

Cosmology: The Sunyaev-Zeldovich effect and largescale structure of the Universe from the perspective of the CMB

Steven T. Myers

University of Bologna

and

the National Radio Astronomy Observatory – Socorro, NM

The SZE

- The Sunyaev-Zeldovich Effect
 - Compton upscattering of CMB photons by keV electrons
 - decrement in I below CMB thermal peak (increment above)
 - negative extended sources (absorption against 3K CMB)
 - massive clusters mK, but shallow profile $\theta^{-1} \rightarrow -\exp(-v)$

SZE vs. X-rays

• gas density profiles:

$$n_e(r) = n_{e0} \left(1 + rac{r^2}{r_0^2}
ight)^{-3eta/r}$$

• X-ray surface brightness:

$$b_X(E) = \frac{1}{4\pi(1+z)^3} \int n_e^2(r) \Lambda(E, T_e) dl$$

• SZE surface brightness:

$$\Delta I_{
m SZE} \propto T_e \int n_e \, dl$$

• <u>exploit different dependence on parameters:</u>

• use X-ray: $b_X \propto n_{e0}^2 \theta_0 D_A \left(1 + \frac{\theta^2}{\theta_0^2}\right)^{-3\beta + 1/2} \rightarrow D_A \sim h^{-1} n_{e0} \sim h^{1/2}$ • plug into SZE: $\Delta I_{\text{SZE}} \propto T_e n_{e0} \theta_0 D_A \left(1 + \frac{\theta^2}{\theta_0^2}\right)^{-\frac{3}{2}\beta + \frac{1}{2}} \rightarrow \Delta I_{\text{SZE}} \sim h^{-1/2}$

SZ visibilities

• Use standard interferometer equation with SZ profile:

$$V(u,v) = I_0 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B(\theta) \left(1 + \frac{\theta^2}{\theta_0^2}\right)^{-\frac{3}{2}\beta + \frac{1}{2}} e^{2\pi i(ux + vy)} dx dy$$

• Spherical symmetry – integrate over azimuthal angle

$$V(u,v) = \int_0^\infty d\theta B(\theta) \frac{\theta}{\theta_0} \left(1 + \frac{\theta^2}{\theta_0^2}\right)^{-\frac{3\beta}{2} + \frac{1}{2}} J_0\left(2\pi\theta u\right)$$

- For $\beta = 2/3$ SZE $\Delta I \sim \theta^{-1} \rightarrow V \sim -\exp(-v)^{-1}$
 - visibilities dominated by shortest baselines!
- Xray $\Delta I \sim \theta^{-3}$

SZ profile more extended than X-rays

Example: CBI visibilities

• <u>CBI:</u>

BIMA Observations

9 Telescopes in Compact Array

28.5 GHz Observing Frequency

6.6' FWHM

~150 μJy/beam RMS (u-v < 1.1 kλ)

15 µK for 2' Synthesized Beam

Sample from 60 OVRO/BIMA imaged clusters, 0.07 < z < 1.03

5°87'5' 64⁷⁰ 49° 31° - 10° $2D^{0}$

Cosmology, University of Bologna – May 2006

Harser of so is is in a sor

CBI

- 13 90-cm Cassegrain antennas
 - 78 baselines
- 6-meter platform
 - Baselines 1m 5.51m
- 10 1 GHz channels 26-36 GHz
 - HEMT amplifiers (NRAO)
 - Cryogenic 6K, Tsys 20 K
- Single polarization (R or L)
 Polarizers from U. Chicago
- Analog correlators
 - 780 complex correlators
- Field-of-view 44 arcmin
 - Image noise 4 mJy/bm 900s
- Resolution 4.5 10 arcmin

SZE CBI visibility function

- Xray: θ⁻³ (β ~ 2/3)
- SZE: $\theta^{-1} \rightarrow -exp(-v)$
- dominated by shortest baselines

A85

A85 – cl ame activity, MO

ullet

Figure 1. ROSAT and XMM-Newton observations of A85 (a) ROSAT PSPC iso-intensity contours (0.4-2.0 keV) are shown superposed on an optical image (adapted from Durret et al. 1998). A filamentary structure extends to the southeast. (b) The XMM-Newton MOS image shows the inner portion of the filament extending southeast from the South Blob (Southern Clump) (Durret et al. 2003).

(left) Raw CBI Image (center) CLEAN source-sub CBI Image (right) CBI w/ROSAT

• A399 – pair with A401

A401

(left) Raw CBI Image (center) CLEAN source-sub CBI Image (right) CBI w/ROSAT

• A401 – pair with A399, likely interacting now or in past, cooling flow disrupted?

A754

A1651

(left) Raw CBI Image (center) CLEAN source-sub CBI Image (right) CBI w/ROSAT

• A1651 – dynamically relaxed cD cluster, unremarkable

A2597 Chandra, courtesy NASA/CXC/Ohio U/B.McNamara et al.

Results

- unweighted $H_0 = 67 + 30_{-18} + 13_{-6} \text{ km/s/Mpc}$
- weighted $H_0 = 75 + 23_{-16} + 15_{-7} \text{ km/s/Mpc}$
- uncertainties dominated by CMB confusion
- based on older X-ray data... working on new Chandra/XMM data

Cluster	Corrected $h^{-1/2}$ w/ total random error	$\Delta T_0 \ \mu { m K}$	$\begin{array}{c} \text{Compton-}y_0 \\ (\times 10^{-4}) \end{array}$
A85	$1.23{\pm}0.40$	$-580{\pm}190$	$1.13 {\pm} 0.37$
A399	$0.24{\pm}0.42$	$-80{\pm}130$	0.15 ± 0.26
A401	$1.03{\pm}0.29$	-620 ± 170	$1.20\ \pm 0.34$
A478	$1.76{\pm}0.34$	$-1800{\pm}350$	$3.49{\pm}0.68$
A754	$1.09{\pm}0.31$	-560 ± 160	$1.09{\pm}0.31$
A1651	$1.42{\pm}0.47$	-520 ± 170	$1.00{\pm}0.33$
A 2597	$1.74{\pm}1.10$	-750 ± 670	$1.43{\pm}1.28$
$mean \pm sd =$	$1.22{\pm}0.52$		
(probability = 21%)	$\frac{\chi^2}{\nu} = 1.47$ for 6 dof		
unweighted sample average: $h^{-1/2} =$	1.22 ± 0.20		
\rightarrow	$h=0.67^{+0.30}_{-0.18}$		
weighted sample average: $h^{-1/2} =$	$1.16{\pm}0.14$		
→	$h=0.75^{+0.23}_{-0.16}$		

Error Budget

- CMB anisotropies the dominant uncertainty
- density model β models, some bias correction needed
- temperature profiles assume isothermal, investigate deviations
- radio point sources residuals small after using counts
- cluster asphericity < 4%, could be worse in individual clusters
- clumpy gas distribution $\langle n_e^2 \rangle / \langle n_e \rangle^2$ bias, substructure?
- peculiar velocities no bias, 0.04% for even 1000 km/s!
- non-thermal Comptonization unknown, model dependent

Cluster	CMB error	X-ray mod bias	pt src bias	T_e error	V _{pec} ertor	CMB+Ther+ptso error
A85	± 0.36	1.01	+0.00	0.03	0.05	± 0.38
A399	± 0.42	1.01	+0.02	0.03	0.05	± 0.42
A401	± 0.27	1.01	+0.03	0.05	0.04	± 0.27
A478	± 0.25	1.00	+0.00	0.10	0.04	± 0.25
A754	± 0.26	1.04	+0.02	0.02	0.04	± 0.29
A1651	± 0.43	1.00	+0.00	0.06	0.06	± 0.44
A2597	± 1.06	1.00	+0.01	0.09	0.08	±1.07

ACBAR:

• 16-pixel, multi-frequency, 240 mK, millimeter-wave bolometer array.

• Observes from 2m Viper telescope at the South Pole with 4-5' beams.

2002 Winter Crew

- Bands, filters, detectors, and angular resolution similar to *Planck* HFI.
 - Assembled: Fall 2000
 - Installed: January 2001
 - Upgraded: December 2001
- Observed through Nov 2002

First ACBAR Cluster Image: A3266

z=.0545 T_x=6.2 keV L_x=9.5x10⁴⁴

Requires Multi-frequency Data to Subtract CMB

SUZIE

- The Sunyaev-Zel'dovich Infrared Experiment
 - PI: Sarah Church (Stanford)
- Spectrum of the SZE
 150, 220, 350 GHz
 - <image>

SUZIE Science

- SZE spectrum determined by:
 - temperature of cluster gas (tSZ)
 - velocity of cluster (kSZ)

Courtesy SUZIE collaboration

SUZIE Results - spectra

 The SZ spectrum of 11 clusters, as measured by SuZIE II. For each cluster, the solid black line is the best-fit S-Z spectrum, the dashed red line is the bestfit thermal spectrum, and the dotted blue line is the best-fit kinematic spectrum.

Courtesy SUZIE collaboration

Cosmology, University of Bologna - May 2006

SUZIE Results - velocities

- Measurements of each cluster's peculiar velocity plotted against redshift. The cross-hatched region shows the range that has been probed using optical measurements of peculiar velocities.
- Included are previous peculiar velocity measurements of the clusters A1689 and A2163 observed with the SuZIE I receiver by Holzapfel et al. (1997).

Future SZ

- The Sunyaev-Zeldovich Array (SZA)
 - 8 antennas, 3.5m diameter, 30 GHz
 - 6 x 10.4m OVRO
 - 11 x 6m BIMA
 - Combined array
 - CARMA site in Owens Valley CA
- Big Bolometer Arrays (APEX and SPT)
 - APEX (MPI) at ALMA site, Chile
 - South Pole Telescope (Chicago)
 - 1000+ element bolometer cameras 150 GHz
 - surveys for SZ clusters
 - constraint growth and volume factors
 - dark energy density Ω_e and equation of state w_e

Redshift

Courtesy SZA and SPT collaborations

Matter Spectrum and Large Scale Structure

After recombination ...

- Potential fluctuations grow to form Large Scale Structure
 - overdensities collapse to form galaxies and galaxy clusters
 - underdensities expand into voids, with cosmic web between
 - acoustic peaks appear as <u>Baryon Oscillations</u> in matter spectrum

Simulation courtesy A. Kravtsov – http://cosmicweb.uchicago.edu

After recombination ...

- Potential fluctuations grow to form Large Scale Structure
 - overdensities collapse to form galaxies and galaxy clusters
 - underdensities expand into voids, with cosmic web between
 - acoustic peaks appear as <u>Baryon Oscillations</u> in matter spectrum
- Current overdensities in non-linear regime
 - $\delta \rho / \rho \sim 1$ on 8 h^{-1} Mpc scales (σ_8 parameter)
 - − linear potential growth: $\delta\rho/\rho$ ~ 10-3 at recombination (z ≈1500)

Simulation courtesy A. Kravtsov – http://cosmicweb.uchicago.edu

Late Times: Matter Power Spectrum

- matter power spectrum P(k)
 - related to angular power spectrum (via transfer function)

large scale structure

- non-linear on small scales (<10 Mpc = 0.1)
- imprint of CMB acoustic peaks retained on large scales
- "baryon oscillations" measured by SDSS

Projected SDSS BRG

Courtesy Wayne Hu - http://background.uchicago.edu

Late Times: Matter Power Spectrum

- matter power spectrum P(k)
 - related to angular power spectrum (via transfer function)

large scale structure

- non-linear on small scales
- imprint of CMB acoustic peaks retained on large scales
- "baryon oscillations" measured by SDSS

Eisenstein et al. 2005, astro-ph/0501171

Dark Energy, Galaxies, and the Late ISW

Galaxies and ISW

- The distribution of galaxies should reflect the distribution of potential wells in nearby Universe
 Sloan Digital Sky Survey (SDSS)
- The decay of potential during epoch of Dark Energy domination (z>2) causes the Late ISW in the CMB
 - low-l CMB anisotropies in WMAP
- Cross-correlate WMAP with SDSS

WMAP and **SDSS**

cross-correlation should enhance ISW signal

Courtesy Bob Nichol Density of Luminous Red Galaxies (LRGs) selected from the SDSS

SDSS-WMAP correlation results

- LRG selection to z~0.8 (Eisenstein et al. 2001)
- 5300 sq degrees
- Achromatic (no contamination)
- Errors from 5000 CMB skies
- Compared to a null result
- >95% for all samples
- Low redshift sample contaminated by stars
- Individually >2s per redshift slice
- 4 redshift shells (not significant overlap)
- Overall, signal detected at ~5σ

Courtesy Bob Nichol for SDSS team

ISW predictions

- Halo model. Biasing of b=1,2,3
 & 4 for LRGs
- Plus SZ on small scales
- Data prefers DE model over null hypothesis at the >99% confidence for all combinations
- The measurement is very sensitive to n(z) assumed and Ω_{m}

Summary

CMB Checklist (finale)

Structure predictions from inflation-inspired models:

- late-time non-linear structure formation (revisited)
 - gravitational lensing of CMB
 - $\sqrt{-}$ Sunyaev-Zeldovich effect from deep potential wells (clusters)
- growth of matter power spectrum
 - $\sqrt{-}$ primordial power-law above current sound horizon
 - $\sqrt{-}$ CMB acoustic peaks as baryon oscillations
- dark energy domination at late times
 - $\sqrt{-}$ correlation of galaxies with Late ISW in CMB
 - cluster counts (SZ) reflect LCDM growth and volume factors

It does look like our current Universe is dominated in energy density by a Dark Energy (Lambda) component!