalg = ’clark’
clnimsize = [288,288]

double for CS Clean
#clnalg = ’csclean’
#clnimsize = [576,576]

clncell = [4.,4.]

alg = clnalg
imsize = clnimsize
cell = clncell

NOTE: will eventually have an imadvise task to give you this
information

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 273

Standard gain factor 0.1
gain = 0.1

Fix maximum number of iterations
niter = 10000

Also set flux residual threshold (0.04 mJy)
From our listobs:
Total integration time = 85133.2 seconds
With rms of 0.06 mJy in 600s ==> rms = 0.005 mJy
Set to 10x thermal rms
threshold=0.05

Note - we can change niter and threshold interactively
during clean

Set up the weighting
Use Briggs weighting (a moderate value, on the uniform side)
weighting = ’briggs’
rmode = ’norm’
robust = 0.5

No clean mask
mask = ’’

Use interactive clean mode
cleanbox = ’interactive’

Moderate number of iter per interactive cycle
npercycle = 100

clean()

When the interactive clean window comes up, use the right-mouse
to draw rectangles around obvious emission double-right-clicking
inside them to add to the flag region. You can also assign the
right-mouse to polygon region drawing by right-clicking on the
polygon drawing icon in the toolbar. When you are happy with
the region, click ’Done Flagging’ and it will go and clean another
100 iterations. When done, click ’Stop’.

Set up variables
clnimage1 = imname1+’.image’
clnmodel1 = imname1+’.model’
clnresid1 = imname1+’.residual’
clnmask1 = imname1+’.clean_interactive.mask’

#
#---
#
Look at this in viewer

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 274

viewer(clnimage1,’image’)

You can use the right-mouse to draw a box in the lower right
corner of the image away from emission, the double-click inside
to bring up statistics. Use the right-mouse to grab this box
and move it up over Jupiter and double-click again. You should
see stuff like this in the terminal:
#
jupiter6cm.usecase.clean1.image (Jy/beam)
#
n Std Dev RMS Mean Variance Sum
4712 0.003914 0.003927 0.0003205 1.532e-05 1.510
#
Flux Med |Dev| IntQtlRng Median Min Max
0.09417 0.002646 0.005294 0.0001885 -0.01125 0.01503
#
#
On Jupiter:
#
n Std Dev RMS Mean Variance Sum
3640 0.1007 0.1027 0.02023 0.01015 73.63
#
Flux Med |Dev| IntQtlRng Median Min Max
4.592 0.003239 0.007120 0.0001329 -0.01396 1.060
#
Estimated dynamic range = 1.060 / 0.003927 = 270 (poor)
#
Note that the exact numbers you get will depend on how deep you
take the interactive clean and how you draw the box for the stats.
#
#---
#
Self-cal using clean model
#
Note: clean will have left FT of model in the MODEL_DATA column
If you’ve done something in between, can use the ft task to
do this manually.
#
print ’--SelfCal 1--’
default(’gaincal’)

vis = srcsplitms

New gain table
selfcaltab1 = srcsplitms + ’.selfcal1’
caltable = selfcaltab1

Don’t need a-priori cals
selectdata = False
gaincurve = False
opacity = 0.0

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 275

This choice seemed to work
refant = ’11’

Lets do phase-only first time around
gaintype = ’G’
calmode = ’p’

Do scan-based solutions with SNR>3
solint = 0.0
minsnr = 3.0

Do not need to normalize (let gains float)
solnorm = False

gaincal()

#
#---
#
Correct the data (no need for interpolation this stage)
#
print ’--ApplyCal--’
default(’applycal’)

vis = srcsplitms

gaintable = selfcaltab1

gaincurve = False
opacity = 0.0
field = ’’
spw = ’’
selectdata = False

calwt = True

applycal()

Self-cal is now in CORRECTED_DATA column of split ms
#
#===
SECOND CLEAN / SELFCAL CYCLE
#===
#
print ’--Clean 2--’
default(’clean’)

vis = srcsplitms

imname2 = prefix + ’.clean2’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 276

imagename = imname2

field = ’*’
spw = ’’
mode = ’mfs’
gain = 0.1
niter = 10000
threshold=0.04

alg = clnalg
imsize = clnimsize
cell = clncell

weighting = ’briggs’
rmode = ’norm’
robust = 0.5

cleanbox = ’interactive’
npercycle = 100

clean()

Set up variables
clnimage2 = imname2+’.image’
clnmodel2 = imname2+’.model’
clnresid2 = imname2+’.residual’
clnmask2 = imname2+’.clean_interactive.mask’

#
#---
#
Look at this in viewer
viewer(clnimage2,’image’)

jupiter6cm.usecase.clean2.image (Jy/beam)
#
n Std Dev RMS Mean Variance Sum
5236 0.001389 0.001390 3.244e-05 1.930e-06 0.1699
#
Flux Med |Dev| IntQtlRng Median Min Max
0.01060 0.0009064 0.001823 -1.884e-05 -0.004015 0.004892
#
#
On Jupiter:
#
n Std Dev RMS Mean Variance Sum
5304 0.08512 0.08629 0.01418 0.007245 75.21
#
Flux Med |Dev| IntQtlRng Median Min Max
4.695 0.0008142 0.001657 0.0001557 -0.004526 1.076
#

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 277

Estimated dynamic range = 1.076 / 0.001389 = 775 (better)
#
Note that the exact numbers you get will depend on how deep you
take the interactive clean and how you draw the box for the stats.
#
#---
#
Next self-cal cycle
#
print ’--SelfCal 2--’
default(’gaincal’)

vis = srcsplitms

selfcaltab2 = srcsplitms + ’.selfcal2’
caltable = selfcaltab2

selectdata = False
gaincurve = False
opacity = 0.0
refant = ’11’

This time amp+phase on 10s timescales SNR>1
gaintype = ’G’
calmode = ’ap’
solint = 10.0
minsnr = 1.0
solnorm = False

gaincal()

#
It is useful to put this up in plotcal
#
#---
#
print ’--PlotCal--’
default(’plotcal’)

tablein = selfcaltab2
multiplot = True
yaxis = ’amp’

plotcal()

Use the Next button to iterate over antennas

Pause script if you are running in scriptmode
if scriptmode:

user_check=raw_input(’Return to continue script\n’)

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 278

yaxis = ’phase’

plotcal()

#
You can see it is not too noisy.
Lets do some smoothing anyway.
#
#---
#
Smooth calibration solutions
#
print ’--Smooth--’
default(’smoothcal’)

vis = srcsplitms

tablein = selfcaltab2

smoothcaltab2 = srcsplitms + ’.smoothcal2’
caltable = smoothcaltab2

Do a 30s boxcar average
smoothtype = ’mean’
smoothtime = 30.0

smoothcal()

If you put into plotcal you’ll see the results
For example, you can grap the inputs from the last
time you ran plotcal, set the new tablename, and plot!
#run plotcal.last
#tablein = smoothcaltab2
#plotcal()

#
#---
#
Correct the data
#
print ’--ApplyCal--’
default(’applycal’)

vis = srcsplitms

gaintable = smoothcaltab2

gaincurve = False
opacity = 0.0
field = ’’
spw = ’’

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 279

selectdata = False
calwt = True

applycal()

#
#===
THIRD CLEAN / SELFCAL CYCLE
#===
#
print ’--Clean 3--’
default(’clean’)

vis = srcsplitms

imname3 = prefix + ’.clean3’
imagename = imname3

field = ’*’
spw = ’’
mode = ’mfs’
gain = 0.1
niter = 10000
threshold=0.04

alg = clnalg
imsize = clnimsize
cell = clncell

weighting = ’briggs’
rmode = ’norm’
robust = 0.5

cleanbox = ’interactive’
npercycle = 100

clean()

Cleans alot deeper
You can change the npercycle to larger numbers
(like 250 or so) as you get deeper also.

Set up variables
clnimage3 = imname3+’.image’
clnmodel3 = imname3+’.model’
clnresid3 = imname3+’.residual’
clnmask3 = imname3+’.clean_interactive.mask’

#
#---
#

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 280

Look at this in viewer
viewer(clnimage3,’image’)

jupiter6cm.usecase.clean3.image (Jy/beam)
#
n Std Dev RMS Mean Variance Sum
5848 0.001015 0.001015 -4.036e-06 1.029e-06 -0.02360
#
Flux Med |Dev| IntQtlRng Median Min Max
-0.001470 0.0006728 0.001347 8.245e-06 -0.003260 0.003542
#
#
On Jupiter:
#
n Std Dev RMS Mean Variance Sum
6003 0.08012 0.08107 0.01245 0.006419 74.72
#
Flux Med |Dev| IntQtlRng Median Min Max
4.653 0.0006676 0.001383 -1.892e-06 -0.002842 1.076
#
Estimated dynamic range = 1.076 / 0.001015 = 1060 (even better!)
#
Note that the exact numbers you get will depend on how deep you
take the interactive clean and how you draw the box for the stats.
#
Greg Taylor got 1600:1 so we still have some ways to go
This will probably take several more careful self-cal cycles.

Set up final variables
clnimage = clnimage3
clnmodel = clnmodel3
clnresid = clnresid3
clnmask = clnmask3

#
#===
Image Analysis
#===
#
Can do some image statistics if you wish
Treat this like a regression script
WARNING: currently requires toolkit
#
print ’ Jupiter results ’
print ’ =============== ’

print ’’
Pull the max src amp value out of the MS
ms.open(srcsplitms)
thistest_src = max(ms.range(["amplitude"]).get(’amplitude’))
oldtest_src = 4.92000198364

APPENDIX C. APPENDIX: ANNOTATED EXAMPLE SCRIPTS 281

print ’ MS max amplitude should be ’,oldtest_src
print ’ Found : Max in MS = ’,thistest_src
diff_src = abs((oldtest_src-thistest_src)/oldtest_src)
print ’ Difference (fractional) = ’,diff_src

ms.close()

print ’’
Pull the max and rms from the clean image
ia.open(clnimage)
on_statistics=ia.statistics()
thistest_immax=on_statistics[’max’][0]
oldtest_immax = 1.07732224464
print ’ Clean image ON-SRC max should be ’,oldtest_immax
print ’ Found : Max in image = ’,thistest_immax
diff_immax = abs((oldtest_immax-thistest_immax)/oldtest_immax)
print ’ Difference (fractional) = ’,diff_immax

print ’’
Now do stats in the lower right corner of the image
box = ia.setboxregion([0.75,0.00],[1.00,0.25],frac=true)
off_statistics=ia.statistics(region=box)
thistest_imrms=off_statistics[’rms’][0]
oldtest_imrms = 0.0010449
print ’ Clean image OFF-SRC rms should be ’,oldtest_imrms
print ’ Found : rms in image = ’,thistest_imrms
diff_imrms = abs((oldtest_imrms-thistest_imrms)/oldtest_imrms)
print ’ Difference (fractional) = ’,diff_imrms

print ’’
print ’ Final Clean image Dynamic Range = ’,thistest_immax/thistest_imrms
print ’’
print ’ =============== ’

ia.close()

print ’’
print ’--- Done ---’

#
#===

Appendix D

CASA Dictionaries

D.1 AIPS – CASA dictionary

Please see:

• https://wikio.nrao.edu/bin/view/Software/CASA-AIPSDictionary

D.2 MIRIAD – CASA dictionary

Table D.1 provides a list of common Miriad tasks, and their equivalent CASA tool or tool function
names. The two packages differ in both their architecture and calibration and imaging models,
and there is often not a direct correspondence. However, this index does provide a scientific user
of CASA who is familiar with MIRIAD, with a simple translation table to map their existing data
reduction knowledge to the new package.

D.3 CLIC – CASA dictionary

Table D.2 provides a list of common CLIC tasks, and their equivalent CASA tool or tool function
names. The two packages are very similar since the CASA software to reduce IRAM data is based
on the CLIC reduction procedures.

282

https://wikio.nrao.edu/bin/view/Software/CASA-AIPSDictionary

APPENDIX D. APPENDIX: CASA DICTIONARIES 283

Table D.1: MIRIAD – CASA dictionary

MIRIAD Task Description CASA tool/function
atlod load ATCA data atcafiller
blflag Interactive baseline based editor/flagger mp raster displays
cgcurs Interactive image analysis qtviewer
cgdisp Image display, overlays qtviewer
clean Clean an image im
fits FITS image filler ia.imagefromfits

gpboot Set flux density scale cb.fluxscale
gpcal Polarization leakage and gain calibration cb with ’G’ and ’D’

gpcopy copy calibration tables not needed
gpplt Plot calibration solutions cp.plot

imcomb Image combination im
imfit Image-plane component fitter ia.imagefitter
impol Create polarization images ia.imagepol
imstat Image statistics ia.statistics
imsub Extract sub-image ia.subimage
invert Synthesis imaging im
linmos linear mosaic combination of images im
maths Calculations involving images ia.imagecalc, ia.calc
mfcal Bandpass and gain calibration cb with ’G’ and ’B’
prthd Print header of image or uvdata ia.summary, ms.summary
restor Restore a clean component model im
selfcal selfcalibration of visibility data im, cb
tvclip automated flagging based on clip levels af
tvdisp Load image to TV display qtviewer
tvflag Interactive TB data editing mp
uvaver Average/select data, apply calibration ms.split
uvfit uv-plane component fitter cb
uvflag Command-based flagging af
uvgen Simulator sm
uvlist List uv-data tb

uvmodel Source model computation im.ft
uvplt uv-data plotting ms

uvsplit split uv file in sources and spectral windows ms.split

APPENDIX D. APPENDIX: CASA DICTIONARIES 284

Table D.2: CLIC–CASA dictionary

CLIC Function Description CASA tool/function
load Load data almatifiller
print Print text summary of data ms.summary
flag Flag data mp, af, qtviewer

phcor Atmospheric phase correction almatifiller
rf Radio frequency bandpass cb.setsolvebandpoly, cb.solve

phase Phase calibration cb.setsolvegainspline,cb.solve
flux Absolute flux calibration cb.fluxscale
ampl Amplitude calibration cb.setsolvegainspline,cb.solve
table Split out calibrated data (uv table) ms.split

	Introduction
	CASA Basics --- Information for First-Time Users
	Before Starting CASA
	Starting CASA
	Ending CASA
	What happens if something goes wrong?
	Python Basics for CASA
	Variables
	Lists and Ranges
	Indexes
	Indentation
	System shell access
	Executing Python scripts

	Getting Help in CASA
	TAB key
	help <taskname>
	help and PAGER
	help par.<parameter>
	Python help

	Tasks and Tools in CASA
	Further Details About Tasks
	Setting Parameters and Invoking Tasks
	The default Command
	The go Command
	The inp Command
	The restore Command
	The saveinputs Command
	The .last file

	Getting the most out of CASA
	Your command line history and the logger
	Where are my data in CASA?
	What's in my data?
	Data Selection in CASA

	From Loading Data to Images
	Loading Data into CASA
	VLA: Filling data from VLA archive format
	Filling data from UVFITS format
	Loading FITS images
	Concatenation of multiple MS

	Data Examination, Editing, and Flagging
	Interactive X-Y Plotting and Flagging
	Flag the Data Non-interactively
	Viewing and Flagging the MS

	Calibration
	Setting the flux density scale
	Gain Calibration
	Bandpass Calibration
	Examining Calibration Solutions
	Bootstrapping Flux Calibration
	Calibration Accumulation
	Correcting the Data
	Splitting the Data

	Synthesis Imaging
	Making a ``dirty'' image
	Cleaning a single-field image
	Cleaning a mosaic
	Feathering in a Single-Dish image

	Self Calibration
	Data and Image Analysis
	What's in an image?
	Moments of an Image Cube
	Regridding an Image
	Displaying Images

	Getting data and images out of CASA

	Visibility Data Import, Export, and Selection
	CASA Measurement Sets
	Under the Hood: Structure of the Measurement Set

	Data Import and Export
	UVFITS Import and Export
	VLA: Filling data from archive format (importvla)
	ALMA: Filling ALMA Science Data Model (ASDM) observations

	Summarizing your MS (listobs)
	Concatenating multiple datasets (concat)
	Data Selection
	General selection syntax
	String Matching

	The field Parameter
	The spw Parameter
	Channel selection in the spw parameter

	The selectdata Parameters
	The antenna Parameter
	The scan Parameter
	The timerange Parameter
	The uvrange Parameter
	The msselect Parameter

	Data Examination and Editing
	Plotting and Flagging Visibility Data in CASA
	Managing flag versions with flagmanager
	Flagging auto-correlations with flagautocorr
	X-Y Plotting and Editing of the Data
	Plot control
	plotoptions
	plotsymbol
	Iteration
	Subplots

	Interactive Flagging in plotxy
	Exiting plotxy
	Example session using plotxy

	Non-Interactive Flagging using flagdata
	Flag Antenna/Channels
	Clipping in flagdata

	Interactive flagging using the viewer
	Browse the Data

	Synthesis Calibration
	Calibration Tasks
	Calibration models for absolute flux density (setjy)
	Dealing with resolved calibrators

	Complex Gain Calibration (gaincal)
	``A priori'' gain curve calibration
	``A priori'' atmospheric opacity correction
	Determining opacity corrections for VLA data

	Other a priori Calibrations and Corrections
	Polarization-dependent Gain (G)
	Polarization-independent Gain (T)
	GSPLINE solutions

	Flux density scale calibration
	Resolved flux density calibrators

	Spectral Bandpass Calibration (bandpass)
	B solutions
	BPOLY solutions

	Instrumental Polarization Calibration (D)
	Manipulating Calibration Tables
	Calibration Smoothing (smoothcal)
	Calibration Interpolation and Accumlation (accum)
	Interpolation using (accum)
	Incremental Calibration using (accum)

	Plotting Calibration Solutions (plotcal)
	Listing calibration solutions with (listcal)
	Application of Calibration (applycal)
	Examine calibrated source data

	Resetting the Calibration using (clearcal)
	Optional: Split out Calibrated uv data (split)
	Advanced Calibration and UV-Plane Analysis
	UV-Plane Continuum Subtraction (uvcontsub)
	Baseline-based Calibration (blcal)
	Fringe Fitting (fringecal)
	UV-Plane Model Fitting (uvmodelfit)

	Example of Calibration

	Synthesis Imaging
	Imaging Tasks Overview
	Common Imaging Task Parameters
	The cell Parameter
	The field Parameter
	The imagename Parameter
	The imsize Parameter
	The mode Parameter
	The restfreq Parameter
	The spw Parameter
	The stokes Parameter
	The uvfilter Parameter
	The weighting Parameter
	'natural' weighting
	'uniform' weighting
	'superuniform' weighting
	'radial' weighting
	'briggs' weighting

	The vis Parameter

	Making a Dirty Image and PSF (invert)
	Deconvolution using CLEAN (clean)
	Specific clean Parameters
	The alg Parameter
	The cleanbox Parameter
	The gain Parameter
	The mask Parameter
	The niter Parameter
	The threshold Parameter

	Interactive Cleaning

	Mosaic Deconvolution using CLEAN (mosaic)
	The cyclefactor Parameter
	The cyclespeedup Parameter
	The ftmachine Parameter
	The minpb Parameter
	The modelimage Parameter
	The mosweight Parameter
	The phasecenterid Parameter
	The scaletype Parameter
	The sdimage Parameter

	Combined Single Dish and Interferometric Imaging (feather)
	Making Deconvolution Masks (makemask)
	Transforming an Image Model (ft)
	Image-plane deconvolution (deconvolve)
	Self-Calibration
	Example of Imaging

	Displaying Images
	Starting the viewer
	Starting the casaviewer outside of casapy

	The viewer GUI
	Viewing a raster map
	Viewing a contour map
	Viewing a MeasurementSet with visibility data
	Adjusting Display Parameters
	Adjusting Canvas Parameters/Multi-panel displays
	Overlay contours on a raster map

	Image Analysis
	Summary of an Image and Headers
	Computing the Moments of an Image Cube (immoments)
	Regridding an Image (regridimage)
	Image display in the viewer
	Image statistics

	Image Import/Export to FITS

	Single Dish Data Processing
	Guidelines for Use of ASAP and SDtasks in CASA
	Environment Variables
	Assignment
	Lists
	Dictionaries
	Line Formatting

	Single Dish Analysis Tasks
	SDtask Summaries
	A Single Dish Analysis Use Case With SDTasks

	Using The ASAP Toolkit Within CASA
	Environment Variables
	Import
	Scantable Manipulation
	Data Selection
	State Information
	Masks
	Scantable Management
	Scantable Mathematics
	Scantable Save and Export

	Calibration
	Tsys scaling
	Flux and Temperature Unit Conversion
	Gain-Elevation and Atmospheric Optical Depth Corrections
	Calibration of GBT data

	Averaging
	Spectral Smoothing
	Baseline Fitting
	Line Fitting
	Plotting
	Single Dish Spectral Analysis Use Case With ASAP Toolkit

	Single Dish Imaging
	Single Dish Imaging Use Case With ASAP Toolkit

	Known Issues, Problems, Deficiencies and Features

	Appendix: Obtaining and Installing CASA
	Installation Script
	Startup

	Appendix: Python and CASA
	Automatic parentheses
	Indentation
	Lists and Ranges
	System shell access
	Logging
	History and Searching
	Macros
	On-line editing
	Executing Python scripts
	How do I exit from CASA?

	Appendix: Annotated Example Scripts
	NGC 5921 --- VLA red-shifted HI emission
	NGC 5921 data summary

	Jupiter --- VLA continuum polarization

	Appendix: CASA Dictionaries
	AIPS -- CASA dictionary
	MIRIAD -- CASA dictionary
	CLIC -- CASA dictionary

