Bayesian algorithms in Imaging and Deconvolution

Applications:

Object detection in extended emission (devonvolution+component fitting), calibration, fitting physical models to sky emission patterns...

Method:

- Use a parameter based model : MImage = sum of elliptical gaussian components
- Provide prior information about each type of parameter : P(I|M)
 Uniform distribution for position,amplitude, Non-uniform for scale
- Use an appropriate goodness-of-fit criterion : P(D|I,M) Chi-Square
- Perform Monte Carlo sampling of a posterior distribution.

$$\mathbf{P}(\mathbf{I}|\mathbf{D},\mathbf{M}) \quad \alpha \quad \mathbf{P}(\mathbf{D}|\mathbf{I},\mathbf{M})\mathbf{P}(\mathbf{I}|\mathbf{M}) \quad \alpha \quad \mathbf{e}^{-\frac{1}{2}\chi^2}\mathbf{P}(\mathbf{I}|\mathbf{M})$$

Goals:

- Obtain estimates for most probable values of all parameters.
- Obtain error estimates on these parameters + other statistics.

Advantages:

- Work directly with the raw visibility data, with no pre-processing.
- Obtain combined error estimates over all intermediate processing steps.

Implementation & Performance

- Deconvolution is a non-linear inverse problem with no unique solution.
- Component fitting (gaussians) to extended emission is likely to be multi-modal.

Some running times for an algorithm that fits elliptical gaussian components to extended emission:

Image	#-Gaussians	Time
size		
16x16	1	1 min
16x16	1-3	2.5 min
64x64	1-3	20 min
64x64	4-7	60 min
128x128	3-4	5.5 hrs

The running time depends on

Computational factors:

- Image Size O(N²log(N))
- Number of Parameters O(N)
- Number of Ensembles O(N)

Algorithmic factors

- Prior information (regularization)
- Signal to Noise Ratio (Chi-Square)
- Area under the clean beam
 (degree of smoothing to be undone + complexity of the point spread function.)

Parallelization is certainly necessary, but there could be a trade-off between the efficiency of the sampling algorithm (speed of convergence) and its simplicity.