

Polarization in Interferometry

Steven T. Myers (NRAO-Socorro)

Ninth Synthesis Imaging Summer School Socorro, June 15-22, 2004

Polarization in interferometry

- Physics of Polarization
- Interferometer Response to Polarization
- Polarization Calibration & Observational Strategies
- Polarization Data & Image Analysis
- Astrophysics of Polarization
- Examples
- References:
 - Synth Im. II lecture 6, also parts of 1, 3, 5, 32
 - "Tools of Radio Astronomy" Rohlfs & Wilson

WARNING!

- Polarimetry is an exercise in bookkeeping!
 - many places to make sign errors!
 - many places with complex conjugation (or not)
 - possible different conventions (e.g. signs)
 - different conventions for notation!
 - lots of matrix multiplications
- And be assured...
 - I've mixed notations (by stealing slides ⁽ⁱ⁾)
 - I've made sign errors ⊗ (I call it "choice of convention" ☺)
 - I've probably made math errors ⊗
 - I've probably made it too confusing by going into detail $\ensuremath{\mathfrak{S}}$
 - But ... persevere (and read up on it later) ③

DON'T PANIC !

Polarization Fundamentals

Physics of polarization

- Maxwell's Equations + Wave Equation
 - $E \cdot B = 0$ (perpendicular); $E_z = B_z = 0$ (transverse)
- Electric Vector 2 orthogonal independent waves:
 - $E_{X} = E_{1} \cos(kz \omega t + \delta_{1}) \qquad k = 2\pi / \lambda$
 - $E_{\gamma} = E_2 \cos(kz \omega t + \delta_2) \qquad \omega = 2\pi v$
 - describes helical path on surface of a cylinder...

- parameters E₁, E₂, $\delta = \delta_1 - \delta_2$ define <u>ellipse</u>

The Polarization Ellipse

- Axes of ellipse E_a, E_b
 - $-S_0 = E_1^2 + E_2^2 = E_a^2 + E_b^2$ Poynting flux
 - $\delta \text{ phase difference} \qquad \tau = k z \omega t$
 - $E_{\xi} = E_a \cos (\tau + \delta) = E_x \cos \psi + E_y \sin \psi$
 - $E_{\eta} = E_b \sin (\tau + \delta) = -E_x \sin \Psi + E_y \cos \Psi$

The polarization ellipse continued...

- Ellipticity and Orientation
 - $E_1 / E_2 = \tan \alpha$ $\tan 2\psi = -\tan 2\alpha \cos \delta$
 - $E_a / E_b = \tan \chi$ sin $2\chi = \sin 2\alpha \sin \delta$
 - handedness (sin $\delta > 0$ or tan $\chi > 0 \rightarrow right$ -handed)

Polarization ellipse – special cases

- Linear polarization
 - $\delta = \delta_1 \delta_2 = m \pi \quad m = 0, \pm 1, \pm 2, \dots$
 - ellipse becomes straight line
 - electric vector position angle $\Psi = \alpha$
- Circular polarization
 - $\delta = \frac{1}{2} (1 + m) \pi m = 0, 1, \pm 2, ...$
 - equation of circle $E_x^2 + E_y^2 = E^2$
 - orthogonal linear components:
 - $E_X = E \cos \tau$
 - $E_y = \pm E \cos (\tau \pi/2)$
 - note quarter-wave delay between E_X and E_Y !

Orthogonal representation

- A monochromatic wave can be expressed as the superposition of *two orthogonal linearly polarized waves*
- A arbitrary elliptically polarizated wave can also equally well be described as the superposition of two orthogonal *circularly polarized* waves!
- We are free to choose the orthogonal basis for the representation of the polarization
- NOTE: Monochromatic waves MUST be (fully) polarized – IT'S THE LAW!

Linear and Circular representations

- Orthogonal Linear representation:
 - $E_{\xi} = E_a \cos (\tau + \delta) = E_x \cos \Psi + E_y \sin \Psi$
 - $E_{\eta} = E_b \sin (\tau + \delta) = -E_x \sin \Psi + E_y \cos \Psi$
- Orthogonal Circular representation:
 - $E_{\xi} = E_a \cos (\tau + \delta) = (E_r + E_I) \cos (\tau + \delta)$
 - $E_{\eta} = E_b \sin(\tau + \delta) = (E_r E_l) \cos(\tau + \delta \pi/2)$
 - $E_r = \frac{1}{2} (E_a + E_b)$
 - $E_{I} = \frac{1}{2} (E_{a} E_{b})$

The Poincare Sphere

- Treat 2ψ and 2χ as longitude and latitude on sphere of radius S_0

Stokes parameters

- Spherical coordinates: radius I, axes Q, U, V
 - $-S_0 = I = E_a^2 + E_b^2$
 - $S_1 = Q = S_0 \cos 2\chi \cos 2\Psi$
 - $-S_2 = U = S_0 \cos 2\chi \sin 2\Psi$
 - S₃ = V = S₀ sin 2 χ
- Only 3 independent parameters:
 - $-S_0^2 = S_1^2 + S_2^2 + S_3^2$
 - $||^2 = Q^2 + U^2 + V^2$
- Stokes parameters I,Q,U,V
 - form complete description of wave polarization
 - NOTE: above true for monochromatic wave!

Stokes parameters and polarization ellipse

- Spherical coordinates: radius I, axes Q, U, V
 - $-S_0 = I = E_a^2 + E_b^2$
 - S₁ = Q = S₀ cos 2 χ cos 2 ψ
 - $-S_2 = U = S_0 \cos 2\chi \sin 2\Psi$
 - S₃ = V = S₀ sin 2 χ
- In terms of the polarization ellipse:
 - $S_0 = I = E_1^2 + E_2^2$
 - $-S_1 = Q = E_1^2 E_2^2$
 - $S_2 = U = 2 E_1 E_2 \cos \delta$
 - $S_3 = V = 2 E_1 E_2 \sin \delta$

Stokes parameters special cases

Note: cycle in 180°

- Linear Polarization
 - $-S_0 = I = E^2 = S$
 - $-S_1 = Q = I \cos 2\Psi$
 - $-S_2 = U = I \sin 2\psi$
 - $S_3 = V = 0$
- Circular Polarization
 - $S_0 = I = S$
 - $S_1 = Q = 0$
 - $S_2 = U = 0$
 - S₃ = V = S (RCP) or -S (LCP)

Quasi-monochromatic waves

- Monochromatic waves are fully polarized
- Observable waves (averaged over $\Delta v/v \ll 1$)
- Analytic signals for x and y components:
 - $E_{x}(t) = a_{1}(t) e^{i(\phi_{1}(t) 2\pi v t)}$
 - $E_{V}(t) = a_{2}(t) e^{i(\phi_{2}(t) 2\pi v t)}$
 - actual components are the real parts Re $E_X(t)$, Re $E_V(t)$
- Stokes parameters
 - $-S_0 = I = \langle a_1^2 \rangle + \langle a_2^2 \rangle$
 - $S_1 = Q = \langle a_1^2 \rangle \langle a_2^2 \rangle$
 - $S_2 = U = 2 < a_1 a_2 \cos \delta >$
 - $S_3 = V = 2 < a_1 a_2 \sin \delta >$

Stokes parameters and intensity measurements

• If phase of E_y is retarded by ε relative to E_x , the electric vector in the orientation θ is:

 $- E(t, \theta, \varepsilon) = E_X \cos \theta + E_Y e^{i\varepsilon} \sin \theta$

• Intensity measured for angle θ :

 $- |I(\theta, \varepsilon)| = \langle E(t, \theta, \varepsilon) | E^*(t, \theta, \varepsilon) \rangle$

- Can calculate Stokes parameters from 6 intensities:
 - $S_0 = I = I(0^\circ, 0) + I(90^\circ, 0)$
 - $S_1 = Q = I(0^\circ, 0) + I(90^\circ, 0)$
 - S₂ = U = I(45°,0) I(135°,0)
 - $S_3 = V = I(45^{\circ}, \pi/2) I(135^{\circ}, \pi/2)$
 - this can be done for single-dish (intensity) polarimetry!

Partial polarization

- The observable electric field need not be fully polarized as it is the superposition of monochromatic waves
- On the Poincare sphere:
 - $S_0^2 \ge S_1^2 + S_2^2 + S_3^2$
 - $I^2 \ge Q^2 + U^2 + V^2$
- Degree of polarization *p* : $-p^2 S_0^2 = S_1^2 + S_2^2 + S_3^2$ $-p^2 I^2 = Q^2 + U^2 + V^2$

Summary – Fundamentals

- Monochromatic waves are polarized
- Expressible as 2 orthogonal independent transverse waves
 - elliptical cross-section \rightarrow polarization ellipse
 - 3 independent parameters
 - choice of basis, e.g. linear or circular
- Poincare sphere convenient representation
 - Stokes parameters I, Q, U, V
 - I intensity; Q,U linear polarization, V circular polarization
- Quasi-monochromatic "waves" in reality
 - can be partially polarized
 - still represented by Stokes parameters

Antenna & Interferometer Polarization

New Mexico Tech

Interferometer response to polarization

- Stokes parameter recap:
 - intensity I
 - fractional polarization $(p I)^2 = Q^2 + U^2 + V^2$
 - linear polarization Q,U $(m I)^2 = Q^2 + U^2$
 - circular polarization V $(v I)^2 = V^2$
- Coordinate system dependence:
 - I independent
 - V depends on choice of "handedness"
 - V > 0 for RCP
 - Q,U depend on choice of "North" (plus handedness)
 - Q "points" North, U 45 toward East
 - EVPA $\Phi = \frac{1}{2} \tan^{-1} (U/Q)$ (North through East)

Reflector antenna systems

- Reflections
 - turn RCP ⇔ LCP
 - E-field allowed only in plane of surface
- Curvature of surfaces
 - introduce cross-polarization
 - effect increases with curvature (as f/D decreases)
- Symmetry
 - on-axis systems see linear cross-polarization
 - off-axis feeds introduce asymmetries & R/L squint
- Feedhorn & Polarizers
 - introduce further effects (e.g. "leakage")

Optics – Cassegrain radio telescope

• Paraboloid illuminated by feedhorn:

Optics – telescope response

- Reflections
 - turn RCP ⇔ LCP
 - E-field (currents) allowed only in plane of surface
- "Field distribution" on aperture for E and B planes:

Polarization field pattern

- Cross-polarization
 - 4-lobed pattern
- Off-axis feed system
 - perpendicular elliptical linear pol. beams
 - R and L beams diverge (beam squint)
- See also:
 - "Antennas" lecture by P.
 Napier

Feeds – Linear or Circular?

- The VLA uses a circular feedhorn design
 - plus (quarter-wave) polarizer to convert circular polarization from feed into linear polarization in rectangular waveguide
 - correlations will be between R and L from each antenna
 - RR RL LR RL form complete set of correlations
- Linear feeds are also used
 - e.g. ATCA, ALMA (and possibly EVLA at 1.4 GHz)
 - no need for (lossy) polarizer!
 - correlations will be between X and Y from each antenna
 - XX XY YX YY form complete set of correlations
- Optical aberrations are the same in these two cases
 - but different response to electronic (e.g. gain) effects

Example – simulated VLA patterns

 EVLA Memo 58 "Using Grasp8 to Study the VLA Beam" W. Brisken

Example – simulated VLA patterns

 EVLA Memo 58 "Using Grasp8 to Study the VLA Beam" W. Brisken

Linear Polarization

Circular Polarization cuts in R & L

Example – measured VLA patterns

 AIPS Memo 86 "Widefield Polarization Correction of VLA Snapshot Images at 1.4 GHz" W. Cotton (1994)

Circular Polarization

Linear Polarization

Example – measured VLA patterns

• frequency dependence of polarization beam :

Beyond optics – waveguides & receivers

- Response of polarizers
 - convert R & L to X & Y in waveguide
 - purity and orthogonality errors
- Other elements in signal path:
 - Sub-reflector & Feedhorn
 - symmetry & orientation
 - Ortho-mode transducers (OMT)
 - split orthogonal modes into waveguide
 - Polarizers
 - retard one mode by quarter-wave to convert LP → CP
 - frequency dependent!
 - Amplifiers
 - separate chains for R and L signals

Back to the Measurement Equation

- Polarization effects in the signal chain appear as error terms in the Measurement Equation
 - e.g. "Calibration" lecture, G. Moellenbrock:
 - F = ionospheric Faraday rotation
 - *T* = tropospheric effects
 - *P* = parallactic angle
 - *E* = antenna voltage pattern
 - *D* = polarization leakage
 - G = electronic gain
 - *B* = bandpass response

Antenna i

$$\vec{J}_i = \vec{B}_i \vec{G}_i \vec{D}_i \vec{E}_i \vec{P}_i \vec{T}_i \vec{F}_i$$

Baseline ij (outer product)

$$\begin{split} \vec{J}_i \otimes \vec{J}_j^* &= \left(\vec{B}_i \vec{G}_i \vec{D}_i \vec{E}_i \vec{P}_i \vec{T}_i \vec{F}_i \otimes \vec{B}_j^* \vec{G}_j^* \vec{D}_j^* \vec{E}_j^* \vec{P}_j^* \vec{T}_j^* \vec{F}_j^* \right) \\ &= \left(\vec{B}_i \otimes \vec{B}_j^* \right) \left(\vec{G}_i \otimes \vec{G}_j^* \right) \left(\vec{D}_i \otimes \vec{D}_j^* \right) \left(\vec{E}_i \otimes \vec{E}_j^* \right) \left(\vec{P}_i \otimes \vec{P}_j^* \right) \left(\vec{T}_i \otimes \vec{T}_j^* \right) \left(\vec{F}_i \otimes \vec{F}_j^* \right) \\ &= \vec{B}_{ij} \vec{G}_{ij} \vec{D}_{ij} \vec{E}_{ij} \vec{P}_{ij} \vec{T}_{ij} \vec{F}_{ij} \end{split}$$

Ionospheric Faraday Rotation, F

Birefringency due to magnetic field in ionospheric plasma
 Faraday Rotation

- also present in radio sources!

Ionospheric Faraday Rotation, F

 The ionosphere is *birefringent*; one hand of circular polarization is delayed w.r.t. the other, introducing a phase shift:

 $\Delta \phi \approx 0.15 \ \lambda^2 \int B_{\parallel} n_e ds \ \deg \ (\lambda \, \text{in cm}, n_e ds \, \text{in } 10^{14} \, \text{cm}^{-2}, B_{\parallel} \, \text{in G})$

rotates the linear polarization position angle :

$$\vec{F}^{RL} = \begin{pmatrix} e^{i\Delta\phi} & 0\\ 0 & e^{-i\Delta\phi} \end{pmatrix}; \quad \vec{F}^{XY} = \begin{pmatrix} \cos\Delta\phi & -\sin\Delta\phi\\ \sin\Delta\phi & \cos\Delta\phi \end{pmatrix}$$

more important at longer wavelengths:

$$TEC = \int n_e ds \sim 10^{14} \text{ cm}^{-2}; \quad B_{\parallel} \sim 1\text{G}; \quad \lambda = 20 \text{ cm} \rightarrow \Delta \phi \sim 60^{\circ}$$

- ionosphere most active at solar maximum and sunrise/sunset
- watch for direction dependence (in-beam)
- see "Low Frequency Interferometry" (C. Brogan)

Parallactic Angle, P

- Orientation of sky in telescope's field of view
 - Constant for equatorial telescopes
 - Varies for alt-az-mounted telescopes:

 $\chi(t) = \arctan\left(\frac{\cos(l)\sin(h(t))}{\sin(l)\cos(\delta) - \cos(l)\sin(\delta)\cos(h(t))}\right)$ l = latitude, h(t) = hour angle, δ = declination

- Rotates the position angle of linearly polarized radiation (c.f. F)

$$\vec{P}^{RL} = \begin{pmatrix} e^{i\chi} & 0\\ 0 & e^{-i\chi} \end{pmatrix}; \ \vec{P}^{XY} = \begin{pmatrix} \cos\chi & -\sin\chi\\ \sin\chi & \cos\chi \end{pmatrix}$$

- defined per antenna (often same over array)
- P modulation can be used to aid in calibration

Parallactic Angle, P

• Parallactic angle versus hour angle at VLA :

- fastest swing for source passing through zenith

Antenna voltage pattern, E

- Direction-dependent gain and polarization
 - includes primary beam
 - Fourier transform of cross-correlation of antenna voltage patterns
 - includes polarization asymmetry (squint)

$$E^{pq} = \begin{pmatrix} e^{p}(l,m) & 0\\ 0 & e^{q}(l,m) \end{pmatrix}$$

- can include off-axis cross-polarization (leakage)
 - convenient to reserve D for on-axis leakage
 - will then have off-diagonal terms
- important in wide-field imaging and mosaicing
 - when sources fill the beam (e.g. low frequency)

Polarization Leakage, D

- Polarizer is not ideal, so orthogonal polarizations not perfectly isolated
 - Well-designed systems have d < 1-5%
 - A geometric property of the antenna, feed & polarizer design
 - frequency dependent (e.g. quarter-wave at center v)
 - direction dependent (in beam) due to antenna
 - For *R*,*L* systems
 - parallel hands affected as d•Q + d•U, so only important at high dynamic range (because Q,U~d, typically)
 - cross-hands affected as d•l so almost always important

$$\vec{D}^{pq} = \begin{pmatrix} 1 & d^p \\ d^q & 1 \end{pmatrix}$$

Leakage of q into p (e.g. L into R)

Coherency vector and correlations

Coherency vector: •

$$\mathbf{e} = \left\langle \left. \vec{s}_i \otimes \vec{s}_j^{\;*} \right\rangle = \left\langle \left(\left. \begin{array}{c} s^p \\ s^q \end{array} \right)_i \otimes \left(\begin{array}{c} s^p \\ s^q \end{array} \right)_j^{*} \right\rangle = \left(\left\langle \begin{array}{c} \left\langle s_i^p \cdot s_j^{*p} \right\rangle \\ \left\langle s_i^p \cdot s_j^{*p} \right\rangle \\ \left\langle s_i^q \cdot s_j^{*p} \right\rangle \\ \left\langle s_i^q \cdot s_j^{*p} \right\rangle \\ \left\langle s_i^q \cdot s_j^{*q} \right\rangle \end{array} \right)$$

e.g. for circularly polarized feeds: ____

$$\mathbf{e}_{circ} = \left\langle \vec{s}_{i} \otimes \vec{s}_{j}^{*} \right\rangle = \left\langle \left(\begin{array}{c} s^{R} \\ s^{L} \end{array} \right)_{i} \otimes \left(\begin{array}{c} s^{R} \\ s^{L} \end{array} \right)_{j} \right\rangle = \left(\begin{array}{c} \left\langle s^{R} \\ s^{R} \cdot s^{*R} \\ s^{R} \cdot s^{*L} \\ \left\langle s^{L} \cdot s^{*R} \\ s^{L} \cdot s^{*L} \\ s^{L} \\ s^{L} \cdot s^{*L} \\ s^{L} \\$$

Universities, Inc.

Coherency vector and Stokes vector

• Example: circular polarization (e.g. VLA)

$$\mathbf{e}_{circ} = \vec{S}_{circ} \mathbf{e}^{S} = \begin{pmatrix} RR \\ RL \\ LR \\ LL \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & i & 0 \\ 0 & 1 & -i & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \\ V \end{pmatrix} = \begin{pmatrix} I+V \\ Q+iU \\ Q-iU \\ I-V \end{pmatrix}$$

• Example: linear polarization (e.g. ATCA)

$$\mathbf{e}_{lin} = \vec{S}_{lin} \mathbf{e}^{S} = \begin{pmatrix} XX \\ XY \\ YX \\ YY \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & i \\ 0 & 0 & 1 & -i \\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} I+Q \\ U+iV \\ U-iV \\ I-Q \end{pmatrix}$$

Visibilities and Stokes parameters

• Convolution of sky with measurement effects:

$$\vec{V}_{ij}^{obs} = \int_{sky} (\vec{J}_i \otimes \vec{J}_j^*) \vec{SI}(l, m) e^{-i2\pi(u_{ij}l + v_{ij}m)} dldm$$
effects, including
beam" E(l,m) (I, Q, U, V)
• e.g. with (polarized) beam E :

$$\vec{V}_{ij}^{obs} = \int_{sky} (\vec{E}_i \otimes \vec{E}_j^*) \vec{SI}(l, m) e^{-i2\pi(u_{ij}l + v_{ij}m)} dldm$$

$$\vec{V}_{ij}^{obs} = \int_{uv} (\widetilde{E}_i \otimes \widetilde{E}_j^*) \vec{SI}(u, v) e^{i2\pi(u_{ij}l + v_{ij}m)} dudv$$
- imaging involves inverse transforming these

Example: RL basis

• Combining E, etc. (no D), expanding P,S:

Universities, Inc.

$$V_{ij}^{RR} = \int_{sky} E_{ij}^{RR} (l,m) [I(l,m) + V(l,m)] e^{i(\chi_i - \chi_j)} e^{-i2\pi (u_{ij}l + v_{ij}m)} dl dm$$

$$V_{ij}^{RL} = \int_{sky} E_{ij}^{RL} (l,m) [Q(l,m) + iU(l,m)] e^{i(\chi_i - \chi_j)} e^{-i2\pi (u_{ij}l + v_{ij}m)} dl dm$$

$$V_{ij}^{LR} = \int_{sky} E_{ij}^{LR} (l,m) [Q(l,m) - iU(l,m)] e^{-i(\chi_i + \chi_j)} e^{-i2\pi (u_{ij}l + v_{ij}m)} dl dm$$

$$V_{ij}^{LL} = \int_{sky} E_{ij}^{LL} (l,m) [I(l,m) - V(l,m)] e^{-i(\chi_i - \chi_j)} e^{-i2\pi (u_{ij}l + v_{ij}m)} dl dm$$

$$2\chi \text{ for co-located array} 0 \text{ for co-located array}$$

New Mexico Tech

Example: RL basis imaging

- Parenthetical Note:
 - can make a pseudo-I image by gridding RR+LL on the Fourier half-plane and inverting to a real image
 - can make a pseudo-V image by gridding RR-LL on the Fourier half-plane and inverting to real image
 - can make a pseudo-(Q+iU) image by gridding RL to the full Fourier plane (with LR as the conjugate) and inverting to a complex image
 - does not require having full polarization RR,RL,LR,LL for every visibility
- More on imaging (& deconvolution) tomorrow!

Leakage revisited...

- Primary on-axis effect is "leakage" of one polarization into the measurement of the other (e.g. R ⇔ L)
 - but, direction dependence due to polarization beam!
- Customary to factor out on-axis leakage into D and put direction dependence in "beam"

- example: expand RL basis with on-axis leakage

$$\hat{V}_{ij}^{RR} = V_{ij}^{RR} + d_i^R V_{ij}^{LR} + d_j^{*R} V_{ij}^{RL} + d_i^R d_j^{*R} V_{ij}^{LL}$$

$$\hat{V}_{ij}^{RL} = V_{ij}^{RL} + d_i^R V_{ij}^{LL} + d_j^{*L} V_{ij}^{RR} + d_i^R d_j^L V_{ij}^{LR}$$

similarly for XY basis

New Mexi

Example: RL basis leakage

In full detail: "true" signal ullet $V_{ij}^{RR} = \int E_{ij}^{RR}(l,m) [(\mathbf{I} + \mathbf{V})e^{i(\chi_i - \chi_j)} \boldsymbol{\triangleleft}$ 2nd order: into I skv + $d_i^R e^{-i(\chi_i + \chi_j)} (Q - iU) + d_i^{*R} e^{i(\chi_i + \chi_j)} (Q + iU)$ 2nd order: D²-Linto L + $d_i^R d_j^{*R} e^{-i(\chi_i - \chi_j)} (\mathbf{I} - \mathbf{V})](l,m) e^{-i2\tau(u_{ij}l + v_{ij}m)} dldm$ $V_{ij}^{RL} = \int E_{ij}^{RL}(l,m)[(\mathbf{Q}+i\mathbf{U})e^{i(\chi_i+\chi_j)}]$ 1st order: D•I into P skv + $d_i^R(\mathbf{I}-\mathbf{V})e^{-i(\chi_i-\chi_j)}+d_i^{*L}(\mathbf{I}+\mathbf{V})e^{i(\chi_i-\chi_j)}$ 3rd order: + $d_i^R d_i^{*L} (\mathbf{Q} - i\mathbf{U}) e^{-i(\chi_i + \chi_j)}](l,m) e^{-i2\pi (u_{ij}l + v_{ij}m)} dldm$ D²•P* into P

Polarization in Interferometry – S. T. Myers

Associated

Universities, Inc.

Example: Linearized response

- Dropping terms in d^2 , dQ, dU, dV (and expanding G)
 - For crossed linearly polarized feeds

$$v_{pp} = \frac{1}{2}g_{ip}g_{kp}^{*}(I+Q\cos 2\chi + U\sin 2\chi),$$

$$v_{pq} = \frac{1}{2}g_{ip}g_{kq}^{*}((d_{ip} - d_{kq}^{*})I - Q\sin 2\chi + U\cos 2\chi + jV),$$

$$v_{qp} = \frac{1}{2}g_{iq}g_{kp}^{*}((d_{kp}^{*} - d_{iq})I - Q\sin 2\chi + U\cos 2\chi - jV),$$

$$v_{qq} = \frac{1}{2}g_{iq}g_{kq}^{*}(I - Q\cos 2\chi - U\sin 2\chi),$$

• for circularly polarized feeds:

$$\begin{array}{ll} v_{pp} &= \frac{1}{2} g_{ip} g_{kp}^* (I+V), \\ v_{pq} &= \frac{1}{2} g_{ip} g_{kq}^* ((d_{ip} - d_{kq}^*)I + \ e^{-2j\chi}(Q+jU)), \\ v_{qp} &= \frac{1}{2} g_{iq} g_{kp}^* ((d_{kp}^* - d_{iq})I + \ e^{2j\chi}(Q-jU)), \\ v_{qq} &= \frac{1}{2} g_{iq} g_{kq}^* (I-V). \end{array}$$

- warning: using linear order can limit dynamic range!

Summary – polarization interferometry

- Choice of basis: CP or LP feeds
- Follow the Measurement Equation
 - ionospheric Faraday rotation F at low frequency
 - parallactic angle P for coordinate transformation to Stokes
 - "leakage" D varies with v and over beam (mix with E)
- Leakage
 - use full (all orders) D solver when possible
 - linear approximation OK for low dynamic range

Polarization Calibration & Observation

So you want to make a polarization map...

>SNTHS IMAGN SUMMR SCHUL

June 20-27, 2000 Socorro, NM, USA

Strategies for polarization observations

- Follow general calibration procedure (last lecture)
 - will need to determine leakage D (if not known)
 - often will determine G and D together (iteratively)
 - procedure depends on basis and available calibrators
- Observations of polarized sources
 - follow usual rules for sensitivity, uv coverage, etc.
 - remember polarization fraction is usually low! (few %)
 - if goal is to map E-vectors, remember to calculate noise in $\Phi = \frac{1}{2} \tan^{-1} U/Q$
 - watch for gain errors in V (for CP) or Q,U (for LP)
 - for wide-field high-dynamic range observations, will need to correct for polarized primary beam (during imaging)

Strategies for leakage calibration

- Need a bright calibrator! Effects are low level...
 - determine gains G (mostly from parallel hands)
 - use cross-hands (mostly) to determine leakage
 - general ME D solver (e.g. aips++) uses all info
- Calibrator is unpolarized
 - leakage directly determined (ratio to I model), but only to an overall constant
 - need way to fix phase *p*-*q* (*ie.* R-L phase difference), e.g. using another calibrator with known EVPA
- Calibrator of known polarization
 - leakage can be directly determined (for I,Q,U,V model)
 - unknown p-q phase can be determined (from U/Q etc.)

Other strategies

- Calibrator of unknown polarization
 - solve for model IQUV and D simultaneously or iteratively
 - need good parallactic angle coverage to modulate sky and instrumental signals
 - in instrument basis, sky signal modulated by $e^{\imath 2\chi}$
- With a very bright strongly polarized calibrator
 - can solve for leakages and polarization per baseline
 - can solve for leakages using parallel hands!
- With no calibrator
 - hope it averages down over parallactic angle
 - transfer D from a similar observation
 - usually possible for several days, better than nothing!
 - need observations at same frequency

Finding polarization calibrators

- Standard sources
 - planets (unpolarized if unresolved)
 - 3C286, 3C48, 3C147 (known IQU, stable)
 - sources monitored (e.g. by VLA)
 - other bright sources (bootstrap)

http://www.vla.nrao.edu/astro/calib/polar/

A/VLBA Polarization Calibration Resources - Mozilla										
e Far Ziew Rouwenz Tooiz Miuqow Helb										
G. G. asarch S. M.										
Home Bookmarks & WebMail & Contact & People & Yellow Pages & Download & Find Sites Channels										
A National Radio Astronomy Observatory										
AO Home > VLA > Tools for Astronomers > Polarization Calibration Resources										
VLA/VLBA Polarization Calibration Page										
Steve Myers & Greg Laytor										
NRAO, Socorro										
Elle Edit View Go Bookmarks Tools Window Help										
										2 _ 100
	Home	Bookmarks	WebMail S	Contact S Reonia	S Vellow Pages S Do	unload S Find Sites	Pachannels			
	2136+008	Beervillerys	20031205	10.009 ± 0.014	10005.95 ± 6.25	139.21 ± 0.52	1.39 ± 0.01	-154.90 ± 0.15	20031205	8.859 ±
	2136+008	6 B	20031219	10.129 ± 0.021	10124.86 ± 13.68	102.56 ± 1.52	1.01 ± 0.02	-161.12 ± 2.38	20031219	8.791 ±
	2136+008	6 MEAN	all	10.122 ± 0.113	10120.24 ± 112.97	119.32 ± 11.78	1.18 ± 0.12	-155.36 ± 5.36	all	8.747 ±
	2202+422 C BAND									
	2202+422	2 D	20030206	2.269 ± 0.002	2268.28 ± 8.43	125.50 ± 1.22	5.53 ± 0.03	-17.99 ± 0.98	20030206	2.094 ±
Vews:	2202+422	2 D	20030308	2.044 ± 0.002	2042.52 ± 1.27	117.19 ± 0.10	5.74 ± 0.00	-21.31 ± 1.22	20030308	0.000 ±
	2202+422	2 D	20030419	2.122 ± 0.004	2120.92 ± 10.57	99.93 ± 0.00	4.71 ± 0.02	-15.07 ± 0.02	20030419	2.165 ±
 New: broken 	2202+422	2 A	20030527	2.016 ± 0.003	2015.67 ± 0.18	97.05 ± 0.99	4.81 ± 0.05	-22.52 ± 0.01	20030527	2.062 ±
• New:Th	2202+422	2 A	20030609	2.017 ± 0.004	2016.40 ± 1.76	96.02 ± 0.85	4.76 ± 0.04	-18.00 ± 0.33	20030609	2.167 ±
the Ga	2202+422	2 A	20030630	2.081 ± 0.003	2080.76 ± 0.05	94.24 ± 0.67	4.53 ± 0.03	-17.84 ± 0.60	20030630	2.362 ±
 A list o not ava 	2202+422	2 A	20030707	2.101 ± 0.007	2100.35 ± 1.64	104.18 ± 0.61	4.96 ± 0.03	-18.78 ± 1.30	20030707	2.291 ±
 Models 	2202+422	2 A	20030809	2.381 ± 0.002	2380.58 ± 2.59	97.25 ± 0.14	4.09 ± 0.01	-0.64 ± 2.18	20030809	2.750 ±
and 3C details.	2202+422	2 A	20030821	2.401 ± 0.004	2400.15 ± 0.32	94.36 ± 0.14	3.93 ± 0.01	-6.39 ± 0.90	20030821	2.860 ±
	2202+422	2 A	20030905	2.341 ± 0.007	2340.07 ± 4.48	85.74 ± 0.02	3.66 ± 0.01	-0.42 ± 1.56	20030905	2.873 ±
A reco	2202+422	2 A	20030914	2.536 ± 0.006	2534.40 ± 2.73	89.88 ± 0.71	3.55 ± 0.02	-13.02 ± 0.94	20030914	2.792 ±
교안[]	2202+422	2 В	20031102	2.450 ± 0.002	2448.52 ± 3.37	83.19 ± 0.01	3.40 ± 0.00	-9.12 ± 0.39	20031102	2.645 ±
	2202+422	2 В	20031117	2.288 ± 0.003	2286.56 ± 0.36	97.28 ± 0.44	4.25 ± 0.02	-18.17 ± 1.44	20031117	2.397 ±
	2202+422	B	20031205	2.514 ± 0.004	2512.90 ± 2.89	109.69 ± 0.26	4.37 ± 0.02	-15.73 ± 0.11	20031205	2.814 ±
	2202+422	2 В	20031219	2.478 ± 0.004	2474.81 ± 0.29	127.94 ± 0.12	5.17 ± 0.01	-13.50 ± 0.20	20031219	2.707 ±
	2202+422	MEAN	all	2.269 ± 0.184	2268.19 ± 183.41	101.30 ± 12.93	4.50 ± 0.68	-13.90 ± 6.65	all	2.498 ±
				2253+161 C BAND						
	2253+16	D	20030206	12.154 ± 0.012	12148.38 ± 31.90	488.79 ± 2.39	4.02 ± 0.01	2.54 ± 0.74	20030206	10.751 ±
	2253+16	D	20030308	11.728 ± 0.013	11721.95 ± 14.16	455.86 ± 4.99	3.89 ± 0.05	3.21 ± 2.32	20030308	0.000 ±
	2253+16	D	20030419	11.677 ± 0.023	11669.28 ± 34.96	449.99 ± 4.89	3.86 ± 0.05	-3.47 ± 1.59	20030419	10.921 ±
	2253+16	A	20030527	11.240 ± 0.025	11220.39 ± 19.04	434.76 ± 2.30	3.87 ± 0.03	4.45 ± 0.24	20030527	10.120 ±
	2253+16	A	20030609	11 124 + 0.031	1111479 + 12 18	461.61 + 1.77	415 + 0.02	7.68 ± 0.49	20030609	10 1 19 +

Polarization in Interferometry – S. T. Myers

Example: D-term calibration

• D-term calibration effect on RL visibilities :

Example: D-term calibration

D-term calibration effect in image plane :
 Bad D-term solution Good D-term solution

Example: "standard" procedure for CP feeds

Calibration of Circular Feeds

 \bullet Parallel correlations sensitive to Stokes I & V

$$v_{pp} = \frac{1}{2}g_{ip}g_{kp}^*(I+V), v_{qq} = \frac{1}{2}g_{iq}g_{kq}^*(I-V).$$

- Assume V = 0 for calibrator
- Can separate and solve for gains for p and q
- Instrumental (d) and source polarization (Q, U) sum of two vectors:

$$\begin{array}{ll} v_{pq} &= \frac{1}{2} g_{ip} g_{kq}^* ((d_{ip} - d_{kq}^*)I + \ e^{-2j\chi}(Q + jU)), \\ v_{qp} &= \frac{1}{2} g_{iq} g_{kp}^* ((d_{kp}^* - d_{iq})I + \ e^{2j\chi}(Q - jU)) \end{array}$$

- Calibrator observations of a range of PA gives clean separation
- Independent gain calibration for *p* and *q* allows arbitrary phase offset – refer all phases to same "reference" antenna
- p q phase difference is that of the reference antenna
- Need observations of calibrator of known polarization angle aka Electric Vector Position Angle (EVPA)

Example: "standard" procedure for LP feeds

Calibration of Linear Feeds

• Parallel correlations sensitive to I, Q, & U

$$\begin{aligned} v_{pp} &= \frac{1}{2} g_{ip} g_{kp}^* (I + Q \, \cos 2\chi + U \, \sin 2\chi), \\ v_{qq} &= \frac{1}{2} g_{iq} g_{kq}^* (I - Q \, \cos 2\chi - U \, \sin 2\chi), \end{aligned}$$

- Calibrator Q and U usually cannot be ignored (few %)
- Phase unaffected by polarization of a point source at the phase center
- \bullet Cannot seperate p,q gains and calibrator polarization
- p-q phase offset not known
- \bullet May be unknown orientation error of p and q
- Need obs of source with known polarization

 $\begin{aligned} v_{pq} &= \frac{1}{2} g_{ip} g_{kq}^* ((d_{ip} - d_{kq}^*)I - Q \sin 2\chi + U \cos 2\chi + jV), \\ v_{qp} &= \frac{1}{2} g_{iq} g_{kp}^* ((d_{kp}^* - d_{iq})I - Q \sin 2\chi + U \cos 2\chi - jV), \end{aligned}$

- Calibrator Q and U affect real part of cross pol. correlations
- Calibrator V affects imaginary part of cross pol. correlations but unaffected by PA

Special Issues

- Low frequency ionospheric Faraday rotation
 - important for 2 GHz and below (sometimes higher too)
 - $-\lambda^2$ dependence (separate out using multi-frequency obs.)
 - depends on time of day and solar activity (& observatory location)
 - external calibration using zenith TEC (plus gradient?)
 - self-calibration possible (e.g. with snapshots)

Special issues – continued...

- VLBI polarimetry
 - follows same principles
 - will have different parallactic angle at each station!
 - can have heterogeneous feed geometry (e.g. CP & LP)
 - harder to find sources with known polarization
 - calibrators resolved!
 - transfer EVPA from monitoring program

Subtleties ...

- Antenna-based D solutions
 - closure quantities \rightarrow undetermined parameters
 - different for parallel and cross-hands
 - e.g. can add d to R and d* to L
 - need for reference antenna to align and transfer D solutions
- Parallel hands
 - are D solutions from cross-hands appropriate here?
 - what happens in full D solution (weighting issues?)

Special Issues – observing circular polarization

- Observing circular polarization V is straightforward with LP feeds (from Re and Im of cross-hands)
- With CP feeds:
 - gain variations can masquerade as (time-variable) V signal
 - helps to switch signal paths through back-end electronics
 - R vs. L beam squint introduces spurious V signal
 - limited by pointing accuracy
 - requires careful calibration
 - relative R and L gains critical
 - average over calibrators (be careful of intrinsic V)
 - VLBI somewhat easier
 - · different systematics at stations help to average out

Special Issues – wide field polarimetry

- Actually an imaging & deconvolution issue
 - assume polarized beam D'•E is known
- Deal with direction-dependent effects
 - beam squint (R,L) or beam ellipticity (X,Y)
 - primary beam
- Iterative scheme (e.g. CLEAN)
 - implemented in aips++
 - see lectures by Bhatnagar & Cornwell
- Described in EVLA Memo 62 "Full Primary Beam Stokes IQUV Imaging" T. Cornwell (2003) :

Example: wide field polarimetry (Cornwell 2003)

Example: wide field polarimetry continued...

Summary – Observing & Calibration

- Follow normal calibration procedure (previous lecture)
- Need bright calibrator for leakage D calibration
 - best calibrator has strong known polarization
 - unpolarized sources also useful
- Parallactic angle coverage useful
 - necessary for unknown calibrator polarization
- Need to determine unknown *p-q* phase
 - CP feeds need EVPA calibrator for R-L phase
 - if system stable, can transfer from other observations
- Special Issues
 - observing CP difficult with CP feeds
 - wide-field polarization imaging (needed for EVLA & ALMA)

Polarization data analysis

- Making polarization images
 - follow general rules for imaging & deconvolution
 - image & deconvolve in I, Q, U, V (e.g. CLEAN, MEM)
 - note: Q, U, V will be positive and negative
 - in absence of CP, V image can be used as check
 - joint deconvolution (e.g. aips++, wide-field)
- Polarization vector plots
 - use "electric vector position angle" (EVPA) calibrator to set angle (e.g. R-L phase difference)
 - $\Phi = \frac{1}{2} \tan 1 U/Q$ for E vectors (B vectors $\bot E$)
 - plot E vectors with length given by p
- Faraday rotation: determine $\Delta \Phi$ vs. λ^2

Polarization Astrophysics

Astrophysical mechanisms for polarization

- Magnetic fields
 - synchrotron radiation \rightarrow LP (small amount of CP)
 - Zeeman effect → CP
 - Faraday rotation (of background polarization)
 - dust grains in magnetic field
 - maser emission
- Electron scattering
 - incident radiation with quadrupole
 - e.g. Cosmic Microwave Background
- and more...

Astrophysical sources with polarization

- Magnetic objects
 - active galactic nuclei (AGN) (accretion disks, MHD jets, lobes)
 - protostars (disks, jets, masers)
 - clusters of galaxies IGM
 - galaxy ISM
 - compact objects (pulsars, magnetars)
 - planetary magnetospheres
 - the Sun and other (active) stars
 - the early Universe (primordial magnetic fields???)
- Other objects
 - Cosmic Microwave Background (thermal)
- Polarization levels
 - usually low (<1% to 5-10% typically)

Example: 3C31

- VLA @ 8.4 GHz
- E-vectors
- Laing (1996)

Example: Cygnus A

• VLA @ 8.5 GHz B-vectors Perley & Carilli (1996)

Example: Blazar Jets

• VLBA @ 5 GHz Attridge et al. (1999) 25 1055+018 20 15 10 MIIIARC SEC 1111 5 0 -5 –10⊦ -15 -15 5 -10 0 -5 -20 -25 -30 MIIIIARC SEC

Example: the ISM of M51

Neininger (1992)

Example: Zeeman effect

Example: Zeeman in M17

Color: optical from the *Digitized Sky Survey* Thick contours: radio continuum from *Brogan* & *Troland (2001)* Thin contours: ¹³CO from *Wilson et al. (1999)*

Associated

Universities, Inc.

Zeeman B_{los}: colors (*Brogan & Troland 2001*) Polarization B_{perp}: lines (*Dotson 1996*)

Polarization in Interferometry – S. T. Myers

Example: Faraday Rotation

- **VLBA** ullet
- Taylor et al. 1998 •

-1276

-1337

5 CM**2

Associated

Universities, Inc.

-1

10

-2

-3

15

MilliARC SEC

intrinsic vs. galactic •

8 GHz

10

-5

-76

-64

5 CM**2

12

(b) _{0.5}

0.0 9 0.0 9 0.5

-1.0

80

40

20

٥ -20 80 U

> 0 -20

> > 0

DEGREES 60

Ű 60

DEGR 40 20

Polarization in Interferometry - S. T. Myers

Example: more Faraday rotation

 See review of "Cluster Magnetic Fields" by Carilli & Taylor 2002 (ARAA)

Example: Galactic Faraday Rotation

Polarization in Interferometry - S. T. Myers

Mapping galactic magnetic fields with FR

Associated

Universities, Inc.

Han, Manchester, & Qiao (1999) Han et al. (2002)

Filled: positive RM Open: negative RM

Example: Stellar SiO Masers

- R Aqr •
- VLBA @ 43 GHz •
- Boboltz et al. 1998 •

SCIENCE · ENGINEERING · RESEARCH · UNIVERSIT

Polarization in Interferometry - S. T. Myers