
MeasurementSet Selection Syntax

S. Bhatnagar
NRAO, Socorro

June 15, 2007

Abstract

This note describes the syntax for the various expressions for selecting data from
the Measurement Set. This is the syntax that is implemented in theMSSelection

module of CASA. The syntax is derived from an earlier note1 on syntax definition.
All expressions consists of a comma or semi-colon separated list of specifications.
Except channel selection, the final product of parsing the expressions is a Table Ex-
pression Node (TEN) which can be used to construct a selected Measurement Set.
Higher level global methods to return a selected MS, given the user supplied expres-
sions are also provided as part of theMSSelection module.

Error handling is done via the C++ exception handling mechanism. The excep-
tions thrown by theMSSelection module are of typeMSSelectionError which
is derived fromAipsError class. The exceptions generated from each individual
expression parser are further specializations of theMSSeletionError class. Appli-
cation layer code therefore can have a finer level control on error handling.

1 General Syntax

A MSSelection expression consists of a comma separated list of specifications. Specifica-
tions are typically strings or numbers. Strings and numbers can be mixed to form a single
list. Elements of the list which can be converted to integers are treated as integer index
specification. Elements which do not get parsed as numbers are treated as strings. Where
appropriate, strings are matched against names. Depending upon the content of a string,

1http://almasw.hq.eso.org/almasw/bin/view/OFFLINE/DataSelection

1

http://almasw.hq.eso.org/almasw/bin/view/OFFLINE/DataSelection

S. Bhatnagar 2

it can be used as regular expressions or pattern. Where appropriate, physical quantities
(numbers with appropriate units) can also be used.

A blank selection expression is interpreted as ”no selection to be applied to the MS”.
Hence a blank expression effectively implies ”select all”.

1.1 Number format

Integers can be of any length (in terms of characters) and composed of the characters in
the range 0-9. Where appropriate, negative values can be given using the ’-’ character.
Floating point numbers can be in the standard format:

• DIGIT.DIGIT : e.g. 10.56

• DIGIT. : e.g. 10.

• .DIGIT : e.g. .56

or in the mantissa-exponent format (e.g. 10.56e-1). If a floating point number is given
where only integers are expected (e.g. indexes), the floating point value is truncated to the
nearest integer.

1.2 Range specification

Range of numbers (integers or real numbers) can be given in the format N0∼N1. Integer
ranges are expanded into a list of integers starting from N0 (inclusive) to N1 (inclusive).
Range of real numbers is used to select all values between N0 and N1 (including the
boundaries). E.g.

Integer ranges:

• 10∼30 implies all integers in the range [10,30]

• 10.1∼30.5 implies all integers in the range [10,30]

Floating point ranges:

• 10∼30 implies all values in the range [10.0, 30.0]

• 10.5∼30.7 implies all values in the range [10.5, 30.7]

• 1.05e1∼ 3.07e1 implies all values in the range [10.5, 30.7]

S. Bhatnagar 3

1.3 Units

Wherever appropriate, units can be optionally specified. Values with units are converted
to the units in the Measurement Set (which uses the MKS-system). For ranges, the units
are specified only once (at the end) and it applies to both the range boundaries. E.g.

• 1421.07MHz implies 1421.07e6 Hz

• 1421∼1500MHz implies all frequencies in the range [1421.0, 1500.0]MHz.

1.4 Strings

String matching can be done in three ways. Any component of a comma separated list
that cannot be parsed as number/number range/physical quantity is treated as a regular
expression or a literal string. If the string does not contain the characters ’*’, ’’, ’’ or ’?’,
it is treated as a literal string and used for exact matching. If any of the above mentioned
characters are part of the string, it is used as a regular expression. As a result, for most
cases, the user does not need to supply any special delimiters for literal strings and/or
regular expressions. However if it is required that the string be matched exclusively as a
regular expression, it can be supplied within a pair of ’/’ as delimiters. A string enclosed
within double quotes (’”’) is used exclusively for pattern matching (patterns are a sim-
plified form of regular expressions - used in most UNIX commands for string matching).
Patterns are internally converted to equivalent regular expressions before matching. Read
elsewhere (e.g. use command ”info regex”, or visit http://www.regular-expressions.info)
for details of regular expression and patterns.

Strings can include any character except the following:

’,’ ’;’ ’"’ ’/’ ’:’ and NEWLINE

(these are reserved characters for MSSelection expression syntax). Strings that do not
contain any of the characters used to construct regular expressions or patterns are used for
exact matches. Although it is highly discouraged to have name in the database containing
the above mentioned reserved characters, if one DOES choose to include the reserved
characters are part of names etc., those names can only be matched against quoted strings
(since regular expression and patterns are super-set of literal strings. I.e. literal string is
a valid regular expression also). This leaves the list ’”’, ’*’, ’?’, ’’ and ’’ as the list of
printable character that cannot be part of a name (i.e., a name containing this character
can never be matched in a MSSelection expression). If a need is felt to include these
as well, an escape mechanism can be included later (but I would prefer to enforce that

S. Bhatnagar 4

at least these characters not be part of any name!). Following are some examples of
strings/regular expressions/patterns:

• The string LBAND will be used as a literal string for exact match. This will match
only ”LBAND”.

• The string*BAND* will be used as a string pattern for matching. This will match
any string which has ”BAND” in it.

• The string"*BAND*" will be used as a string pattern for matching. This will also
match any string which has the string ”BAND” in it.

• The string/.+BAND.+/ will be used as a regular expression. This will also match
any string which as the string ”BAND” in it. (.+ operator has the same meaning as
the ’*’ operator of patterns).

1.5 Handling of blanks

In most cases, blanks are treated as white-spaces (i.e., insertion of blanks anywhere in the
expression has no effect), except in the case of Field Selection Expressions (see Section 4).
Blanks are allowed as part of the field names. Blanks around the delimiting characters (’,’
, ’;’ , ’&’ etc.) are ignored. For field names, blanks after the first valid name character
and before the last valid name character are included as part of the name. Hence

• field=A , B , C is same as field=A,B,C

• field=A , BB BB , C is same as field=A,BB BB,C (first name is ”A”, second
name is ”BB BB” and the third name is ”C”)

• baseline=1 , 2 , 3 & 4 , 5 , 6 ; 10 ∼ 11 & 20 ∼ 30 is same as
baseline=1,2,3&4,5,6;10∼11&20∼30

2 Time selection

Time selection expression is a comma separated list of time specifications. Time can be
specified in the format YYYYY/MM /DD/HH:MM:SS.FF. Fields (i.e., YYYY, MM, DD,
HH, MM, SS and FF), starting from left to right, can be omitted. Omitted fields will be
replaced by context sensitive defaults as explained below.

T0, T1 and dT in the following description are time specifications.

S. Bhatnagar 5

2.1 Syntax

• time=T0∼T1

Selects all time stamps starting from T0 to T1. Fields missing in T0 are replaced by
the fields in the time stamp of the first valid selected row in the MS. Fields missing
in T1 are replaced by the corresponding fields of T0 (after its defaults are set).

• time=T0

Selects all time stamps that are within an integration time of T0. Integration time is
determined from the first valid selected row (more rigorously, an average integration
time should be computed). Default settings for the missing fields of T0 are as
described in bullet (1) above.

• time=T0+dT

Selects all time stamps starting from T0 and ending with time value given by
T0+dT. Defaults of T0 are set as usual described in bullet (1) above. Defaults
for dT are set from the time corresponding to MJD=0. I.e. dT is an specification
of length of time from nominal ”start of time” (the time stamp of the first valid
selected row of the MS).

• time=>T0

Selects all times greater than T0.

• time=<T0

Selects all times less than T0. Default settings for T0 are as above.

3 Antenna/Baseline Selection

This expression is used to perform baseline based selections. Baseline can be specified as
a pair of antenna specifications. Since antenna specification can itself be a list of antennas,
the expression allows a rich selection syntax which is simple for simple selections.

ANT in the description below is a comma-separated list of antenna specifications. A
baseline specification is an single ANT, ANT followed by ampersand or a pair of ANT
separated by ampersand. A baseline expression is single baseline specification or a semi-
colon separated list of baseline specifications.

S. Bhatnagar 6

3.1 Syntax

An ANT can be given as a single string (literal/pattern/regular expression), single integer
ID, a range of integer IDs or a comma separated list of integers. For VLA-specific reasons
(see Section 3.2),only for antenna specifications, integers are first converted to strings and
matched against the antenna names. E.g.

• VLA:N1 corresponds to antenna named ”VLA:N1”.

• 1,2,3 corresponds to antennasnamed”1”, ”2” and ”3”.

• 1∼3 corresponds to antennasnamed”1”, ”2” and ”3”.

• VLA:N* corresponds to all antennas who’s name starts with ”VLA:N”.

A baseline specification consists of an ANT, an ANT followed by an ampersand or a
pair of antenna specifications separated by ampersand. Formally, baseline specification is
of the form ANT[&ANT] (where the part in square brackets is optional).

An atomic ANT selects all baselines containing all the antennas in ANT. ANT& se-
lects only baselines between the list of antennas in the antenna specification. ANT1&ANT2
selects baselines between antennas in ANT1 and ANT2 only. E.g.

• baseline=1,2,3 selects baseline between antennas 1, 2 and 3 and all other antennas.

• baseline=1,2,3& selects baseline between antennas 1,2 and 3 only.

• baseline=1,2,3 & 4,5,6 selects baselines between antennas 1,2,3 and 4,5,6.

Following are more examples of baseline specification using ranges and names:

• baseline=1∼3 same as baseline=1,2,3

• baseline=1∼3& same as baseline=1,2,3&

• baseline=1∼3 & 4∼5 same as baseline=1,2,3&4,5,6

• baseline=VLA:N* & VLA:E* selects all baselines between antennas with names
starting with ”VLA:N” and ”VLA:E”.

The full baseline selection expression is any of the examples shown above or a semi-
colon-separated list of baseline specifications. E.g.

• baseline=1∼3& ; 4∼5&10∼15 ; VLA:N* & VLA:E*

with each elements of the semi-colon separated list being interpreted as explained above.

S. Bhatnagar 7

3.2 Integers-as-names VLA naming convention

Antenna naming convention for VLA is such that the antenna names are actually valid
integers converted to strings. While we feel that this is indeed a bad idea and it will be
best to translate the VLA antenna names to something like VLA1, VLA2 in the CASA
VLA filler (or something that does reflect that its a name and not get confused with integer
indexes), for now, to accommodate the VLA tradition, the following logic is used:

Just for antenna selection, a user supplied integer (or integer list) is converted to a
string and matched against the antenna name. If that fails, the normal logic of using an
integer as an integer and matching it with antenna index is done.

So if the antenna with ID 17 is named ”21”, the string

"21",VLA22

will expand into an antenna ID list of 17,22 (assuming that the antenna named VLA22
has ID 22).

If we conclude that this style of antenna selection is indeed the way we wish to go,
users should be aware that the antenna selection will behave differently for telescopes
other than VLA. Assuming that antenna with names ”21”,”17, and ”11” have IDs 1,2,3
for VLA, a selection string ”21,17,11” will select antenna with IDs 1,2,3. For other in-
struments where this is not the naming convention, the same selection string (”21,17,11”)
will select antennas with ID 21, 17, and 11.

3.2.1 Note

1. Selection on polarization is not implemented.

4 Field Selection

4.1 Syntax

Field specifications can be literal field names, regular expressions or patterns. Those
fields for which the entry in the NAME column of the the FIELD sub-table match the
literal field name/regular expression/pattern are selected.

If a field name/regular expression/pattern fails to match any field name, the given
name/regular expression/pattern are matched against the field code. If still no field is
selected, an exception of type MSSelectionFieldParseError is thrown.

Field specifications can also be give by their integer IDs. IDs can be a single ID or a
range of IDs (N0∼N1). Field ID selection can also be done using a boolean expression.

S. Bhatnagar 8

For a field specification of the form ”¿ID”, all field IDs greater than ID are selected.
Similarly for ”<ID” all field IDs smaller than ID are selected.

The field selection expression is a comma-separated list of field specifications. E.g.

• field=1,2,3,4 selects field IDs 1,2,3 and 4

• field=1∼4 same as above

• field=1∼4, VIRGO A , 3C* selects field IDs 1,2,3,4 field named ”VIRGO A” and
all fields with names starting with ”3C”.

5 UV Distance Selection

5.1 Syntax

A uv-distance specification is given as a physical quantity (number with units in the format
N[UNIT] where UNIT is optional). This is referred to as UVDIST in the description
below. Units are optional with the default unit being meter. Units can be specified as
”m” /”M” (for Mega) or ”k” /”K” (for Kilo) followed by ”m” /”M” (for meter) or ”k” /”K”
followed by ”l” /”L” (for lambda or kilo-lambda). User supplied values are converted to
internal Measurement Set units using the spectral window sensitive reference frequency.

If only a single UVDIST is specified, all rows that exactly matches the given UVDIST
are selected. When UVDIST is given as a range in the format N0∼N1[UNIT] (where N0
and N1 are valid numbers), all rows corresponding to the uv-distance between N0 and N1
(N0 and N1 included) are selected.

Rows can also be selected via boolean expressions. When specified in the format
”>UVDIST”, all rows with uv-distance greater than the given uv-distance (converted to
the appropriate units) are selected. When specified in the format ”<UVDIST”, all rows
with uv-distance less than the given uv-distance (converted to the appropriate units) are
selected.

To selected rows with uv-distance within an equal range on either side of a given
value, UVDIST can be specified as a percentage of the given value in the format Npercent
of the given uv-distance in appropriate units are selected.

The full uv-distance selection expression is a comma-separated list of any of the above
mentioned uv-distance specifications. E.g.

• uvdist=100Kl selects all baselines for which
√

u2 + v2 is equal to 100 Kilo-Lambda.

• uvdist=100Km selects all baselines for which
√

u2 + v2 is equal to 100 Kilo-meter.

S. Bhatnagar 9

• uvdist=100∼200Kl selects all baselines for which
√

u2 + v2 is in the range [100,
200] Kilo-lambda.

• uvdist=>100Kl selects all baselines for which
√

u2 + v2 is greater than 100 Kilo-
lambda.

• uvdist=<100Kl selects all baselines for which
√

u2 + v2 is less than 100 Kilo-
lambda.

6 Frequency Selection

Frequency selection expression consists of two specifications separated by colon (’:’) in
the form:

SPWSPEC[:CHANSPEC]

where SPW is the spectral window specification and CHANSPEC is the optional fre-
quency specification for selection within the selected spectral windows. When channel
specification is omitted, all channels of the selected SPW are selected.

6.1 Spectral Window Specification Syntax

Spectral windows (SPW) specification can be a single ID or a list of spectral window
integer IDs, a spectral window name (as a literal string (for exact match)/regular ex-
pression/pattern) or a reference frequency value (value with a unit). A single frequency
specification is used for exact match with the REFFREQUENCY column of the SPEC-
TRAL WINDOW sub-table. A range of frequencies are used to select all SPWs which
are within the given range. The allowed units are Hz, KHz, MHz, GHz or THz.

SPWs can also be selected via a boolean expression for integer IDs.

• ”>ID” will select all SPWs with ID greater than the specified value.

• ”<ID” will select all SPWs with ID lesser than the specified value.

• ”>FREQ” will select all SPWs, the reference frequencies of which are greater than
the given frequency converted to Hz.

• ”<FREQ” will select all SPWs, the reference frequencies of which are greater than
the given frequency converted to Hz.

S. Bhatnagar 10

E.g.

• spw=1,2,3 select spectral window IDs 1,2 and 3

• spw=1∼3 same as above

• spw=327MHz selects spectral window with a reference frequency equal to 327.0
MHz

• spw=327∼610MHz selects all spectral windows with reference frequencies in the
range [327.0, 610.0] MHz.

• spw=>327MHz selects all spectral windows with reference frequency greater than
327.0 MHz

• spw=<327MHz selects all spectral windows with reference frequency less than 327.0
MHz

6.2 Channel Selection Syntax

MSSelection module is currently used to only parse the channel selection expression to
produce the START,STOP,STEP tuples. No channel based selection is actually applied to
the data. The list of tuples per SPW is passed to the application program layer and the
interpretation of the tuples for actual selection depends on the application programmer.

Channel specification (referred to as CHANSPEC in the following description) is a
START,STOP,STEP tuple corresponding to the first frequency channel, the last frequency
channel and the step size to increment from the first to the last channel. The START and
STOP part of the tuple can be range specification for the range [START, STOP] followed
by an optional STEP size.

START and STOP part of the tuple can be specified as a single integer or physical
quantity or as a range of integers or physical quantities. A single integer is treated as
a channel index and the tuple corresponds to [ID,ID,1]. A single physical quantity is
matched with the exact frequency value of the channels and tuple of matched channel
index is constructed as [ID,ID,1]. A range of integers given as N0∼N1 is used to construct
a tuple [N0,N1,1]. Similarly for a range of physical quantities.

If a START,STOP part of the tuple specification is followed by ”ˆSTEP”, the STEP
is used as the third value of the tuple. STEP specification is a single integer or physical
quantity. E.g. 0∼10ˆ2 is converted to a START,STOP,STEP tuple [0,10,2].

A channel selection expression is a semi-colon separated list of channel specifications.
E.g.

S. Bhatnagar 11

• chan=1;2;3 selects channels 1,2 and 3.

• chan=1∼3 selects channels 1,2 and 3.

• chan=0∼10ˆ2 selects channels in the range [0,10] with a step size of 2

• chan=1421MHz selects a frequency channel corresponding to the frequency 1421.0
MHz

• chan=1421∼1500MHz selects all channels in the range [1412.0, 1500.0] MHz

• chan=1421∼1500MHzˆ10KHz selects all channels in the range [1421.0, 1500.0]
MHz in steps of 10 KHz.

• chan=1421∼1500MHzˆ10KHz ; 0∼10ˆ2 ; 20 ; 30; 40 selects all channels in
the range [1421.0, 1500.0] MHz in steps of 10KHz, all channels with indexes in the
range [0,10] in steps of 2 channels and channels 10, 20 and 30.

6.3 Frequency Selection Syntax

The specifications for SPW and channels can be combined to form a fully qualified fre-
quency selection expression in the form SPWSPEC[:CHANSPEC] (square brackets in-
dicate that :CHANSPEC is optional). A frequency selection expression is a comma-
separated list of SPWSPEC[:CHANSPEC] specifications. Channel selections apply to all
SPWs selected by the SPWSPEC on the left of ’:’. E.g.

• freq=LBAND:1421∼1500MHzˆ10KHz , 327MHz:300∼400MHz, 0∼4:0∼10ˆ2 ,
5:20;30;40

selects

– all channels corresponding to channels in the range [1421.0, 1500.0] MHz for
the SPW named ”LBAND”, and

– all channels corresponding to the range [300.0, 400.0]MHz for the SPW with
a reference frequency of 327.0 MHz, and

– Channels in the range [0,10] in steps of 2 for all SPWs with IDs in the range
[0,4], and

– Channels 20, 30 and 40 for SPW 5

S. Bhatnagar 12

6.3.1 Notes

1. For channel specificities of the typeN1∼N2:c0;c1;c2;c3MHz the list of channel
selection is applied to all SPWs in the range [N0, N1]. c3 is converted from physical
units to channel index by using the channel width from SPW N1. Is it better to use
the min. chan. among the selected SPWs?

2. If channel range is out of bounds, it will be brought within bounds per SPW. If
the lower limit of a range is greater than the available outer limit, exception is
generated. If the lower limit is less than zero, it is set to zero. If upper limit is
greater than the available outer limit, it is set to the available outer limit.

If a single channel specification is greater than the available outer limit, an exception
is thrown. If it is less than zero, it is set to zero.

3. For ranges of physical values, it is assumed that the spectral window sub-table’s
CHAN FREQ column has ordered list of channel frequencies.

7 Scan/Sub-array Selection

Scan and sub-arrays selections are purely integer ID based selections. The syntax for the
specification of both these is therefore identical.

7.1 Syntax

Scan and Sub-array selection specification is single integer (INT) or a range of integers(N0∼N1).
Scans and sub-arrays can also be selected via boolean expressions of the type ”>INT”,
”>=INT”, ” <INT” or ” <=INT”.

Full expression is a comma-separated list of any of the above index specifications.
E.g.

• scan=0,1,2,3 selects scan numbers 0, 1, 2 and 3

• scan=0∼3 selects scans in the range [0,3]

• scan=0∼3,4,5 selects scans in the range [0,3] and scans 4 and 5

• scan=>5 selects all scans greater than 5

• scan=<5 selects all scans less than 5

S. Bhatnagar 13

The getScanList() (getSubArrayList() for sub-arrays) method will return the list gen-
erated from INT,INT,... or INT∼INT or ”<INT” specification. For ”>INT” specification,
the returned list will be number from INT part of ”>INT” upto the maxScans (maxArrays
for sub-arrays) set via MSSelection::setMaxScan() (MSSelection::setMaxArray() for sub-
arrays). The default value of maxScans/maxArrays isstd::standard limits<int>::max()
(i.e. the maximum value an integer can take on a machine). It is done this way since there
is no efficient way of generating a list of SCAN/ARRAY IDs present in the data and
”>INT” is an unbounded list of integers. The list of scans IDs in the data can beprob-
ably generated using the MSRange class - but I think it can be quite expensive. So if it
is necessary to know the precise list of scans selected using the ”>INT” specification, the
application programs will have to use MSRange class to get the range in the data. An
intersection of the list from MSRange and the list from MSSelection.getScanList() will
be the actual selected scans (intersection of two CASA vectors can be done using the
set intersection() global method in MSSelectionTools.h).

8 General Error Handling

The MSSelection sub-system reports errors via the C++ exception mechanism. The ob-
jects thrown have the following inheritance hierarchy:

AipsError

o

|

|

MSSelectionError

o

|

|

MSSelection{Time,Spw,UvDist,Antenna}Error

o

|

|

MSSelection{Time,Spw,UvDist,Antenna}ParseError

All parsing errors are reported by throwing the MSSelection{Time, Spw, Field, UvDist}ParseError
exception. All other forms of errors (e.g. illegal range specification N0∼N1 where N0>
N1) are reported by throwing an exception of type MSSelectionTime,Spw,Field,UvDistError.

S. Bhatnagar 14

Hence, to catch all errors thrown from the MSSelection sub-system, catch the MSSe-
lectionError object. For more specific exception handling, catch the more qualified MSSe-
lection*Error objects. For catching only parsing errors, catch the MSSelection*ParseError
object. As is obvious, any un-caught exception from the MSSelection sub-system will be
caught in the AipsError catch block.

The exceptional error message consists of a human understandable one-line descrip-
tion of the error, the string which caused the error and the possible location in the string
of the erroneous character. E.g.

Spw Expression: No match found for ”LBAN” (near char. 4 in string ”LBAN”)

9 Examples

Table 1: Summary of the MS used

FIELDID SPWID NChan Pol NRows Source Name
0 0 127 RR 10260 0530+135
1 0 127 RR 779139 05582+16320
2 0 127 RR 296190 05309+13319
3 0 127 RR 58266 0319+415
4 0 127 RR 32994 1331+305
5 1 1 RR,RL,LL,RR 23166 KTIP

9.1 Example 1

Select field IDs 0,1,2 and field Named KTIP

Time range: 25/22:40:0 to 26/03:30:0

Baselines: All baselines between antennas named "1" to "10"

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = 0˜2,KTIP

time = 25/22:40:0 ˜ 26/03:30:0

S. Bhatnagar 15

spw =

antenna = 1˜10&

uvdist =

mssplit>go

First selected timestamp = 25-Apr-2003/22:03:42.5

Ant1 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Ant2 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Field= [0, 1, 2, 5]

SPW = []

Number selected rows: 102195

9.2 Example 2

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: All baselines between antennas named "1" to "10"

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw =

antenna = 1˜10&

uvdist =

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

Ant1 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Ant2 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Field= [5]

SPW = []

Number selected rows: 2376

9.3 Example 3

Select field Named K* (wild card usage)

S. Bhatnagar 16

Time range: 25/22:40:0 to 26/03:30:0

Baselines: All baselines between antennas *named* "1" to "10"

Spw: SPW ID 0

No data should be selected

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 0

antenna = 1˜10&

uvdist =

mssplit>go

First selected timestamp = 25-Apr-2003/22:03:37.5

Ant1 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Ant2 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Field= [5]

SPW = [0]

Number selected rows: 0

9.4 Example 4

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: All baselines between antennas *named* "1" to "10"

Spw: SPW ID 1

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 1

antenna = 1˜10&

uvdist =

S. Bhatnagar 17

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

Ant1 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Ant2 = [21, 10, 17, 4, 24, 3, 11, 0, 23, 6]

Field= [5]

SPW = [1]

Number selected rows: 1188

9.5 Example 5

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: Between antennas "1" to "3" and "4" to "6"

Spw: SPW ID 1

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 1

antenna = 1,2,3&4,5,6

uvdist =

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

Ant1 = [21, 10, 17]

Ant2 = [4, 24, 3]

Field= [5]

SPW = [1]

Number selected rows: 198

9.6 Example 6

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: Error in antenna specification

S. Bhatnagar 18

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 1

antenna = 1˜3 & $˜6

uvdist =

mssplit>go

###AipsError: Antenna Expression: Parse error at or near ’%’ (near

char. 7 in string "1˜3 & $˜6")

9.7 Example 7

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: Use antenna ranges

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 1

antenna = 1˜3 & 4˜6

uvdist =

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

Ant1 = [21, 10, 17]

Ant2 = [4, 24, 3]

Field= [5]

SPW = [1]

Number selected rows: 198

\end{verbatim>

S. Bhatnagar 19

\subsection{Example 8}

\begin{verbatim}

Select field Named K* (wild card usage)

Time range: 25/22:40:0 to 26/03:30:0

Baselines: Baselines between antennas "1" to "3" and "4" to "6"

and baseline "10"-"11"

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

time = 25/22:40:0 ˜ 26/03:30:0

spw = 1

antenna = 1˜3 & 4˜6 ; 10&11

uvdist =

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

Ant1 = [21, 10, 17, 6]

Ant2 = [4, 24, 3, 1]

Field= [5]

SPW = [1]

Number selected rows: 231

9.8 Example 9

Select field Named K* (wild card usage)

Time range: Error in range operator

Baselines: Baselines between antennas "1" to "3" and "4" to "6"

Spw: All spectral windows

sbhatnag@atlas>mssplit

ms = /home/rohir3/sanjay/CASATests/G192.ms/

outms = tt.ms

field = K*

S. Bhatnagar 20

time = 25/22:40:0 - 26/03:30:0

spw = 1

antenna = 1˜3 & 4˜6

uvdist =

mssplit>go

First selected timestamp = 26-Apr-2003/03:20:45.0

###MSSelectionError: MSSelection time error: Parse error at or near

token ’-’ (near char. 12 in string "25/22:40:0 - 26/03:30:0")

(Did you know we use "˜" as the range operator (for a good reason)?)

10 Formal Grammar Specifications

10.1 Baseline Selection Expression

token IDENTIFIER of type String

token COMMA

token LPAREN

token RPAREN

token WHITE

token INT of type String

token QSTRING of type String

token REGEX of type String

token COLON

token SEMICOLON

type TEN antennastatement

type TEN indexcombexpr

type Vector<int> indexlist

type Vector<int> antidrange

type Vector<int> antidlist

type Vector<int> antid

antennastatement: indexcombexpr

S. Bhatnagar 21

| LPAREN indexcombexpr RPAREN

indexcombexpr: indexcombexpr SEMICOLON indexcombexpr

| indexlist AMPERSAND indexlist

| indexlist AMPERSAND

| indexlist

antid: IDENTIFIER

| QSTRING

| REGEX

antidrange: INT

| INT TILDA INT

antidlist: antid

| antidrange

indexlist: antidlist

| indexlist COMMA antidlist

| LPAREN indexlist RPAREN

10.2 Frequency Selection Expression

token UNIT of type String

token INT of type String

token FNUMBER of type String

token QSTRING of type String

token REGEX of type String

token IDENTIFIER of type String

type TEN SpwStatement

type TEN FullSpec

type TEN FullExpr

type Float[2] OneFreq

type Float[2] FreqRange

type Float[2] Physical

type Float[4] IndexRange

S. Bhatnagar 22

type Float[4] PhyRange

type Vector<int> Spw

type Float[2] FListElements

type Vector<Float> FreqList

type Float PhyVal

SpwStatement: FullExpr | LPAREN FullExpr RPAREN

PhyVal: FNUMBER

Physical: PhyVal UNIT

PhyRange: Physical TILDA Physical

| PhyVal TILDA PhyVal UNIT

| PhyRange CARET Physical

IndexRange: PhyVal TILDA PhyVal

| IndexRange CARET PhyVal

FreqRange: IndexRange

| PhyRange

OneFreq: PhyVal

| Physical

FListElements: FreqRange

| OneFreq

FreqList: FListElements

| FreqList SEMICOLON FListElements

Spw: IDENTIFIER

| QSTRING

| REGEX

| OneFreq

| GT OneFreq

| LT OneFreq

S. Bhatnagar 23

| TILDA OneFreq

| FreqRange

FullSpec: Spw

| Spw COLON FreqList

FullExpr: FullSpec

| FullExpr COMMA FullSpec

10.3 Field Selection Expression

token SQUOTE

token IDENTIFIER of type String

token COMMA

token LPAREN

token RPAREN

token WHITE

token INT of type String

token QSTRING of type String

token REGEX of type String

token COLON

token SEMICOLON

type TEN fieldstatement

type TEN indexcombexpr

type Vector<int> indexlist

type Vector<int> fieldidrange

type Vector<int> fieldidlist

type Vector<int> fieldid

type Vector<int> fieldidbounds

fieldstatement: indexcombexpr

| LPAREN indexcombexpr RPAREN

S. Bhatnagar 24

indexcombexpr: indexlist

fieldid: IDENTIFIER

| QSTRING

| REGEX

fieldidrange: INT

| INT TILDA INT

fieldidbounds: LT INT

| GT INT

| GT INT AMPERSAND LT INT

fieldidlist: fieldid

| fieldidrange

| fieldidbounds

indexlist : fieldidlist

| indexlist COMMA fieldidlist

| LPAREN indexlist RPAREN

10.4 Scan/Sub-Array Selection Expression

token IDENTIFIER of type String

token COMMA

token LPAREN

token RPAREN

token WHITE

token INT of type String

token QSTRING of type String

token REGEX of type String

token COLON

token SEMICOLON

type TEN scanstatement

S. Bhatnagar 25

type TEN indexcombexpr

type TEN scanidrange

type TEN scanidbounds

scanstatement: indexcombexpr

| LPAREN indexcombexpr RPAREN

indexcombexpr: scanidrange

| scanidbounds

| scanidrange COMMA indexcombexpr

| scanidbounds COMMA indexcombexpr

scanidbounds: LT INT

| GT INT

| LE INT

| GE INT

| GE INT AMPERSAND LE INT

| GT INT AMPERSAND LT INT

scanidrange: INT

| INT TILDA INT

10.5 Time Selection Expression

token NUMBER of type Integer

token FNUMBER of type Double

token TILDA

token LT

token GT

token COLON

token COMMA

token SLASH

token DOT

token STAR

type TEN timestatement

S. Bhatnagar 26

type TEN timeexpr

type TEN singletimeexpr

type TEN rangetimeexpr

type TEN upboundtimeexpr

type TEN lowboundtimeexpr

type Struct TimeFields yeartimeexpr

type Double FLOAT

type Vector<int> WNUMBER

timestatement: timeexpr

timeexpr: singletimeexpr

| rangetimeexpr

| lowboundtimeexpr

| upboundtimeexpr

| timeexpr COMMA timeexpr

WNUMBER: STAR

| NUMBER

FLOAT: WNUMBER

| FNUMBER {$$ = $1;}

singletimeexpr: yeartimeexpr

rangetimeexpr: yeartimeexpr TILDA yeartimeexpr

| yeartimeexpr PLUS yeartimeexpr

lowboundtimeexpr: GT yeartimeexpr

upboundtimeexpr: LT yeartimeexpr

yeartimeexpr: WNUMBER SLASH WNUMBER SLASH WNUMBER SLASH WNUMBER

COLON WNUMBER COLON FLOAT

| WNUMBER SLASH WNUMBER SLASH WNUMBER SLASH WNUMBER

COLON WNUMBER

| WNUMBER SLASH WNUMBER SLASH WNUMBER SLASH WNUMBER

| WNUMBER SLASH WNUMBER SLASH WNUMBER

S. Bhatnagar 27

| WNUMBER SLASH WNUMBER SLASH WNUMBER

COLON WNUMBER COLON FLOAT

| WNUMBER COLON WNUMBER COLON FLOAT

| WNUMBER COLON FLOAT

| FLOAT

| WNUMBER SLASH WNUMBER COLON WNUMBER COLON FLOAT

| WNUMBER SLASH WNUMBER COLON WNUMBER

| WNUMBER SLASH WNUMBER

10.6 UV-distance Selection Expression

token UNIT of type String

token FNUMBER of type Double

token COLON

token COMMA

token PERCENT

type Double fnumwithunits

type TEN uvwdiststatement

type TEN uvwdistexprlist

type TEN uvwdistexpr

uvwdiststatement:uvwdistexprlist

uvwdistexprlist: uvwdistexpr

| uvwdistexprlist COMMA uvwdistexpr

fnumwithunits: FNUMBER

| FNUMBER UNIT

uvwdistexpr: fnumwithunits

| FNUMBER TILDA fnumwithunits

| LT fnumwithunits

| GT fnumwithunits

| fnumwithunits COLON FNUMBER PERCENT

	General Syntax
	Number format
	Range specification
	Units
	Strings
	Handling of blanks

	Time selection
	Syntax

	Antenna/Baseline Selection
	Syntax
	Integers-as-names VLA naming convention
	Note

	Field Selection
	Syntax

	UV Distance Selection
	Syntax

	Frequency Selection
	Spectral Window Specification Syntax
	Channel Selection Syntax
	 Frequency Selection Syntax
	Notes

	Scan/Sub-array Selection
	Syntax

	General Error Handling
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 9

	Formal Grammar Specifications
	Baseline Selection Expression
	Frequency Selection Expression
	Field Selection Expression
	Scan/Sub-Array Selection Expression
	Time Selection Expression
	UV-distance Selection Expression

