
Data Processing Landscape

PetaFLOPs, TeraBytes & Algorithms

Wed. Lunch, Socorro, NM, May 8th 2024

S. Bhatnagar

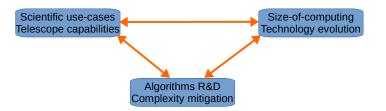
Algorithms R&D Group, National Radio Astronomy Observatory, Socorro, NM, USA

The Algorithms R&D Group (ARDG)

• Current membership

- Sanjay Bhatnagar (Lead) (50%)
- Preshanth Jagannathan (Assist. Sci.) (50% ARDG, 25% CASA, 25% ngVLA CIPT)
- Genie Hsieh (Software Eng.) (100%)
- Felipe Madsen (100%)

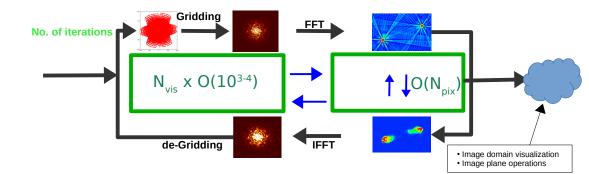
• Total effort


- ~2.5 FTE from 4 full-time staff
- Mentoring 1 Jy PDF (Hendrik Mueller)
- Collaborations
 - NRAO SIS Group
 - External groups/industry:

Kokkos(SNL/DoE), CHTC/PATh, DSA2K/CalTech, NVIDIA

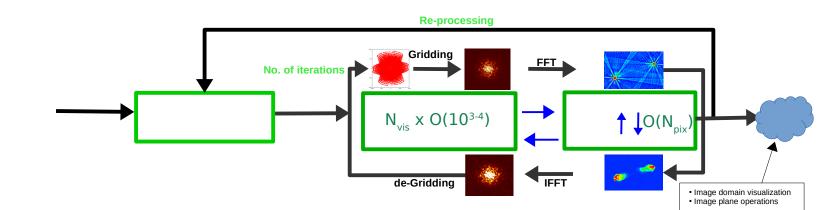
Summary

• Inherent complexity

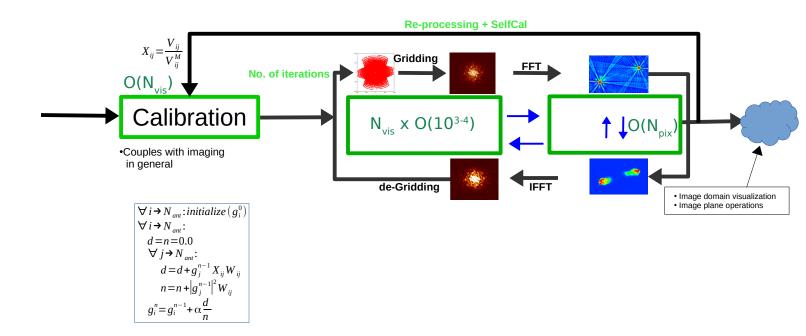


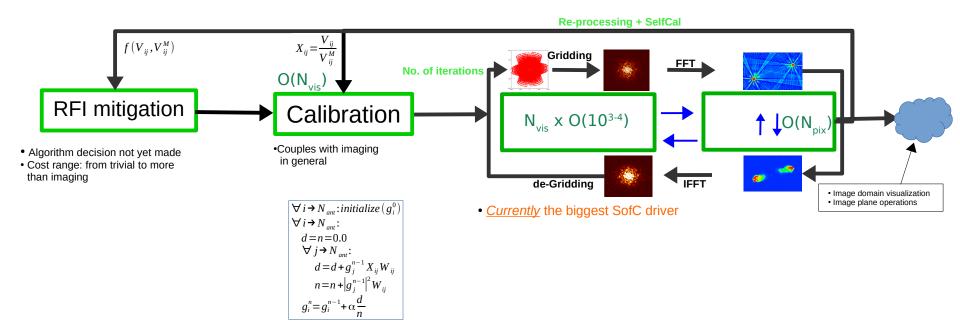
- Size of computing and the projected technology landscape
 - Scalable algorithm and software architecture
- Algorithms R&D
 - A reliable, stable software system
 - Algorithms for faster convergence, impact overall cost of computing
- Collaborations: HTC, HPC, industry groups, learn from current literature,...
 - Scaling on larger, externally managed heterogeneous clusters
 - Impact on R&D, s/w design, management,...

• Typical data processing steps

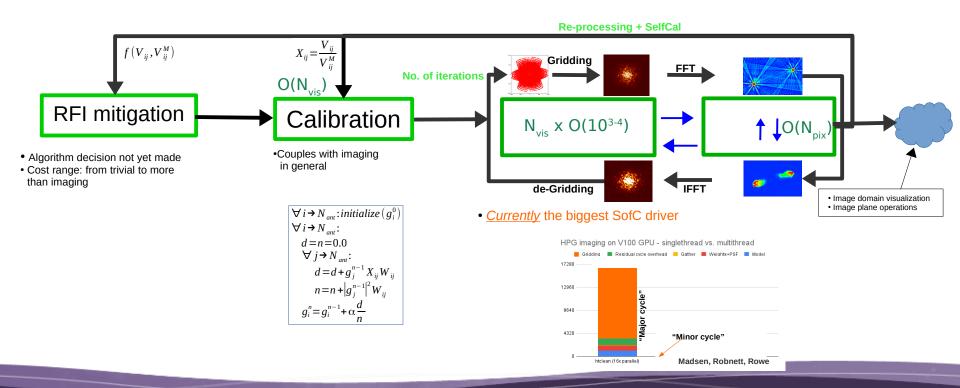

Imaging: $N_{vis} \times O(10^{3-4})$ FLOPs (Complex, SP + DP)Image-plane deconvolution of the PSF : $O(N_{pix})$ FLOPs (Real-valued, SP)

• Typical data processing steps


Imaging: $N_{vis} \times O(10^{3-4})$ FLOPs (Complex, SP + DP)Image-plane deconvolution of the PSF : $O(N_{pix})$ FLOPs (Real-valued, SP)


• Typical data processing steps

Imaging: $N_{vis} \times O(10^{3-4})$ FLOPs (Complex, SP + DP)Image-plane deconvolution of the PSF : $O(N_{pix})$ FLOPs (Real-valued, SP)Calibration: $O(N_{vis})$ FLOPs (Complex, SP)

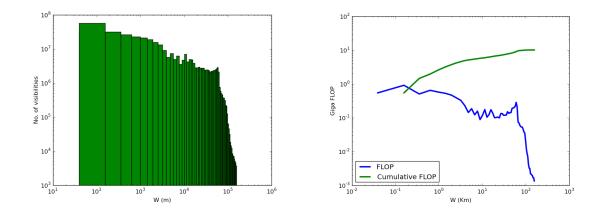


• Typical data processing steps

• Typical data processing steps

• Dominated by the imaging operation

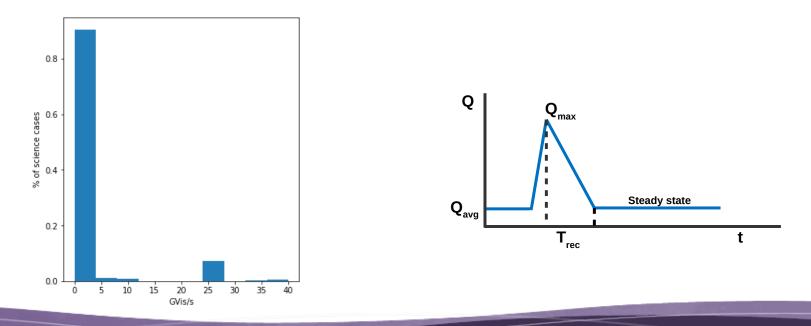
https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf


$$CL_{wP} = [N_{Overhead} FLOPS] \sum_{w=0}^{W_{max}-1} N_{vis}(w) [S(w=0)(\alpha w^{2}+1)]^{2}$$
$$CL_{AP} = [N_{Overhead} FLOPS] \sum_{i=0}^{N_{spw}-1} N_{vis}(v_{i}) [S(v_{o}) \frac{v_{i}}{v_{o}}]^{2}$$

• Dominated by the imaging operation

https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf

$$CL_{wP} = [N_{Overhead} FLOPS] \sum_{w=0}^{W_{max}-1} N_{vis}(w) [S(w=0)(\alpha w^{2}+1)]^{2}$$
$$CL_{AP} = [N_{Overhead} FLOPS] \sum_{i=0}^{N_{spw}-1} N_{vis}(v_{i}) [S(v_{o}) \frac{v_{i}}{V_{o}}]^{2}$$

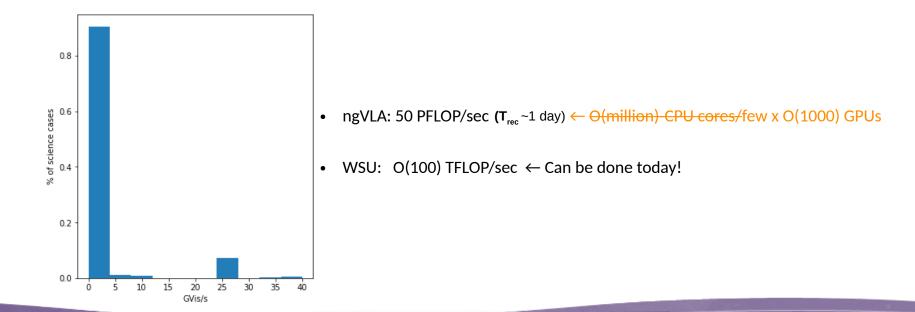


• Dominated by the imaging operation

https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf

$$CL_{wP} = [N_{Overhead} FLOPS] \sum_{w=0}^{W_{max}-1} N_{vis}(w) [S(w=0)(\alpha w^{2}+1)]^{2}$$
$$CL_{AP} = [N_{Overhead} FLOPS] \sum_{i=0}^{N_{spw}-1} N_{vis}(v_{i}) [S(v_{o}) \frac{v_{i}}{v_{o}}]^{2}$$

$$SP_K = w_K \frac{\kappa_K CL_K}{\epsilon_c \epsilon_p} FLOPS/sec$$

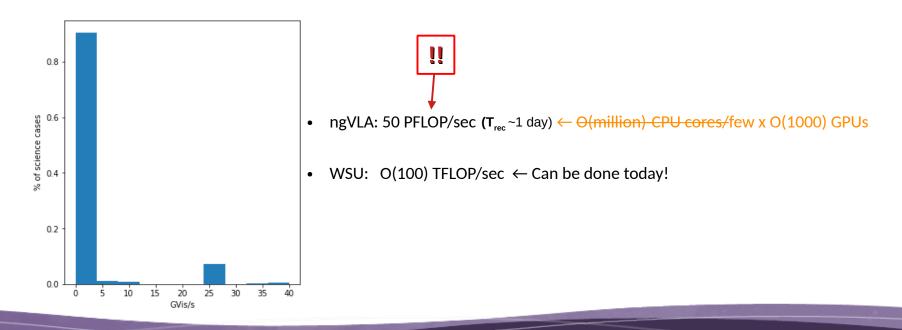


• Dominated by the imaging operation

https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf

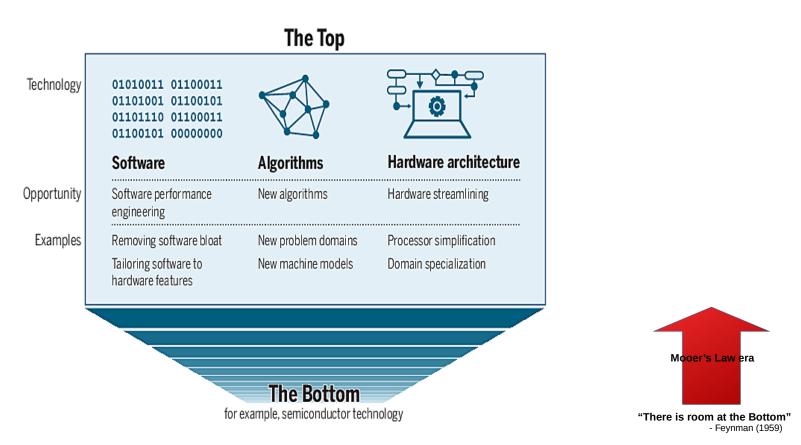
$$CL_{wP} = [N_{Overhead} FLOPS] \sum_{w=0}^{W_{max}-1} N_{vis}(w) [S(w=0)(\alpha w^{2}+1)]^{2}$$
$$CL_{AP} = [N_{Overhead} FLOPS] \sum_{i=0}^{N_{spw}-1} N_{vis}(v_{i}) [S(v_{o}) \frac{v_{i}}{v_{o}}]^{2}$$

$$SP_{K} = w_{K} \frac{\kappa_{K} CL_{K}}{\epsilon_{c} \epsilon_{p}} FLOPS/sec$$



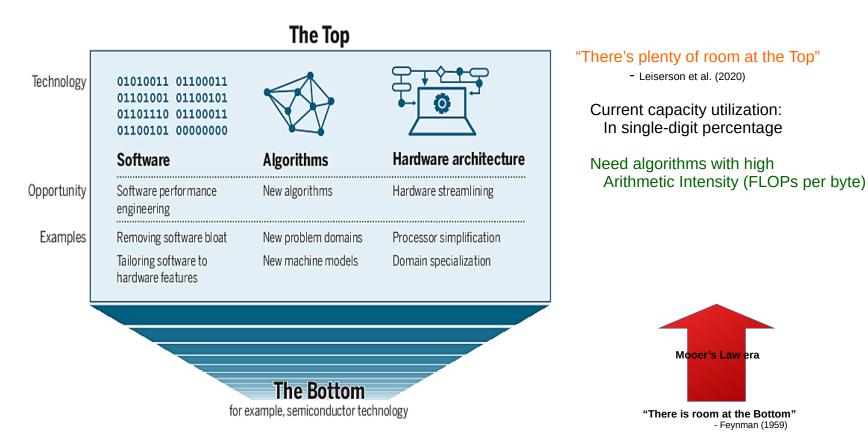
• Dominated by the imaging operation

https://library.nrao.edu/public/memos/ngvla/NGVLAC_04.pdf


$$CL_{wP} = [N_{Overhead} FLOPS] \sum_{w=0}^{W_{max}-1} N_{vis}(w) [S(w=0)(\alpha w^{2}+1)]^{2}$$
$$CL_{AP} = [N_{Overhead} FLOPS] \sum_{i=0}^{N_{spw}-1} N_{vis}(v_{i}) [S(v_{o}) \frac{v_{i}}{v_{o}}]^{2}$$

$$SP_{K} = w_{K} \frac{\kappa_{K} CL_{K}}{\epsilon_{c} \epsilon_{p}} FLOPS/sec$$

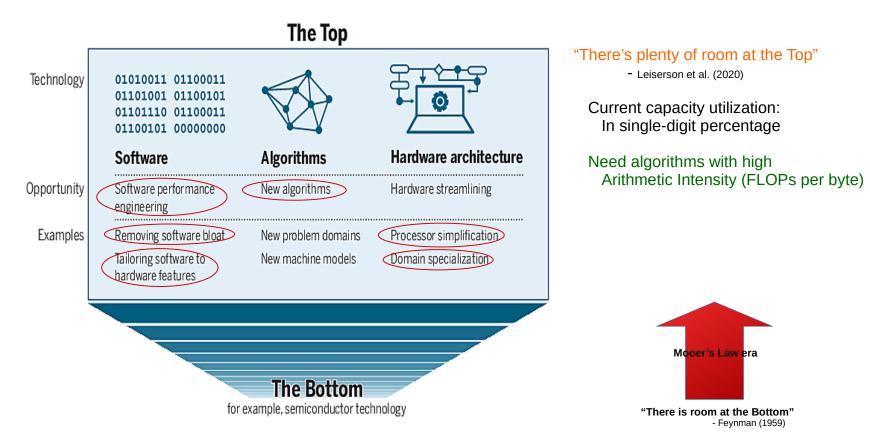
Computing stack: Room at the Top



Performance gains after Moore's law ends. In the post-Moore era, improvements in computing power will increasingly come from technologies at the "Top" of the computing stack, not from those at the "Bottom", reversing the historical trend.

Leiserson et al. Science (2020)

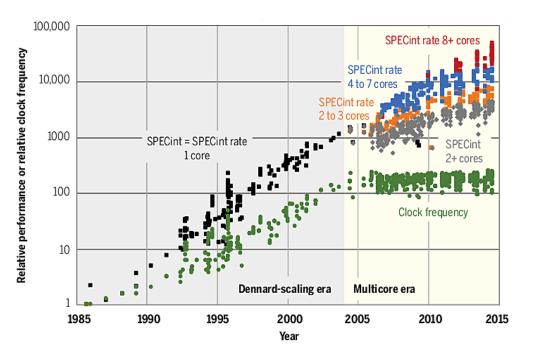
Computing stack: Room at the Top



Performance gains after Moore's law ends. In the post-Moore era, improvements in computing power will increasingly come from technologies at the "Top" of the computing stack, not from those at the "Bottom", reversing the historical trend.

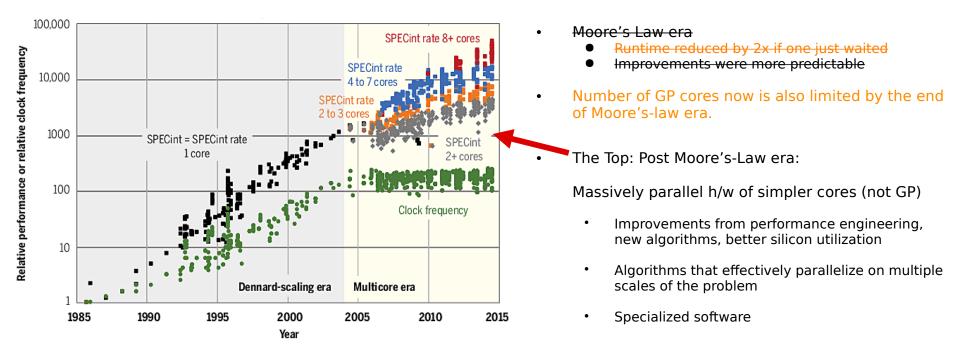
Leiserson et al. Science (2020)

Computing stack: Room at the Top

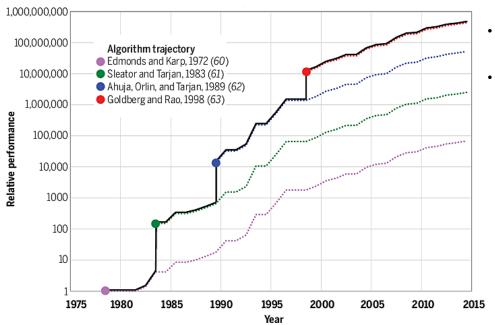


Performance gains after Moore's law ends. In the post-Moore era, improvements in computing power will increasingly come from technologies at the "Top" of the computing stack, not from those at the "Bottom", reversing the historical trend.

Leiserson et al. Science (2020)

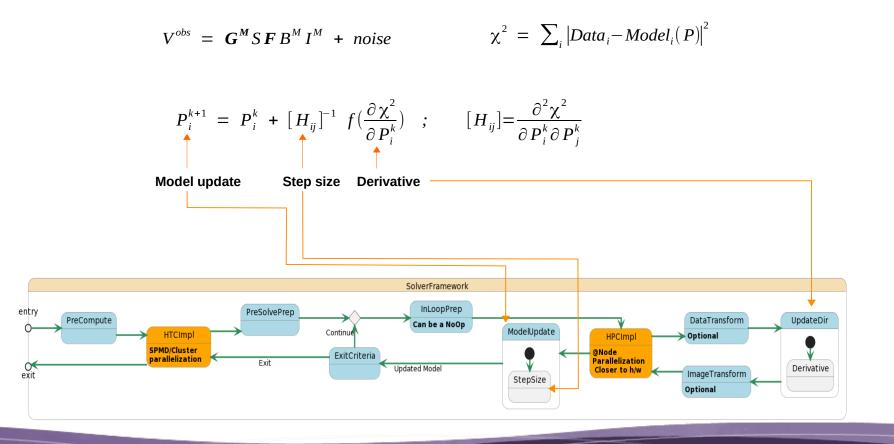

Computing stack: Multi-core era

- Moore's Law era
 - Runtime reduced by 2x if one just waited
 - Improvements were more predictable



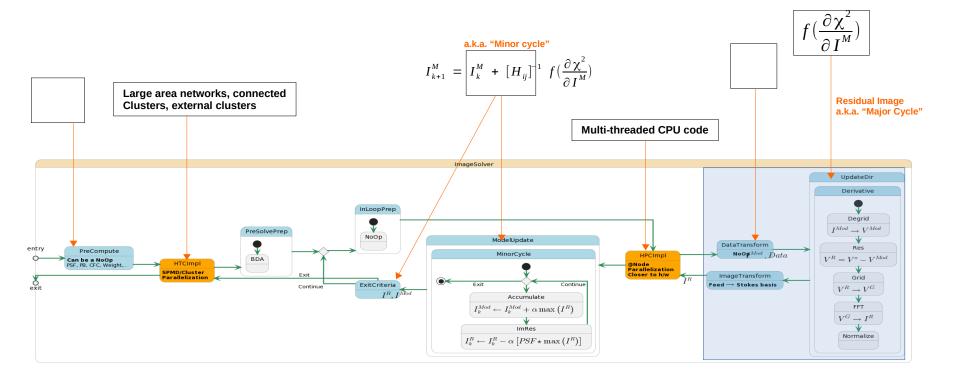
Computing stack: Multi-core era

Computing stack: Algorithms


- Historically AR&D has delivered runtime gains comparable to the Moore's Law
- Moore's Law has historically caught up...but that has now ended!

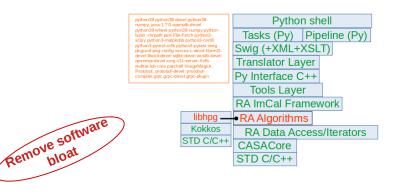
- RA algorithms have a higher FLOP per byte ratio
- RA problem: Combination of HPC (PetaFLOPs) + Big Data (TeraBytes) + 24x7 operation (High Throughput)

Algorithm Architecture


- Stable, Scalable Architecture
 - Must scale with evolving computing needs (std VLA vs VLASS), algorithms, computing h/w & s/w (heterogeneous cluster)
 - Cast our algorithms in standard terminology: Derivative, Hessian, Update,...
 - Decompose into functionally separable components which can scale individually and together

Algorithm Architecture: Imaging

- Mathematical framework is the same for calibration and imaging
- Specialization of the components delivers various calibration and imaging algorithms



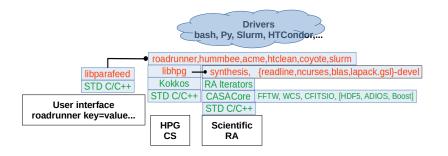
The LibRA Project: By the users, for the users

- Goals: Re-use code, re-usable library, relocatable software, ease of use
 - Derived from CASAScientific. Now an independent code base + build system
 - Enable collaborations with RA groups and end-users + with other domains: HPC, HTC, Medical imaging,...

https://github.com/ARDG-NRAO/LibRA

- Directly use the scientific layer via standalone applications
 - Deployable on external heterogeneous cluster of CPUs + GPUs
- Automate chores: Modernized build system, containerized deployment, Py binding,...

Architectural co	mponents as standalone relocatable apps
>roadrunner	
vis	= VLASS2.1.sb38453816.eb38509426.59047.17567765046 split.ms
imagename	= refim_oneshiftpoint.res
modelimagename	=
datacolumn	= data
sowimageext	= sumwt
complexgrid	=
imsize	= 16384
cell	= 0.6
stokes	= I
reffreq	= 3.0GHz
phasecenter	= 22:10:0.000 -00.30.0.0000 J2000
weighting	= natural
wprojplanes	= 1
gridder	= awphpg
cfcache	= wl.cf
mode	= residual
wbawp	= 1
field	=
spw	= 2~17
uvrange	=
pbcor	= 1
conjbeams	= 0
pblimit	= 0.001
usepointing roadrunner>	= 0

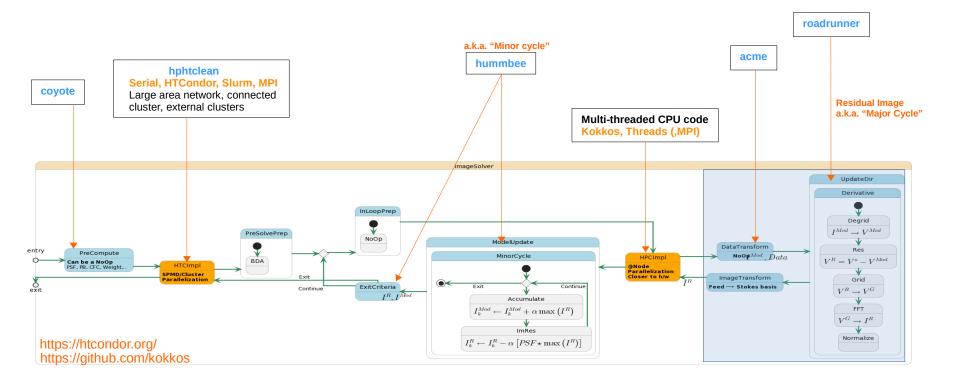


The LibRA Project: By the users, for the users

- Goals: Re-use code, re-usable library, relocatable software, ease of use
 - Derived from CASAScientific. Now an independent code base + build system
 - Enable collaborations with RA groups and end-users + with other domains: HPC, HTC, Medical imaging,...

https://github.com/ARDG-NRAO/LibRA

- Directly use the scientific layer via standalone applications
 - Deployable on external heterogeneous cluster of CPUs + GPUs
- Automate chores: Modernized build system, containerized deployment, Py binding,...



Architectural co	mponents as standalone relocatable apps
>roadrunner	
vis	= VLASS2.1.sb38453816.eb38509426.59047.17567765046_split.ms
imagename	<pre>= refim_oneshiftpoint.res</pre>
modelimagename	=
datacolumn	= data
sowimageext	= sumwt
complexgrid	=
imsize	= 16384
cell	= 0.6
stokes	= I
reffreq	= 3.0GHz
phasecenter	= 22:10:0.000 -00.30.0.0000 J2000
weighting	= natural
wprojplanes	= 1
gridder	= awphpg
cfcache	= w1.cf
mode	= residual
wbawp	= 1
field	=
spw	= 2~17
uvrange	=
pbcor	= 1
conjbeams	= 0
pblimit	= 0.001
usepointing roadrunner>	= 0

Algorithm Architecture: Deployment

- Mathematical framework is the same for calibration and imaging
- Specialization of the components delivers various calibration and imaging algorithms

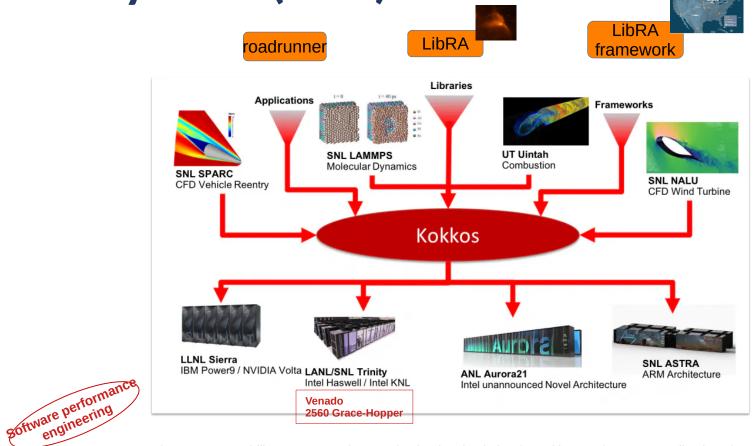
High Performance Gridder (HPG)

- A gridder/de-gridder that runs on a GPUs, multi-threaded on CPUs
- Built on the Kokkos framework: Choice based on projected technology evolution
 - Implemented as a reusable independent library (ngVLA Comp. Memo #4, #5, #7)

High Performance Gridder (HPG)

- A gridder/de-gridder that runs on a GPUs, multi-threaded on CPUs
- Built on the Kokkos framework: Choice based on projected technology evolution
 - Implemented as a reusable independent library (ngVLA Comp. Memo #4, #5, #7)

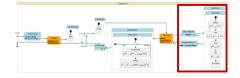
• Algorithm parameterized by scientific use-cases and their evolution.

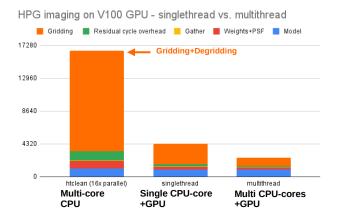

 $V_{ij}^{G} = \left[M_{ij} e^{\iota(\vec{\phi}_{ij} + \vec{\theta}^{M}) \cdot \Delta \vec{B}} \right] * V_{ij}^{o} \qquad I = FFT(V^{G})$ $M_{ii} = CF = ATerm * WTerm * PSTerm$

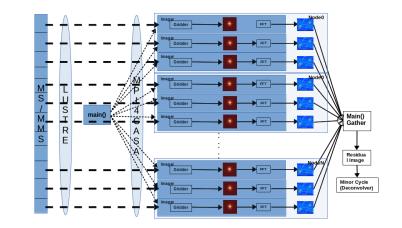
Configurable: (Single pointing, Pointed mosaic, OTF mosaic) + Antenna pointing corrections

areto	Operation	ATerm	PSTerm	WTerm wprojplanes	CF	
Tailoring software to Hardware features	AW-Projection	True	True False	>1	PS*A*W A*W	
Harov	A-Projection	True	True False	1	PS*A A	EVLA Memo 84 (2004)
	W-Projection	False	True	>1	PS*W	AJ, V. 154,#5 (2017)
	Standard	False	True	1	PS	ApJ,Vol.770, No. 2, 91 (2013) A&A 487, 419-429 (2008)

Kokkos: Performance portable ecosystem (DoE)

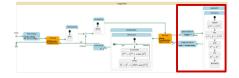

- engineering C++ Performance Portability Ecosystem is a production level solution for writing modern C++ applications in a hardware agnostic way.
 - Part of the US Department of Energies Exascale Project the leading effort in the US to prepare the HPC community for the next generation of super computing platforms.

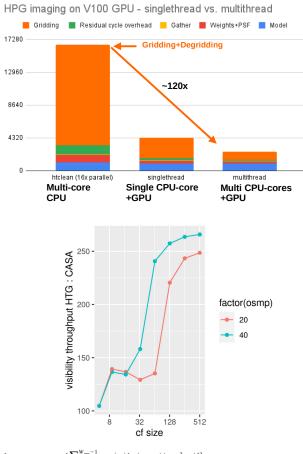


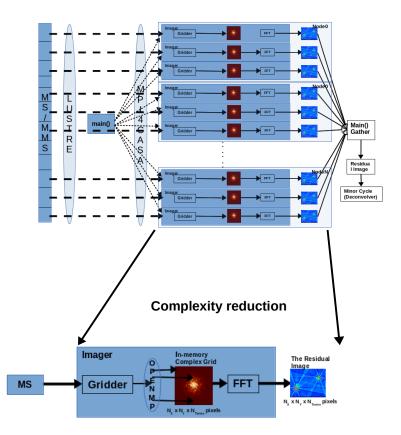

Wed. Lunch, Socorro, May 8th 2024

HPG characterization

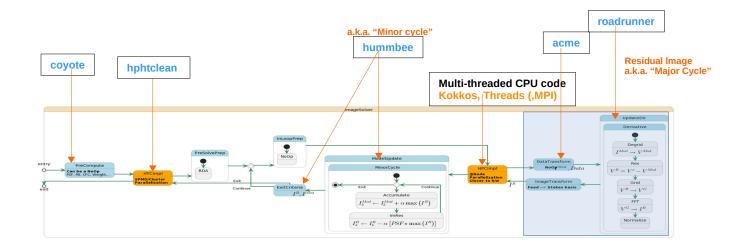
• Measured speed-up: 100 – 200x compared to a single CPU core

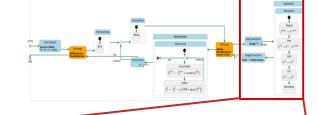





HPG characterization

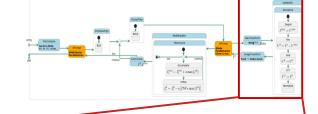
• Measured speed-up: 100 – 200x compared to a single CPU core





- Deployed on a cluster of GPUs (100) on the PATh facility in collaboration with https://science.nrao.edu/enews/17.3/index.shtml#deepimaging
 - The Center for High Throughput Computing (CHTC, UW-M)
 - National Research Platform (NRP) via the OSPool, Nebraska node
 - The San Diego Super Computer Center (SDSC)
 - + Multiple university computer centers across the US

- Deployed on a cluster of GPUs (100) on the PATh facility in collaboration with https://science.nrao.edu/enews/17.3/index.shtml#deepimaging
 - The Center for High Throughput Computing (CHTC, UW-M)
 - National Research Platform (NRP) via the OSPool, Nebraska node
 - The San Diego Super Computer Center (SDSC)
 - + Multiple university computer centers across the US



- Deployed on a cluster of GPUs (100) on the PATh facility in collaboration with https://science.nrao.edu/enews/17.3/index.shtml#deepimaging
 - The Center for High Throughput Computing (CHTC, UW-M)
 - National Research Platform (NRP) via the OSPool, Nebraska node
 - The San Diego Super Computer Center (SDSC)
 - + Multiple university computer centers across the US

- Throughput: O(1 TB/hr)
- 10 iterations in ~24 hr
- Enabling tech for many unprocessed projects in the current archive:
 - Earlier attempts using CPU cores: ~14 days per cycle

• This is still a small faction of the required throughput!

Deployed on a cluster of GPUs (100) on the PATh facility

https://science.nrao.edu/enews/17.3/index.shtml#deepimaging

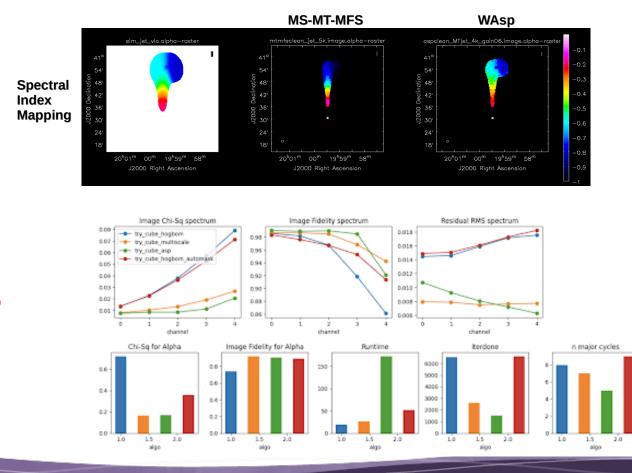
Wed. Lunch, Socorro, May 8th 2024

٠

Image modeling (Model Update)

- Derivative calculations are most expensive \rightarrow Design Model Update for faster convergence
- Scale-sensitive image reconstruction of complex emission
 - Asp-Clean : Narrow-band implementation (multi-algorithm modeling)
 - Wasp : Wide-band Asp
 - WiS : Wide-scale imaging (in-progress)

WAsp **MS-MT-MFS** sim_iet_vla.alpha-raste asoclean MTiet 4k aninΩ6 image oloba Spectral Index Mapping 20^h01^m 00^m 19^h59^m 58^r 20^h01^m 00^m 19^h59^m 58^r 20^h01^m 00^m 19^h59^m J2000 Right Ascension J2000 Right Ascension J2000 Right Ascension **MS-MT-MFS** WAsp Stokes-I New algorithms 19^h58" Residual $I_k^{Mod} \leftarrow I_k^{Mod} + \alpha \max (I^R)$ $I_k^R \leftarrow I_k^R - \alpha \left[PSF \star \max \left(I^I\right)\right]$

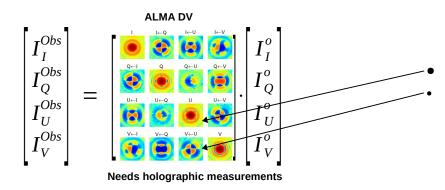

Wed. Lunch, Socorro, May 8th 2024

A&A, 426, 747-754, 2004

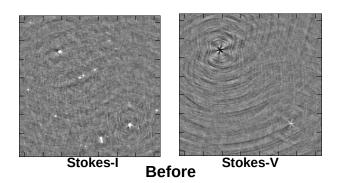
Image modeling (Model Update)

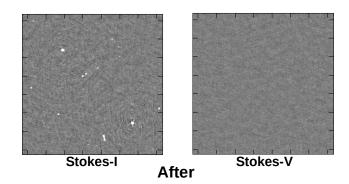
- Derivative calculations are most expensive \rightarrow Design Model Update for faster convergence
- Scale-sensitive image reconstruction of complex emission
 - Asp-Clean : Narrow-band implementation (multi-algorithm modeling)
 - Wasp : Wide-band Asp
 - WiS : Wide-scale imaging (in-progress)

A&A, 426, 747-754, 2004



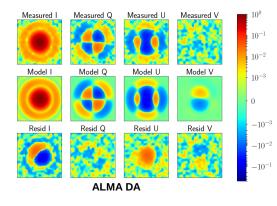
Wed. Lunch, Socorro, May 8th 2024

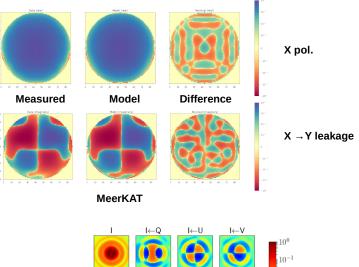

New algorithms

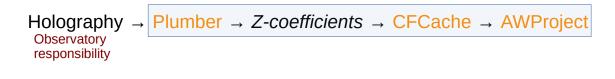

Wide-field full-Pol. Imaging

• Wide-field full polarization mapping: The concept

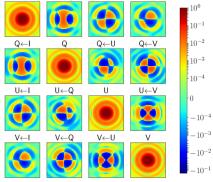
Diagonal: "pure" poln. Products Off-diagonal: DD polarization leakage/mixing




A&A 487, 419-429 (2008)


Zernike modeling for AIP (PB)

- Build a model of the antenna aperture illumination pattern (AIP)
 - Used as input to the AW-Projection framework for wide-field full-pol. imaging. Makes the algorithmic code telescope agnostic

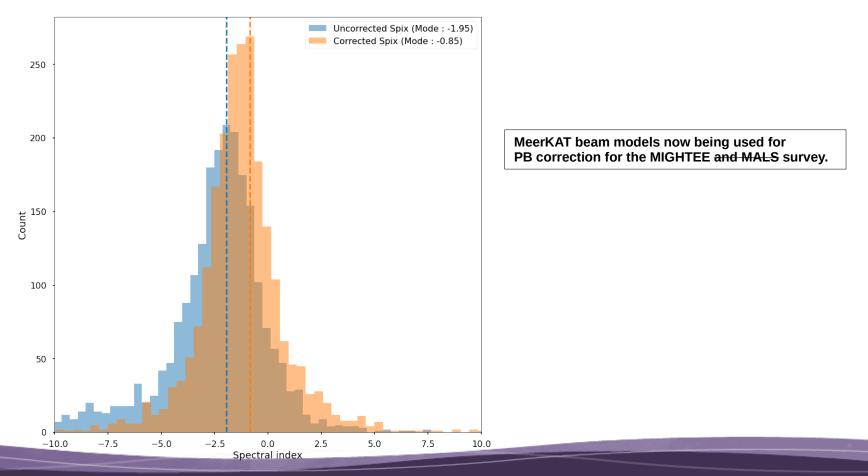


Telescope agnostic tool-chain

Plumber (https://github.com/ARDG-NRAO/plumber) : A general

purpose package for Z-modeling of AIP, converting to PB, etc.

AJ ,163 87, 2022



Wed. Lunch, Socorro, May 8th 2024

٠

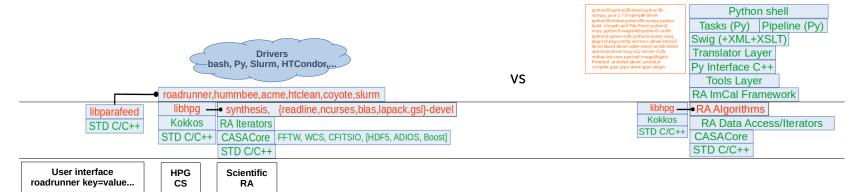
Zernike modeling for AIP (PB)

- Build a model of the antenna aperture illumination pattern (AIP)
 - Used as input to the AW-Projection framework for wide-field full-pol. imaging. Makes the algorithmic code telescope agnostic

Conclusions thus far

- Scientific CASA code base is well designed, very re-usable, and reliable
 - Is the scientific C++ code inherently as complex as imagined? No.
 - Is the entry-point for new developers as hard as imagined? No.
 - Successful new developers/scientists in ARDG (recall it's a 2.5-FTE group!)

M. (Genie) Hsieh, M. Pokorny, F. Madsen, S. Sekhar, H. Mueller



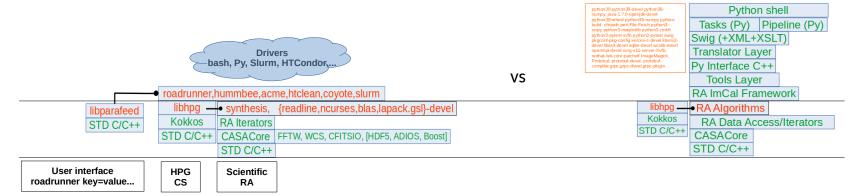
Conclusions thus far

- Scientific CASA code base is well designed, very re-usable, and reliable
 - Is the scientific C++ code inherently as complex as imagined? No.
 - Is the entry point for new developers as hard as imagined?
 - Successful new developers/scientists in ARDG (recall it's a 2.5-FTE group!)

M. (Genie) Hsieh, M. Pokorny, F. Madsen, S. Sekhar, H. Mueller

• Minimal software stack with a robust build system reduces various costs

No.



Conclusions thus far

- Scientific CASA code base is well designed, very re-usable, and reliable
 - Is the scientific C++ code inherently as complex as imagined? No.
 - Is the entry-point for new developers as hard as imagined?
 - Successful new developers/scientists in ARDG (recall it's a 2.5-FTE group!)

M. (Genie) Hsieh, M. Pokorny, F. Madsen, S. Sekhar, H. Mueller

Minimal software stack with a robust build system reduces various costs

No.

- Architectural separation of functionality, development to a design, choice of technologies, and deeper understanding, keeping real use-cases (even some users) in the loop all are important!
 - [Kokkos+libhpg]:
- HPC in a h/w independent manner
- [CASACore+libsynthesis]: Re-use of the most advanced, highly tested RA domain scientific code-base
- Enabling solutions: An example of rapid deployment of scientific capability

libparafeed- Application layer STD C/C++ RA Algorithms Kokkos RA Data Access/Iterators STD C/C++ CASACore STD C/C++ STD C/C++	libparafeed Application layer STD C/C++ CASACore RA Data Access/Iterators Translation To/From STL •RA Algorithms Kokkos STD C/C++	Python STL interface
---	---	-------------------------

Wed. Lunch, Socorro, May 8th 2024

٠

STD C/C++ •RA Algorithms ST libhpg •RA Algorithms ST Kokkos RA Data Access/Iterators • STD C/C++ CASACore •	Opparafeed Application layer CASACore RA Data Access/Iterators Translation To/From STL Python libhpg •RA Algorithms Kokkos STD C/C++
---	--

- Performance engineering work: NVIDIA, Kokkos/SNL,...
 - Working relationships with other groups.
 - The Kokkos group: A well established HPC R&D group that developed production code.
 - CHTC: HTC group, other communities with similar computing problem (not AI!)
 - NVIDIA (new h/w), SNL, LANL,...

٠

libparafeed STD C/C++ libhpg Kokkos STD C/C++	Application layer ARA Algorithms RA Data Access/Iterators CASACore		Application layer CASACore RA Data Access/Iterators Translation To/From STL RA Algorithms	Python STL interface
	CASACore STD C/C++	Kokkos STD C/C++	STD C/C++	

- Performance engineering work: NVIDIA, Kokkos/SNL,...
 - Working relationships with other groups.
 - The Kokkos group: A well established HPC R&D group that developed production code.
 - CHTC: HTC group, other communities with similar computing problem (not AI!)
 - NVIDIA (new h/w), SNL, LANL,...
- Consolidate lessons from the PATh experiments
 - Getting ready for new tests + simulation + SLURM
 - Make it accessible for collaborators, other interested users

Wed. Lunch, Socorro, May 8th 2024

•

libparafeed STD C/C++ libhpg Kokkos STD C/C++	 Application layer RA Algorithms RA Data Access/Iterators CASACore 	libhpg -	Application layer CASACore RA Data Access/Iterators Translation To/From STL RA Algorithms STD C/C++	Python STL interface
	STD C/C++	STD C/C++	STD C/C++	

- Performance engineering work: NVIDIA, Kokkos/SNL,...
 - Working relationships with other groups.
 - The Kokkos group: A well established HPC R&D group that developed production code.
 - CHTC: HTC group, other communities with similar computing problem (not AI!)
 - NVIDIA (new h/w), SNL, LANL,...
- Consolidate lessons from the PATh experiments
 - Getting ready for new tests + simulation + SLURM
 - Make it accessible for collaborators, other interested users
- Algorithms R&D: Wide-scale imaging
- ngVLA Simulation, algorithm verification
 - O(100TB). Storage is a bottleneck

Wed. Lunch, Socorro, May 8th 2024

•