Challenges in advanced imaging and deconvolution

Sanjay Bhatnagar NRAO, Socorro Nov., 2004

Challenges

- •Explicitly incorporate the scale information in the deconvolution algorithms.
 - > Widely separated pixels are coupled due to the sidelobes of the Point Spread Function (PSF). Fast computation of this coupling is a challenge.
 - Decoupling the various scales in the image, or controlling the dimensionality of the search space is a challenge.
 - Solving for direction dependent corruptions as a function of time, frequency and polarization.
 - Incorporate these direction dependent effects while predicting the model visibilities.
 - Modeling the sky as a function of frequency and polarization

Basic Interferometry

• Interferometers measure the source coherence function (the Visibility function) $V(u_{ij}, v_{ij}, w_{ij}) = \langle E_i E_j^* \rangle$

 E_i is the electric field measured at antenna *i*

u, v, w are the projected separation between the antennas *i* and *j*

• In terms of the sky brightness distribution $(I^{\circ}(l,m))$

$$V(u_{ij}, v_{ij}, w_{ij}) = \int \int I^{o}(l, m) e^{-2\pi \iota(u_{ij}l + v_{ij}m + w_{ij}\sqrt{1 - l^{2} - m^{2}})} \frac{dl dm}{\sqrt{1 - l^{2} - m^{2}}}$$

• In the small angle approximation, sky is the 2D Fourier transform of the Visibility function (van-Citter Zernike Theorem)

$$V(u_{ij}, v_{ij}) = \int \int I^{o}(l, m) e^{-2\pi \iota(u_{ij}l + v_{ij}m)} dl dm$$
$$I^{o} = FT[V]$$

Basic Imaging

• Visibility function is measured at discrete points only

$$V^{Obs}(u, v, w) = S(u, v, w)V(u, v, w)$$

The sampling function S(u,v,w) = 1 at the measured points, and 0 otherwise.

- The Dirty Image (I^D) is the convolution of the true image and the PSF (B): I^D(l,m) = B(l,m) * I^o(l,m)
- Image deconvolution: Given the PSF and the measured visibilities, find a model of the sky (I^M) such that residuals are noise-like.

Minimize : $\sum_{ij} |V_{ij}^{obs} - FT[B * I^{M}]_{ij}|^{2}$ w.r.t. I^{M}

• Estimation of I^M is a non-linear inverse problem.

Deconvolution

• Currently used algorithms generate a sky-model in the pixel basis (Clean, MEM):

$$I^{M}(l) = \sum_{k} A_{k} \delta(l - l_{k})$$

• Inherent coupling of the pixels due to the large scale structures in *I*^o is ignored. Leads to correlated residuals (large scale emission is poorly reconstructed).

Scale sensitive deconvolution-I

• Pixel-to-pixel noise in the image is correlated at the scale of the resolution element

 $I^{D} = B * I^{o} + B * I^{N}$ where $I^{N} = FT$ [Visibility Noise]

- The scale of emission *fundamentally* separates signal (*I*°) from the noise (*I*^N).
- Multi-Scale Clean (Cornwell & Holdaway, 2004, in prep)
 - Decompose the sky in a set of components at few scales $I^{M} = \sum_{k=1}^{N} A_{k} P(Scale_{k})$
 - Computing cost is independent of *N* (no. of scales).
 - Assumes that the space of P_k 's is orthogonal (ignore coupling of P_k 's).
 - Large scale emission is better reconstructed.
 - Non-symmetric structures are not optimally reconstructed.
 - Difficult to incorporate frequency dependence (wide-band imaging)

Scale sensitive deconvolution-II

- Asp-Clean (Bhatnagar & Cornwell, A&A, in press)
 - Explicitly solve for the local scale, position and amplitude of the pixel model

$$I^{M} = \sum_{k} A_{k} P(Scale_{k}, Pos_{k})$$

- Large scale emission and asymmetric structures are better reconstructed
- Computationally expensive: cost increases with the no. of components

$$V^{R} = V^{Obs} - B * P(Scale, Position)$$

$$\nabla V^{R} = B * \nabla P(Scale, Position)$$

• Acceleration: Solve in a sub-space; adaptively determine the sub-space

Imaging and calibration errors

• Most data corruptions are separated in antenna based quantities $V_{ij}^{Obs}(v, t) = G_{ij}(v, t) (\int \int P_{ij}(v, t) I^{M}(l, m) e^{2\pi \iota(u_{ij}l + v_{ij}m)} dl dm)$

 $G_{ij} = G_i G_j^*$ where G_i is the complex antenna based gains (direction independent) $P_{ij} = P_i(l,m)P_j(l,m)$ where P_i is the image plane errors (direction dependent).

• Assuming $E_{ij}=1$, direction independent terms can be solved by minimizing: $\sum_{ij} |V^{Obs} - G_i G_j^* V^M|^2 w.r.t. G_i's$

Corruptions

Data

• Direction dependent terms remain separable in the visibility domain, but more expensive to apply $V_{ij}^{Obs} = E_{ij} * V_{ij}^{M} \text{ where } E_{ij} = E_{i} * E_{j}^{*} \text{ ; } E_{i} = FT[P_{i}]$

Correction for image plane effects

• V^{Obs} does not regularly sample the (u,v) plane. $FT[I^D]$ using FFT is on a regular grid. V^M is computed by resampling the grid using a Gridding Convolution Function (GCF)

$$V^{M}(u_{ij}, v_{ij}) = (GCF(u, v) * FT[I^{D}])(u_{ij}, v_{ij})$$

- Image plane effects can be applied by using E_{ij} as the GCF ==> potentially different GCF for each baseline!
- Pre-compute all E_{ii} 's (memory demanding)

OR

• $E_{ij} = E^{o} [1 + \Delta E_{ij}]$ compute E^{o} and parameterize ΔE_{ij}

Pointing offset calibration

• E_{ij} $(l; l_i, l_j) = E_{ij}^o$ $(l) e^{-(\frac{l_i + l_j}{2})} e^{-\pi \iota (l_i - l_j)}$ $(l_i \text{ is the pointing offset})$ and minimize: $\sum_{ij} |V_{ij}^{Obs} - E_{ij}| * V^M|^2$ w.r.t. l_i

(Bhatnagar et al., 2004, EVLA Memo 84)

• Compute $V_{ij}^{R} = V_{ij}^{Obs} - E_{ij} * FT[I^{D}]$ during image deconvolution.

Computing and I/O costs

• Increase in computing due to more sophisticated parameterization

• Deconvolution: Fast evaluation of $B * \sum_{k} A_{k} P(Scale_{k}, Pos_{k})$

• Calibration: Fast evaluation of $E_{ii} * V^M$

- Cost of computing residual visibilities is dominated by I/O costs for large datasets (~200GB for EVLA)
 - Deconvolution: Approx. 20 access of the entire dataset
 - Calibration: Each trial step in the search accesses the entire dataset
- Solutions: Analytical approximations, caching, Parallel I/O,...
- Joint solver for deconvolution and calibration!
- Solutions: Sub-spaces, MCMC, Parallel computing,...

Wide band continuum imaging

• EVLA bandwidth ratio of 2:1

•
$$V(u_{ij}, v_{ij}) = \sum_{v_k} V(u_{ij}, v_{ij}; v_k) = \sum_{v_k} P_{ij} (v_k) FT[I^D(v_k)]$$

Sky emission, the Primary Beams, etc. become a function of frequency.

Ideas: Apply PB effects during predict. Sky model parameterized in frequency as well (MFS; Asp-Clean, direction dependent calibration)

- Other primary beam effects
 - Rotating non-symmetric PBs, polarized PBs, polarization squint
- Combining Scale sensitive + frequency sensitive deconvolution with image plane corrections