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ABSTRACT
Variations of the antenna primary beam (PB) pattern as a function of time, frequency and polarization form

one of the dominant direction-dependent effects at most radio frequency bands. These gains may also vary from
antenna to antenna. The A-Projection algorithm, published earlier, accounts for the effects of the narrow-band
antenna forward gain in full polarization. In this paper we present the Wide-Band A-Projection algorithm (WB
A-Projection) to also account for the effects of wide bandwidth and show that the algorithm can simultaneously
correct for the time, frequency and polarization dependence of the PB. The algorithm also naturally interfaces
with existing image-plane algorithms for similar time-, frequency- and polarization-dependent variations of
the sky brightness distribution. In particular, we discuss the combined WB A-Projection and the Multi-term
Multi Frequency Synthesis (MT-MFS) algorithm for simultaneously mapping the sky brightness distribution
and its spectral structure across wide fields of view. As part of our investigation, we also explored alternatives
to the WB A-Projection algorithm for wide-band wide-field imaging. Here we show the limitations of these
alternatives and argue that out of all the approaches we investigated, WB A-Projection in combination with
MT-MFS offers an optimal solution in terms of imaging performance and algorithm complexity.
Subject headings: Techniques: interferometric – Techniques: image processing – Methods: data analysis

1. INTRODUCTION

Many fundamental scientific questions in astrophysics to-
day require high-sensitivity surveys covering large cosmic
volumes in sky-coverage and redshift. Observations in the
radio band offer distinct, and often times unique, scientific
advantages in probing certain areas of astrophysical research
(e.g in the detection of the EoR signal, studies of the high-
redshift universe in general, large-scale structure formation,
early galaxies, etc.).

All next generation radio telescopes, many in operation
now, therefore offer at least an order of magnitude improve-
ment in the sensitivity and angular resolution compared to the
telescopes operated in the past decades. The two key instru-
mental parameters which afford such high sensitivities, im-
pact the imaging performance and are significantly different
from previous generation telescopes are: 1) the ultra-wide
instantaneous fractional bandwidths, and 2) larger collecting
area. The effects of wide instantaneous fractional bandwidths
that classical calibration and imaging algorithms ignore, lead
to errors higher than the sensitivity that these new telescopes
offer. Examples, relevant for some of the telescopes already
in operation like the Karl G. Jansky Very Large Array (VLA)
(Perley et al. 2011) and ALMA (Wootten & Thompson 2009),
include the effects of time and frequency variant primary
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beams, frequency dependence of the emission from the sky
and antenna pointing errors. At low frequencies, the effects
of wide fractional bandwidth and ionospheric phase screen
limit the imaging performance of the GMRT (Swarup et al.
1991), VLA and LOFAR. Additionally, significant variations
in the shape of the wide-band primary beams (PB) for LO-
FAR (Röttgering 2003) and other aperture array telescopes
like LWA (Ellingson et al. 2009)/PAPER (Parsons et al. 2010)
/MWA (Tingay et al. 2012) leads to errors of similar mag-
nitude. All these effects form the general class of problems
often referred to in the literature as “direction dependent ef-
fects” or DD effects. Both, wide fractional bandwidths and
larger collecting area also lead to many orders of magnitude
increase in the data volume, putting severe constraints on the
run-time performance of the algorithms for calibration and
imaging.

The errors due to these DD effects were smaller in mag-
nitude than the thermal noise limit of the previous genera-
tion telescopes. The data volume from these telescopes was
also significantly smaller due to narrower bandwidths. Clas-
sical calibration and imaging algorithms therefore have ig-
nored these DD effects and were not designed to handle wide
bandwidths and large data sizes. Albeit with limited success,
these classical algorithms have been used in highly complex
data processing schemes and applied to relatively small data
sets for removing some DD errors. These schemes however
fundamentally need multiple passes through the data, can be
shown to be non-optimal in terms of utilizing the high signal-
to-noise ratio of modern telescopes and often require human
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intervention. These are therefore unsuitable for modern data
sets which are already in the 100s of Gigabytes to 10s of Ter-
abytes range and also require pipeline processing. The soft-
ware complexity of these schemes is also significantly higher,
which drives the cost of software development and mainte-
nance higher. An integrated approach to simultaneously ac-
count for all time-, frequency- and polarization-dependent DD
effects is required to fully utilize the sensitivity of modern ra-
dio telescopes at an affordable cost.

In the following sections we discuss the issues related to
correcting for wide-band time-varying DD effects in general
and describe the Wide-band A-Projection algorithm (WB A-
Projection) to simultaneously correct for all known (modeled
or measured) PB effects. We also describe the combined WB
A-Projection and MT-MFS algorithm for simultaneously cor-
recting wide-band wide-field instrumental effects and model-
ing the frequency dependence of the sky emission. As part of
the investigations, we also explored alternatives which may
allow the use of the existing A-Projection algorithm (Bhatna-
gar et al. 2008, henceforth referred to as Paper-I) to correct
for the effects of time and polarization variability of the PB,
and use the MT-MFS (Rau 2010; Rau & Cornwell 2011) algo-
rithm to account for all of the wide-band effects in the data,
from both the sky and the instrument. While some of these
approaches looked promising in the beginning, they required
considerable careful investigation to come to the conclusion
that these approaches do not offer the required solution, and
we report on our findings in Section 6.

2. PARAMETRIZATION: THE NATURAL DOMAINS FOR
MODELING SKY AND INSTRUMENTAL PARAMETERS

Using the notation developed by Hamaker et al. (1996),
full polarimetric measurements from a single baseline cali-
brated for the effects of direction-independent gains, can be
described by the following Measurement Equation

~VObs
i j (ν, t) = Wi j(ν, t)

∫
MS ky

i j (~s, ν, t)~I(~s, ν)eι~bi j·~sd~s (1)

where ~VObs
i j are the observed visibility samples measured by

the pair of antennas designated by the subscript i and j, sep-
arated by the vector ~bi j and weighted by the measurement
weights Wi j. MS ky

i j is the radio-Muëller matrix1 representing
the full polarization description of the complex direction de-
pendent gain as a function of the direction ~s, frequency ν and
time t and ~I is the image vector. The vectors ~V and ~I are
full polarization vectors in the data and image domain respec-
tively. MS ky

i j and ~I are the unknowns in this equation.
Removing the effects of the direction-independent terms is

traditionally done as part of the calibration step. The cali-
brated data is then used to estimate the true, uncorrupted ~I –
the primary scientific product. Such a separation of calibra-
tion and imaging is however not possible for removing the
effects of MS ky

i j , since it cannot be taken out of the Fourier
integral and applied directly to the data independent of imag-
ing. This makes it a fundamentally harder problem to solve,
and conventional calibration and imaging algorithms have ig-
nored it.

1 This matrix as used in radio interferometric literature differs from that
used in the optical literature only in that in radio it is written in the polariza-
tion basis (circular or linear polarization) while in the optical literature it is
written in the Stokes basis. These radio and optical representations are related
via a Unitary transform (Hamaker et al. 1996).

To facilitate the discussion on optimal algorithm design for
wide-band wide-field imaging, we define the term “natural
domain” as the respective domains for MS ky and I where they
can be adequately represented in the most compressed man-
ner (i.e as parametrized models involving the least number
of parameters). The image domain is clearly the natural do-
main for parametrized representation of I (or any other term
related to sky brightness distribution in general). The primary
purpose of a minor-cycle algorithm is to solve for an image-
plane model of the sky brightness distribution (see section 3.1
and Rau et al. (2009) for the structure of imaging algorithms).

The image domain essentially corresponds to a vector av-
erage of the data (Vi j in Eq. 1), averaged with an appropriate
kernel. Only the average values of otherwise antenna-based
quantities in Eq. 1 (e.g. MS ky) are available for manipulation
in the image plane. Therefore, errors due to the variations
in MS ky with time, frequency or antenna cannot be fully cor-
rected in the image domain or as part of the minor cycle. Fur-
thermore, these errors must be corrected as part of the process
of computing the residual image prior to triggering the minor
cycle for the minor cycle algorithms to accurately solve for a
model for I.

While the image domain contains only average quantities
(averaged over time, frequency, polarization and baseline),
the data domain samples coherence field along the time, fre-
quency, polarization and baseline axes. Furthermore, while
MS ky

i j varies along these axes, it remains separable into an-
tenna based quantities (Eq. 2) in the data domain, thus requir-
ing only N models for O(N2) measurements. Therefore, not
only is it possible to properly model variations in time, fre-
quency and polarization in the data domain, the number of
parameters required for this modeling are also reduced. The
data domain is therefore the natural domain for a paramet-
ric representation of Mi j (or any other fundamentally antenna
based effect in general). Hence, while the effects of antenna
PB variations may be most easily seen and may be intuitively
understood in the image plane, it is fundamentally an aperture
plane effect and it is optimal to model and design algorithms
to correct for its effects in the data domain.

The dominant sources of frequency dependence of the data
come from the variations of sky brightness distribution and
of the PB with frequency. The image-domain Multi-Term,
Multi Frequency Synthesis (MT-MFS) algorithm models the
frequency dependence of the sky emission as a polynomial in
frequency (Sault & Wieringa 1994; Rau 2010; Rau & Corn-
well 2011) . As part of an iterative image deconvolution al-
gorithm, the MT-MFS algorithm affords simultaneous total
power and spectral-index imaging covering the inner ∼30%
of the antenna PB area (see Bhatnagar et al. 2011 for an ex-
ample). Beyond this point, even in the main lobe of the PB,
the variability of the PB with time and frequency becomes
significant and the resulting residual errors in the image are
higher than the thermal noise limit. An imaging algorithm
that simultaneously accounts for the frequency dependence of
the antenna PB and solves for the frequency dependence of
the sky emissions is required. For the narrow-band case, the
A-Projection algorithm in Paper-I corrects for the effects of
time and polarization dependence of the PB. For the wide-
band case, the variations in the PB as a function of frequency
must also be accounted for during imaging.

3. THEORY
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MS ky
i j in Eq. 1 includes all DD gains in full polarization and

can be written in terms of antenna-based quantities as:

Msky
i j = Ji(~s, ν, t) ⊗ J∗j(~s, ν, t) (2)

where ⊗ represents an outer product. For the purpose of
the discussion in this paper we define Ji is the full polariza-
tion voltage response of the individual antennas in the feed-
polarization bases (i.e. circular or linear polarization). An
appropriate unitary transform can be applied to convert the
above equation to Stokes bases (see Hamaker et al. (1996) for
details). Then, in order to benefit from the full available band-
width, the data is averaged across frequency prior to inverting
Eq. 1 for continuum imaging. All frequency dependence in
the right hand side of this equation must therefore be removed
either prior to averaging or accounted for during this averag-
ing process.

3.1. Imaging
Equation 1 cannot be directly inverted as, in general, it is

not a Fourier transform relation. It is also sampled only at a
limited number of points, and therefore the data has insuf-
ficient information to allow an exact solution. Estimation
of ~I is therefore typically done via iterative non-linear χ2-
minimization. Writing the observed data and the model data
as vectors VObs and VM containing all the data, χ2 can be
written as

χ2 =
[
~VR
]†
Λ
[
~VR
]

(3)

where ~VR = ~VObs − ~VM and Λ is inverse of the noise covari-
ance matrix. Using operator notation developed by Rau et al.
(2009) and the symbols used in Paper-I, each element of the
vector ~VObs can be expressed in terms of MSky

i j
and the true

visibility field vector ~V◦ as

~VObs
i j
= A◦i j

~V◦ (4)

where A◦
i j
= Wi jSi jFM◦sky

i j
F†, F is the Fourier transform oper-

ator, M◦sky

i j
is the true DD radio-Muëller matrix and Si j repre-

sents the sampling function. The operator A◦
i j

is therefore the
data domain filter that describes measurements from a single
baseline i − j. A◦ can be thought of as the DD version of
the classical sampling operator S and can be constructed by
replacing each non-zero entry of the classical S by the appro-
priate element of A◦.

Minimization involves two stages of processing, described
in the radio astronomy imaging literature as “major cycle” and
“minor cycle”. The major cycle corresponds to the computa-
tion of the derivative of the χ2 with respect to the image model
and the model for the sky emission is built in successive minor
cycle iterations. The derivative of the χ2, the update direction
in the parameter space, is the residual image (IR) (Cornwell
1995) and forms the input to the minor cycle. For efficiency
reasons, the minor-cycle algorithms are often themselves iter-
ative. IM is successively updated and subtracted from IR in
the minor cycle iterations until the residual image is no longer
an accurate description of the update direction, at which point
the derivative is recomputed (the major cycle) at the current
location in the parameter space (the current value of IM).

The major cycle implements the forward and the reverse
transforms between the data and image domains. First, the
forward transform converts the current cumulative model im-
age into model data. The model data is then subtracted from

the calibrated data and the reverse transform is applied to the
residual data to compute the residual image. As discussed in
section 2, since calibration for DD effects cannot be separated
from imaging (DD terms cannot be taken out of the integral
in Eq. 1), correction for DD effects is optimally done as part
of the major cycle. The narrow band A-Projection algorithm
in Paper-I is an example of such a major cycle algorithm.

Using A as a model for A◦, the residual image at each major
cycle iteration is computed as:

~IR =
[
~Iwt
]−1

F†A†
i j
~VR

i j (5)

where [
~Iwt
]
= det

[
F†
∣∣∣Ai j(ν)

∣∣∣] (6)

The averaging in the equation above is done over time, fre-
quency and baseline. A◦ represents the DD effect of interest.
Since A◦ is part of the observations process and included in
the data, we do not have any control on it. If however A is
constructed such that, (1) it has the required properties for
it to be used as a gridding convolution operator for the for-
ward and reverse transforms, (2)

[
A†A◦

]
≈
[
A†A
]

(i.e. A

is a good model for A◦) and (3)
[
A†A◦

]
is constant (at least

approximately) as a function of the variable(s) describing the
DD effect we want to correct (time, frequency, polarization,
etc.), the reverse transform in Eq. 5 produces an image that is
corrected for the effects of MSky (see Bhatnagar et al. (2008)
for a more detailed discussion) . If A describes the DD effect
accurately (to within a normalization constant – the constant
is absorbed in Iwt), it can be used in the forward transform to
accurately compute model data from a model image including
DD effects. Using such a forward transform and approximate
reverse transform in the major cycle to account for non-image
plane DD effects, along with the appropriate minor cycle al-
gorithm to solve for image plane effects, an iterative mini-
mization scheme can be devised to produce IM that describes
the true continuum sky brightness free of the effects of MSky.

4. THE A OPERATOR FOR WIDE-BAND FULL-POLARIZATION
IMAGING

The A-term described in Paper-I is a full-polarization A-
Projection operator for narrow band full-polarization imaging
given by

Ai j = Ai ⊗ A∗ j (7)

where Ai is the antenna based Jones matrix (here, the full-
polarimetric antenna aperture illumination pattern). Each
term of Ai j is a convolution of two Jones matrices and Ai j
itself is a convolution operator. The effective full polarization
operator, after proper normalization, is approximately unitary
and when used in iterative deconvolution algorithms, corrects
for the effects of the rotation of the azimuthally asymmetric
antenna PB and associated variations with time and polariza-
tion. However, Ai (as described in Paper-I) is computed at a
single reference frequency and does not account for the fre-
quency dependence of MSky.

4.1. Frequency-dependent prediction
The far-field radiation pattern is the Fourier transform of

the baseline aperture illumination pattern (Ai j), the width of
which scales with frequency. This frequency dependence
can be included in the forward transform by computing A(ν)
from a model (or measurement) of A at a reference fre-
quency. Using A(ν) in the forward transform at frequency ν
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F. 1.— The solid lines represents P(ν) = F†A(ν) at four different
frequencies between 1.0 GHz (outer most curve) and 2.0 GHz (inner
most curve). The set of curves shown with dashed lines (red) repre-
sents the P2

e f f
(ν) The curve marked with filled circle (blue) show the

normalized average of Pe f f (ν).
will accurately predict the data, including the effects of time-,
frequency- and polarization-variability of the antenna aper-
ture illumination pattern.

4.2. The Conjugate frequency
For the reverse transform, we consider the operator A∗

given by

A∗(ν) = F†
 Pre f P∗

re f

P(ν)

 (8)

where P(ν) = F†A(ν) and Pre f is the desired effective
frequency-independent PB. A∗†(ν)A(ν) can be shown to be
frequency-independent to high orders, and the use of A∗ as
a model for A(ν) in the reverse transform can correct for the
frequency dependence of A(ν). However it also has a large
support size, and therefore, in itself, is not an efficient reverse
transform operator.

To explore usable approximations for A∗, we define the
conjugate frequency, denoted by ν∗, as

ν∗ =
√

2ν2
re f
− ν2 (9)

where νre f is the reference frequency of the continuum image,
and consider the following operator instead:

A∗ = A(ν∗) (10)

For illustration, using a gaussian function for A(ν) the width
of which scales with ν, one-dimensional cuts through the
model PB P(ν) =

[
F†A(ν)

]
and effective PB Pe f f (ν) =√[

F†
(
A†(ν∗)A(ν))] at different frequencies are shown in

Fig. 1. The continuous-line curves show P(ν) at five equally
separated values of ν between 1.0–2.0 GHz. The set of curves
shown with dashed lines are for P2

e f f
(ν) and the curve marked

by filled blue circles is the square root of the frequency-
averaged function given by Pre f = Pe f f (ν). While the curves
for P(ν) scale with frequency (as expected), the set of curves
for Pe f f (ν) are largely independent of frequency.

Using the same model for A as used in Paper-I (i.e. a model
for the VLA antenna PB), Fig. 2 shows the derivative of P(ν)
(left panel) and Pe f f (ν) (right panel) with respect to frequency

per pixel. For reference, the overlaid contours trace the 80,
50, 20, 5 and 2.5% points of the instantaneous PB pattern.
Note that the range of gray scale levels in the right panel are
∼10 times lower. One dimensional cuts through model PB
and effective PB and their first and second derivatives with
respect to frequency are shown in Fig. 3. Pe f f (ν) is clearly
frequency-independent to the first order. While it changes in
structure, the maximum second derivative remains almost the
same in magnitude. These figures show that the approxima-
tion in Eq. 9 and 10 is good enough for imaging data that
are not sensitive to the higher order frequency dependent ef-
fects. This approximation is useful since it can be easily im-
plemented, is appropriate for the sensitivity of current tele-
scopes and covers a large fraction of scientific observations
for simultaneous total power and spectral index mapping. The
frequency dependence in A(ν) is reduced overall by an order
of magnitude, effectively correcting for the frequency depen-
dence of the PB at an accuracy sufficient for imaging. For
future, more sensitive telescopes which will be sensitive to
second order frequency dependent effects also, A∗ as in Eq. 8
will have to be used.

To the limit that A(ν) accurately models A◦(ν) in Eq. 1,
A(ν∗) can be used for the reverse transform in Eq. 5 to make
images corrected for the frequency dependence of A◦. The
effective PB for such an image would be Pre f , which is in-
dependent of frequency. The only frequency dependence left
in the image thus made is due to the frequency dependence
of the sky brightness distribution – a purely image-plane ef-
fect. Such an image is therefore an appropriate input for
image-plane minor cycle algorithms. For wide-band wide-
field imaging, this allows application of image-plane algo-
rithms like the MT-MFS algorithm for mapping sky emission
well beyond the inner ∼30% of the PB in an iterative image
deconvolution scheme.

5. THE WB A-PROJECTION ALGORITHM

As described in Paper-I, Ai j can be used in the forward
transform for baseline labeled by i − j and A†

i j
for the re-

verse transform to correct for the direction, polarization and
antenna dependence of the PB2. To include wide-band cor-
rections, it only remains to construct Ai j at the conjugate fre-
quency (Eq. 9) as described in the section 4. Using Ai j(ν) for
the forward transform and A†

i j
(ν∗) for the reverse transform to

process the data at frequency ν then gives a prescription for an
algorithm to correct, in general, for all wide-band DD effects
described by A in full-polarization.

An iterative image deconvolution algorithm for wide-field
wide-band continuum imaging in full-polarization can be de-
veloped as follows:

1. Initialize the model and the residual images IM and IR.

2. Major cycle: For each baseline i − j and polarization
product of interest

• Compute the model data at frequency ν as
~VM

i j (ν) = Ai j(ν)F†~IM(ν) (11)

• Compute the residual data ~VR as
~VR

i j(ν) = ~V
Obs
i j

(ν) − ~VM
i j (ν) (12)

2 Ai j is a visibility-plane filter, which in general is different for each base-
line, and may change with time, frequency and polarization.
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F. 2.— Figure shows the derivative as a function of frequency per pixel of the instantaneous PB pattern. The gray scale image in the left panel corresponds to
P(ν) = F†A(ν) (frequency dependent) while the image in the right panel corresponds to Pe f f (ν) (the effective frequency independent gain pattern). Note that the
gray scale in the right panel is ∼10 times lower. The contours trace the 80, 50, 20, 5, and 2.5% points of the PB at the reference frequency.

F. 3.— The plot in the left panels shows the one dimensional cuts through the PB model at a reference frequency (continuous red line) for the VLA and its
first (dashed blue line) and second derivatives (dash-dot green line) with respect to frequency. The plot on the right shows the same cuts through the Pe f f (ν) (see
Eq. 10) – the effective frequency-independent PB.

• Compute the continuum residual image as

~IR =
∑
ν

F†A†
i j

(ν∗)~VR
i j(ν) (13)

Also compute Iwt (Eq. 6) and normalize ~IR by
Iwt . Iwt is the PB pattern averaged over time,
frequency and antenna-type and represent an es-
timate of the ideal PB.

3. Minor cycle: Invoke the appropriate minor-cycle algo-
rithm using IR to update and build the sky brightness
distribution model IM(ν).

4. If not converged, go to Step 2.

In practice, various optimizations are possible. When ap-
propriate, Ai j can be computed at a single frequency and

scaled to the required frequency. Time dependence for El-
Az mount antennas can be included by an on-the-fly rotation
of Ai j(ν) by the Parallactic Angle. When the assumption of a
homogeneous array is applicable, same A can be used for all
the data. Finally, where necessary, A can be pre-computed at
appropriate intervals in time, frequency and polarization and
for each distinct antenna pairs i − j and cached for later use.

6. RESULTS

The image deconvolution algorithm described in section 5
was tested using simulated wide-band data with 66% frac-
tional bandwidth. The VLA C-array was used for antenna
configuration and the observations covered Hour Angle range
of ±3h. The model for the PB used in Paper-I was scaled
by frequency and rotated with Parallactic Angle to simulate
time-varying frequency dependent effects. To clearly high-
light the effects of time and frequency dependence of A, we
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F. 4.— This figure shows imaging performance before and after applying corrections for the time and frequency dependence of the PB during imaging. The
sky is assumed to have a flat-spectrum, and standard MFS imaging is done. Both restored images are shown at the same gray-scale, stretched to emphasize
artifacts. Contours are drawn at the 0.02, 0.1 and 0.5 (HPBW) levels of the time-and-frequency averaged Primary Beam. No noise was added to the simulated
visibilities, in order to clearly illustrate the noise-like artifacts produced by time-variable DD-effects.
LEFT : Standard MFS-imaging and deconvolution, using a prolate-spheroidal gridding convolution function. Dominant errors are due to the time and frequency
variability of the PB. Off-source RMS : 4 × 10−4 Jy, Peak Residual : 1.8 × 10−3 Jy
RIGHT : MFS-imaging and deconvolution, using WB A-Projection to account for both time and frequency variability during gridding. Off-source RMS :
1.5 × 10−7 Jy, Peak Residual : 7 × 10−7 Jy

used a model of the sky consisting of five point sources lo-
cated at 0.99, 0.83, 0.60 and 0.11 levels of the PB within the
main lobe and one source located in the first side lobe (PB
gain of 0.025). All the point sources were assigned a flux of 1
Jy with flat spectra. The effective spectral-indices due to the
primary-beam at the five locations are -0.026,-0.38, -1.0,-5.32
and +0.47 respectively. No noise was added to these simula-
tions, and all imaging and deconvolution runs were with a
loop-gain of 0.2.

Figure 4 shows deconvolved images produced with and
without WB A-Projection gridding. This comparison demon-
strates that with an accurate model of the Primary Beam, it
is possible to correct-for its time- and frequency-variability
down to numerical precision levels.

The next section discusses the combination of this method
with MT-MFS for the more realistic situation of a source spec-
tra that are not flat.

7. COMBINATION WITH WIDEBAND-IMAGING (MT-MFS)

To test the algorithm described in section 5 with non-flat
source spectra, we used the sky brightness distribution as be-
fore, but with a spectral index of α = −0.5 assigned to all
sources such that I(ν) ∝ (ν/νo)α. The location and ampli-
tudes of all sources were the same as in the previous test.

Figures 5 shows deconvolved images produced with
and without time-dependent and frequency-dependent PB-
corrections during gridding, emphasizing the different types
of error-patterns that arise when one or more effects are ig-
nored. An image formed from an alternate algorithm de-
signed to absorb all frequency-dependence into the minor cy-
cle solver is also shown for comparison. Figure 6 shows
Stokes-I and spectral index values for these point-sources af-
ter PB-correction, to illustrate the accuracy to which differ-
ent methods are able to recover the true-sky spectral index at

various locations in the PB. The various methods tested and
results obtained are described below.

7.1. MFS + SI (Standard Imaging)
The image in the top left panel of Fig. 5 is the result of stan-

dard Cotton-Schwab Clean with MFS gridding using prolate-
spheroidal functions as gridding-convolution functions, and a
flat-spectrum assumption during the minor cycle. Time and
frequency variability of both the sky and the instrument are
ignored, and for a 66% bandwidth, imaging artifacts around
all sources away from the pointing-center are dominated by
spectral-effects due to the PB-shape. A post-deconvolution
division by an average PB can recover the true source inten-
sity to within a few percent, out to the half-power point of the
PB, but errors increase with distance from the pointing center.

7.2. MT-MFS + SI
The image in the top right panel of Fig. 5 is the result of the

MT-MFS algorithm in the minor cycle, with standard grid-
ding (prolate-spheroidal functions). The minor cycle solves
for the average intensity and spectrum of I(ν)P(ν) using a 2-
term Taylor-polynomial approximation. Average PB-spectral
effects are absorbed into the sky model, and the dominant re-
maining error is due to the time-variability of the primary-
beams. A post-deconvolution correction of the continuum in-
tensity and spectral-index are accurate to within a few percent
in intensity and ±0.1 in spectral index out to approximately
the half-power point. Beyond this field-of-view, errors in-
crease (to ±0.4 or more in spectral index) primarily due to
the use of a time-averaged PB spectrum for the correction,
in regions of the image where the PB-spectrum changes by
100% with time.

7.3. MT-MFS + A-Projection
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F. 5.— These figures compare the imaging performance before and after applying corrections for the time and frequency dependence of the PB during imaging.
All restored images are shown at the same gray-scale, stretched to emphasize artifacts. Contours are drawn at the 0.02, 0.1 and 0.5 (HPBW) levels of the time-
and-frequency averaged Primary Beam. Results from four algorithms described in Sec. 7 are compared here (MFS+SI, MT-MFS+SI, MT-MFS+A-Projection,
MT-MFS+WB A-Projection). RMS and peak-residuals are listed in Table 1.

TABLE 1
T       F. 5

Panel Algorithm Description RMS Peak Residual Comments
(Jy/beam) (Jy/beam)

Top Left MFS + SI Standard Wideband Imag-
ing

6 × 10−4 2.3 × 10−3 Ignore time & frequency dependence. Artifacts
due to time and frequency variations of the PB.

Top Right MT-MFS+ SI Multi-term Imaging with
Standard Gridding

1 × 10−4 5 × 10−4 Ignore time dependence. Absorb time-averaged
frequency dependence in MT-MFS. Artifacts
due to time-variability of the PB.

Lower Left MT-MFS+ A-
Projection

Multi-term Imaging
with narrow-band AW-
Projection gridding

4 × 10−5 8 × 10−4 Account for time variability of PB, and absorb
the resulting PB2 frequency dependence in MT-
MFS. Artifacts due to stronger spectral struc-
ture.

Lower
Right

MT-MFS+ WB A-
Projection

Multi-term Imaging with
wide-band A-Projection
gridding

3.5 × 10−5 2 × 10−4 Account for PB time- & frequency-dependence
in WB A-Projection. Account for static sky-
frequency dependence in MT-MFS. Minimal ar-
tifacts.

The image in the bottom left panel of Fig. 5 is the re-
sult of MT-MFS in the minor cycle (2 terms), but with

the narrow-band A-Projection gridding, using frequency-
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F. 6.— This figure compares the accuracy of the PB-corrected intensity (LEFT) and spectral-index (RIGHT) for the five simulated point sources, using the
four methods whose results are shown in Figure 5. The labels “AWP” and “WBAWP” are used for A-Projection and WB A-Projection in the figure. The algorithms
compared are MFS+SI, MT-MFS+SI, MT-MFS+A-Projection and MT-MFS+WB A-Projection. Spectral-indices are shown only for methods using MT-MFS, with
post-deconvolution (average) spectral-index corrections done for the SI and A-Projection runs. Results for the five sources are shown from left to right with
increasing distance from the pointing-center. The reference-PB gain and effective PB-spectral-index at the locations of the five sources are listed on the x-axis.
These plots show that outside the HPBW at the reference-frequency, methods that do not account for time-variable PB-spectra have considerably higher errors,
and the combination of MT-MFS+WB A-Projection delivers accurate corrections even out in the sidelobe.

dependent gridding-convolution functions A†(ν) (as described
in Paper-I). The flat-noise 3 image-domain normalization by
the average PB does not account for the extra frequency-
dependence introduced by the gridding process. The mi-
nor cycle therefore models the spectrum of I(ν)P2(ν) in ad-
dition to continuum intensity. Artifacts due to frequency-
independent time-variability (antenna rotation) no-longer ex-
ist within the HPBW (PB gain of 0.5), but new spectral arti-
facts appear away from the pointing-center (beginning around
the 10% level).

These errors are partly due to the increased non-linearity of
the P2(ν) spectrum away from the pointing center, for which
a two-term Taylor-polynomial approximation is insufficient.
A run with 3 terms partially alleviates the problem, indicat-
ing that errors in approximating the combined spectrum with
a low-order polynomial dominates the errors, but higher or-
der polynomials are inadvisable because of instability in low-
SNR regions.

Errors also arise from the high time variability of the PB-
spectrum, which is ignored because only time-averaged PB-
spectra are used for spectral-correction. A post-deconvolution
correction of the spectral-index map for P2(ν) results in errors
at the ±0.3 level beyond the ∼50% point.

7.4. MT-MFS + WB A-Projection
The image in the bottom right panel of Fig. 5 is the result of

MT-MFS in the minor cycle (2 terms), and WB A-Projection
gridding (section 5). Artifacts around all sources are gone,
and the dominant errors are numerical (at the floating-point
precision level). No post-deconvolution PB-correction is re-
quired, and the spectral-index map produced by MT-MFS is
accurate to within 0.01 in the main lobe, and 0.05 out in
the sidelobe. Such accuracies allows the recovery of source-

3 Definition of flat-noise and flat-sky conventions in A-Projection : The
gridding process convolves the measured visibility function with the Fourier
transform of the primary beam. In a flat-sky normalization, the resulting
image (inverse Fourier transform of gridded visibilities) is divided by PB2.
The minor cycle model represents true-sky flux values, but the input to the
minor cycle does not strictly satisfy a convolution equation and the noise is
not flat across the image. In a flat-noise normalization, the image is divided
by PB. The minor cycle models the product of the sky and an average PB,
but the input to the minor cycle satisfies a convolution equation and the noise
remains flat across the image.

spectra further-out in the primary-beam than previously possi-
ble. The main difference between this method and all others,
is that PB-variability has been corrected for in the data do-
main, before any averaging of effects (across antennas, time,
or frequency) happens in the process of making images to
send to the minor cycle. The minor cycle sees a flat-noise nor-
malization, preserving the convolution-equation and allowing
for deeper ’cleaning’ before triggering the next major cycle
(i.e. faster convergence).

This method shows the lowest errors in Fig. 6 indicating
that if the primary beam can be accurately modeled, its time
and frequency variability can be corrected for during gridding,
resulting in an accurate reconstruction in the minor cycle.

7.5. Other methods
1. Cube imaging (standard or A-Projection transforms)
+ Cube Clean + Post-deconvolution PB-correction per
channel: This traditional method of wide-band PB-
correction is the simplest, and will suffice if the sky-
emission is strong-enough to be imaged and decon-
volved unambiguously at each frequency channel, if an-
tenna primary beams do not rotate with time, and if all
antennas have identical beam patterns. However, the
angular resolution of the images is restricted to that of
the lowest frequency in the band, and the minor-cycle
(deconvolution) cannot benefit from multi-frequency-
synthesis.

2. Cube imaging (standard or A-Projection transforms)
+ Pre-deconvolution PB-correction per channel (flat-
sky) + MT-MFS: This method is a hybrid of cube-
cleaning and MT-MFS. Major-cycles use narrow-band
A-Projection gridding per channel, and a time-averaged
PB is divided out from each channel’s dirty image. This
is the flat-sky normalization of A-Projection (Paper-
I), applied per frequency. Then, MT-MFS continuum
residual images are formed in the image-domain as
Taylor-weighted averages of the residual images at in-
dividual frequencies, and the MT-MFS minor cycle pro-
ceeds to model the sky spectrum only. Note that strictly,
a flat-sky normalization for the minor-cycle does not
satisfy a convolution equation, but this method may be
robust away from the edge of the PB pattern, especially
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for mosaic imaging. It would however limit the depth
of each set of minor-cycle iterations, and perhaps re-
quire more major cycles. Also, this method has mini-
mal errors only for antennas whose frequency depen-
dence does not vary much with time (e.g. with non
rotating PBs of equatorial mount or three-axis mount
antennas – although even these antenna mounts are al-
ways subject to time-varying antenna pointing errors).

8. CONCLUSIONS

The narrow-band A-Projection algorithm published earlier
(Bhatnagar et al. 2008) is a prescription for a full-polarization
A-term and its use in an iterative image deconvolution algo-
rithm to correct for the known (via a model or measurements)
variations in the antenna forward gain pattern as a function
of time, polarization and antenna. In this paper we described
the WB A-Projection algorithm where the frequency depen-
dence of the PB pattern is also included in the A-term. The
reverse transform reduces the frequency dependence of the PB
by an order of magnitude (Fig. 2) and an WB A-Projection-
based iterative deconvolution scheme converges. The WB A-
Projection algorithm is therefore an algorithm for wide-band
wide-field imaging in full polarization.

With the large data volumes from modern telescopes and
the high cost of software development, run-time performance
and algorithmic complexity is now as important for reach-
ing the science goals at an affordable cost as is the imag-
ing performance of the algorithm itself. The approach to
wide-band imaging presented here follows the mathematics
of imaging and keeps the purely image plane effects (like the
frequency dependence of the sky brightness distribution) de-
coupled from coherence-plane effects (like the effects of the
antenna aperture illumination pattern). The models for image-
domain and aperture-plane effects (I and M respectively) are
also parametrized in their respective natural domains of repre-
sentation, where they can be modeled in the most compressed
manner (i.e., requiring least degrees of freedom). This has
positive implications, both for designing optimal strategies for

calibration and imaging wide-band data as well as on run-time
performance of algorithms for calibration and imaging in the
presence of direction dependent effects, particularly when ap-
plied to the large data sets from modern telescopes.

This decoupling also reduces the complexity of the soft-
ware implementation of the full imaging solution. As dis-
cussed above, since the natural domain of representation of M
is the data domain, correction for its effects is also optimally
done in the data domain. The image domain is not the natural
domain of representation, and attempts to model M and its ef-
fects in the image domain invariably leads to a proliferation of
the required degrees-of-freedom, which has well understood
undesirable effects and leads to non-optimal algorithms – both
in terms of imaging performance as well as run-time perfor-
mance and algorithmic complexity.

Finally, we would like to note that while only the effects of
the antenna PB were included in the A-term used in this paper,
other antenna-based DD effect can also be easily included.
The effect of non-isoplanetic ionospheric/atmospheric phases
is comparable to the effect of PB for wide-band wide-field
imaging at low frequencies, particularly with aperture-array
antenna elements. Similar effects come from the irregu-
larities in the water vapor content in the lower atmosphere
for imaging at high frequencies. The effects due to iono-
sphere/atmosphere and PB need to be corrected simultane-
ously, often for wide-band data in full polarization. It may be
possible to extend the WB A-Projection algorithm presented
here to include corrections for ionospheric effects. Work to
test these extensions is underway and will be reported in fu-
ture publications.

This work was done using the R&D branch of the CASA
codebase. We wish to thank the CASA Group for the un-
derlaying libraries. Part of this work was funded by the AL-
BiUS work package of the European Commission Radionet
FP7 program.
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