
Ninth Synthesis Imaging Summer School
Socorro, June 15-22, 2004

Polarization in Interferometry

Steven T. Myers (NRAO-Socorro)



Polarization in Interferometry – S. T. Myers

Polarization in interferometry

• Physics of Polarization
• Interferometer Response to Polarization
• Polarization Calibration & Observational Strategies
• Polarization Data & Image Analysis
• Astrophysics of Polarization
• Examples

• References:
– Synth Im. II lecture 6, also parts of 1, 3, 5, 32
– “Tools of Radio Astronomy” Rohlfs & Wilson
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WARNING!

• Polarimetry is an exercise in bookkeeping!
– many places to make sign errors!
– many places with complex conjugation (or not)
– possible different conventions (e.g. signs)
– different conventions for notation!
– lots of matrix multiplications

• And be assured…
– I’ve mixed notations (by stealing slides ☺)
– I’ve made sign errors / (I call it “choice of convention” ☺)
– I’ve probably made math errors /
– I’ve probably made it too confusing by going into detail /
– But … persevere (and read up on it later) ☺

DON’T PANIC !
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Polarization 
Fundamentals
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Physics of polarization

• Maxwell’s Equations + Wave Equation
– E•B=0  (perpendicular) ; Ez = Bz = 0 (transverse)

• Electric Vector – 2 orthogonal independent waves:
– Ex = E1 cos( k z – ω t + δ1 )         k = 2π / λ
– Ey = E2 cos( k z – ω t + δ2 )         ω = 2π ν
– describes helical path on surface of a cylinder…

– parameters E1, E2, δ = δ1 - δ2 define ellipse
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The Polarization Ellipse

• Axes of ellipse Ea, Eb
– S0 = E12 + E22 = Ea2 + Eb2 Poynting flux
– δ phase difference                τ = k z – ω t

– Eξ = Ea cos ( τ + δ ) = Ex cos ψ + Ey sin ψ
– Eη = Eb sin ( τ + δ ) = -Ex sin ψ + Ey cos ψ

Rohlfs & Wilson
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The polarization ellipse continued…

• Ellipticity and Orientation
– E1 / E2 = tan α tan 2ψ = - tan 2α cos δ
– Ea / Eb = tan χ sin 2χ = sin 2α sin δ
– handedness ( sin δ > 0 or tan χ > 0 Î right-handed)

Rohlfs & Wilson
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Polarization ellipse – special cases

• Linear polarization
– δ = δ1 - δ2 = m π m = 0, ±1, ±2, …
– ellipse becomes straight line
– electric vector position angle ψ = α

• Circular polarization
– δ = ½ ( 1 + m ) π m = 0, 1, ±2, …
– equation of circle Ex2 + Ey2 = E2

– orthogonal linear components:
• Ex = E cos τ
• Ey = ±E cos ( τ - π/2 )
• note quarter-wave delay between Ex and Ey !
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Orthogonal representation

• A monochromatic wave can be expressed as the 
superposition of two orthogonal linearly polarized 
waves

• A arbitrary elliptically polarizated wave can also 
equally well be described as the superposition of two 
orthogonal circularly polarized waves!

• We are free to choose the orthogonal basis for the 
representation of the polarization

• NOTE: Monochromatic waves MUST be (fully) 
polarized – IT’S THE LAW!
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Linear and Circular representations

• Orthogonal Linear representation:
– Eξ = Ea cos ( τ + δ ) = Ex cos ψ + Ey sin ψ

– Eη = Eb sin ( τ + δ ) = -Ex sin ψ + Ey cos ψ

• Orthogonal Circular representation:
– Eξ = Ea cos ( τ + δ ) = ( Er + El ) cos ( τ + δ )

– Eη = Eb sin ( τ + δ ) = ( Er - El ) cos ( τ + δ – π/2 )
– Er = ½ ( Ea + Eb )
– El = ½ ( Ea – Eb ) 
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The Poincare Sphere

• Treat 2ψ and 2χ as longitude and latitude on sphere 
of radius S0

Rohlfs & Wilson
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Stokes parameters

• Spherical coordinates: radius I, axes Q, U, V
– S0 = I = Ea2 + Eb2

– S1 = Q = S0 cos 2χ cos 2ψ

– S2 = U = S0 cos 2χ sin 2ψ

– S3 = V = S0 sin 2χ

• Only 3 independent parameters:
– S02 = S12 + S22 + S32

– I2 = Q2 + U2 + V2

• Stokes parameters I,Q,U,V 
– form complete description of wave polarization
– NOTE: above true for monochromatic wave!
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Stokes parameters and polarization ellipse

• Spherical coordinates: radius I, axes Q, U, V
– S0 = I = Ea2 + Eb2

– S1 = Q = S0 cos 2χ cos 2ψ

– S2 = U = S0 cos 2χ sin 2ψ

– S3 = V = S0 sin 2χ

• In terms of the polarization ellipse:
– S0 = I = E12 + E22

– S1 = Q = E12 - E22

– S2 = U = 2 E1 E2 cos δ
– S3 = V = 2 E1 E2 sin δ
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Stokes parameters special cases

• Linear Polarization
– S0 = I = E2 = S
– S1 = Q = I cos 2ψ

– S2 = U = I sin 2ψ
– S3 = V = 0

• Circular Polarization
– S0 = I = S
– S1 = Q = 0
– S2 = U = 0
– S3 = V = S (RCP) or –S (LCP)

Note: cycle in 180°
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Quasi-monochromatic waves

• Monochromatic waves are fully polarized
• Observable waves (averaged over ∆ν/ν << 1)
• Analytic signals for x and y components:

– Ex(t) = a1(t) e i(φ1(t) – 2πνt)

– Ey(t) = a2(t) e i(φ2(t) – 2πνt)

– actual components are the real parts Re Ex(t), Re Ey(t) 

• Stokes parameters
– S0 = I = <a12> + <a22>

– S1 = Q = <a12> – <a22>

– S2 = U = 2 < a1 a2 cos δ >
– S3 = V = 2 < a1 a2 sin δ >
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Stokes parameters and intensity measurements

• If phase of Ey is retarded by ε relative to Ex , the 
electric vector in the orientation θ is:
– E(t; θ, ε) = Ex cos θ + Ey eiε sin θ

• Intensity measured for angle θ:
– I(θ, ε) = < E(t; θ, ε) E*(t; θ, ε) >

• Can calculate Stokes parameters from 6 intensities:
– S0 = I = I(0°,0) + I(90°,0)
– S1 = Q = I(0°,0) + I(90°,0)
– S2 = U = I(45°,0) – I(135°,0)
– S3 = V = I(45°,π/2) – I(135°,π/2)
– this can be done for single-dish (intensity) polarimetry!
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Partial polarization

• The observable electric field need not be fully 
polarized as it is the superposition of monochromatic 
waves

• On the Poincare sphere:
– S02 ≥ S12 + S22 + S32

– I2 ≥ Q2 + U2 + V2

• Degree of polarization p :
– p2 S02 = S12 + S22 + S32

– p2 I2 = Q2 + U2 + V2
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Summary – Fundamentals

• Monochromatic waves are polarized
• Expressible as 2 orthogonal independent transverse 

waves
– elliptical cross-section Î polarization ellipse
– 3 independent parameters
– choice of basis, e.g. linear or circular

• Poincare sphere convenient representation
– Stokes parameters I, Q, U, V
– I intensity; Q,U linear polarization, V circular polarization

• Quasi-monochromatic “waves” in reality
– can be partially polarized
– still represented by Stokes parameters
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Antenna & 
Interferometer 

Polarization
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Interferometer response to polarization

• Stokes parameter recap:
– intensity I

– fractional polarization       (p I)2 = Q2 + U2 + V2

– linear polarization Q,U     (m I)2 = Q2 + U2

– circular polarization V       (v I)2 = V2

• Coordinate system dependence:
– I independent
– V depends on choice of “handedness”

• V > 0 for RCP
– Q,U depend on choice of “North” (plus handedness)

• Q “points” North, U 45 toward East
• EVPA   Φ = ½ tan-1 (U/Q)    (North through East)
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Reflector antenna systems

• Reflections
– turn RCP Ù LCP
– E-field allowed only in plane of surface

• Curvature of surfaces
– introduce cross-polarization
– effect increases with curvature (as f/D decreases)

• Symmetry
– on-axis systems see linear cross-polarization
– off-axis feeds introduce asymmetries & R/L squint

• Feedhorn & Polarizers
– introduce further effects (e.g. “leakage”)
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Optics – Cassegrain radio telescope 

• Paraboloid illuminated by feedhorn:
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Optics – telescope response 

• Reflections
– turn RCP Ù LCP
– E-field (currents) allowed only in plane of surface

• “Field distribution” on aperture for E and B planes:

Cross-polarization
at 45°

No cross-polarization
on axes
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Polarization field pattern

• Cross-polarization
– 4-lobed pattern

• Off-axis feed system
– perpendicular elliptical 

linear pol. beams 
– R and L beams diverge 

(beam squint)

• See also:
– “Antennas” lecture by P. 

Napier
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Feeds – Linear or Circular?

• The VLA uses a circular feedhorn design
– plus (quarter-wave) polarizer to convert circular polarization 

from feed into linear polarization in rectangular waveguide
– correlations will be between R and L from each antenna

• RR RL LR RL form complete set of correlations

• Linear feeds are also used
– e.g. ATCA, ALMA (and possibly EVLA at 1.4 GHz)
– no need for (lossy) polarizer!
– correlations will be between X and Y from each antenna

• XX XY YX YY form complete set of correlations

• Optical aberrations are the same in these two cases
– but different response to electronic (e.g. gain) effects
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Example – simulated VLA patterns

• EVLA Memo 58 “Using Grasp8 to Study the VLA 
Beam” W. Brisken
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Example – simulated VLA patterns

• EVLA Memo 58 “Using Grasp8 to Study the VLA 
Beam” W. Brisken

Linear Polarization Circular Polarization cuts in R & L
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Example – measured VLA patterns

• AIPS Memo 86 “Widefield Polarization Correction of 
VLA Snapshot Images at 1.4 GHz” W. Cotton (1994)

Circular Polarization Linear Polarization
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Example – measured VLA patterns

• frequency dependence of polarization beam :
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Beyond optics – waveguides & receivers 

• Response of polarizers
– convert R & L to X & Y in waveguide
– purity and orthogonality errors

• Other elements in signal path:
– Sub-reflector & Feedhorn

• symmetry & orientation
– Ortho-mode transducers (OMT)

• split orthogonal modes into waveguide
– Polarizers

• retard one mode by quarter-wave to convert LP Î CP
• frequency dependent!

– Amplifiers
• separate chains for R and L signals
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Back to the Measurement Equation

• Polarization effects in the signal chain appear as 
error terms in the Measurement Equation
– e.g.  “Calibration” lecture, G. Moellenbrock:

• F = ionospheric Faraday rotation
• T = tropospheric effects
• P = parallactic angle
• E = antenna voltage pattern
• D = polarization leakage
• G = electronic gain
• B = bandpass response

Antenna i

Baseline ij (outer product)
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Ionospheric Faraday Rotation, F

• Birefringency due to magnetic field in ionospheric
plasma

– also present in radio sources!
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Ionospheric Faraday Rotation, F

– The ionosphere is birefringent; one hand of circular 
polarization is delayed w.r.t. the other, introducing a phase 
shift:

• rotates the linear polarization position angle :

• more important at longer wavelengths: 

• ionosphere most active at solar maximum and sunrise/sunset
• watch for direction dependence (in-beam)
• see “Low Frequency Interferometry” (C. Brogan)
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Parallactic Angle, P

• Orientation of sky in telescope’s field of view
– Constant for equatorial telescopes
– Varies for alt-az-mounted telescopes:

– Rotates the position angle of linearly polarized radiation (c.f. F)

– defined per antenna (often same over array)
– P modulation can be used to aid in calibration
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Parallactic Angle, P

• Parallactic angle versus hour angle at VLA :
– fastest swing for source passing through zenith
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Antenna voltage pattern, E

• Direction-dependent gain and polarization
– includes primary beam 

• Fourier transform of cross-correlation of antenna voltage 
patterns

• includes polarization asymmetry (squint)

– can include off-axis cross-polarization (leakage)
• convenient to reserve D for on-axis leakage
• will then have off-diagonal terms

– important in wide-field imaging and mosaicing
• when sources fill the beam (e.g. low frequency)
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Polarization Leakage, D

• Polarizer is not ideal, so orthogonal polarizations not 
perfectly isolated
– Well-designed systems have d < 1-5%
– A geometric property of the antenna, feed & polarizer design

• frequency dependent (e.g. quarter-wave at center ν)
• direction dependent (in beam) due to antenna

– For R,L systems
• parallel hands affected as d•Q + d•U , so only important at high 

dynamic range (because Q,U~d, typically)
• cross-hands affected as d•I so almost always important
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Coherency vector and correlations

• Coherency vector:

– e.g. for circularly polarized feeds:
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Coherency vector and Stokes vector

• Example: circular polarization (e.g. VLA)

• Example: linear polarization (e.g. ATCA)
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Visibilities and Stokes parameters

• Convolution of sky with measurement effects:

• e.g. with (polarized) beam E :

– imaging involves inverse transforming these
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Example: RL basis

• Combining E, etc. (no D), expanding P,S:
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Example: RL basis imaging

• Parenthetical Note:
– can make a pseudo-I image by gridding RR+LL on the 

Fourier half-plane and inverting to a real image
– can make a pseudo-V image by gridding RR-LL on the 

Fourier half-plane and inverting to real image
– can make a pseudo-(Q+iU) image by gridding RL to the full 

Fourier plane (with LR as the conjugate) and inverting to a 
complex image

– does not require having full polarization RR,RL,LR,LL for 
every visibility

• More on imaging ( & deconvolution ) tomorrow!



Polarization in Interferometry – S. T. Myers

Leakage revisited…

• Primary on-axis effect is “leakage” of one polarization 
into the measurement of the other (e.g. R Ù L)
– but, direction dependence due to polarization beam!

• Customary to factor out on-axis leakage into D and 
put direction dependence in “beam”
– example: expand RL basis with on-axis leakage

– similarly for XY basis
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Example: RL basis leakage

• In full detail:
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1st order:
D•I into P

2nd order:
D•P into I
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D2•I into I

3rd order:
D2•P* into P
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Example: Linearized response

• Dropping terms in d2, dQ, dU, dV (and expanding G)

– warning: using linear order can limit dynamic range!
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Summary – polarization interferometry

• Choice of basis: CP or LP feeds
• Follow the Measurement Equation

– ionospheric Faraday rotation F at low frequency
– parallactic angle P for coordinate transformation to Stokes
– “leakage” D varies with ν and over beam (mix with E)

• Leakage
– use full (all orders) D solver when possible
– linear approximation OK for low dynamic range
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Polarization 
Calibration

& Observation
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So you want to make a polarization map…
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Strategies for polarization observations

• Follow general calibration procedure (last lecture)
– will need to determine leakage D (if not known)
– often will determine G and D together (iteratively)
– procedure depends on basis and available calibrators

• Observations of polarized sources
– follow usual rules for sensitivity, uv coverage, etc.
– remember polarization fraction is usually low! (few %)
– if goal is to map E-vectors, remember to calculate noise in 

Φ= ½ tan-1 U/Q
– watch for gain errors in V (for CP) or Q,U (for LP)
– for wide-field high-dynamic range observations, will need to 

correct for polarized primary beam (during imaging)
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Strategies for leakage calibration

• Need a bright calibrator!  Effects are low level…
– determine gains G ( mostly from parallel hands)
– use cross-hands (mostly) to determine leakage
– general ME D solver (e.g. aips++) uses all info

• Calibrator is unpolarized
– leakage directly determined (ratio to I model), but only to an 

overall constant 
– need way to fix phase p-q (ie. R-L phase difference), e.g. 

using another calibrator with known EVPA

• Calibrator of known polarization
– leakage can be directly determined (for I,Q,U,V model)
– unknown p-q phase can be determined (from U/Q etc.)
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Other strategies

• Calibrator of unknown polarization
– solve for model IQUV and D simultaneously or iteratively
– need good parallactic angle coverage to modulate sky and 

instrumental signals
• in instrument basis, sky signal modulated by ei2χ 

• With a very bright strongly polarized calibrator
– can solve for leakages and polarization per baseline
– can solve for leakages using parallel hands!

• With no calibrator
– hope it averages down over parallactic angle
– transfer D from a similar observation

• usually possible for several days, better than nothing!
• need observations at same frequency
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Finding polarization calibrators

• Standard sources
– planets (unpolarized if 

unresolved)
– 3C286, 3C48, 3C147 

(known IQU, stable)
– sources monitored (e.g. by 

VLA)
– other bright sources 

(bootstrap)

http://www.vla.nrao.edu/astro/calib/polar/
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Example: D-term calibration

• D-term calibration effect on RL visibilities :
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Example: D-term calibration

• D-term calibration effect in image plane :
Bad D-term solution Good D-term solution
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Example: “standard” procedure for CP feeds
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Example: “standard” procedure for LP feeds
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Special Issues

• Low frequency – ionospheric Faraday rotation
– important for 2 GHz and below (sometimes higher too)
– λ2 dependence (separate out using multi-frequency obs.)
– depends on time of day and solar activity (& observatory 

location)
– external calibration using zenith TEC (plus gradient?)
– self-calibration possible (e.g. with snapshots)
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Special issues – continued…

• VLBI polarimetry
– follows same principles
– will have different parallactic

angle at each station!
– can have heterogeneous feed 

geometry (e.g. CP & LP)
– harder to find sources with 

known polarization
• calibrators resolved!
• transfer EVPA from 

monitoring program

2200+420
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Subtleties …

• Antenna-based D solutions
– closure quantities Î undetermined parameters
– different for parallel and cross-hands
– e.g. can add d to R and d* to L
– need for reference antenna to align and transfer D solutions

• Parallel hands
– are D solutions from cross-hands appropriate here?
– what happens in full D solution (weighting issues?)
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Special Issues – observing circular polarization

• Observing circular polarization V is straightforward 
with LP feeds (from Re and Im of cross-hands)

• With CP feeds:
– gain variations can masquerade as (time-variable) V signal

• helps to switch signal paths through back-end electronics
– R vs. L beam squint introduces spurious V signal

• limited by pointing accuracy
– requires careful calibration

• relative R and L gains critical
• average over calibrators (be careful of intrinsic V)

– VLBI somewhat easier
• different systematics at stations help to average out
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Special Issues – wide field polarimetry

• Actually an imaging & deconvolution issue
– assume polarized beam D’•E is known

• Deal with direction-dependent effects
– beam squint (R,L) or beam ellipticity (X,Y)
– primary beam

• Iterative scheme (e.g. CLEAN)
– implemented in aips++
– see lectures by Bhatnagar & Cornwell

• Described in EVLA Memo 62 “Full Primary Beam 
Stokes IQUV Imaging” T. Cornwell (2003) :
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Example: wide field polarimetry (Cornwell 2003)
• Simulated array of point sources

No beam correction 1D beam + squint Full 2D beam
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Example: wide field polarimetry continued…
• Simulated Hydra A image

Model

Errors 1D sym.beam

Errors full beam

Panels:    I     Q
U    V
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Summary – Observing & Calibration

• Follow normal calibration procedure (previous lecture)
• Need bright calibrator for leakage D calibration

– best calibrator has strong known polarization
– unpolarized sources also useful

• Parallactic angle coverage useful
– necessary for unknown calibrator polarization

• Need to determine unknown p-q phase
– CP feeds need EVPA calibrator for R-L phase
– if system stable, can transfer from other observations

• Special Issues
– observing CP difficult with CP feeds
– wide-field polarization imaging (needed for EVLA & ALMA)
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Polarization data analysis

• Making polarization images
– follow general rules for imaging & deconvolution
– image & deconvolve in I, Q, U, V (e.g. CLEAN, MEM)
– note: Q, U, V will be positive and negative
– in absence of CP, V image can be used as check
– joint deconvolution (e.g. aips++, wide-field)

• Polarization vector plots
– use “electric vector position angle” (EVPA) calibrator to set 

angle (e.g. R-L phase difference)
– Φ = ½ tan-1 U/Q for E vectors ( B vectors ┴ E )
– plot E vectors with length given by p

• Faraday rotation: determine ∆Φ vs. λ2
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Polarization 
Astrophysics
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Astrophysical mechanisms for polarization

• Magnetic fields
– synchrotron radiation Î LP (small amount of CP)
– Zeeman effect Î CP
– Faraday rotation (of background polarization)
– dust grains in magnetic field
– maser emission

• Electron scattering
– incident radiation with quadrupole
– e.g. Cosmic Microwave Background

• and more…
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Astrophysical sources with polarization

• Magnetic objects
– active galactic nuclei (AGN) (accretion disks, MHD jets, lobes)
– protostars (disks, jets, masers)
– clusters of galaxies IGM
– galaxy ISM
– compact objects (pulsars, magnetars)
– planetary magnetospheres
– the Sun and other (active) stars
– the early Universe (primordial magnetic fields???)

• Other objects
– Cosmic Microwave Background (thermal)

• Polarization levels
– usually low (<1% to 5-10% typically)
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Example: 3C31

• VLA @ 8.4 GHz
• E-vectors
• Laing (1996)

3 kpc
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Example: Cygnus A

• VLA @ 8.5 GHz   B-vectors    Perley & Carilli (1996)

10 kpc
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Example: Blazar Jets

• VLBA @ 5 GHz             Attridge et al. (1999)

1055+018
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Example: the ISM of M51

Neininger (1992)
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Example: Zeeman effect
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Example: Zeeman in M17

m

Zeeman Blos: colors (Brogan & Troland 2001)  
Polarization Bperp: lines (Dotson 1996)

Color: optical from the Digitized Sky Survey
Thick contours: radio continuum from Brogan 
& Troland (2001)                                       
Thin contours: 13CO from Wilson et al. (1999)
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Example: Faraday Rotation

• VLBA
• Taylor et al. 1998
• intrinsic vs. galactic

15   12       8 GHz
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Example: more Faraday rotation

– See review of “Cluster Magnetic Fields” by Carilli & Taylor 
2002 (ARAA)
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Example: Galactic Faraday Rotation

• Mapping galactic magnetic fields with FR
Han, Manchester, & Qiao (1999)

Han et al. (2002)

Filled: positive RM   Open: negative RM
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Example: Stellar SiO Masers

• R Aqr
• VLBA @ 43 GHz
• Boboltz et al. 1998


