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Abstract

Interferometry has long been used in radio astronomy to enable imaging of astro-
nomical sources with angular resolutions exceeding the diffraction limit of a single
aperture. In the past decade, interferometry of the CMB has been carried out with
instruments such as the CBI, DASI and VSA which exploited the inherent instru-
mental stability and simplicity of ell-space analysis of interferometer data. The prac-
tice of interferometric polarimetry has been particularly well-developed in the radio
astronomical community and DASI and CBI were able to measure the polarization
of the CMB over the multipole range 200 < ` < 1500. In this talk, I discuss the
theory of interferometry and the mathematics of CMB interferometric polarimetry,
using the recent polarization observations of the Cosmic Background Imager (CBI)
as an example. Topics will also include description of the data pipeline, handling of
contaminating signals and sources, and the construction of optimal maps. I will con-
clude with the possibility of future CMB interferometers with kilo-element arrays
and mega-pixel imaging.
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1 Introduction

Interferometry has a venerable history in radio astronomy as a technique to
synthesize apertures (1) larger than those constructible as single telescopes,
providing higher resolution at the cost of surface brightness sensitivity. Early
searches for Cosmic Microwave Background (CMB) anisotropies using general-
purpose radio interferometers started in the late 1970’s using the Green Bank
Interferometer (2) and then moved to the Very Large Array (VLA) (3; 4).
Later pioneering efforts included the use of ATCA (5) and IRAM (6). How-
ever, by the late 1980’s it was clear that compact arrays with smaller apertures
observing at higher frequencies are needed to reach the sensitivity levels re-
quired to detect the weak CMB fluctuation signals. For example, (7) used a
SIS mixer based interferometer at 43 GHz to place further upper limits. In the
1990’s, breakthroughs in the development of low-noise microwave amplifiers
provided the technology needed to improve sensitivity, and starting with the
Cambridge Anisotropy Telescope (CAT) (8), a number of interferometers have
since been constructed to observe CMB anisotropies. In particular, the Cos-
mic Background Imager (CBI) (9), the Degree Angular Scale Interferometer
(DASI) (10), and the Very Small Array (VSA) (11) have provided high quality
measurements of CMB anisotropies and the CMB angular power spectrum,
and in the case of DASI and CBI, the polarization power spectrum. The BIMA
array equipped with a 30 GHz HEMT system(12) was also used to measure
the CMB power spectrum at high `. Other special-purpose interferometers like
MINT (13) have pushed towards higher frequencies.

In this contribution, we describe the methodology used to describe the process
of interferometric imaging and determination of the angular power spectrum
of the CMB. We then describe the pipeline developed for the CBI analysis.
We close with some speculation on the future of CMB interferometry. Science
results from the CBI are presented in a companion talk by Tim Pearson.

2 Interferometric Imaging and Polarimetry

In the following description of the interferometric imaging process, we have
adapted the discussion and notation used in (14) and Myers et al. (in prepa-
ration). We have tried to keep the notation the same, but have made some
changes in order to accommodate polarization and not confuse the reader with
multiple uses of the symbols P , Q, and V in particular! There are a number
of books that can serve as references on the theory and techniques of radio
interferometry, for example (1).

We now consider the specific case of an interferometer such as the CBI or DASI
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where the elements (antennas or horns) are aligned in a plane pointed along the
direction normal to this plane, or array axis. The signals from pairs of elements
are brought together, preserving phase, and multiplied in the correlator. This
is schematically shown in Figure 1. For our planar array, the delays along each
path to the correlator are compensated so that an initial wavefront impinging
on the array from the array axis arrives in phase at each multiplier. Since ideal
antenna optics are also designed to bring this wavefront to the focus in-phase,
our interferometer effectively computes the cross-correlation of the wavefronts
from the sky distribution of brightness over the planes of the apertures of the
pairs of elements.

A point source (at infinite distance) in the pointing direction of the array
produces wavefronts that are perpendicular to the normal to the array, thus
all the correlations have constant amplitude and zero net phase. We calibrate
the system such that this constant amplitude is equal to the flux density in
Janskys (Jy) 1 of such a point source. As illustrated in Figure 1, wavefronts
coming from direction at angle θ to the array normal will have a phase gradient
over the aperture plane of the array, with the relative phase of a correlation
growing linearly with the baseline, or distance between the two antennas in
the correlated pair. If we denote the angular offset of a source direction from
the reference direction of the array as a vector θ (in a Cartesian coordinate
system in a plane projected onto the sky at the array normal direction), then
this phase is given by 2πθ · Bij/λ where Bij is the baseline vector between
the pair of antennas i and j and λ is the observing wavelength. Note that
the choice of direction for Bij (ie. from antenna i to antenna j or visa versa)
is a convention of the interferometer system that must be carried through
the data reduction. Furthermore, this phase factor looks like the phase of a
Fourier transform, and indeed the interferometry equations can be formulated
in terms of Fourier transforms of the sky brightness projected onto tangent
planes (1).

The imaging equations: We can set up the interferometric imaging problem
as a linear operation relating the time-ordered correlations or “visibilities” ṽ
to the signal s̃

ṽ = Ã s̃ + ñ (1)

where ñ is the instrumental noise. We use the tilde on vectors and operators
to denote them as being in the Fourier plane. The Fourier domain signal s̃
is related to the sky brightness signal s by a Fourier transform s = F s̃.
The utility of this will become apparent when we show the interferometry
equations below. We also treat the data and signal vectors as real, although
they are most naturally formulated as complex quantities. In this case, the

1 1 Jy = 10−26 W m−2 Hz−1.
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Fig. 1. Schematic of a planar interferometer such as the CBI. Signals from pairs
of elements are correlated, with the delays set such that the signals from on-axis
wavefronts arrive coherently at the multipliers. Wavefronts coming from an an-
gle θ off-axis correlate with a residual phase 2πθB/λ between antenna pairs with
projected baseline B at observing wavelength λ. The real and imaginary parts of
the complex correlations are computed, and the outputs are complex un-calibrated
“visibilities”.

real and imaginary parts can be packed into the real vector with the transform
symmetries built into the kernels for the operators. We will switch between real
quantities in the matrix notation and complex quantities where convenient,
so beware.

We further assume that ñ is a realization of Gaussian noise with zero mean
and covariance Ñ = 〈ñ ñt〉. The probability distribution function for the noise
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is thus

L = (det Ñ−1/2π)1/2 exp
[
−1

2
(ṽ − Ã s̃)t Ñ−1 (ṽ − Ã s̃)

]
(2)

which is known as the “likelihood” function in Bayesian statistics. By maxi-
mizing L, one can construct the maximum likelihood estimate (MLE) m̃MLE

for the signal s̃, e.g. (15),

m̃MLE = R̃−1
MLE Ãt Ñ−1 ṽ R̃MLE = Ãt Ñ−1 Ã. (3)

In effect, we convolve the data using Ãt, then deconvolve using R̃−1, with Ñ−1

as the familiar inverse noise variance weighting factor. In general, the operator
R̃ is ill-conditioned (and singular) as it involves convolution by Ã and has
incomplete support due to the limited Fourier-space sampling of baselines by
the interferometer (see below). In radio interferometry, deconvolution is an
arcane art as one tries to find approximate and/or iterative methods to arrive
at an appropriate map m̃ that can be transformed into an image m = F m̃.

We can consider m̃MLE as a special case of a general “map”

m̃ = R̃−1 d̃ d̃ = H̃ ṽ = R̃ s̃ + ñd R̃ = H̃ Ã ñd = H̃ ñ (4)

where H̃MLE = Ãt Ñ−1. Note that no more information is contained in m̃
(or m) than in d̃. Therefore, one need only convolve the data with a kernel
that approximates H̃MLE to be close to the optimal solution. The d̃ can then
be used for further processing and analysis. The information on the CMB is
contained in the signal covariance S = 〈s̃ s̃t〉. This propagates through to the
covariance of d̃, CS = R̃ S R̃t.

One can make a “dirty” (ie. not deconvolved) image d of the sky by trans-
forming

d = F d̃ = R s + nd R = FR̃F−1. (5)

The matrix R encodes the mapping from the true sky s to the image d.
For example, the vector formed from the diagonal of R corresponds to the
“primary beam” of the array, relating a unit input sky pixels si to an output
pixel mi, while the point spread functions (PSF) are a set of vectors taken
from the rows of R normalized by the diagonal.

We now determine these operators for our interferometer observing the CMB.

Interferometric Polarimetry: Since radio receivers are sensitive to the or-
thogonal polarizations of the electromagnetic waves, our correlator will pro-
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duce products pq of these, where usually pq = RR, LL, RL,LR for circularly
polarized receiver systems (such as the VLA or CBI), or pq = XX, Y Y, XY, Y X
for a linearly polarized system. These are then mapped to the Stokes param-
eters I, Q, U, V that describe the radiation field. See the series of papers (16),
(17), (18) for a detailed description of radio interferometric polarimetry.

For the CMB temperature anisotropy field T , we use the correlations sensitive
to Stokes I, in our case RR and LL. For no circular polarization V = 0 (ie.
the CMB), these are equal and we can consider these to be “temperature”
visibilities ṽT . Since the wavefronts are summed and correlated, we find in a
noiseless system the complex “visibility” (indexed by k)

ṽTk =
∫

d2uÃ(uk − u) T̃ (u)e2πiu·θk (6)

where θk is the pointing direction of the array when data point k was taken.
A frequency dependent calibration factor to convert between the units of the
visibilities (flux density in Jy) and the units of the CMB temperature field has
been absorbed into Ã. The u = (u, v) is the coordinate system in the aperture
plane (also called the uv-plane). Equivalently, the k-vectors of the plane-wave
decomposition of the sky represented by the Fourier transform are given by
k = 2πu. Note that these Fourier modes can be considered as the small angle
< 10◦ limit of the spherical harmonics used in full-sky decomposition of the
CMB. In this case the multipole ` = |k| = 2π|u|, the magnitude of the k-
vector. Our Fourier convention is that T̃ is the inverse Fourier transform of
the sky temperature distribution, or

T̃ (u) =
∫

d2θT (θ) F−1(u, θ) F−1 = e−2πiu·θ ⇔ F = e2πiu·θ. (7)

Since T is real, the transform T̃ is Hermitian in the complex uv-plane and
only the real and imaginary parts over a half-plane are independent.

Our interferometer sums the sky signal over all relative pointing directions θ
with phase in the aperture plane given above. The wavefronts are modified
by the aperture illumination functions of the individual antennas, and thus
Ã is the aperture cross-correlation of the aperture functions of the pair of
antennas involved in the correlation. Note that the center of the correlation k
lies at uk = Bij/λk and has a width equal to the sum of the dish diameters in
wavelengths, with no support outside this region of the uv-plane: Ãij(u

′) = 0
for |u′| ≥ (Di+Dj)/λk for a visibility between antennas i and j with diameters
Di and Dj. observed at wavelength λk. This is illustrated in Figure 2. Note
that the Fourier transform A of Ã is traditionally known as the primary beam
response on the sky, and defines the field of view of the interferometer.

We turn this into a linear algebraic matrix operation ṽT = ÃT t̃ + ñT , where
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Fig. 2. Left: The physical baseline between a pair of CBI antennas to be correlated.
If a correlated signal were transmitted from the pair, it would paint a sinusoidal
fringe on the sky with angular wavelength B/λ. This is equivalent to the plane wave
that this baseline is sensitive to. Right: In the uv-plane, the baseline is the center
of a locus of points of width equal to the sum of the dish diameters in wavelengths.
The correlation sums together the complex coefficients of the plane waves whose
k-vectors k = 2πu fall in this region. For polarization, the E and B modes are
defined with respect to the orientation of the k-vectors in uv-space.

temperature signal vector t̃l = T̃ (ul) for uv-plane “cell” (ul, vl). The elements
of ÃT contain the interferometer phase factor of Equation 6, and in matrix
form

ÃTkl = ÃT (uk − ul) e2πiul·θk (8)

where ÃT is the aperture cross-correlation function appropriate for the Stokes
I intensity. Thus ÃT has dimensions of number of visibilities times number of
cells l in uv-space.

The operation described in in Equation 4 “grids” the visibilities into the uv-
plane using H̃ as a kernel. If we use ÃT to form H̃T , then we get the gridded
temperature estimator

d̃T = H̃T ṽT = R̃T t̃ + ñdT
R̃T = H̃T ÃT ñdT

= H̃T ñT . (9)

For purposes of CBI analysis, we carried out this gridding procedure on a
regular lattice (ul, vl) as described in (14). In our pipeline described in (14),
the singularity problems with R̃T and ÑdT

were handled by truncating the
gridded data vector d̃ by selecting every nth grid cell in (u.v) and to throw
out zero-weight cells (this pruned version of d̃T was called ∆ in that paper).
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The polarization of the radiation field can be included by considering a signal
vector p̃ for the polarization field P̃ (u) in uv-space

P̃ (u) = Q̃(u) + i Ũ(u) =
[
Ẽ(u) + i B̃(u)

]
ei2χ(u) (10)

where χ(u) = tan−1(v/u) is the angle of the plane wave k-vector k = 2πu on
the sky. The Q and U fields are the usual linearly polarized Stokes parameters
representing components of a polarization (pseudo-)vector in the frame of the
sky, with Q aligned North (Q > 0) or East (Q < 0) and U at ±π/4 with
respect to North (NE/NW). The E and B mode decomposition, e.g. (19), is
in the frame of the plane wave decomposition of the sky in the Fourier domain.
Thus, an E-mode plane wave has a linear polarization vector aligned along
(E > 0) or perpendicular to (E < 0) the wave k-vector, and a B-mode has
its polarization at ±π/4 to the wave. See the right panel of Figure 2 for a
graphical illustration of this. Note that the P̃ field is defined over the entire
complex uv-plane and is not Hermitian. As in the definition of t̃, we can define
a polarization vector p̃

p̃ = X̃
[
ẽ + i b̃

]
X̃ll′ = ei2χ(ul) δll′ ẽl = Ẽ(ul) b̃l = B̃(ul) (11)

where p̃l = P̃ (ul).

The cross-polar (RL,LR) correlation products are sensitive to P̃ . We let ṽP =
ÃP p̃ + ñP , with

ÃPkl = ÃP (uk − ul) e2πiul·θk e−i2(χ(uk)−χij0) (12)

where χ(uk) is the baseline orientation of visibility k and χij0 is the reference
orientation of baseline ij in the array (e.g. at deck-angle zero for a planar array,
or at transit for a tracking array). This last phase factor is there to correct
for the parallactic angle orientation of the array feeds on the sky, which are
locked to the deck of our planar array and thus rotate with the (uk, vk) of
the visibilities of a given baseline. The visibilities are calibrated such that
δχ = χ(uk)− χij0 = 0 at deck angle zero. The ṽP is thus equivalent to an RL
correlation product, and LR visibilities should be treated as RL correlations
complex-conjugated and reflected about the origin in the uv-plane. Note that
most radio interferometers apply the parallactic angle rotation (the last term
on the right hand side of Equation 12) on-line so that the visibility data can be
transformed easily to make Q and U Stokes images in the standard software
packages. For CBI this is done also in our calibrated visibility data, but before
gridding we do the de-rotation so that the visibilities are in the frame of Ẽ
and B̃ (see below). Also, the polarization beam transform ÃP is in general
different than Ã for the intensity, though for a symmetric optical system like
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that used on CBI, and neglecting leakage (see below), they should be almost
identical.

In the more familiar integral form,

ṽPk =
∫

d2u
[
Ẽ(u) + i B̃(u)

]
e2πiu·θk ei2χij0

×ÃP (uk − u) ei2(χ(u)−χ(uk)) + ñPk. (13)

The last terms in the integral represent the smearing in uv-space due to the
macroscopic size of the apertures, which mix the E and B modes. If our
interferometer array elements were infinitely small and thus sensitive to the
entire sky, then ÃP would be a delta-function and our interferometer would
recover Ẽ + iB̃ directly. As it is, it is straightforward to recover a filtered
version of Ẽ + iB̃ and thus subsequent CMB polarization analysis is relatively
easy using gridded polarization data.

As in the case for d̃T , we can take the ÃP and ṽP and for the gridded polar-
ization estimators

d̃P = H̃P ṽP = R̃P p̃ + ñdP
R̃P = H̃P ÃP ñdP

= H̃P ñP . (14)

However, for the CMB, it is more convenient if we work in terms of E and B,
and thus we write

d̃P = R̃E ẽ + R̃B b̃ + H̃P ñP R̃E = R̃P X̃ R̃B = i R̃P X̃ (15)

where the elements of X̃ are defined in Equation 11.

Full Polarization Processing: For processing, we assemble a single long
gridded data vector and a concatenated visibility vector d̃ = H̃ ṽ, with d̃T

d̃P

 =

 H̃T 0

0 H̃P


 ṽT

ṽP

 . (16)

Then, combining Equations 9 and 15 we get

d̃ = R̃t t̃ + R̃e ẽ + R̃b b̃ + ñd (17)

where

R̃t =

 R̃T

0

 R̃e =

 0

R̃E

 R̃b =

 0

R̃B

 . (18)
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The noise vector is given by

ñd =

 H̃T 0

0 H̃P


 ñT

ñP

 =

 H̃T ñT

H̃P ñP

 . (19)

Covariances: The visibility covariances contain the information about the
CMB power spectrum, and that of any foregrounds and the instrumental noise.
The covariance between co-polar visibilities measures the TT power spectrum
C`. Covariances between cross-polar visibilities measure EE and BB (as well
as EB). Covariances between co-polar and cross-polar visibilities measure the
TE (and TB) power spectrum. Thus,

C =
〈
d̃ d̃

t〉
= Ñ + CTT + CEE + CBB + CTE + . . . (20)

where we must include all known noise and signal correlations, including fore-
grounds such a point sources and ground signal (see below).

Because the fields T , E, B are real and thus have Hermitian transforms, we
consider the two covariance components between the complex signal vectors:

Css′
=

〈
s̃ s̃′†

〉
C

ss′
=

〈
s̃ s̃′t

〉
(21)

with s, s′ = t, e, b, and † denotes complex conjugation and transpose for a
complex vector. These are related to the corresponding power and cross-power
spectra CSS′

` through

Css′

ll′ = CSS′

` δ2(ul − ul′) C
ss′

ll′ = CSS′

` δ2(ul + ul′) (22)

for ` = 2π|ul| and S, S ′ = T,E,B. Note that covariance block between real
and imaginary parts of complex quantities z and z′ is given by 〈Re z Re z′〉 〈Re z Im z′〉

〈Im z Re z′〉 〈Im z Im z′〉

 =

 1
2
Re [C + C] −1

2
Im [C − C]

1
2
Im [C + C] 1

2
Re [C − C]

 (23)

where C = 〈z z′∗〉 and C = 〈z z′〉. Thus, the blocks of CSS′
S, S ′ = T, E,B can

beconstructed using R̃s Css′
R̃†

s′ and R̃s C
ss′

R̃t
s′ , while the noise covariance

matrix Ñ is built from 〈n n†〉 and 〈n nt〉 — see § 6.1 of (14) for details.

Imaging: One can construct dirty images dT and dP using Equation 5, with
the elements of F given in Equation 7. Note that the dirty images have an
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extra primary beam attenuation factor as compared to a standard radio inter-
ferometer dirty image (which leaves out this factor), due to the presence of Ãt

or approximate convolutional kernel in H̃T . This factor is necessary in order
to optimally weight a mosaiced image where different visibilities come from a
raster of different pointings θk. This does mean that signals at the outside of
the image are attenuated by the square of the primary beam instead of just
by the primary beam. If desired, this can be corrected for as this is a known
function.

One can construct a vector for the response to a point source at a fiducial
phase center θ0

d̃T0i = H̃Tik e2πiu·(θk−θ0). (24)

The map dT0 corresponding to the vector d̃T0 is equivalent to the point-
spread function described earlier. These normalizations can be used to give a
calibrated images.

One can also construct a Wiener filtered version of the dirty image of Equa-
tion 5, for example

dX = F d̃X = MX dT d̃X = M̃X d̃T (25)

is a filtered temperature map using Fourier filter M̃X whose corresponding im-
age plane filter is MX = FM̃X F−1. The d̃X can be normalized by the filtered
normalization M̃X d̃T0. In § 8 of (14) we described imaging using a Wiener
filter M̃X = CX C−1 built from the covariance matrices and demonstrated
their use on the gridded temperature estimators d̃T .

3 Application to the Cosmic Background Imager

The CBI: The Cosmic Background Imager (CBI) is described in the presenta-
tion by Tim Pearson (this conference), and in (9). The CBI is an interferometer
array located at the high altitude (5000m) ALMA site in the Northern Chilean
Andes near San Pedro de Atacama. The CBI operated from Jan 2000 to May
2005, and during this period the salient characteristics of the CBI were:

• operating frequencies 26–36 GHz (wavelengths 1.15–0.83 cm)
• 13 antennas, 90cm diameter (78–108 λ)
• antennas mounted on a 6m planar platform (reconfigurable)
• 78 baselines (between 13 antennas) from 1m to 5.5m
• 10 frequency channels, 1 GHz wide
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• 780 complex correlations (baselines × channels)
• primary field-of-view 45′ at 30 GHz
• single polarization (R or L) each element, switchable
• low polarization leakage (< 2%)

From 2000–2002, the CBI was used to observe the temperature anisotropies in
the CMB, as reported in (20), (21), (22), (23). All but one of the 13 antennas
were set to receive the same polarization, with the 12 baselines to the cross-
polarized element used to test out polarization observations for the Caltech
PhD thesis of John Cartwright, reported in (24). For these observations, we
placed the antennas in a spread configuration which contained baseline lengths
from 1m to the maximum 5.5m (reaching `max = 2πBmax/λmin ≈ 4200). From
2002–2005 we observed with split polarization (7 L and 6 R) and with the
antennas in the closest packed configuration to maximize sensitivity, with the
results reported in (25) and (26).

We now describe some of the imaging issues involved with analysis of the CBI
data.

Ground signal: Because of the short baselines (∼ 100λ), the CBI is sensitive
to radiation coming from the ground, in particular the higher mountain peaks
on the horizon around the CBI site. This signal is constant on short timescales
for a given orientation of the array with respect to the ground (e.g. in azimuth-
elevation coordinates). For the temperature observations from 2000–2002, we
observed pairs of fields at the same declination separated by 8m in right as-
cension (or 2◦ apart on the sky) for 8 minutes each, thus tracking through
the same azimuth and elevation. The visibilities from these pairs were then
differenced before imaging and analysis, removing the common-mode ground
signal. This meant that we could not distinguish a positive signal in the main
field from a negative signal in the trail field, for example to determine whether
signals were due to the Sunyaev-Zeldovich effect (27). The differencing also
reduced our efficiency by 50% (by keeping the difference but throwing away
the sum). We took care of the effect of the differencing on power-spectrum
estimation by including it in the calculation of Ã used in R̃ as described in
§ 6.6 of (14).

For the polarization observations of 2002–2005, we observed a constant decli-
nation strip of 6 fields separated by 3m in right ascension (45′ apart on sky)
and projected out a constant scan mean during the likelihood calculation. This
increased efficiency by effectively only dropping a single mean out of the six
fields and allows for better localization of signals.

Point sources: The most serious astronomical foreground signal that affects
our CMB measurements is that due to unresolved “point” sources, mostly
radio galaxies and quasars. Unfortunately, we did not have the simultaneous
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30 GHz measurements of the flux densities of these sources needed to accu-
rately subtract the effects from the data. However, we do know the locations
of most of the sources that could plausibly contaminate the CBI observations
from the 1.4 GHz NRAO-VLA Sky Survey (NVSS), (28). The positions were
used to construct a source covariance matrix Csrc which in turn was used
to project out the contributions of these sources during the power spectrum
analysis and imaging. The remaining faint radio sources were treated as a
Gaussian random foreground noise field and accounted for using a covariance
matrix Cres. This procedure was also described in § 6.3–6.4 of (14).

Polarization Leakage: In practice, radio receivers have imperfect polariza-
tion response. For example, a detector nominally sensitive only to right circular
polarization (R) will also pick up a small amount of left circular polarization
(L). This means that the correlation products are also impure, and the pro-
jectors R̃t, R̃e, and R̃b, in Equation 18 pickup non-zero cross-terms between
d̃T and d̃P , thus we can generalize to

R̃t =

 R̃T

R̃Pt

 R̃e =

 R̃Te

R̃E

 R̃b =

 R̃Tb

R̃B

 . (26)

where the small leakage projectors R̃Pt, R̃Te and R̃Tb encapsulate these errors.
After this, the analysis can proceed as normal.

Foregrounds: In the absence of foregrounds, the response of the visibilities
to the CMB, for example in Equation 1, is pure. If there is a foreground field
with transform f̃ , then

ṽT = ÃT t̃ + G−1
f ÃT f̃ + ñT (27)

where Gf is a diagonal matrix containing the difference in frequency spectrum
(per visibility) between the foreground and the CMB. The conversion between
the units of the visibilities and the CMB field given by the thermal blackbody

spectrum is contained in ÃT . Bandpowers for 〈f̃ f̃
†〉 can be solved for in

addition to the CMB power spectrum.

One can also apply a non-thermal frequency filter H̃f = H̃Gf during gridding
which will optimize response to that foreground in order to image or assess the
contamination level in the data. In the presence of unknown foregrounds, one
can apply a general first-order filter sensitive to a deviation from a thermal
spectrum, such as a logarithmic slope Gf (νk) = ln(νk/ν0) where ν0 is a ref-
erence frequency in the center of the band (31 GHz for CBI). This technique
is known in radio interferometry as multi-frequency synthesis and is used to
map out the frequency spectrum as well as intensity of the sky (29).
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Maximum Likelihood, Power Spectrum Estimation, and Projection:
Given the covariance matrix, we can compute the log-likelihood

lnL =
1

2
ln(detC−1/2π)− 1

2
d̃

t
C−1 d̃. (28)

If we parameterize the terms in Equation 20 by amplitudes and shapes, or
break into “bands” in ` with “bandpowers” qss′

B (30), e.g. CTT =
∑

B qTT
B CTT

B .
These bandpowers are the amplitudes of the power spectrum in a given bin in
` relative to the assumed shape Css′

B , generally taken to be “flat” CTT
` = 2π/`2.

One can then solve for the bandpowers that maximize lnL(qTT , qEE, qBB, qTE).

Likewise, one can downweight nuisance modes in the data due to contami-
nation by point source foregrounds or ground emission if the shape of the
covariance matrices are known. If terms such as qground Cground and qsrc Csrc

are added to C, and the pre-factors qground and qsrc set to arbitrarily high
values, then the corresponding modes in C−1 are downweighted and do not
contribute to the likelihood. This technique is described in § 6 of (14).

The CBI Pipeline: The analysis of CBI polarimetry data is carried out using
a pipeline running on the 512-processor McKenzie Cluster 2 at the Canadian
Institute for Theoretical Astrophysics (CITA). The main part of the pipeline
software was implemented in two parallel codes, mpigridr, which does the
gridding and covariance matrix calculation given an input set of (millions of)
visibilities, and mpilikely, which takes the (thousand or so) gridded esti-
mators and carries out the maximum likelihood power spectrum estimation
procedure and related tasks. It took on order of 6 hours on McKenzie to
process all of the polarization data and produce the power spectra for (26)
(excluding the calculation of window functions).

E/B Imaging: The construction of images from the gridded CBI data was
carried out separately, using the output of mpigridr. This involves making a
filtered version of the dirty image given in Equation 25. In (26) we presented
T , E, and B maps in both the uv-plane and the image plane made using this
method, employing a filter M̃X = B R̃−1

eff CT C−1 where R̃−1
eff is an approxi-

mation to the singular “true” R̃−1 and B a smoothing kernel. SeeFigure 3 for
images of the 20h field.

Comparison with VSA: In 2002–2004, the VSA observed some of the same
fields observed by the CBI. As reported in (32), a variant of the gridded esti-
mator analysis was used to demonstrate agreement between the two datasets.
The CBI visibilities were gridded with the VSA aperture function and the VSA
visibilities gridded with the CBI aperture function: e.g. H̃CBI = Ã†

V SA Ñ−1
CBI

2 CITA’s McKenzie cluster, (31), was funded by the Canada Foundation for Inno-
vation and the Ontario Innovation Trust.
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Fig. 3. Top row (L to R): Images d of the E and B fields on the sky using the CBI
20h strip data as presented in (26). The color bar shows the flux density scale in
mJy/beam. The six dashed circles are the half-power points of the mosaic fields in
that strip, with offsets given in degrees on the coordinate axes. A common-mode
signal along the scan direction has been projected out. Bottom row (L to R): The
uv-plane maps d̃ for E and B respectively, corresponding to the sky images in the
top row. The maps show the amplitudes of estimators in cells in uv-space, and have
been truncated at ` = 1200. Coordinate axes are ku, kv in units of `. Because the
20h strips are oriented E-W, the resolution along the u axis is higher than that
along the v axis. About 3× more power is seen in the E uv-maps and images than
in the B maps and images, which in turn are consistent with noise. Uv-maps such
as this can be used to search for non-Gaussianity.

and H̃V SA = Ã†
CBI Ñ−1

V SA. This allowed comparison of the uv-space signals
and power spectra on the same footing.

4 Future CMB Interferometry

There are a number of CMB interferometers that have operated, are currently
operating, or will be brought online in the near future. These include the
special-purpose instruments AMI, AMIBA, CAT, CBI, DASI, MINT, VSA,
as well as the use of the BIMA, OVRO-MMA, and Ryle telescope for CMB
studies. In the future, the EVLA and ALMA will also have some capabili-
ties of use for CMB research. In particular, with 50 12-m diameter antennas
capable of being placed in a close-packed configuration, the Atacama Large
Millimeter-submillimeter Array (ALMA) can provide high-sensitivity CMB

15



polarimetric observations at high-`, particularly if a 30 GHz band were in-
stalled on the array (the lowest frequency covered in currently funded receiver
bands is 86 GHz).

Mega-pixel CMB interferometer: Given the success of CMB interferom-
eters such as DASI and CBI at measuring the polarization power spectrum,
it is natural to ask whether it is possible to scale up these instruments to
build a next-generation CMB interferometer with 102–103 elements yielding
104-106 instantaneous baselines — a “mega-pixel” interferometric digital cam-
era. Such an instrument would retain the interferometric advantages outlined
above, such as resilience against many types of systematics and ease of anal-
ysis. Channelization of the bandwidth is also necessary in order to deal with
foregrounds, a minimum of 10 channels. The correlator needed to handle 105-
107 baseline-channels in each of the 4 polarization correlation products is sub-
stantial. With the advances in both analog and digital technology in the decade
since CBI and DASI were designed, and the development of novel large cor-
relators underway for next generation radio arrays such as the SKA, it is
foreseeable that a CMB Mega-interferometer could be built.

Space mission: Although the advantages of interferometry are most closely
matched to a ground-based array, with some imagination one can contemplate
a cosmic interferometer space mission. In his closing presentation, Bruce Par-
tridge exhorts the community to unify behind a CMBpol space mission and the
phased ground and balloon-based program leading to it as advocated by the
Task Force. To this end, the engineers at Davros Laboratory have developed a
CMB space mission concept that the community can rally behind: the DArk
Lambda Explorer for Kosmogenesis (DALEK). Sadly, the prototypes 3 seem
to have gone missing from the lab after disintegrating several technicians...
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