

Cosmology: Polarization of the Cosmic Microwave Background

Steven T. Myers

University of Bologna

and

the National Radio Astronomy Observatory – Socorro, NM

Polarization basics

Physics of polarization

- Maxwell's Equations + Wave Equation
 - $E \cdot B = 0$ (perpendicular); $E_z = B_z = 0$ (transverse)
- Electric Vector 2 orthogonal independent waves:
 - $E_{X} = E_{1} \cos(kz \omega t + \delta_{1}) \qquad k = 2\pi / \lambda$
 - $E_y = E_2 \cos(kz \omega t + \delta_2) \qquad \omega = 2\pi v$
 - describes helical path on surface of a cylinder...

- parameters E₁, E₂, $\delta = \delta_1 \delta_2$ define <u>ellipse</u>
 - electric vector traces ellipse viewed along *k* direction

The Polarization Ellipse

- Axes of ellipse E_a, E_b
 - $-S_0 = E_1^2 + E_2^2 = E_a^2 + E_b^2$ Poynting flux
 - $\delta \text{ phase difference} \qquad \tau = k z \omega t$
 - $E_{\xi} = E_a \cos (\tau + \delta) = E_X \cos \Psi + E_V \sin \Psi$
 - $E_{\eta} = E_{b} \sin(\tau + \delta) = -E_{x} \sin \Psi + E_{y} \cos \Psi$

The polarization ellipse continued...

- Ellipticity and Orientation
 - $E_1 / E_2 = \tan \alpha$ $\tan 2\psi = -\tan 2\alpha \cos \delta$
 - $E_a / E_b = \tan \chi$ sin $2\chi = \sin 2\alpha \sin \delta$
 - handedness (sin $\delta > 0$ or tan $\chi > 0 \rightarrow ight$ -handed)

Polarization ellipse – special cases

• Linear polarization

 $- \delta = \delta_1 - \delta_2 = m\pi \quad m = 0, \pm 1, \pm 2, \dots$

- ellipse becomes straight line
- electric vector position angle Ψ = α
- Circular polarization
 - $\delta = \frac{1}{2} (1 + m) \pi m = 0, 1, \pm 2, ...$
 - equation of circle $E_X^2 + E_y^2 = E^2$
 - orthogonal linear components:
 - E_X = E cos τ
 - $E_y = \pm E \cos (\tau \pi/2)$
 - note quarter-wave delay between E_X and E_V !

Linear and Circular representations

- Orthogonal Linear representation (E_X, E_V) :
 - $E_{\xi} = E_a \cos (\tau + \delta) = E_x \cos \Psi + E_y \sin \Psi$
 - $E_{\eta} = E_{b} \sin (\tau + \delta) = -E_{x} \sin \Psi + E_{y} \cos \Psi$
- Orthogonal Circular representation (E_r, E_l) :
 - $E_{\xi} = E_a \cos (\tau + \delta) = (E_r + E_I) \cos (\tau + \delta)$
 - $E_{\eta} = E_b \sin(\tau + \delta) = (E_r E_l) \cos(\tau + \delta \pi/2)$
 - $E_r = \frac{1}{2} (E_a + E_b)$
 - $E_{I} = \frac{1}{2} (E_{a} E_{b})$
- Free to choose the orthogonal basis for polarization:
 - a monochromatic wave can be expressed as the superposition of two orthogonal <u>linearly polarized</u> waves
 - equally well described as superposition of two orthogonal <u>circularly polarized</u> waves!

The Poincare Sphere

- Treat 2ψ and 2χ as longitude and latitude on sphere of radius S_0

Stokes parameters

- Spherical coordinates: radius I, axes Q, U, V
 - $-S_0 = I = E_a^2 + E_b^2$
 - $-S_1 = Q = S_0 \cos 2\chi \cos 2\Psi$
 - $-S_2 = U = S_0 \cos 2\chi \sin 2\Psi$
 - S₃ = V = S₀ sin 2 χ
- Only 3 independent parameters:

$$-S_0^2 = S_1^2 + S_2^2 + S_3^2$$

$$- ||^2 = Q^2 + U^2 + V^2$$

- Stokes parameters I,Q,U,V
 - form complete description of wave polarization
 - NOTE: above true for monochromatic wave!
 - for non-monochromatic sources: partial polarization
 - $|^2 > Q^2 + U^2 + V^2$

Stokes parameters and ellipse

- Spherical coordinates: radius I, axes Q, U, V
 - $-S_0 = I = E_a^2 + E_b^2$
 - $-S_1 = Q = S_0 \cos 2\chi \cos 2\Psi$
 - $-S_2 = U = S_0 \cos 2\chi \sin 2\Psi$
 - $S_3 = V = S_0 \sin 2\chi$
- In terms of the polarization ellipse:
 - $-S_0 = I = E_1^2 + E_2^2$
 - $-S_1 = Q = E_1^2 E_2^2$
 - $S_2 = U = 2 E_1 E_2 \cos \delta$
 - S₃ = V = 2 E₁ E₂ sin δ
 - Note: this is equivalent to what linearly polarized optics see!

Stokes parameters special cases

NEAO

- Linear Polarization
 - $S_0 = I = E^2 = S$
 - $-S_1 = Q = I \cos 2\Psi$
 - $-S_2 = U = I \sin 2\Psi$
 - $S_3 = V = 0$
- Circular Polarization
 - $S_0 = I = S$
 - $-S_1 = Q = 0$
 - $-S_2 = U = 0$
 - S₃ = V = S (RCP) or -S (LCP)

Note: cycle in 180°

Stokes Parameters & coordinates

- Stokes parameters (parital polarization):
 - intensity I (Poynting flux) $I^2 = E_1^2 + E_2^2$
 - linear polarization Q,U $(m I)^2 = Q^2 + U^2$
 - circular polarization V $(v I)^2 = V^2$
- Coordinate system dependence:
 - I independent
 - V depends on choice of "handedness"
 - V > 0 for RCP
 - V = 0 for CMB (no "handedness" in Standard Cosmology!)
 - Q,U depend on choice of "North" (plus handedness)
 - Q "points" North, U 45 toward East
 - EVPA $\Phi = \frac{1}{2} \tan^{-1} (U/Q)$ (North through East)
 - Note: because of coordinate system dependence, Q and U not useful for CMB statistics in homogeneous and isotropic Universe!

CMB Polarization

The CMB is Polarized

Isotropic (monopolar) Scattering

Quadrupolar Scattering

→ <u>net linear polarization</u>

Animations from Wayne Hu

Quadrupole and plane wave

→ <u>net linear polarization</u> is oriented along cold axis of quadrupole Animations from Wayne Hu

The local quadrupole at scattering

- Quadrupole (*l*=2) has 8 components: m=0, m=±1, m=±2
- Density perturbations (from potential fluctuations H) produce scalar modes
- Vector modes indicate vorticity, and can be produced by defects (e.g. cosmic strings)
- Tensor modes are produced by gravity waves

Courtesy Hu & White- http://background.uchicago.edu Cosmology, University of Bologna – May 2006

E-modes from Scalars

- Linear polarization "vectors" for plane waves
 - E (even parity = aligned 0° or 90° to *k*-vector)
 - from scalar density fluctuations → predominant in standard model!

E & B modes from Tensors

- Linear polarization "vectors" for plane waves
 - E (even parity = aligned 0° or 90° to *k*-vector)
 - from scalar density fluctuations → predominant in standard model!
 - B (odd parity = at $\pm 45^{\circ}$ to *k*-vector)
 - vector perturbations (vorticity or defects) produce only **B**-modes
 - tensors (gravity waves) produce both E & B
 - lensing makes B modes from E modes
 - also secondary anisotropies & foregrounds

Figures courtesy Hu & White 1997

E & B modes on the sky

Plane waves add up or interfere on the sky to make "hot" and "cold" spots.

E-mode polarization vectors line up as radial "hedgehog" or tangential patterns.

B-mode polarization vectors "pinwheel" or curl around peaks/holes.

Maxima in E/B are not P maxima – but measure nonlocal coherences in P

E & B live in wave-space!

Reionization and Polarization

Late reionization reprocesses CMB photons

- Supression of primary temperature anisotropies
 - as $exp(-\tau)$
 - degenerate with amplitude and tilt of spectrum
- Enhancement of polarization
 - low l modes E & B increased
- Second-order conversion of T into secondary anisotropy
 - not shown here
 - velocity modulated effects
 - high l modes

Courtesy Wayne Hu – http://background.uchicago.edu

Lensing and Polarization

- Distorts the background temperature and polarization
- Converts E to B polarization
- Can reconstruct from T,E,B on arcminute scales
- Can probe clusters

Hu & Okamoto (2001)

Courtesy Wayne Hu – http://background.uchicago.edu

CMB Checklist

Polarization predictions from inflation-inspired models:

- CMB is polarized
 - acoustic peaks in E-mode spectrum from velocity perturbations
 - E-mode peaks 90° out-of-phase for adiabatic perturbations
 - vanishing small-scale B-modes
 - reionization enhanced low & polarization
- gravity waves from inflation
 - B-modes from gravity wave tensor fluctuations
 - very nearly scale invariant with extremely small red tilt (n≈0.98)
 - decay within horizon (*l*≈100)
 - tensor/scalar ratio r from energy scale of inflation ~ $(E_{inf}/10^{16} \text{ GeV})^4$