

Cosmology: The effect of cosmological parameters on the angular power spectrum of the Cosmic Microwave Background

Steven T. Myers

University of Bologna

and

the National Radio Astronomy Observatory – Socorro, NM

The Standard Model

Over the past decade we have arrived at a <u>Standard Cosmological Model™</u>

THE PILLARS OF INFLATION

1) super-horizon (> 2°) anisotropies 2) acoustic peaks and harmonic pattern ($\sim 1^{\circ}$) 3) damping tail (<10')4) Gaussianity 5) secondary anisotropies 6) polarization 7) gravity waves

But ... to test this we need to measure a signal which is 3x107 times weaker than the typical noise!

 Ω_{m}

h

dark energy matter fraction Hubble Constant optical depth size & age of the to last scattuniverse ering of cmb

 Ω_{Λ}

 τ

The Angular Power Spectrum

- The CMB angular power spectrum is the sum of many individual physical effects
 - acoustic oscillations
 - (static) variations in potential (Sachs-Wolfe Effect)
 - baryon loading of oscillations
 - photon drag and damping
 - moving scatterers (Doppler)
 - time-varying gravitational potentials (ISW)
 - delayed recombination
 - late reionization

CMB Acoustic Peaks

Compression driven by gravity, resisted by radiation ullet \approx seismic waves in the cosmic photosphere: cos(kc_s η)

CMB Acoustic Overtones

If we choose to follow a crest (overdensity) after horizon entry, the first acoustic peak is its first compression...

Doppler Effect

- Due to electron velocities
 - dipole at last scattering
- Out of phase with density fluctuations
 - 90° phase shift
 - $sin(kc_s\eta)$
- Same size as potential effect
 - but decorrelated by projection onto sky
 - more important in reionized Universe and in polarization!

Peaks and Curvature

Changing distance to z = 1100shifts peak pattern

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - <u>curvature of Universe (e.g.</u>
 <u>open, flat, closed</u>)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Curvature

Curvature in the CMB

Changing distance to z = 1100shifts peak pattern

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - <u>curvature of Universe (e.g.</u>
 <u>open, flat, closed</u>)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Lambda

Cosmological Constant in the CMB

Changing dark energy (at fixed curvature) only slight change.

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - <u>dark energy (e.g. cosmological</u> <u>constant)</u>
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Baryons

Changing baryon loading changes odd/even peaks

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Baryons

Baryon-Photon Ratio in the CMB

NFAO

Changing baryon loading changes odd/even peaks

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - amount of matter (e.g. dark matter)

Peaks and Matter

Changing dark matter density also changes peaks...

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - <u>amount of matter (e.g. dark</u> <u>matter)</u>

Peaks and Matter

Matter-Radiation Ratio in the CMB

NEAO

Changing dark matter density also changes peaks...

- Location and height of acoustic peaks
 - determine values of cosmological parameters
- Relevant parameters
 - curvature of Universe (e.g. open, flat, closed)
 - dark energy (e.g. cosmological constant)
 - amount of baryons (e.g. electrons & nucleons)
 - <u>amount of matter (e.g. dark</u> <u>matter)</u>

Reionization

Late reionization reprocesses CMB photons

- Supression of primary temperature anisotropies
 - as $exp(-\tau)$
 - degenerate with amplitude and tilt of spectrum
- Enhancement of polarization
 - low l modes E & B increased
- Second-order conversion of T into secondary anisotropy
 - not shown here
 - velocity modulated effects
 - high l modes

CMB Checklist

Primary predictions from inflation-inspired models:

- acoustic oscillations below horizon scale
 - nearly harmonic series in sound horizon scale
 - signature of super-horizon fluctuations (horizon crossing starts clock)
 - even-odd peak heights baryon density controlled
 - a high third peak signature of dark matter at recombination
- nearly flat geometry
 - peak scales given by comoving distance to last scattering
- primordial plateau above horizon scale
 - signature of super-horizon potential fluctuations (Sachs-Wolfe)
 - nearly scale invariant with slight red tilt (n≈0.96) and small running
- damping of small-scale fluctuations
 - baryon-photon coupling plus delayed recombination (& reionization)

Secondary Anisotropies

The CMB After Last Scattering... **Primary Anisotropies** recombination reionization ensing A-domination

Secondary Anisotropies from propagation and late-time effects

Courtesy Wayne Hu - http://background.uchicago.edu

Gravitational Secondaries

- Due to CMB photons passing through potential fluctuations (spatial and temporal)
- Includes:
 - Early ISW (decay, matter-radiation transition at last scattering)
 - Late ISW (decay, in open or lambda model)
 - Rees-Sciama (growth, non-linear structures)
 - Tensors (gravity waves, 'nuff said)
 - Lensing (spatial distortions)

Courtesy Wayne Hu – *http://background.uchicago.edu*

CMB Lensing

- Distorts the background temperature and polarization
- Converts E to B polarization
- Can reconstruct from T,E,B on arcminute scales
- Can probe clusters

Hu & Okamoto (2001)

Courtesy Wayne Hu – http://background.uchicago.edu

CMB Lensing

- Distorts the background temperature and polarization
- Converts E to B polarization
- Can reconstruct from T,E,B on arcminute scales
- Can probe clusters

Scattering Secondaries

- Due to variations in: ullet
 - Density
 - Linear = Vishniac effect
 - Clusters = thermal Sunyaev-Zeldovich effect
 - Velocity (Doppler)
 - Clusters = kinetic SZE
 - Ionization fraction
 - Coherent reionization suppression
 - "Patchy" reionization

Ostriker-Vishniac Effect

- Reionization + Structure
 - Linear regime
 - Second order (not cancelled)
 - Reionization supresses large angle fluctuations but generates small angle anisotropies

Courtesy Wayne Hu – http://background.uchicago.edu

Patchy Reionization

- Structure in ionization
 - Can distinguish
 between ionization
 histories
 - Confusion, e.g. kSZ effect
 - e.g. Santos et al. (0305471)
- Effects similar
 - kSZ, OV, PRel
 - Different z's, use lensing?

Patchy Reionization

- Structure in ionization
 - Can distinguish
 between ionization
 histories
 - Confusion, e.g. kSZ effect
 - e.g. Santos et al. (0305471)
- Effects similar
 - kSZ, OV, PRel
 - Different z's, use lensing?

FIG. 5.— Patchy power spectra for the reionization models in Figure 3 (same line styles), together with other astrophysical contributions and expected measurement errors (see text). The solid (dashed) straight line is the the point source contribution at 217 GHz before (after) multi-frequency cleaning. The primary unlensed (dashed) and lensed (solid) CMB power spectra are also shown as is the thermal SZ power spectrum from White et al. (2002) (dotted) with its expected amplitude at lower frequencies. The thin line close to the solid one shows the patchy power spectrum for a model with $\tau = 0.11$ but large bias.

Sunyaev-Zeldovich Effect (SZE)

- Spectral distortion of CMB
- Dominated by massive halos (galaxy clusters)
- Low-z clusters: ~ 20'-30'
- $z=1: \sim 1' \rightarrow$ expected dominant signal in CMB on small angular scales
- Amplitude highly sensitive to σ_8

A. Cooray (astro-ph/0203048)

P. Zhang, U. Pen, & B. Wang (astro-ph/0201375)

CMB Checklist (continued)

Secondary predictions from inflation-inspired models:

- late-time dark energy domination
 - low & ISW bump correlated with large scale structure (potentials)
- late-time non-linear structure formation
 - gravitational lensing of CMB
 - Sunyaev-Zeldovich effect from deep potential wells (clusters)
- late-time reionization
 - overall supression and tilt of primary CMB spectrum
 - doppler and ionization modulation produces small-scale anisotropies

Matter Spectrum and Large Scale Structure

After recombination ...

- Potential fluctuations grow to form Large Scale Structure
 - overdensities collapse to form galaxies and galaxy clusters
 - underdensities expand into voids, with cosmic web between
 - acoustic peaks appear as <u>Baryon Oscillations</u> in matter spectrum

Simulation courtesy A. Kravtsov – http://cosmicweb.uchicago.edu

After recombination ...

- Potential fluctuations grow to form Large Scale Structure
 - overdensities collapse to form galaxies and galaxy clusters
 - underdensities expand into voids, with cosmic web between
 - acoustic peaks appear as <u>Baryon Oscillations</u> in matter spectrum
- Current overdensities in non-linear regime
 - $\delta \rho / \rho \sim 1$ on 8 h^{-1} Mpc scales (σ_8 parameter)
 - − linear potential growth: $\delta\rho/\rho$ ~ 10-3 at recombination (z ≈1500)

Simulation courtesy A. Kravtsov – http://cosmicweb.uchicago.edu

Late Times: Matter Power Spectrum

- matter power spectrum P(k)
 - related to angular power spectrum (via transfer function)

large scale structure

- non-linear on small scales (<10 Mpc = 0.1)
- imprint of CMB acoustic peaks retained on large scales
- "baryon oscillations" measured by SDSS

Projected SDSS BRG

Late Times: Matter Power Spectrum

- matter power spectrum P(k)
 - related to angular power spectrum (via transfer function)

large scale structure

- non-linear on small scales
- imprint of CMB acoustic peaks retained on large scales
- "baryon oscillations" measured by SDSS

Eisenstein et al. 2005, astro-ph/0501171

CMB Checklist (continued)

Secondary predictions from inflation-inspired models:

- late-time dark energy domination
 - low & ISW bump correlated with large scale structure (potentials)
- late-time non-linear structure formation
 - gravitational lensing of CMB
 - Sunyaev-Zeldovich effect from deep potential wells (clusters)
- late-time reionization
 - overall supression and tilt of primary CMB spectrum
 - doppler and ionization modulation produces small-scale anisotropies
- growth of matter power spectrum
 - primordial power-law above current sound horizon
 - CMB acoustic peaks as baryon oscillations