Wide field imaging computational challenges

Tim Cornwel/

Kumar Golap
Sanjay Bhatnagar

Square Kilometre Array

- Next generation radio telescope
- ~ $50 \times$ EVLA
- Baselines up to 3000 km
- Few hundred stations on baselines form 150 km to 3000km
- Frequency 0.1-25GHz
- Many challenges in calibration and imaging

Possible configuration in Australia

15,4

SKA in North America

$3 \mu \mathrm{~J} /$ beam 1.5 arcsec 1.4 GHz VLA image

- Square Kilometre Array will be ~ 100 times deeper
- Confusion limits probably require 0.1 arcsec resolution
- To reach sensitivity limit, must image accurately all emission over 1 degree FOV
- Image sizes could be up to 80,000 by 80,000 pixels

A problem....

- Point sources away from the phase center of a radio synthesis image are distorted
- Bad for long baselines, large field of view, and long wavelengths
- Algorithms exist and work
- But slowly....
- Will be a substantial problem for SKA

J2000 Right Ascension

$$
V(u, v, w)=\int I(l, m) e^{j 2 \pi\left(u l+v m+w\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right)} d l d m
$$

Faceted approaches

- Approximate integral by summation of 2D Fourier transforms

$$
V(u, v, w)=\sum_{k} e^{j 2 \pi \cdot\left(u l_{k}+v m_{k}+w\left(\sqrt{1-l_{k}^{2}-m_{k}^{2}}-1\right)\right)} \int I_{k}(l, m) e^{j 2 \pi \cdot\left(u\left(l-l_{k}\right)+v\left(m-m_{k}\right)\right)} d l \cdot d m
$$

- Can do in image plane (SDE, AIPS) or Fourier plane (AIPS++)
- Fourier plane is better since it minimizes facet edge problems
- Number of facets $\sim \frac{3 \lambda B}{D^{2}}$
- Parallelized via PVM (Cornwell 1992), MPI (Golap et al. 1999)

A simple piece of optics...

\qquad

If we had measured on plane $A B$ then the visibility would be the 2D Fourier transform of the sky brightness

Since we measured on $A B^{\prime}$, we have to propagate back to plane $A B$, requiring the use of Fresnel diffraction theory since
the antennas are in each others near field

$\tilde{G}(u, v, w) \approx e^{-j \pi w\left(u^{2}+v^{2}\right)}$

The essence of W projection

- Evaluate this integral (and transpose) for regular grid in $(1, m)$ and irregularly spaced samples in (u, v)

$$
V(u, v, w)=\int I(l, m) e^{j 2 \pi\left(u l+v m+w\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right)} d l d m
$$

- Image space computation

$$
V(u, v, w)=\int G(l, m, w) I(l, m) e^{j 2 \pi(u l+v m)} d l d m
$$

- Fourier space computation

$$
V(u, v, w)=G(u, v, w) \otimes V(u, v, w=0)
$$

The convolution function

Image plane phase screen

$$
e^{j 2 \pi w\left(\sqrt{1-l^{2}-m^{2}}-1\right)}
$$

Phose screen for W plane 32

Fourier plane convolution function

$$
\approx e^{-j \pi w\left(u^{2}+v^{2}\right)}
$$

From narrow field to wide field

Standard narrow field
measurement equation

$$
V(u, v)=\int I(l, m) e^{j 2 \pi(u l+v m)} d l d m
$$

Fresnel diffraction

$$
V(u, v, w)=G(u, v, w) \otimes V(u, v)
$$

Standard wide field measurement equation derived using Van Cittert-Zernike theorem

$$
\begin{aligned}
V(u, v, w) & =\int I(l, m) e^{j 2 \pi\left(u l+v m-w\left(l^{2}+m^{2}\right) 2\right)} d l d m \\
& \approx \int \frac{I(l, m)}{\sqrt{1-l^{2}-m^{2}}} e^{j 2 \pi\left(u l+v m+w\left(\sqrt{1-l^{2}-m^{2}}-1\right)\right)} d d m
\end{aligned}
$$

Wide field imaging $=$ narrow field imaging + convolution

The W projection algorithm

- Calculate gridding kernel for range of values of \sqrt{W}
- Fourier transform phase screens multiplied by spheroidal function (needed to control aliasing)
- Image to Fourier
- Taper image by spheroidal function
- Fourier transform
- Estimate sampled visibilities by convolving gridded values with w dependent kernel
- Fourier to Image
- Convolve sampled visibilities onto grid using w dependent kernel
- Inverse Fourier transform
- Correct for spheroidal function
- Deconvolution
- Deconvolve in minor cycles using PSF for image center
- Reconcile to visibility data in major cycles

A synthetic example

- Simulation of \sim typical 74 MHz field
- Sources from WENSS
- Long integration with VLA

Fourier transform
UVW space facets

W projection

Computing costs for wide-field imaging

- Cleaning is very efficient for "Log N/Log S" fields
- Cost of minor cycle is negligible
- Costs are all in gridding, twice for each major cycle
- Require only ~5-10 major cycles to reach dynamic range limits
- For extended emission, cost of minor cycles may dominate
- e.g. Multi-Scale CLEAN can be very slow (but effective)
- Large overall penalty for small antennas

Number of antennas	Time and frequency sampling	Non- coplanar baselines	Cleaning	Total
N^{2}	$\frac{B^{2}}{D^{2}}$	$\frac{\lambda B}{D^{2}}$	$\frac{\log (\Lambda)}{\log \left(2 \sqrt{N_{s}}\right)}$	$\frac{N^{2} B^{3} \lambda}{D^{4}} \frac{\log (\Lambda)}{\log \left(2 \sqrt{N_{s}}\right)}$

Is W projection fast enough?

$$
C_{S K A}: \$ 3.5 \mathrm{M}\left(\frac{0.1}{\eta}\right)\left(\frac{f}{0.5}\right)^{2}\left(\frac{B}{5 k m}\right)^{3}\left(\frac{D}{12.5 m}\right)^{-8}\left(\frac{\lambda}{0.2 m}\right)\left(\frac{\Delta \nu}{500 M H z}\right) 2^{\frac{2(2010-t)}{3}}
$$

- \$1~30Mflops/s (2010)
- Antenna diameter scaling is horrific!
- Doubling antenna size saves factor of 256 in computing
- Baseline dependency is tough
- Easy to find hardware costs > SKA cost
- Multi-fielding not included
- Error ~ factor of 3 in each direction
- For 350 km baselines with 25 m antennas
- \$120M in 2015
- Without w projection, would be ~\$1B

Future problems....

- It's only going to get worse
- Pointing errors
- Antenna primary beam idiosyncrasies
- Wide bandwidth
- Computing requirements will increase beyond even W projection

Better approach to parallelization?

- Image space computation

$$
V(u, v, w)=\int G(l, m, w) I(l, m) e^{j 2 \pi(u l+v m)} d l d m
$$

- Each processor does:
- Image plane weighting by function
- Fourier transform
- Degridding with limited size convolution function
- Hybrid possible
- Some image plane, some Fourier plane
- Can tune division to match machine
- Scaling law will be the same but perhaps with smaller coefficient

Another approach...

- Parallel machine where each node can do large convolutions quickly...
- Implement via FPGAs
- Cray XD1
- Convolution step done in a few clock cycles

- ~ 100 times faster
- Scaling due to non-coplanar baselines vanishes

$$
C_{S K A}: \$ 22 \mathrm{~K}\left(\frac{0.1}{\eta}\right)\left(\frac{f}{0.5}\right)^{2}\left(\frac{B}{5 k m}\right)^{2}\left(\frac{D}{12.5 m}\right)^{-6}\left(\frac{\Delta v}{500 M H z}\right) 2^{\frac{2(2010-t)}{3}}
$$

Summary

- The non-coplanar baselines effect is caused by Differential Fresnel diffraction
- W projection corrects the non-coplanar baselines effect by convolving with Fresnel diffraction kernel in uvw space before Fourier transform
- W projection is an order of magnitude faster than facet based methods
- Non coplanar baselines effect is still a significant obstacle for SKA
- Application-specific acceleration very promising

